254af40a92
Under the hood the VT-d spec is really implemented in terms of PCI RIDs instead of bus/slot/function, even though the spec makes pains to convert back to bus/slot/function in examples. However working with bus/slot/function is not correct when PCI ARI is in use, so convert to using RIDs in most cases. bus/slot/function will only be used when reporting errors to a user. Reviewed by: kib MFC after: 2 months Sponsored by: Sandvine Inc.
648 lines
17 KiB
C
648 lines
17 KiB
C
/*-
|
|
* Copyright (c) 2013 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/memdesc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/tree.h>
|
|
#include <sys/uio.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/vm_map.h>
|
|
#include <machine/atomic.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/specialreg.h>
|
|
#include <x86/include/busdma_impl.h>
|
|
#include <x86/iommu/intel_reg.h>
|
|
#include <x86/iommu/busdma_dmar.h>
|
|
#include <x86/iommu/intel_dmar.h>
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
static MALLOC_DEFINE(M_DMAR_CTX, "dmar_ctx", "Intel DMAR Context");
|
|
|
|
static void dmar_ctx_unload_task(void *arg, int pending);
|
|
|
|
static void
|
|
dmar_ensure_ctx_page(struct dmar_unit *dmar, int bus)
|
|
{
|
|
struct sf_buf *sf;
|
|
dmar_root_entry_t *re;
|
|
vm_page_t ctxm;
|
|
|
|
/*
|
|
* Allocated context page must be linked.
|
|
*/
|
|
ctxm = dmar_pgalloc(dmar->ctx_obj, 1 + bus, DMAR_PGF_NOALLOC);
|
|
if (ctxm != NULL)
|
|
return;
|
|
|
|
/*
|
|
* Page not present, allocate and link. Note that other
|
|
* thread might execute this sequence in parallel. This
|
|
* should be safe, because the context entries written by both
|
|
* threads are equal.
|
|
*/
|
|
TD_PREP_PINNED_ASSERT;
|
|
ctxm = dmar_pgalloc(dmar->ctx_obj, 1 + bus, DMAR_PGF_ZERO |
|
|
DMAR_PGF_WAITOK);
|
|
re = dmar_map_pgtbl(dmar->ctx_obj, 0, DMAR_PGF_NOALLOC, &sf);
|
|
re += bus;
|
|
dmar_pte_store(&re->r1, DMAR_ROOT_R1_P | (DMAR_ROOT_R1_CTP_MASK &
|
|
VM_PAGE_TO_PHYS(ctxm)));
|
|
dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(dmar));
|
|
TD_PINNED_ASSERT;
|
|
}
|
|
|
|
static dmar_ctx_entry_t *
|
|
dmar_map_ctx_entry(struct dmar_ctx *ctx, struct sf_buf **sfp)
|
|
{
|
|
dmar_ctx_entry_t *ctxp;
|
|
|
|
ctxp = dmar_map_pgtbl(ctx->dmar->ctx_obj, 1 + PCI_RID2BUS(ctx->rid),
|
|
DMAR_PGF_NOALLOC | DMAR_PGF_WAITOK, sfp);
|
|
ctxp += ctx->rid & 0xff;
