freebsd-skq/sys/cam/cam.c
ken aec8808588 Add support for reading MAM attributes to camcontrol(8) and libcam(3).
MAM is Medium Auxiliary Memory and is most commonly found as flash
chips on tapes.

This includes support for reading attributes and decoding most
known attributes, but does not yet include support for writing
attributes or reporting attributes in XML format.

libsbuf/Makefile:
	Add subr_prf.c for the new sbuf_hexdump() function.  This
	function is essentially the same function.

libsbuf/Symbol.map:
	Add a new shared library minor version, and include the
	sbuf_hexdump() function.

libsbuf/Version.def:
	Add version 1.4 of the libsbuf library.

libutil/hexdump.3:
	Document sbuf_hexdump() alongside hexdump(3), since it is
	essentially the same function.

camcontrol/Makefile:
	Add attrib.c.

camcontrol/attrib.c:
	Implementation of READ ATTRIBUTE support for camcontrol(8).

camcontrol/camcontrol.8:
	Document the new 'camcontrol attrib' subcommand.

camcontrol/camcontrol.c:
	Add the new 'camcontrol attrib' subcommand.

camcontrol/camcontrol.h:
	Add a function prototype for scsiattrib().

share/man/man9/sbuf.9:
	Document the existence of sbuf_hexdump() and point users to
	the hexdump(3) man page for more details.

sys/cam/scsi/scsi_all.c:
	Add a table of known attributes, text descriptions and
	handler functions.

	Add a new scsi_attrib_sbuf() function along with a number
	of other related functions that help decode attributes.

	scsi_attrib_ascii_sbuf() decodes ASCII format attributes.

	scsi_attrib_int_sbuf() decodes binary format attributes, and
	will pass them off to scsi_attrib_hexdump_sbuf() if they're
	bigger than 8 bytes.

	scsi_attrib_vendser_sbuf() decodes the vendor and drive
	serial number attribute.

	scsi_attrib_volcoh_sbuf() decodes the Volume Coherency
	Information attribute that LTFS writes out.

sys/cam/scsi/scsi_all.h:
	Add a number of attribute-related structure definitions and
	other defines.

	Add function prototypes for all of the functions added in
	scsi_all.c.

sys/kern/subr_prf.c:
	Add a new function, sbuf_hexdump().  This is the same as
	the existing hexdump(9) function, except that it puts the
	result in an sbuf.

	This also changes subr_prf.c so that it can be compiled in
	userland for includsion in libsbuf.

	We should work to change this so that the kernel hexdump
	implementation is a wrapper around sbuf_hexdump() with a
	statically allocated sbuf with a drain.  That will require
	a drain function that goes to the kernel printf() buffer
	that can take a non-NUL terminated string as input.
	That is because an sbuf isn't NUL-terminated until it is
	finished, and we don't want to finish it while we're still
	using it.

	We should also work to consolidate the userland hexdump and
	kernel hexdump implemenatations, which are currently
	separate.  This would also mean making applications that
	currently link in libutil link in libsbuf.

sys/sys/sbuf.h:
	Add the prototype for sbuf_hexdump(), and add another copy
	of the hexdump flag values if they aren't already defined.

	Ideally the flags should be defined in one place but the
	implemenation makes it difficult to do properly.  (See
	above.)

Sponsored by:	Spectra Logic Corporation
MFC after:	1 week
2015-06-09 21:39:38 +00:00

