bf59e055db
when using it as a sole if clause instruction. While there, fix 'const static' typo. Submitted by: Arnaud Lacombe <alc@FreeBSD.org> MFC after: 1 week
2122 lines
63 KiB
C
2122 lines
63 KiB
C
/*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2006 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
/*
|
|
* Chips specific device attachment and device info collection
|
|
* Connects Init Reg Vectors, EEPROM Data, and device Functions.
|
|
*/
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
#include "ah_devid.h"
|
|
|
|
#include "ar5211/ar5211.h"
|
|
#include "ar5211/ar5211reg.h"
|
|
#include "ar5211/ar5211phy.h"
|
|
|
|
#include "ah_eeprom_v3.h"
|
|
|
|
/* Add static register initialization vectors */
|
|
#include "ar5211/boss.ini"
|
|
|
|
/*
|
|
* Structure to hold 11b tuning information for Beanie/Sombrero
|
|
* 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
|
|
*/
|
|
typedef struct {
|
|
uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
|
|
uint32_t channelSelect; /* P[7:4]S[3:0] bits */
|
|
uint16_t channel5111; /* 11a channel for 5111 */
|
|
} CHAN_INFO_2GHZ;
|
|
|
|
#define CI_2GHZ_INDEX_CORRECTION 19
|
|
static const CHAN_INFO_2GHZ chan2GHzData[] = {
|
|
{ 1, 0x46, 96 }, /* 2312 -19 */
|
|
{ 1, 0x46, 97 }, /* 2317 -18 */
|
|
{ 1, 0x46, 98 }, /* 2322 -17 */
|
|
{ 1, 0x46, 99 }, /* 2327 -16 */
|
|
{ 1, 0x46, 100 }, /* 2332 -15 */
|
|
{ 1, 0x46, 101 }, /* 2337 -14 */
|
|
{ 1, 0x46, 102 }, /* 2342 -13 */
|
|
{ 1, 0x46, 103 }, /* 2347 -12 */
|
|
{ 1, 0x46, 104 }, /* 2352 -11 */
|
|
{ 1, 0x46, 105 }, /* 2357 -10 */
|
|
{ 1, 0x46, 106 }, /* 2362 -9 */
|
|
{ 1, 0x46, 107 }, /* 2367 -8 */
|
|
{ 1, 0x46, 108 }, /* 2372 -7 */
|
|
/* index -6 to 0 are pad to make this a nolookup table */
|
|
{ 1, 0x46, 116 }, /* -6 */
|
|
{ 1, 0x46, 116 }, /* -5 */
|
|
{ 1, 0x46, 116 }, /* -4 */
|
|
{ 1, 0x46, 116 }, /* -3 */
|
|
{ 1, 0x46, 116 }, /* -2 */
|
|
{ 1, 0x46, 116 }, /* -1 */
|
|
{ 1, 0x46, 116 }, /* 0 */
|
|
{ 1, 0x46, 116 }, /* 2412 1 */
|
|
{ 1, 0x46, 117 }, /* 2417 2 */
|
|
{ 1, 0x46, 118 }, /* 2422 3 */
|
|
{ 1, 0x46, 119 }, /* 2427 4 */
|
|
{ 1, 0x46, 120 }, /* 2432 5 */
|
|
{ 1, 0x46, 121 }, /* 2437 6 */
|
|
{ 1, 0x46, 122 }, /* 2442 7 */
|
|
{ 1, 0x46, 123 }, /* 2447 8 */
|
|
{ 1, 0x46, 124 }, /* 2452 9 */
|
|
{ 1, 0x46, 125 }, /* 2457 10 */
|
|
{ 1, 0x46, 126 }, /* 2462 11 */
|
|
{ 1, 0x46, 127 }, /* 2467 12 */
|
|
{ 1, 0x46, 128 }, /* 2472 13 */
|
|
{ 1, 0x44, 124 }, /* 2484 14 */
|
|
{ 1, 0x46, 136 }, /* 2512 15 */
|
|
{ 1, 0x46, 140 }, /* 2532 16 */
|
|
{ 1, 0x46, 144 }, /* 2552 17 */
|
|
{ 1, 0x46, 148 }, /* 2572 18 */
|
|
{ 1, 0x46, 152 }, /* 2592 19 */
|
|
{ 1, 0x46, 156 }, /* 2612 20 */
|
|
{ 1, 0x46, 160 }, /* 2632 21 */
|
|
{ 1, 0x46, 164 }, /* 2652 22 */
|
|
{ 1, 0x46, 168 }, /* 2672 23 */
|
|
{ 1, 0x46, 172 }, /* 2692 24 */
|
|
{ 1, 0x46, 176 }, /* 2712 25 */
|
|
{ 1, 0x46, 180 } /* 2732 26 */
|
|
};
|
|
|
|
/* Power timeouts in usec to wait for chip to wake-up. */
|
|
#define POWER_UP_TIME 2000
|
|
|
|
#define DELAY_PLL_SETTLE 300 /* 300 us */
|
|
#define DELAY_BASE_ACTIVATE 100 /* 100 us */
|
|
|
|
#define NUM_RATES 8
|
|
|
|
static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
|
|
static HAL_BOOL ar5211SetChannel(struct ath_hal *,
|
|
const struct ieee80211_channel *);
|
|
static int16_t ar5211RunNoiseFloor(struct ath_hal *,
|
|
uint8_t runTime, int16_t startingNF);
|
|
static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
|
|
struct ieee80211_channel *chan);
|
|
static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
|
|
const struct ieee80211_channel *chan);
|
|
static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
|
|
const struct ieee80211_channel *chan);
|
|
static void ar5211SetPowerTable(struct ath_hal *,
|
|
PCDACS_EEPROM *pSrcStruct, uint16_t channel);
|
|
static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
|
|
const struct ieee80211_channel *);
|
|
static void ar5211SetRateTable(struct ath_hal *,
|
|
RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
|
|
uint16_t numChannels, const struct ieee80211_channel *chan);
|
|
static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
|
|
const PCDACS_EEPROM *pSrcStruct);
|
|
static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
|
|
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
|
|
static uint16_t ar5211GetInterpolatedValue(uint16_t target,
|
|
uint16_t srcLeft, uint16_t srcRight,
|
|
uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
|
|
static void ar5211GetLowerUpperValues(uint16_t value,
|
|
const uint16_t *pList, uint16_t listSize,
|
|
uint16_t *pLowerValue, uint16_t *pUpperValue);
|
|
static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
|
|
uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
|
|
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
|
|
|
|
static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
|
|
static void ar5211RequestRfgain(struct ath_hal *);
|
|
static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
|
|
static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
|
|
static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
|
|
static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
|
|
|
|
/*
|
|
* Places the device in and out of reset and then places sane
|
|
* values in the registers based on EEPROM config, initialization
|
|
* vectors (as determined by the mode), and station configuration
|
|
*
|
|
* bChannelChange is used to preserve DMA/PCU registers across
|
|
* a HW Reset during channel change.