|
|
return (ctxp);
|
|
}
|
|
|
|
static void
|
|
ctx_tag_init(struct dmar_ctx *ctx, device_t dev)
|
|
{
|
|
bus_addr_t maxaddr;
|
|
|
|
maxaddr = MIN(ctx->end, BUS_SPACE_MAXADDR);
|
|
ctx->ctx_tag.common.ref_count = 1; /* Prevent free */
|
|
ctx->ctx_tag.common.impl = &bus_dma_dmar_impl;
|
|
ctx->ctx_tag.common.boundary = PCI_DMA_BOUNDARY;
|
|
ctx->ctx_tag.common.lowaddr = maxaddr;
|
|
ctx->ctx_tag.common.highaddr = maxaddr;
|
|
ctx->ctx_tag.common.maxsize = maxaddr;
|
|
ctx->ctx_tag.common.nsegments = BUS_SPACE_UNRESTRICTED;
|
|
ctx->ctx_tag.common.maxsegsz = maxaddr;
|
|
ctx->ctx_tag.ctx = ctx;
|
|
ctx->ctx_tag.owner = dev;
|
|
/* XXXKIB initialize tag further */
|
|
}
|
|
|
|
static void
|
|
ctx_id_entry_init(struct dmar_ctx *ctx, dmar_ctx_entry_t *ctxp)
|
|
{
|
|
struct dmar_unit *unit;
|
|
vm_page_t ctx_root;
|
|
|
|
unit = ctx->dmar;
|
|
KASSERT(ctxp->ctx1 == 0 && ctxp->ctx2 == 0,
|
|
("dmar%d: initialized ctx entry %d:%d:%d 0x%jx 0x%jx",
|
|
unit->unit, pci_get_bus(ctx->ctx_tag.owner),
|
|
pci_get_slot(ctx->ctx_tag.owner),
|
|
pci_get_function(ctx->ctx_tag.owner),
|
|
ctxp->ctx1,
|
|
ctxp->ctx2));
|
|
ctxp->ctx2 = DMAR_CTX2_DID(ctx->domain);
|
|
ctxp->ctx2 |= ctx->awlvl;
|
|
if ((ctx->flags & DMAR_CTX_IDMAP) != 0 &&
|
|
(unit->hw_ecap & DMAR_ECAP_PT) != 0) {
|
|
KASSERT(ctx->pgtbl_obj == NULL,
|
|
("ctx %p non-null pgtbl_obj", ctx));
|
|
dmar_pte_store(&ctxp->ctx1, DMAR_CTX1_T_PASS | DMAR_CTX1_P);
|
|
} else {
|
|
ctx_root = dmar_pgalloc(ctx->pgtbl_obj, 0, DMAR_PGF_NOALLOC);
|
|
dmar_pte_store(&ctxp->ctx1, DMAR_CTX1_T_UNTR |
|
|
(DMAR_CTX1_ASR_MASK & VM_PAGE_TO_PHYS(ctx_root)) |
|
|
DMAR_CTX1_P);
|
|
}
|
|
}
|
|
|
|
static int
|
|
ctx_init_rmrr(struct dmar_ctx *ctx, device_t dev)
|
|
{
|
|
struct dmar_map_entries_tailq rmrr_entries;
|
|
struct dmar_map_entry *entry, *entry1;
|
|
vm_page_t *ma;
|
|
dmar_gaddr_t start, end;
|
|
vm_pindex_t size, i;
|
|
int error, error1;
|
|
|
|
error = 0;
|
|
TAILQ_INIT(&rmrr_entries);
|
|
dmar_ctx_parse_rmrr(ctx, dev, &rmrr_entries);
|
|
TAILQ_FOREACH_SAFE(entry, &rmrr_entries, unroll_link, entry1) {
|
|
/*
|
|
* VT-d specification requires that the start of an
|
|
* RMRR entry is 4k-aligned. Buggy BIOSes put
|
|
* anything into the start and end fields. Truncate
|
|
* and round as neccesary.
|
|
*
|
|
* We also allow the overlapping RMRR entries, see
|
|
* dmar_gas_alloc_region().