534 lines
14 KiB
C

/*-
* Generic utility routines for the Common Access Method layer.
*
* Copyright (c) 1997 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#else /* _KERNEL */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <camlib.h>
#endif /* _KERNEL */
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/smp_all.h>
#include <sys/sbuf.h>
#ifdef _KERNEL
#include <sys/libkern.h>
#include <cam/cam_queue.h>
#include <cam/cam_xpt.h>
FEATURE(scbus, "SCSI devices support");
#endif
static int camstatusentrycomp(const void *key, const void *member);
const struct cam_status_entry cam_status_table[] = {
{ CAM_REQ_INPROG, "CCB request is in progress" },
{ CAM_REQ_CMP, "CCB request completed without error" },
{ CAM_REQ_ABORTED, "CCB request aborted by the host" },
{ CAM_UA_ABORT, "Unable to abort CCB request" },
{ CAM_REQ_CMP_ERR, "CCB request completed with an error" },
{ CAM_BUSY, "CAM subsystem is busy" },
{ CAM_REQ_INVALID, "CCB request was invalid" },
{ CAM_PATH_INVALID, "Supplied Path ID is invalid" },
{ CAM_DEV_NOT_THERE, "Device Not Present" },
{ CAM_UA_TERMIO, "Unable to terminate I/O CCB request" },
{ CAM_SEL_TIMEOUT, "Selection Timeout" },
{ CAM_CMD_TIMEOUT, "Command timeout" },
{ CAM_SCSI_STATUS_ERROR, "SCSI Status Error" },
{ CAM_MSG_REJECT_REC, "Message Reject Reveived" },
{ CAM_SCSI_BUS_RESET, "SCSI Bus Reset Sent/Received" },
{ CAM_UNCOR_PARITY, "Uncorrectable parity/CRC error" },
{ CAM_AUTOSENSE_FAIL, "Auto-Sense Retrieval Failed" },
{ CAM_NO_HBA, "No HBA Detected" },
{ CAM_DATA_RUN_ERR, "Data Overrun error" },
{ CAM_UNEXP_BUSFREE, "Unexpected Bus Free" },
{ CAM_SEQUENCE_FAIL, "Target Bus Phase Sequence Failure" },
{ CAM_CCB_LEN_ERR, "CCB length supplied is inadequate" },
{ CAM_PROVIDE_FAIL, "Unable to provide requested capability" },
{ CAM_BDR_SENT, "SCSI BDR Message Sent" },
{ CAM_REQ_TERMIO, "CCB request terminated by the host" },
{ CAM_UNREC_HBA_ERROR, "Unrecoverable Host Bus Adapter Error" },
{ CAM_REQ_TOO_BIG, "The request was too large for this host" },
{ CAM_REQUEUE_REQ, "Unconditionally Re-queue Request", },
{ CAM_ATA_STATUS_ERROR, "ATA Status Error" },
{ CAM_SCSI_IT_NEXUS_LOST,"Initiator/Target Nexus Lost" },
{ CAM_SMP_STATUS_ERROR, "SMP Status Error" },
{ CAM_IDE, "Initiator Detected Error Message Received" },
{ CAM_RESRC_UNAVAIL, "Resource Unavailable" },
{ CAM_UNACKED_EVENT, "Unacknowledged Event by Host" },
{ CAM_MESSAGE_RECV, "Message Received in Host Target Mode" },
{ CAM_INVALID_CDB, "Invalid CDB received in Host Target Mode" },
{ CAM_LUN_INVALID, "Invalid Lun" },
{ CAM_TID_INVALID, "Invalid Target ID" },
{ CAM_FUNC_NOTAVAIL, "Function Not Available" },
{ CAM_NO_NEXUS, "Nexus Not Established" },
{ CAM_IID_INVALID, "Invalid Initiator ID" },
{ CAM_CDB_RECVD, "CDB Received" },
{ CAM_LUN_ALRDY_ENA, "LUN Already Enabled for Target Mode" },
{ CAM_SCSI_BUSY, "SCSI Bus Busy" },
};
const int num_cam_status_entries =