|
|
*/
|
|
HAL_BOOL
|
|
ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
|
|
struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
|
|
HAL_STATUS *status)
|
|
{
|
|
uint32_t softLedCfg, softLedState;
|
|
#define N(a) (sizeof (a) /sizeof (a[0]))
|
|
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
HAL_CHANNEL_INTERNAL *ichan;
|
|
uint32_t i, ledstate;
|
|
HAL_STATUS ecode;
|
|
int q;
|
|
|
|
uint32_t data, synthDelay;
|
|
uint32_t macStaId1;
|
|
uint16_t modesIndex = 0, freqIndex = 0;
|
|
uint32_t saveFrameSeqCount[AR_NUM_DCU];
|
|
uint32_t saveTsfLow = 0, saveTsfHigh = 0;
|
|
uint32_t saveDefAntenna;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RESET,
|
|
"%s: opmode %u channel %u/0x%x %s channel\n",
|
|
__func__, opmode, chan->ic_freq, chan->ic_flags,
|
|
bChannelChange ? "change" : "same");
|
|
|
|
OS_MARK(ah, AH_MARK_RESET, bChannelChange);
|
|
/*
|
|
* Map public channel to private.
|
|
*/
|
|
ichan = ath_hal_checkchannel(ah, chan);
|
|
if (ichan == AH_NULL)
|
|
FAIL(HAL_EINVAL);
|
|
switch (opmode) {
|
|
case HAL_M_STA:
|
|
case HAL_M_IBSS:
|
|
case HAL_M_HOSTAP:
|
|
case HAL_M_MONITOR:
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: invalid operating mode %u\n", __func__, opmode);
|
|
FAIL(HAL_EINVAL);
|
|
break;
|
|
}
|
|
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
|
|
|
|
/* Preserve certain DMA hardware registers on a channel change */
|
|
if (bChannelChange) {
|
|
/*
|
|
* Need to save/restore the TSF because of an issue
|
|
* that accelerates the TSF during a chip reset.
|
|
*
|
|
* We could use system timer routines to more
|
|
* accurately restore the TSF, but
|
|
* 1. Timer routines on certain platforms are
|
|
* not accurate enough (e.g. 1 ms resolution).
|
|
* 2. It would still not be accurate.
|
|
*
|
|
* The most important aspect of this workaround,
|
|
* is that, after reset, the TSF is behind
|
|
* other STAs TSFs. This will allow the STA to
|
|
* properly resynchronize its TSF in adhoc mode.
|
|
*/
|
|
saveTsfLow = OS_REG_READ(ah, AR_TSF_L32);
|
|
saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
|
|
|
|
/* Read frame sequence count */
|
|
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
|
|
saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
|
|
} else {
|
|
for (i = 0; i < AR_NUM_DCU; i++)
|
|
saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
|
|
}
|
|
if (!IEEE80211_IS_CHAN_DFS(chan))
|
|
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
|
|
}
|
|
|
|
/*
|
|
* Preserve the antenna on a channel change
|
|
*/
|
|
saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
|
|
if (saveDefAntenna == 0)
|
|
saveDefAntenna = 1;
|
|
|
|
/* Save hardware flag before chip reset clears the register */
|
|
macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
|
|
|
|
/* Save led state from pci config register */
|
|
ledstate = OS_REG_READ(ah, AR_PCICFG) &
|
|
(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
|
|
AR_PCICFG_LEDSLOW);
|
|
softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
|
|
softLedState = OS_REG_READ(ah, AR_GPIODO);
|
|
|
|
if (!ar5211ChipReset(ah, chan)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/* Setup the indices for the next set of register array writes */
|
|
if (IEEE80211_IS_CHAN_5GHZ(chan)) {
|
|
freqIndex = 1;
|
|
if (IEEE80211_IS_CHAN_TURBO(chan))
|
|
modesIndex = 2;
|
|
else if (IEEE80211_IS_CHAN_A(chan))
|
|
modesIndex = 1;
|
|
else {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: invalid channel %u/0x%x\n",
|
|
__func__, chan->ic_freq, chan->ic_flags);
|
|
FAIL(HAL_EINVAL);
|
|
}
|
|
} else {
|
|
freqIndex = 2;
|
|
if (IEEE80211_IS_CHAN_B(chan))
|
|
modesIndex = 3;
|
|
else if (IEEE80211_IS_CHAN_PUREG(chan))
|
|
modesIndex = 4;
|
|
else {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: invalid channel %u/0x%x\n",
|
|
__func__, chan->ic_freq, chan->ic_flags);
|
|
FAIL(HAL_EINVAL);
|
|
}
|
|
}
|
|
|
|
/* Set correct Baseband to analog shift setting to access analog chips. */
|
|
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
|
|
OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
|
|
}
|
|
|
|
/* Write parameters specific to AR5211 */
|
|
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan) &&
|
|
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
|
|
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
uint32_t ob2GHz, db2GHz;
|
|
|
|
if (IEEE80211_IS_CHAN_CCK(chan)) {
|
|
ob2GHz = ee->ee_ob2GHz[0];
|
|
db2GHz = ee->ee_db2GHz[0];
|
|
} else {
|
|
ob2GHz = ee->ee_ob2GHz[1];
|
|
db2GHz = ee->ee_db2GHz[1];
|
|
}
|
|
ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
|
|
db2GHz = ath_hal_reverseBits(db2GHz, 3);
|
|
ar5211Mode2_4[25][freqIndex] =
|
|
(ar5211Mode2_4[25][freqIndex] & ~0xC0) |
|
|
((ob2GHz << 6) & 0xC0);
|
|
ar5211Mode2_4[26][freqIndex] =
|
|
(ar5211Mode2_4[26][freqIndex] & ~0x0F) |
|
|
(((ob2GHz >> 2) & 0x1) |
|
|
((db2GHz << 1) & 0x0E));
|
|
}
|
|
for (i = 0; i < N(ar5211Mode2_4); i++)
|
|
OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
|
|
ar5211Mode2_4[i][freqIndex]);
|
|
}
|
|
|
|
/* Write the analog registers 6 and 7 before other config */
|
|
ar5211SetRf6and7(ah, chan);
|
|
|
|
/* Write registers that vary across all modes */
|
|
for (i = 0; i < N(ar5211Modes); i++)
|
|
OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
|
|
|
|
/* Write RFGain Parameters that differ between 2.4 and 5 GHz */
|
|
for (i = 0; i < N(ar5211BB_RfGain); i++)
|
|
OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
|
|
|
|
/* Write Common Array Parameters */
|
|
for (i = 0; i < N(ar5211Common); i++) {
|
|
uint32_t reg = ar5211Common[i][0];
|
|
/* On channel change, don't reset the PCU registers */
|
|
if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
|
|
OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
|
|
}
|
|
|
|
/* Fix pre-AR5211 register values, this includes AR5311s. */
|
|
if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
|
|
/*
|
|
* The TX and RX latency values have changed locations
|
|
* within the USEC register in AR5211. Since they're
|
|
* set via the .ini, for both AR5211 and AR5311, they
|
|
* are written properly here for AR5311.