|
|
*/
|
|
start = entry->start;
|
|
end = entry->end;
|
|
entry->start = trunc_page(start);
|
|
entry->end = round_page(end);
|
|
if (entry->start == entry->end) {
|
|
/* Workaround for some AMI (?) BIOSes */
|
|
if (bootverbose) {
|
|
device_printf(dev, "BIOS bug: dmar%d RMRR "
|
|
"region (%jx, %jx) corrected\n",
|
|
ctx->dmar->unit, start, end);
|
|
}
|
|
entry->end += DMAR_PAGE_SIZE * 0x20;
|
|
}
|
|
size = OFF_TO_IDX(entry->end - entry->start);
|
|
ma = malloc(sizeof(vm_page_t) * size, M_TEMP, M_WAITOK);
|
|
for (i = 0; i < size; i++) {
|
|
ma[i] = vm_page_getfake(entry->start + PAGE_SIZE * i,
|
|
VM_MEMATTR_DEFAULT);
|
|
}
|
|
error1 = dmar_gas_map_region(ctx, entry, DMAR_MAP_ENTRY_READ |
|
|
DMAR_MAP_ENTRY_WRITE, DMAR_GM_CANWAIT, ma);
|
|
/*
|
|
* Non-failed RMRR entries are owned by context rb
|
|
* tree. Get rid of the failed entry, but do not stop
|
|
* the loop. Rest of the parsed RMRR entries are
|
|
* loaded and removed on the context destruction.
|
|
*/
|
|
if (error1 == 0 && entry->end != entry->start) {
|
|
DMAR_LOCK(ctx->dmar);
|
|
ctx->flags |= DMAR_CTX_RMRR;
|
|
DMAR_UNLOCK(ctx->dmar);
|
|
} else {
|
|
if (error1 != 0) {
|
|
device_printf(dev,
|
|
"dmar%d failed to map RMRR region (%jx, %jx) %d\n",
|
|
ctx->dmar->unit, start, end, error1);
|
|
error = error1;
|
|
}
|
|
TAILQ_REMOVE(&rmrr_entries, entry, unroll_link);
|
|
dmar_gas_free_entry(ctx, entry);
|
|
}
|
|
for (i = 0; i < size; i++)
|
|
vm_page_putfake(ma[i]);
|
|
free(ma, M_TEMP);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static struct dmar_ctx *
|
|
dmar_get_ctx_alloc(struct dmar_unit *dmar, uint16_t rid)
|
|
{
|
|
struct dmar_ctx *ctx;
|
|
|
|
ctx = malloc(sizeof(*ctx), M_DMAR_CTX, M_WAITOK | M_ZERO);
|
|
RB_INIT(&ctx->rb_root);
|
|
TAILQ_INIT(&ctx->unload_entries);
|
|
TASK_INIT(&ctx->unload_task, 0, dmar_ctx_unload_task, ctx);
|
|
mtx_init(&ctx->lock, "dmarctx", NULL, MTX_DEF);
|
|
ctx->dmar = dmar;
|
|
ctx->rid = rid;
|
|
return (ctx);
|
|
}
|
|
|
|
static void
|
|
dmar_ctx_dtr(struct dmar_ctx *ctx, bool gas_inited, bool pgtbl_inited)
|
|
{
|
|
|
|
if (gas_inited) {
|
|
DMAR_CTX_LOCK(ctx);
|
|
dmar_gas_fini_ctx(ctx);
|
|
DMAR_CTX_UNLOCK(ctx);
|
|
}
|
|
if (pgtbl_inited) {
|
|
if (ctx->pgtbl_obj != NULL)
|
|
DMAR_CTX_PGLOCK(ctx);
|
|
ctx_free_pgtbl(ctx);
|
|
}
|
|
mtx_destroy(&ctx->lock);
|
|
free(ctx, M_DMAR_CTX);
|
|
}
|
|
|
|
struct dmar_ctx *
|
|
dmar_get_ctx(struct dmar_unit *dmar, device_t dev, uint16_t rid, bool id_mapped,
|
|
bool rmrr_init)
|
|
{
|
|
struct dmar_ctx *ctx, *ctx1;
|
|
dmar_ctx_entry_t *ctxp;
|
|
struct sf_buf *sf;
|
|
int bus, slot, func, error, mgaw;
|
|
bool enable;
|
|
|
|
bus = pci_get_bus(dev);
|
|
slot = pci_get_slot(dev);
|
|
func = pci_get_function(dev);
|
|
enable = false;
|
|
TD_PREP_PINNED_ASSERT;
|
|
DMAR_LOCK(dmar);
|
|
ctx = dmar_find_ctx_locked(dmar, rid);
|
|
error = 0;
|
|
if (ctx == NULL) {
|
|
/*
|
|
* Perform the allocations which require sleep or have
|
|
* higher chance to succeed if the sleep is allowed.