sizeof(cam_status_table)/sizeof(*cam_status_table);
#ifdef _KERNEL
SYSCTL_NODE(_kern, OID_AUTO, cam, CTLFLAG_RD, 0, "CAM Subsystem");
#ifndef CAM_DEFAULT_SORT_IO_QUEUES
#define CAM_DEFAULT_SORT_IO_QUEUES 1
#endif
int cam_sort_io_queues = CAM_DEFAULT_SORT_IO_QUEUES;
SYSCTL_INT(_kern_cam, OID_AUTO, sort_io_queues, CTLFLAG_RWTUN,
&cam_sort_io_queues, 0, "Sort IO queues to try and optimise disk access patterns");
#endif
void
cam_strvis(u_int8_t *dst, const u_int8_t *src, int srclen, int dstlen)
{
/* Trim leading/trailing spaces, nulls. */
while (srclen > 0 && src[0] == ' ')
src++, srclen--;
while (srclen > 0
&& (src[srclen-1] == ' ' || src[srclen-1] == '\0'))
srclen--;
while (srclen > 0 && dstlen > 1) {
u_int8_t *cur_pos = dst;
if (*src < 0x20 || *src >= 0x80) {
/* SCSI-II Specifies that these should never occur. */
/* non-printable character */
if (dstlen > 4) {
*cur_pos++ = '\\';
*cur_pos++ = ((*src & 0300) >> 6) + '0';
*cur_pos++ = ((*src & 0070) >> 3) + '0';
*cur_pos++ = ((*src & 0007) >> 0) + '0';
} else {
*cur_pos++ = '?';
}
} else {
/* normal character */
*cur_pos++ = *src;
}
src++;
srclen--;
dstlen -= cur_pos - dst;
dst = cur_pos;
}
*dst = '\0';
}
void
cam_strvis_sbuf(struct sbuf *sb, const u_int8_t *src, int srclen,
uint32_t flags)
{
/* Trim leading/trailing spaces, nulls. */
while (srclen > 0 && src[0] == ' ')
src++, srclen--;
while (srclen > 0
&& (src[srclen-1] == ' ' || src[srclen-1] == '\0'))
srclen--;
while (srclen > 0) {
if (*src < 0x20 || *src >= 0x80) {
/* SCSI-II Specifies that these should never occur. */
/* non-printable character */
switch (flags & CAM_STRVIS_FLAG_NONASCII_MASK) {
case CAM_STRVIS_FLAG_NONASCII_ESC:
sbuf_printf(sb, "\\%c%c%c",
((*src & 0300) >> 6) + '0',
((*src & 0070) >> 3) + '0',
((*src & 0007) >> 0) + '0');
break;
case CAM_STRVIS_FLAG_NONASCII_RAW:
/*
* If we run into a NUL, just transform it
* into a space.
*/
if (*src != 0x00)
sbuf_putc(sb, *src);
else
sbuf_putc(sb, ' ');
break;
case CAM_STRVIS_FLAG_NONASCII_SPC:
sbuf_putc(sb, ' ');
break;
case CAM_STRVIS_FLAG_NONASCII_TRIM:
default:
break;
}
} else {
/* normal character */
sbuf_putc(sb, *src);
}
src++;
srclen--;
}
}
/*
* Compare string with pattern, returning 0 on match.
* Short pattern matches trailing blanks in name,
* wildcard '*' in pattern matches rest of name,
* wildcard '?' matches a single non-space character.
*/
int
cam_strmatch(const u_int8_t *str, const u_int8_t *pattern, int str_len)
{
while (*pattern != '\0'&& str_len > 0) {
if (*pattern == '*') {
return (0);
}
if ((*pattern != *str)
&& (*pattern != '?' || *str == ' ')) {
return (1);
}
pattern++;
str++;
str_len--;
}
while (str_len > 0 && *str == ' ') {
str++;
str_len--;
}
if (str_len > 0 && *str == 0)
str_len = 0;
return (str_len);
}
caddr_t
cam_quirkmatch(caddr_t target, caddr_t quirk_table, int num_entries,
int entry_size, cam_quirkmatch_t *comp_func)
{
for (; num_entries > 0; num_entries--, quirk_table += entry_size) {