|
|
*/
|
|
data = OS_REG_READ(ah, AR_USEC);
|
|
/* Must be 0 for proper write in AR5311 */
|
|
HALASSERT((data & 0x00700000) == 0);
|
|
OS_REG_WRITE(ah, AR_USEC,
|
|
(data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
|
|
((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
|
|
/* The following registers exist only on AR5311. */
|
|
OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
|
|
|
|
/* Set proper ADC & DAC delays for AR5311. */
|
|
OS_REG_WRITE(ah, 0x00009878, 0x00000008);
|
|
|
|
/* Enable the PCU FIFO corruption ECO on AR5311. */
|
|
OS_REG_WRITE(ah, AR_DIAG_SW,
|
|
OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
|
|
}
|
|
|
|
/* Restore certain DMA hardware registers on a channel change */
|
|
if (bChannelChange) {
|
|
/* Restore TSF */
|
|
OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
|
|
OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
|
|
|
|
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
|
|
OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
|
|
} else {
|
|
for (i = 0; i < AR_NUM_DCU; i++)
|
|
OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
|
|
}
|
|
}
|
|
|
|
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
|
|
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
|
|
| macStaId1
|
|
);
|
|
ar5211SetOperatingMode(ah, opmode);
|
|
|
|
/* Restore previous led state */
|
|
OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
|
|
OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
|
|
OS_REG_WRITE(ah, AR_GPIODO, softLedState);
|
|
|
|
/* Restore previous antenna */
|
|
OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
|
|
|
|
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
|
|
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
|
|
|
|
/* Restore bmiss rssi & count thresholds */
|
|
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
|
|
|
|
OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
|
|
|
|
/*
|
|
* for pre-Production Oahu only.
|
|
* Disable clock gating in all DMA blocks. Helps when using
|
|
* 11B and AES but results in higher power consumption.
|
|
*/
|
|
if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
|
|
AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
|
|
OS_REG_WRITE(ah, AR_CFG,
|
|
OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
|
|
}
|
|
|
|
/* Setup the transmit power values. */
|
|
if (!ar5211SetTransmitPower(ah, chan)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: error init'ing transmit power\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/*
|
|
* Configurable OFDM spoofing for 11n compatibility; used
|
|
* only when operating in station mode.
|
|
*/
|
|
if (opmode != HAL_M_HOSTAP &&
|
|
(AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
|
|
/* NB: override the .ini setting */
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
|
|
AR_PHY_FRAME_CTL_ERR_SERV,
|
|
MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
|
|
}
|
|
|
|
/* Setup board specific options for EEPROM version 3 */
|
|
ar5211SetBoardValues(ah, chan);
|
|
|
|
if (!ar5211SetChannel(ah, chan)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
|
|
__func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/* Activate the PHY */
|
|
if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
|
|
IEEE80211_IS_CHAN_2GHZ(chan))
|
|
OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
|
|
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
|
|
|
|
/*
|
|
* Wait for the frequency synth to settle (synth goes on
|
|
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
|
|
* Value is in 100ns increments.
|
|
*/
|
|
data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
|
|
if (IEEE80211_IS_CHAN_CCK(chan)) {
|
|
synthDelay = (4 * data) / 22;
|
|
} else {
|
|
synthDelay = data / 10;
|
|
}
|
|
/*
|
|
* There is an issue if the AP starts the calibration before
|
|
* the baseband timeout completes. This could result in the
|
|
* rxclear false triggering. Add an extra delay to ensure this
|
|
* this does not happen.
|
|
*/
|
|
OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
|
|
|
|
/* Calibrate the AGC and wait for completion. */
|
|
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
|
|
OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
|
|
(void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
|
|
|
|
/* Perform noise floor and set status */
|
|
if (!ar5211CalNoiseFloor(ah, chan)) {
|
|
if (!IEEE80211_IS_CHAN_CCK(chan))
|
|
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: noise floor calibration failed\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
|
|
if (ahp->ah_calibrationTime != 0) {
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
|
|
AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
|
|
ahp->ah_bIQCalibration = AH_TRUE;
|
|
}
|
|
|
|
/* set 1:1 QCU to DCU mapping for all queues */
|
|
for (q = 0; q < AR_NUM_DCU; q++)
|
|
OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
|
|
|
|
for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
|
|
ar5211ResetTxQueue(ah, q);
|
|
|
|
/* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
|
|
OS_REG_WRITE(ah, AR_IMR_S0,
|
|
(AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
|
|
(AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
|
|
OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
|
|
OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
|
|
|
|
/*
|
|
* GBL_EIFS must always be written after writing
|
|
* to any QCUMASK register.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
|
|
|
|
/* Now set up the Interrupt Mask Register and save it for future use */
|
|
OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
|
|
ahp->ah_maskReg = INIT_INTERRUPT_MASK;
|
|
|
|
/* Enable bus error interrupts */
|
|
OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
|
|
AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
|
|
|
|
/* Enable interrupts specific to AP */
|
|
if (opmode == HAL_M_HOSTAP) {
|
|
OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
|
|
ahp->ah_maskReg |= AR_IMR_MIB;
|
|
}
|
|
|
|
if (AH_PRIVATE(ah)->ah_rfkillEnabled)
|
|
ar5211EnableRfKill(ah);
|
|
|
|
/*
|
|
* Writing to AR_BEACON will start timers. Hence it should
|
|
* be the last register to be written. Do not reset tsf, do
|
|
* not enable beacons at this point, but preserve other values
|
|
* like beaconInterval.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_BEACON,
|
|
(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
|
|
|
|
/* Restore user-specified slot time and timeouts */
|
|
if (ahp->ah_sifstime != (u_int) -1)
|
|
ar5211SetSifsTime(ah, ahp->ah_sifstime);
|
|
if (ahp->ah_slottime != (u_int) -1)
|
|
ar5211SetSlotTime(ah, ahp->ah_slottime);
|
|
if (ahp->ah_acktimeout != (u_int) -1)
|
|
ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
|
|
if (ahp->ah_ctstimeout != (u_int) -1)
|
|
ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
|
|
if (AH_PRIVATE(ah)->ah_diagreg != 0)
|
|
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
|
|
|
|
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
|
|
|
|
return AH_TRUE;
|
|
bad:
|
|
if (status != AH_NULL)
|
|
*status = ecode;
|
|
return AH_FALSE;
|
|
#undef FAIL
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Places the PHY and Radio chips into reset. A full reset
|
|
* must be called to leave this state. The PCI/MAC/PCU are
|
|
* not placed into reset as we must receive interrupt to
|
|
* re-enable the hardware.