|
|
*/
|
|
DMAR_UNLOCK(dmar);
|
|
dmar_ensure_ctx_page(dmar, bus);
|
|
ctx1 = dmar_get_ctx_alloc(dmar, rid);
|
|
|
|
if (id_mapped) {
|
|
/*
|
|
* For now, use the maximal usable physical
|
|
* address of the installed memory to
|
|
* calculate the mgaw. It is useful for the
|
|
* identity mapping, and less so for the
|
|
* virtualized bus address space.
|
|
*/
|
|
ctx1->end = ptoa(Maxmem);
|
|
mgaw = dmar_maxaddr2mgaw(dmar, ctx1->end, false);
|
|
error = ctx_set_agaw(ctx1, mgaw);
|
|
if (error != 0) {
|
|
dmar_ctx_dtr(ctx1, false, false);
|
|
TD_PINNED_ASSERT;
|
|
return (NULL);
|
|
}
|
|
} else {
|
|
ctx1->end = BUS_SPACE_MAXADDR;
|
|
mgaw = dmar_maxaddr2mgaw(dmar, ctx1->end, true);
|
|
error = ctx_set_agaw(ctx1, mgaw);
|
|
if (error != 0) {
|
|
dmar_ctx_dtr(ctx1, false, false);
|
|
TD_PINNED_ASSERT;
|
|
return (NULL);
|
|
}
|
|
/* Use all supported address space for remapping. */
|
|
ctx1->end = 1ULL << (ctx1->agaw - 1);
|
|
}
|
|
|
|
|
|
dmar_gas_init_ctx(ctx1);
|
|
if (id_mapped) {
|
|
if ((dmar->hw_ecap & DMAR_ECAP_PT) == 0) {
|
|
ctx1->pgtbl_obj = ctx_get_idmap_pgtbl(ctx1,
|
|
ctx1->end);
|
|
}
|
|
ctx1->flags |= DMAR_CTX_IDMAP;
|
|
} else {
|
|
error = ctx_alloc_pgtbl(ctx1);
|
|
if (error != 0) {
|
|
dmar_ctx_dtr(ctx1, true, false);
|
|
TD_PINNED_ASSERT;
|
|
return (NULL);
|
|
}
|
|
/* Disable local apic region access */
|
|
error = dmar_gas_reserve_region(ctx1, 0xfee00000,
|
|
0xfeefffff + 1);
|
|
if (error != 0) {
|
|
dmar_ctx_dtr(ctx1, true, true);
|
|
TD_PINNED_ASSERT;
|
|
return (NULL);
|
|
}
|
|
error = ctx_init_rmrr(ctx1, dev);
|
|
if (error != 0) {
|
|
dmar_ctx_dtr(ctx1, true, true);
|
|
TD_PINNED_ASSERT;
|
|
return (NULL);
|
|
}
|
|
}
|
|
ctxp = dmar_map_ctx_entry(ctx1, &sf);
|
|
DMAR_LOCK(dmar);
|
|
|
|
/*
|
|
* Recheck the contexts, other thread might have
|
|
* already allocated needed one.
|
|
*/
|
|
ctx = dmar_find_ctx_locked(dmar, rid);
|
|
if (ctx == NULL) {
|
|
ctx = ctx1;
|
|
ctx->ctx_tag.owner = dev;
|
|
ctx->domain = alloc_unrl(dmar->domids);
|
|
if (ctx->domain == -1) {
|
|
DMAR_UNLOCK(dmar);
|
|
dmar_unmap_pgtbl(sf, true);
|
|
dmar_ctx_dtr(ctx, true, true);
|
|
TD_PINNED_ASSERT;
|
|
return (NULL);
|
|
}
|
|
ctx_tag_init(ctx, dev);
|
|
|
|
/*
|
|
* This is the first activated context for the
|
|
* DMAR unit. Enable the translation after
|
|
* everything is set up.