if ((*comp_func)(target, quirk_table) == 0)
return (quirk_table);
}
return (NULL);
}
const struct cam_status_entry*
cam_fetch_status_entry(cam_status status)
{
status &= CAM_STATUS_MASK;
return (bsearch(&status, &cam_status_table,
num_cam_status_entries,
sizeof(*cam_status_table),
camstatusentrycomp));
}
static int
camstatusentrycomp(const void *key, const void *member)
{
cam_status status;
const struct cam_status_entry *table_entry;
status = *(const cam_status *)key;
table_entry = (const struct cam_status_entry *)member;
return (status - table_entry->status_code);
}
#ifdef _KERNEL
char *
cam_error_string(union ccb *ccb, char *str, int str_len,
cam_error_string_flags flags,
cam_error_proto_flags proto_flags)
#else /* !_KERNEL */
char *
cam_error_string(struct cam_device *device, union ccb *ccb, char *str,
int str_len, cam_error_string_flags flags,
cam_error_proto_flags proto_flags)
#endif /* _KERNEL/!_KERNEL */
{
char path_str[64];
struct sbuf sb;
if ((ccb == NULL)
|| (str == NULL)
|| (str_len <= 0))
return(NULL);
if (flags == CAM_ESF_NONE)
return(NULL);
switch (ccb->ccb_h.func_code) {
case XPT_ATA_IO:
switch (proto_flags & CAM_EPF_LEVEL_MASK) {
case CAM_EPF_NONE:
break;
case CAM_EPF_ALL:
case CAM_EPF_NORMAL:
proto_flags |= CAM_EAF_PRINT_RESULT;
/* FALLTHROUGH */
case CAM_EPF_MINIMAL:
proto_flags |= CAM_EAF_PRINT_STATUS;
/* FALLTHROUGH */
default:
break;
}
break;
case XPT_SCSI_IO:
switch (proto_flags & CAM_EPF_LEVEL_MASK) {
case CAM_EPF_NONE:
break;
case CAM_EPF_ALL:
case CAM_EPF_NORMAL:
proto_flags |= CAM_ESF_PRINT_SENSE;
/* FALLTHROUGH */
case CAM_EPF_MINIMAL:
proto_flags |= CAM_ESF_PRINT_STATUS;
/* FALLTHROUGH */
default:
break;
}
break;
case XPT_SMP_IO:
switch (proto_flags & CAM_EPF_LEVEL_MASK) {
case CAM_EPF_NONE:
break;
case CAM_EPF_ALL:
proto_flags |= CAM_ESMF_PRINT_FULL_CMD;
/* FALLTHROUGH */
case CAM_EPF_NORMAL:
case CAM_EPF_MINIMAL:
proto_flags |= CAM_ESMF_PRINT_STATUS;
/* FALLTHROUGH */
default:
break;
}
break;
default:
break;
}
#ifdef _KERNEL
xpt_path_string(ccb->csio.ccb_h.path, path_str, sizeof(path_str));
#else /* !_KERNEL */
cam_path_string(device, path_str, sizeof(path_str));
#endif /* _KERNEL/!_KERNEL */
sbuf_new(&sb, str, str_len, 0);
if (flags & CAM_ESF_COMMAND) {
sbuf_cat(&sb, path_str);
switch (ccb->ccb_h.func_code) {
case XPT_ATA_IO:
ata_command_sbuf(&ccb->ataio, &sb);
sbuf_printf(&sb, "\n");
break;
case XPT_SCSI_IO:
#ifdef _KERNEL
scsi_command_string(&ccb->csio, &sb);
#else /* !_KERNEL */
scsi_command_string(device, &ccb->csio, &sb);
#endif /* _KERNEL/!_KERNEL */
sbuf_printf(&sb, "\n");
break;
case XPT_SMP_IO:
smp_command_sbuf(&ccb->smpio, &sb, path_str, 79 -
strlen(path_str), (proto_flags &
CAM_ESMF_PRINT_FULL_CMD) ? 79 : 0);
sbuf_printf(&sb, "\n");
break;
default:
break;
}
}
if (flags & CAM_ESF_CAM_STATUS) {
cam_status status;
const struct cam_status_entry *entry;
sbuf_cat(&sb, path_str);
status = ccb->ccb_h.status & CAM_STATUS_MASK;