|
|
*/
|
|
HAL_BOOL
|
|
ar5211PhyDisable(struct ath_hal *ah)
|
|
{
|
|
return ar5211SetResetReg(ah, AR_RC_BB);
|
|
}
|
|
|
|
/*
|
|
* Places all of hardware into reset
|
|
*/
|
|
HAL_BOOL
|
|
ar5211Disable(struct ath_hal *ah)
|
|
{
|
|
if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
return AH_FALSE;
|
|
/*
|
|
* Reset the HW - PCI must be reset after the rest of the
|
|
* device has been reset.
|
|
*/
|
|
if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
|
|
return AH_FALSE;
|
|
OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Places the hardware into reset and then pulls it out of reset
|
|
*
|
|
* Only write the PLL if we're changing to or from CCK mode
|
|
*
|
|
* Attach calls with channelFlags = 0, as the coldreset should have
|
|
* us in the correct mode and we cannot check the hwchannel flags.
|
|
*/
|
|
HAL_BOOL
|
|
ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
return AH_FALSE;
|
|
|
|
/* NB: called from attach with chan null */
|
|
if (chan != AH_NULL) {
|
|
/* Set CCK and Turbo modes correctly */
|
|
OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
|
|
AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
|
|
if (IEEE80211_IS_CHAN_B(chan)) {
|
|
OS_REG_WRITE(ah, AR5211_PHY_MODE,
|
|
AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
|
|
OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
|
|
/* Wait for the PLL to settle */
|
|
OS_DELAY(DELAY_PLL_SETTLE);
|
|
} else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
|
|
OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
|
|
OS_DELAY(DELAY_PLL_SETTLE);
|
|
OS_REG_WRITE(ah, AR5211_PHY_MODE,
|
|
AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
|
|
AR5211_PHY_MODE_RF2GHZ :
|
|
AR5211_PHY_MODE_RF5GHZ));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the HW - PCI must be reset after the rest of the
|
|
* device has been reset
|
|
*/
|
|
if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
|
|
return AH_FALSE;
|
|
OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
|
|
|
|
/* Bring out of sleep mode (AGAIN) */
|
|
if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
return AH_FALSE;
|
|
|
|
/* Clear warm reset register */
|
|
return ar5211SetResetReg(ah, 0);
|
|
}
|
|
|
|
/*
|
|
* Recalibrate the lower PHY chips to account for temperature/environment
|
|
* changes.
|
|
*/
|
|
HAL_BOOL
|
|
ar5211PerCalibrationN(struct ath_hal *ah, struct ieee80211_channel *chan,
|
|
u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
HAL_CHANNEL_INTERNAL *ichan;
|
|
int32_t qCoff, qCoffDenom;
|
|
uint32_t data;
|
|
int32_t iqCorrMeas;
|
|
int32_t iCoff, iCoffDenom;
|
|
uint32_t powerMeasQ, powerMeasI;
|
|
|
|
ichan = ath_hal_checkchannel(ah, chan);
|
|
if (ichan == AH_NULL) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: invalid channel %u/0x%x; no mapping\n",
|
|
__func__, chan->ic_freq, chan->ic_flags);
|
|
return AH_FALSE;
|
|
}
|
|
/* IQ calibration in progress. Check to see if it has finished. */
|
|
if (ahp->ah_bIQCalibration &&
|
|
!(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
|
|
/* IQ Calibration has finished. */
|
|
ahp->ah_bIQCalibration = AH_FALSE;
|
|
|
|
/* Read calibration results. */
|
|
powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
|
|
powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
|
|
iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
|
|
|
|
/*
|
|
* Prescale these values to remove 64-bit operation requirement at the loss
|
|
* of a little precision.
|
|
*/
|
|
iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
|
|
qCoffDenom = powerMeasQ / 64;
|
|
|
|
/* Protect against divide-by-0. */
|
|
if (iCoffDenom != 0 && qCoffDenom != 0) {
|
|
iCoff = (-iqCorrMeas) / iCoffDenom;
|
|
/* IQCORR_Q_I_COFF is a signed 6 bit number */
|
|
iCoff = iCoff & 0x3f;
|
|
|
|
qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
|
|
/* IQCORR_Q_Q_COFF is a signed 5 bit number */
|
|
qCoff = qCoff & 0x1f;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
|
|
powerMeasI);
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
|
|
powerMeasQ);
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
|
|
iqCorrMeas);
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff = %d\n",
|
|
iCoff);
|
|
HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff = %d\n",
|
|
qCoff);
|
|
|
|
/* Write IQ */
|
|
data = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
|
|
AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
|
|
(((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
|
|
((uint32_t)qCoff);
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
|
|
}
|
|
}
|
|
*isCalDone = !ahp->ah_bIQCalibration;
|
|
|
|
if (longCal) {
|
|
/* Perform noise floor and set status */
|
|
if (!ar5211IsNfGood(ah, chan)) {
|
|
/* report up and clear internal state */
|
|
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
|
|
return AH_FALSE;
|
|
}
|
|
if (!ar5211CalNoiseFloor(ah, chan)) {
|
|
/*
|
|
* Delay 5ms before retrying the noise floor
|
|
* just to make sure, as we are in an error
|
|
* condition here.