|
|
*/
|
|
if (LIST_EMPTY(&dmar->contexts))
|
|
enable = true;
|
|
LIST_INSERT_HEAD(&dmar->contexts, ctx, link);
|
|
ctx_id_entry_init(ctx, ctxp);
|
|
device_printf(dev,
|
|
"dmar%d pci%d:%d:%d:%d domain %d mgaw %d "
|
|
"agaw %d %s-mapped\n",
|
|
dmar->unit, dmar->segment, bus, slot,
|
|
func, ctx->domain, ctx->mgaw, ctx->agaw,
|
|
id_mapped ? "id" : "re");
|
|
} else {
|
|
dmar_ctx_dtr(ctx1, true, true);
|
|
}
|
|
dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(dmar));
|
|
}
|
|
ctx->refs++;
|
|
if ((ctx->flags & DMAR_CTX_RMRR) != 0)
|
|
ctx->refs++; /* XXXKIB */
|
|
|
|
/*
|
|
* If dmar declares Caching Mode as Set, follow 11.5 "Caching
|
|
* Mode Consideration" and do the (global) invalidation of the
|
|
* negative TLB entries.
|
|
*/
|
|
if ((dmar->hw_cap & DMAR_CAP_CM) != 0 || enable) {
|
|
if (dmar->qi_enabled) {
|
|
dmar_qi_invalidate_ctx_glob_locked(dmar);
|
|
if ((dmar->hw_ecap & DMAR_ECAP_DI) != 0)
|
|
dmar_qi_invalidate_iotlb_glob_locked(dmar);
|
|
} else {
|
|
error = dmar_inv_ctx_glob(dmar);
|
|
if (error == 0 &&
|
|
(dmar->hw_ecap & DMAR_ECAP_DI) != 0)
|
|
error = dmar_inv_iotlb_glob(dmar);
|
|
if (error != 0) {
|
|
dmar_free_ctx_locked(dmar, ctx);
|
|
TD_PINNED_ASSERT;
|
|
return (NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The dmar lock was potentially dropped between check for the
|
|
* empty context list and now. Recheck the state of GCMD_TE
|
|
* to avoid unneeded command.
|
|
*/
|
|
if (enable && !rmrr_init && (dmar->hw_gcmd & DMAR_GCMD_TE) == 0) {
|
|
error = dmar_enable_translation(dmar);
|
|
if (error != 0) {
|
|
dmar_free_ctx_locked(dmar, ctx);
|
|
TD_PINNED_ASSERT;
|
|
return (NULL);
|
|
}
|
|
}
|
|
DMAR_UNLOCK(dmar);
|
|
TD_PINNED_ASSERT;
|
|
return (ctx);
|
|
}
|
|
|
|
void
|
|
dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx)
|
|
{
|
|
struct sf_buf *sf;
|
|
dmar_ctx_entry_t *ctxp;
|
|
|
|
DMAR_ASSERT_LOCKED(dmar);
|
|
KASSERT(ctx->refs >= 1,
|
|
("dmar %p ctx %p refs %u", dmar, ctx, ctx->refs));
|
|
|
|
/*
|
|
* If our reference is not last, only the dereference should
|
|
* be performed.
|
|
*/
|
|
if (ctx->refs > 1) {
|
|
ctx->refs--;
|
|
DMAR_UNLOCK(dmar);
|
|
return;
|
|
}
|
|
|
|
KASSERT((ctx->flags & DMAR_CTX_RMRR) == 0,
|
|
("lost ref on RMRR ctx %p", ctx));
|
|
KASSERT((ctx->flags & DMAR_CTX_DISABLED) == 0,
|
|
("lost ref on disabled ctx %p", ctx));
|
|
|
|
/*
|
|
* Otherwise, the context entry must be cleared before the
|
|
* page table is destroyed. The mapping of the context
|
|
* entries page could require sleep, unlock the dmar.