entry = cam_fetch_status_entry(status);
if (entry == NULL)
sbuf_printf(&sb, "CAM status: Unknown (%#x)\n",
ccb->ccb_h.status);
else
sbuf_printf(&sb, "CAM status: %s\n",
entry->status_text);
}
if (flags & CAM_ESF_PROTO_STATUS) {
switch (ccb->ccb_h.func_code) {
case XPT_ATA_IO:
if ((ccb->ccb_h.status & CAM_STATUS_MASK) !=
CAM_ATA_STATUS_ERROR)
break;
if (proto_flags & CAM_EAF_PRINT_STATUS) {
sbuf_cat(&sb, path_str);
ata_status_sbuf(&ccb->ataio, &sb);
sbuf_printf(&sb, "\n");
}
if (proto_flags & CAM_EAF_PRINT_RESULT) {
sbuf_cat(&sb, path_str);
ata_res_sbuf(&ccb->ataio, &sb);
sbuf_printf(&sb, "\n");
}
break;
case XPT_SCSI_IO:
if ((ccb->ccb_h.status & CAM_STATUS_MASK) !=
CAM_SCSI_STATUS_ERROR)
break;
if (proto_flags & CAM_ESF_PRINT_STATUS) {
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "SCSI status: %s\n",
scsi_status_string(&ccb->csio));
}
if ((proto_flags & CAM_ESF_PRINT_SENSE)
&& (ccb->csio.scsi_status == SCSI_STATUS_CHECK_COND)
&& (ccb->ccb_h.status & CAM_AUTOSNS_VALID)) {
#ifdef _KERNEL
scsi_sense_sbuf(&ccb->csio, &sb,
SSS_FLAG_NONE);
#else /* !_KERNEL */
scsi_sense_sbuf(device, &ccb->csio, &sb,
SSS_FLAG_NONE);
#endif /* _KERNEL/!_KERNEL */
}
break;
case XPT_SMP_IO:
if ((ccb->ccb_h.status & CAM_STATUS_MASK) !=
CAM_SMP_STATUS_ERROR)
break;
if (proto_flags & CAM_ESF_PRINT_STATUS) {
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "SMP status: %s (%#x)\n",
smp_error_desc(ccb->smpio.smp_response[2]),
ccb->smpio.smp_response[2]);
}
/* There is no SMP equivalent to SCSI sense. */
break;
default:
break;
}
}
sbuf_finish(&sb);
return(sbuf_data(&sb));
}
#ifdef _KERNEL
void
cam_error_print(union ccb *ccb, cam_error_string_flags flags,
cam_error_proto_flags proto_flags)
{
char str[512];
printf("%s", cam_error_string(ccb, str, sizeof(str), flags,
proto_flags));
}
#else /* !_KERNEL */
void
cam_error_print(struct cam_device *device, union ccb *ccb,
cam_error_string_flags flags, cam_error_proto_flags proto_flags,
FILE *ofile)
{
char str[512];
if ((device == NULL) || (ccb == NULL) || (ofile == NULL))
return;
fprintf(ofile, "%s", cam_error_string(device, ccb, str, sizeof(str),
flags, proto_flags));
}
#endif /* _KERNEL/!_KERNEL */
/*
* Common calculate geometry fuction
*
* Caller should set ccg->volume_size and block_size.
* The extended parameter should be zero if extended translation
* should not be used.
*/
void
cam_calc_geometry(struct ccb_calc_geometry *ccg, int extended)
{
uint32_t size_mb, secs_per_cylinder;
if (ccg->block_size == 0) {
ccg->ccb_h.status = CAM_REQ_CMP_ERR;
return;
}
size_mb = (1024L * 1024L) / ccg->block_size;
if (size_mb == 0) {
ccg->ccb_h.status = CAM_REQ_CMP_ERR;
return;
}
size_mb = ccg->volume_size / size_mb;
if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
if (secs_per_cylinder == 0) {
ccg->ccb_h.status = CAM_REQ_CMP_ERR;
return;
}
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccg->ccb_h.status = CAM_REQ_CMP;
}