|
|
*/
|
|
OS_DELAY(5000);
|
|
if (!ar5211CalNoiseFloor(ah, chan)) {
|
|
if (!IEEE80211_IS_CHAN_CCK(chan))
|
|
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
|
|
return AH_FALSE;
|
|
}
|
|
}
|
|
ar5211RequestRfgain(ah);
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
|
|
HAL_BOOL *isIQdone)
|
|
{
|
|
return ar5211PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
/* XXX */
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Writes the given reset bit mask into the reset register
|
|
*/
|
|
static HAL_BOOL
|
|
ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
|
|
{
|
|
uint32_t mask = resetMask ? resetMask : ~0;
|
|
HAL_BOOL rt;
|
|
|
|
(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
|
|
OS_REG_WRITE(ah, AR_RC, resetMask);
|
|
|
|
/* need to wait at least 128 clocks when reseting PCI before read */
|
|
OS_DELAY(15);
|
|
|
|
resetMask &= AR_RC_MAC | AR_RC_BB;
|
|
mask &= AR_RC_MAC | AR_RC_BB;
|
|
rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
|
|
if ((resetMask & AR_RC_MAC) == 0) {
|
|
if (isBigEndian()) {
|
|
/*
|
|
* Set CFG, little-endian for register
|
|
* and descriptor accesses.
|
|
*/
|
|
mask = INIT_CONFIG_STATUS |
|
|
AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
|
|
OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
|
|
} else
|
|
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
|
|
}
|
|
return rt;
|
|
}
|
|
|
|
/*
|
|
* Takes the MHz channel value and sets the Channel value
|
|
*
|
|
* ASSUMES: Writes enabled to analog bus before AGC is active
|
|
* or by disabling the AGC.
|
|
*/
|
|
static HAL_BOOL
|
|
ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
uint32_t refClk, reg32, data2111;
|
|
int16_t chan5111, chanIEEE;
|
|
|
|
chanIEEE = chan->ic_ieee;
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
const CHAN_INFO_2GHZ* ci =
|
|
&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
|
|
|
|
data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
|
|
<< 5)
|
|
| (ci->refClkSel << 4);
|
|
chan5111 = ci->channel5111;
|
|
} else {
|
|
data2111 = 0;
|
|
chan5111 = chanIEEE;
|
|
}
|
|
|
|
/* Rest of the code is common for 5 GHz and 2.4 GHz. */
|
|
if (chan5111 >= 145 || (chan5111 & 0x1)) {
|
|
reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
|
|
refClk = 1;
|
|
} else {
|
|
reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
|
|
refClk = 0;
|
|
}
|
|
|
|
reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
|
|
OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
|
|
reg32 >>= 8;
|
|
OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
|
|
|
|
AH_PRIVATE(ah)->ah_curchan = chan;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
static int16_t
|
|
ar5211GetNoiseFloor(struct ath_hal *ah)
|
|
{
|
|
int16_t nf;
|
|
|
|
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
|
|
if (nf & 0x100)
|
|
nf = 0 - ((nf ^ 0x1ff) + 1);
|
|
return nf;
|
|
}
|
|
|
|
/*
|
|
* Peform the noisefloor calibration for the length of time set
|
|
* in runTime (valid values 1 to 7)
|
|
*
|
|
* Returns: The NF value at the end of the given time (or 0 for failure)
|
|
*/
|
|
int16_t
|
|
ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
|
|
{
|
|
int i, searchTime;
|
|
|
|
HALASSERT(runTime <= 7);
|
|
|
|
/* Setup noise floor run time and starting value */
|
|
OS_REG_WRITE(ah, AR_PHY(25),
|
|
(OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
|
|
((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
|
|
/* Calibrate the noise floor */
|
|
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
|
|
OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
|
|
|
|
/* Compute the required amount of searchTime needed to finish NF */
|
|
if (runTime == 0) {
|
|
/* 8 search windows * 6.4us each */
|
|
searchTime = 8 * 7;
|
|
} else {
|
|
/* 512 * runtime search windows * 6.4us each */
|
|
searchTime = (runTime * 512) * 7;
|
|
}
|
|
|
|
/*
|
|
* Do not read noise floor until it has been updated
|
|
*
|
|
* As a guesstimate - we may only get 1/60th the time on
|
|
* the air to see search windows in a heavily congested
|
|
* network (40 us every 2400 us of time)
|
|
*/
|
|
for (i = 0; i < 60; i++) {
|
|
if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
|
|
break;
|
|
OS_DELAY(searchTime);
|
|
}
|
|
if (i >= 60) {
|
|
HALDEBUG(ah, HAL_DEBUG_NFCAL,
|
|
"NF with runTime %d failed to end on channel %d\n",
|
|
runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
|
|
HALDEBUG(ah, HAL_DEBUG_NFCAL,
|
|
" PHY NF Reg state: 0x%x\n",
|
|
OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
|
|
HALDEBUG(ah, HAL_DEBUG_NFCAL,
|
|
" PHY Active Reg state: 0x%x\n",
|
|
OS_REG_READ(ah, AR_PHY_ACTIVE));
|
|
return 0;
|
|
}
|
|
|
|
return ar5211GetNoiseFloor(ah);
|
|
}
|
|
|
|
static HAL_BOOL
|
|
getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
|
|
int16_t *nft)
|
|
{
|
|
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
|
|
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
|
|
case IEEE80211_CHAN_A:
|
|
*nft = ee->ee_noiseFloorThresh[0];
|
|
break;
|
|
case IEEE80211_CHAN_B:
|
|
*nft = ee->ee_noiseFloorThresh[1];
|
|
break;
|
|
case IEEE80211_CHAN_PUREG:
|
|
*nft = ee->ee_noiseFloorThresh[2];
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->ic_flags);
|
|
return AH_FALSE;
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Read the NF and check it against the noise floor threshhold
|
|
*
|
|
* Returns: TRUE if the NF is good
|
|
*/
|
|
static HAL_BOOL
|
|
ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
|
|
{
|
|
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
|
|
int16_t nf, nfThresh;
|
|
|
|
if (!getNoiseFloorThresh(ah, chan, &nfThresh))
|
|
return AH_FALSE;
|
|
if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: NF did not complete in calibration window\n", __func__);
|
|
}
|
|
nf = ar5211GetNoiseFloor(ah);
|
|
if (nf > nfThresh) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: noise floor failed; detected %u, threshold %u\n",
|
|
__func__, nf, nfThresh);
|
|
/*
|
|
* NB: Don't discriminate 2.4 vs 5Ghz, if this
|
|
* happens it indicates a problem regardless
|
|
* of the band.