|
|
*/
|
|
DMAR_UNLOCK(dmar);
|
|
TD_PREP_PINNED_ASSERT;
|
|
ctxp = dmar_map_ctx_entry(ctx, &sf);
|
|
DMAR_LOCK(dmar);
|
|
KASSERT(ctx->refs >= 1,
|
|
("dmar %p ctx %p refs %u", dmar, ctx, ctx->refs));
|
|
|
|
/*
|
|
* Other thread might have referenced the context, in which
|
|
* case again only the dereference should be performed.
|
|
*/
|
|
if (ctx->refs > 1) {
|
|
ctx->refs--;
|
|
DMAR_UNLOCK(dmar);
|
|
dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(dmar));
|
|
TD_PINNED_ASSERT;
|
|
return;
|
|
}
|
|
|
|
KASSERT((ctx->flags & DMAR_CTX_RMRR) == 0,
|
|
("lost ref on RMRR ctx %p", ctx));
|
|
KASSERT((ctx->flags & DMAR_CTX_DISABLED) == 0,
|
|
("lost ref on disabled ctx %p", ctx));
|
|
|
|
/*
|
|
* Clear the context pointer and flush the caches.
|
|
* XXXKIB: cannot do this if any RMRR entries are still present.
|
|
*/
|
|
dmar_pte_clear(&ctxp->ctx1);
|
|
ctxp->ctx2 = 0;
|
|
dmar_inv_ctx_glob(dmar);
|
|
if ((dmar->hw_ecap & DMAR_ECAP_DI) != 0) {
|
|
if (dmar->qi_enabled)
|
|
dmar_qi_invalidate_iotlb_glob_locked(dmar);
|
|
else
|
|
dmar_inv_iotlb_glob(dmar);
|
|
}
|
|
LIST_REMOVE(ctx, link);
|
|
DMAR_UNLOCK(dmar);
|
|
|
|
/*
|
|
* The rest of the destruction is invisible for other users of
|
|
* the dmar unit.
|
|
*/
|
|
taskqueue_drain(dmar->delayed_taskqueue, &ctx->unload_task);
|
|
KASSERT(TAILQ_EMPTY(&ctx->unload_entries),
|
|
("unfinished unloads %p", ctx));
|
|
dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(dmar));
|
|
free_unr(dmar->domids, ctx->domain);
|
|
dmar_ctx_dtr(ctx, true, true);
|
|
TD_PINNED_ASSERT;
|
|
}
|
|
|
|
void
|
|
dmar_free_ctx(struct dmar_ctx *ctx)
|
|
{
|
|
struct dmar_unit *dmar;
|
|
|
|
dmar = ctx->dmar;
|
|
DMAR_LOCK(dmar);
|
|
dmar_free_ctx_locked(dmar, ctx);
|
|
}
|
|
|
|
struct dmar_ctx *
|
|
dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid)
|
|
{
|
|
struct dmar_ctx *ctx;
|
|
|
|
DMAR_ASSERT_LOCKED(dmar);
|
|
|
|
LIST_FOREACH(ctx, &dmar->contexts, link) {
|
|
if (ctx->rid == rid)
|
|
return (ctx);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
dmar_ctx_free_entry(struct dmar_map_entry *entry, bool free)
|
|
{
|
|
struct dmar_ctx *ctx;
|
|
|
|
ctx = entry->ctx;
|
|
DMAR_CTX_LOCK(ctx);
|
|
if ((entry->flags & DMAR_MAP_ENTRY_RMRR) != 0)
|
|
dmar_gas_free_region(ctx, entry);
|
|
else
|
|
dmar_gas_free_space(ctx, entry);
|
|
DMAR_CTX_UNLOCK(ctx);
|
|
if (free)
|
|
dmar_gas_free_entry(ctx, entry);
|
|
else
|
|
entry->flags = 0;
|
|
}