|
|
*/
|
|
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
|
|
}
|
|
ichan->rawNoiseFloor = nf;
|
|
return (nf <= nfThresh);
|
|
}
|
|
|
|
/*
|
|
* Peform the noisefloor calibration and check for any constant channel
|
|
* interference.
|
|
*
|
|
* NOTE: preAR5211 have a lengthy carrier wave detection process - hence
|
|
* it is if'ed for MKK regulatory domain only.
|
|
*
|
|
* Returns: TRUE for a successful noise floor calibration; else FALSE
|
|
*/
|
|
HAL_BOOL
|
|
ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
#define N(a) (sizeof (a) / sizeof (a[0]))
|
|
/* Check for Carrier Wave interference in MKK regulatory zone */
|
|
if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
|
|
(chan->ic_flags & CHANNEL_NFCREQUIRED)) {
|
|
static const uint8_t runtime[3] = { 0, 2, 7 };
|
|
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
|
|
int16_t nf, nfThresh;
|
|
int i;
|
|
|
|
if (!getNoiseFloorThresh(ah, chan, &nfThresh))
|
|
return AH_FALSE;
|
|
/*
|
|
* Run a quick noise floor that will hopefully
|
|
* complete (decrease delay time).
|
|
*/
|
|
for (i = 0; i < N(runtime); i++) {
|
|
nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
|
|
if (nf > nfThresh) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: run failed with %u > threshold %u "
|
|
"(runtime %u)\n", __func__,
|
|
nf, nfThresh, runtime[i]);
|
|
ichan->rawNoiseFloor = 0;
|
|
} else
|
|
ichan->rawNoiseFloor = nf;
|
|
}
|
|
return (i <= N(runtime));
|
|
} else {
|
|
/* Calibrate the noise floor */
|
|
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
|
|
OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
|
|
AR_PHY_AGC_CONTROL_NF);
|
|
}
|
|
return AH_TRUE;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Adjust NF based on statistical values for 5GHz frequencies.
|
|
*/
|
|
int16_t
|
|
ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
|
|
{
|
|
static const struct {
|
|
uint16_t freqLow;
|
|
int16_t adjust;
|
|
} adjust5111[] = {
|
|
{ 5790, 11 }, /* NB: ordered high -> low */
|
|
{ 5730, 10 },
|
|
{ 5690, 9 },
|
|
{ 5660, 8 },
|
|
{ 5610, 7 },
|
|
{ 5530, 5 },
|
|
{ 5450, 4 },
|
|
{ 5379, 2 },
|
|
{ 5209, 0 }, /* XXX? bogus but doesn't matter */
|
|
{ 0, 1 },
|
|
};
|
|
int i;
|
|
|
|
for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
|
|
;
|
|
/* NB: placeholder for 5111's less severe requirement */
|
|
return adjust5111[i].adjust / 3;
|
|
}
|
|
|
|
/*
|
|
* Reads EEPROM header info from device structure and programs
|
|
* analog registers 6 and 7
|
|
*
|
|
* REQUIRES: Access to the analog device
|
|
*/
|
|
static HAL_BOOL
|
|
ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
#define N(a) (sizeof (a) / sizeof (a[0]))
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
|
|
uint16_t tempOB, tempDB;
|
|
uint16_t freqIndex;
|
|
int i;
|
|
|
|
freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
|
|
|
|
/*
|
|
* TODO: This array mode correspondes with the index used
|
|
* during the read.
|
|
* For readability, this should be changed to an enum or #define
|
|
*/
|
|
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
|
|
case IEEE80211_CHAN_A:
|
|
if (freq > 4000 && freq < 5260) {
|
|
tempOB = ee->ee_ob1;
|
|
tempDB = ee->ee_db1;
|
|
} else if (freq >= 5260 && freq < 5500) {
|
|
tempOB = ee->ee_ob2;
|
|
tempDB = ee->ee_db2;
|
|
} else if (freq >= 5500 && freq < 5725) {
|
|
tempOB = ee->ee_ob3;
|
|
tempDB = ee->ee_db3;
|
|
} else if (freq >= 5725) {
|
|
tempOB = ee->ee_ob4;
|
|
tempDB = ee->ee_db4;
|
|
} else {
|
|
/* XXX panic?? */
|
|
tempOB = tempDB = 0;
|
|
}
|
|
|
|
rfXpdGain = ee->ee_xgain[0];
|
|
rfPloSel = ee->ee_xpd[0];
|
|
rfPwdXpd = !ee->ee_xpd[0];
|
|
|
|
ar5211Rf6n7[5][freqIndex] =
|
|
(ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
|
|
(ee->ee_cornerCal.pd84<< 28);
|
|
ar5211Rf6n7[6][freqIndex] =
|
|
(ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
|
|
(ee->ee_cornerCal.pd90 << 26);
|
|
ar5211Rf6n7[21][freqIndex] =
|
|
(ar5211Rf6n7[21][freqIndex] & ~0x08) |
|
|
(ee->ee_cornerCal.gSel << 3);
|
|
break;
|
|
case IEEE80211_CHAN_B:
|
|
tempOB = ee->ee_obFor24;
|
|
tempDB = ee->ee_dbFor24;
|
|
rfXpdGain = ee->ee_xgain[1];
|
|
rfPloSel = ee->ee_xpd[1];
|
|
rfPwdXpd = !ee->ee_xpd[1];
|
|
break;
|
|
case IEEE80211_CHAN_PUREG:
|
|
tempOB = ee->ee_obFor24g;
|
|
tempDB = ee->ee_dbFor24g;
|
|
rfXpdGain = ee->ee_xgain[2];
|
|
rfPloSel = ee->ee_xpd[2];
|
|
rfPwdXpd = !ee->ee_xpd[2];
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->ic_flags);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
HALASSERT(1 <= tempOB && tempOB <= 5);
|
|
HALASSERT(1 <= tempDB && tempDB <= 5);
|
|
|
|
/* Set rfXpdGain and rfPwdXpd */
|
|
ar5211Rf6n7[11][freqIndex] = (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
|
|
(((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
|
|
ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x07) |
|
|
((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
|
|
|
|
/* Set OB */
|
|
ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x80) |
|
|
((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
|
|
ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x03) |
|
|
((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
|
|
|
|
/* Set DB */
|
|
ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
|
|
((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
|
|
|
|
/* Set rfPloSel */
|
|
ar5211Rf6n7[17][freqIndex] = (ar5211Rf6n7[17][freqIndex] & ~0x08) |
|
|
((rfPloSel << 3) & 0x08);
|
|
|
|
/* Write the Rf registers 6 & 7 */
|
|
for (i = 0; i < N(ar5211Rf6n7); i++)
|
|
OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
|
|
|
|
/* Now that we have reprogrammed rfgain value, clear the flag. */
|
|
ahp->ah_rfgainState = RFGAIN_INACTIVE;
|
|
|
|
return AH_TRUE;
|
|
#undef N
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
|
|
const struct ieee80211_channel *chan)
|
|
{
|
|
#define ANT_SWITCH_TABLE1 0x9960
|
|
#define ANT_SWITCH_TABLE2 0x9964
|
|
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
uint32_t antSwitchA, antSwitchB;
|
|
int ix;
|
|
|
|
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
|
|
case IEEE80211_CHAN_A: ix = 0; break;
|
|
case IEEE80211_CHAN_B: ix = 1; break;
|
|
case IEEE80211_CHAN_PUREG: ix = 2; break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->ic_flags);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
antSwitchA = ee->ee_antennaControl[1][ix]
|
|
| (ee->ee_antennaControl[2][ix] << 6)
|
|
| (ee->ee_antennaControl[3][ix] << 12)
|
|
| (ee->ee_antennaControl[4][ix] << 18)
|
|
| (ee->ee_antennaControl[5][ix] << 24)
|
|
;
|
|
antSwitchB = ee->ee_antennaControl[6][ix]
|
|
| (ee->ee_antennaControl[7][ix] << 6)
|
|
| (ee->ee_antennaControl[8][ix] << 12)
|
|
| (ee->ee_antennaControl[9][ix] << 18)
|
|
| (ee->ee_antennaControl[10][ix] << 24)
|
|
;
|
|
/*
|
|
* For fixed antenna, give the same setting for both switch banks
|
|
*/
|
|
switch (settings) {
|
|
case HAL_ANT_FIXED_A:
|
|
antSwitchB = antSwitchA;
|
|
break;
|
|
case HAL_ANT_FIXED_B:
|
|
antSwitchA = antSwitchB;
|
|
break;
|
|
case HAL_ANT_VARIABLE:
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
|
|
__func__, settings);
|
|
return AH_FALSE;
|
|
}
|
|
ahp->ah_diversityControl = settings;
|
|
|
|
OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
|
|
OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
|
|
|
|
return AH_TRUE;
|
|
#undef ANT_SWITCH_TABLE1
|
|
#undef ANT_SWITCH_TABLE2
|
|
}
|
|
|
|
/*
|
|
* Reads EEPROM header info and programs the device for correct operation
|
|
* given the channel value
|
|
*/
|
|
static HAL_BOOL
|
|
ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
int arrayMode, falseDectectBackoff;
|
|
|
|
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
|
|
case IEEE80211_CHAN_A:
|
|
arrayMode = 0;
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
|
|
AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
|
|
break;
|
|
case IEEE80211_CHAN_B:
|
|
arrayMode = 1;
|
|
break;
|
|
case IEEE80211_CHAN_PUREG:
|
|
arrayMode = 2;
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->ic_flags);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/* Set the antenna register(s) correctly for the chip revision */
|
|
if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
|
|
OS_REG_WRITE(ah, AR_PHY(68),
|
|
(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_PHY(68),
|
|
(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
|
|
(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
|
|
|
|
ar5211SetAntennaSwitchInternal(ah,
|
|
ahp->ah_diversityControl, chan);
|
|
|
|
/* Set the Noise Floor Thresh on ar5211 devices */
|
|
OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
|
|
(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
|
|
}
|
|
OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
|
|
(OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
|
|
((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
|
|
OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
|
|
(OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
|
|
((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
|
|
OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
|
|
(OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
|
|
((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
|
|
(ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
|
|
OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
|
|
(ee->ee_txEndToXPAOff[arrayMode] << 24) |
|
|
(ee->ee_txEndToXPAOff[arrayMode] << 16) |
|
|
(ee->ee_txFrameToXPAOn[arrayMode] << 8) |
|
|
ee->ee_txFrameToXPAOn[arrayMode]);
|
|
OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
|
|
(OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
|
|
(ee->ee_txEndToXLNAOn[arrayMode] << 8));
|
|
OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
|
|
(OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
|
|
((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
|
|
|
|
#define NO_FALSE_DETECT_BACKOFF 2
|
|
#define CB22_FALSE_DETECT_BACKOFF 6
|
|
/*
|
|
* False detect backoff - suspected 32 MHz spur causes
|
|
* false detects in OFDM, causing Tx Hangs. Decrease
|
|
* weak signal sensitivity for this card.
|
|
*/
|
|
falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
|
|
if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
|
|
if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
|
|
IEEE80211_IS_CHAN_OFDM(chan))
|
|
falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
|
|
} else {
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
uint32_t remainder = freq % 32;
|
|
|
|
if (remainder && (remainder < 10 || remainder > 22))
|
|
falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
|
|
}
|
|
OS_REG_WRITE(ah, 0x9924,
|
|
(OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
|
|
| ((falseDectectBackoff << 1) & 0xF7));
|
|
|
|
return AH_TRUE;
|
|
#undef NO_FALSE_DETECT_BACKOFF
|
|
#undef CB22_FALSE_DETECT_BACKOFF
|
|
}
|
|
|
|
/*
|
|
* Set the limit on the overall output power. Used for dynamic
|
|
* transmit power control and the like.
|
|
*
|
|
* NOTE: The power is passed in is in units of 0.5 dBm.
|
|
*/
|
|
HAL_BOOL
|
|
ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
|
|
{
|
|
|
|
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Sets the transmit power in the baseband for the given
|
|
* operating channel and mode.