|
|
|
|
void
|
|
dmar_ctx_unload_entry(struct dmar_map_entry *entry, bool free)
|
|
{
|
|
struct dmar_unit *unit;
|
|
|
|
unit = entry->ctx->dmar;
|
|
if (unit->qi_enabled) {
|
|
DMAR_LOCK(unit);
|
|
dmar_qi_invalidate_locked(entry->ctx, entry->start,
|
|
entry->end - entry->start, &entry->gseq);
|
|
if (!free)
|
|
entry->flags |= DMAR_MAP_ENTRY_QI_NF;
|
|
TAILQ_INSERT_TAIL(&unit->tlb_flush_entries, entry, dmamap_link);
|
|
DMAR_UNLOCK(unit);
|
|
} else {
|
|
ctx_flush_iotlb_sync(entry->ctx, entry->start, entry->end -
|
|
entry->start);
|
|
dmar_ctx_free_entry(entry, free);
|
|
}
|
|
}
|
|
|
|
void
|
|
dmar_ctx_unload(struct dmar_ctx *ctx, struct dmar_map_entries_tailq *entries,
|
|
bool cansleep)
|
|
{
|
|
struct dmar_unit *unit;
|
|
struct dmar_map_entry *entry, *entry1;
|
|
struct dmar_qi_genseq gseq;
|
|
int error;
|
|
|
|
unit = ctx->dmar;
|
|
|
|
TAILQ_FOREACH_SAFE(entry, entries, dmamap_link, entry1) {
|
|
KASSERT((entry->flags & DMAR_MAP_ENTRY_MAP) != 0,
|
|
("not mapped entry %p %p", ctx, entry));
|
|
error = ctx_unmap_buf(ctx, entry->start, entry->end -
|
|
entry->start, cansleep ? DMAR_PGF_WAITOK : 0);
|
|
KASSERT(error == 0, ("unmap %p error %d", ctx, error));
|
|
if (!unit->qi_enabled) {
|
|
ctx_flush_iotlb_sync(ctx, entry->start,
|
|
entry->end - entry->start);
|
|
TAILQ_REMOVE(entries, entry, dmamap_link);
|
|
dmar_ctx_free_entry(entry, true);
|
|
}
|
|
}
|
|
if (TAILQ_EMPTY(entries))
|
|
return;
|
|
|
|
KASSERT(unit->qi_enabled, ("loaded entry left"));
|
|
DMAR_LOCK(unit);
|
|
TAILQ_FOREACH(entry, entries, dmamap_link) {
|
|
entry->gseq.gen = 0;
|
|
entry->gseq.seq = 0;
|
|
dmar_qi_invalidate_locked(ctx, entry->start, entry->end -
|
|
entry->start, TAILQ_NEXT(entry, dmamap_link) == NULL ?
|
|
&gseq : NULL);
|
|
}
|
|
TAILQ_FOREACH_SAFE(entry, entries, dmamap_link, entry1) {
|
|
entry->gseq = gseq;
|
|
TAILQ_REMOVE(entries, entry, dmamap_link);
|
|
TAILQ_INSERT_TAIL(&unit->tlb_flush_entries, entry, dmamap_link);
|
|
}
|
|
DMAR_UNLOCK(unit);
|
|
}
|
|
|
|
static void
|
|
dmar_ctx_unload_task(void *arg, int pending)
|
|
{
|
|
struct dmar_ctx *ctx;
|
|
struct dmar_map_entries_tailq entries;
|
|
|
|
ctx = arg;
|
|
TAILQ_INIT(&entries);
|
|
|
|
for (;;) {
|
|
DMAR_CTX_LOCK(ctx);
|
|
TAILQ_SWAP(&ctx->unload_entries, &entries, dmar_map_entry,
|
|
dmamap_link);
|
|
DMAR_CTX_UNLOCK(ctx);
|
|
if (TAILQ_EMPTY(&entries))
|
|
break;
|
|
dmar_ctx_unload(ctx, &entries, true);
|
|
}
|
|
}
|