|
|
*/
|
|
static HAL_BOOL
|
|
ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
TRGT_POWER_INFO *pi;
|
|
RD_EDGES_POWER *rep;
|
|
PCDACS_EEPROM eepromPcdacs;
|
|
u_int nchan, cfgCtl;
|
|
int i;
|
|
|
|
/* setup the pcdac struct to point to the correct info, based on mode */
|
|
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
|
|
case IEEE80211_CHAN_A:
|
|
eepromPcdacs.numChannels = ee->ee_numChannels11a;
|
|
eepromPcdacs.pChannelList= ee->ee_channels11a;
|
|
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
|
|
nchan = ee->ee_numTargetPwr_11a;
|
|
pi = ee->ee_trgtPwr_11a;
|
|
break;
|
|
case IEEE80211_CHAN_PUREG:
|
|
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
|
|
eepromPcdacs.pChannelList= ee->ee_channels11g;
|
|
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
|
|
nchan = ee->ee_numTargetPwr_11g;
|
|
pi = ee->ee_trgtPwr_11g;
|
|
break;
|
|
case IEEE80211_CHAN_B:
|
|
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
|
|
eepromPcdacs.pChannelList= ee->ee_channels11b;
|
|
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
|
|
nchan = ee->ee_numTargetPwr_11b;
|
|
pi = ee->ee_trgtPwr_11b;
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->ic_flags);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
ar5211SetPowerTable(ah, &eepromPcdacs, freq);
|
|
|
|
rep = AH_NULL;
|
|
/* Match CTL to EEPROM value */
|
|
cfgCtl = ath_hal_getctl(ah, chan);
|
|
for (i = 0; i < ee->ee_numCtls; i++)
|
|
if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
|
|
rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
|
|
break;
|
|
}
|
|
ar5211SetRateTable(ah, rep, pi, nchan, chan);
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Read the transmit power levels from the structures taken
|
|
* from EEPROM. Interpolate read transmit power values for
|
|
* this channel. Organize the transmit power values into a
|
|
* table for writing into the hardware.
|
|
*/
|
|
void
|
|
ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
|
|
uint16_t channel)
|
|
{
|
|
static FULL_PCDAC_STRUCT pcdacStruct;
|
|
static uint16_t pcdacTable[PWR_TABLE_SIZE];
|
|
|
|
uint16_t i, j;
|
|
uint16_t *pPcdacValues;
|
|
int16_t *pScaledUpDbm;
|
|
int16_t minScaledPwr;
|
|
int16_t maxScaledPwr;
|
|
int16_t pwr;
|
|
uint16_t pcdacMin = 0;
|
|
uint16_t pcdacMax = 63;
|
|
uint16_t pcdacTableIndex;
|
|
uint16_t scaledPcdac;
|
|
uint32_t addr;
|
|
uint32_t temp32;
|
|
|
|
OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
|
|
OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
|
|
pPcdacValues = pcdacStruct.PcdacValues;
|
|
pScaledUpDbm = pcdacStruct.PwrValues;
|
|
|
|
/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
|
|
for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
|
|
pPcdacValues[j] = i;
|
|
|
|
pcdacStruct.numPcdacValues = j;
|
|
pcdacStruct.pcdacMin = PCDAC_START;
|
|
pcdacStruct.pcdacMax = PCDAC_STOP;
|
|
|
|
/* Fill out the power values for this channel */
|
|
for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
|
|
pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
|
|
|
|
/* Now scale the pcdac values to fit in the 64 entry power table */
|
|
minScaledPwr = pScaledUpDbm[0];
|
|
maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
|
|
|
|
/* find minimum and make monotonic */
|
|
for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
|
|
if (minScaledPwr >= pScaledUpDbm[j]) {
|
|
minScaledPwr = pScaledUpDbm[j];
|
|
pcdacMin = j;
|
|
}
|
|
/*
|
|
* Make the full_hsh monotonically increasing otherwise
|
|
* interpolation algorithm will get fooled gotta start
|
|
* working from the top, hence i = 63 - j.
|
|
*/
|
|
i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
|
|
if (i == 0)
|
|
break;
|
|
if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
|
|
/*
|
|
* It could be a glitch, so make the power for
|
|
* this pcdac the same as the power from the
|
|
* next highest pcdac.
|
|
*/
|
|
pScaledUpDbm[i - 1] = pScaledUpDbm[i];
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < pcdacStruct.numPcdacValues; j++)
|
|
if (maxScaledPwr < pScaledUpDbm[j]) {
|
|
maxScaledPwr = pScaledUpDbm[j];
|
|
pcdacMax = j;
|
|
}
|
|
|
|
/* Find the first power level with a pcdac */
|
|
pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
|
|
|
|
/* Write all the first pcdac entries based off the pcdacMin */
|
|
pcdacTableIndex = 0;
|
|
for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
|
|
pcdacTable[pcdacTableIndex++] = pcdacMin;
|
|
|
|
i = 0;
|
|
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
|
|
pwr += PWR_STEP;
|
|
/* stop if dbM > max_power_possible */
|
|
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
|
|
(pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
|
|
i++;
|
|
/* scale by 2 and add 1 to enable round up or down as needed */
|
|
scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
|
|
pScaledUpDbm[i], pScaledUpDbm[i+1],
|
|
(uint16_t)(pPcdacValues[i] * 2),
|
|
(uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
|
|
|
|
pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
|
|
if (pcdacTable[pcdacTableIndex] > pcdacMax)
|
|
pcdacTable[pcdacTableIndex] = pcdacMax;
|
|
pcdacTableIndex++;
|
|
}
|
|
|
|
/* Write all the last pcdac entries based off the last valid pcdac */
|
|
while (pcdacTableIndex < PWR_TABLE_SIZE) {
|
|
pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
|
|
pcdacTableIndex++;
|
|
}
|
|
|
|
/* Finally, write the power values into the baseband power table */
|
|
addr = AR_PHY_BASE + (608 << 2);
|
|
for (i = 0; i < 32; i++) {
|
|
temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
|
|
temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
|
|
OS_REG_WRITE(ah, addr, temp32);
|
|
addr += 4;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Set the transmit power in the baseband for the given
|
|
* operating channel and mode.
|
|
*/
|
|
static void
|
|
ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
|
|
TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
|
|
const struct ieee80211_channel *chan)
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
static uint16_t ratesArray[NUM_RATES];
|
|
static const uint16_t tpcScaleReductionTable[5] =
|
|
{ 0, 3, 6, 9, MAX_RATE_POWER };
|
|
|
|
uint16_t *pRatesPower;
|
|
uint16_t lowerChannel, lowerIndex=0, lowerPower=0;
|
|
uint16_t upperChannel, upperIndex=0, upperPower=0;
|
|
uint16_t twiceMaxEdgePower=63;
|
|
uint16_t twicePower = 0;
|
|
uint16_t i, numEdges;
|
|
uint16_t tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
|
|
uint16_t twiceMaxRDPower;
|
|
int16_t scaledPower = 0; /* for gcc -O2 */
|
|
uint16_t mask = 0x3f;
|
|
HAL_BOOL paPreDEnable = 0;
|
|
int8_t twiceAntennaGain, twiceAntennaReduction = 0;
|
|
|
|
pRatesPower = ratesArray;
|
|
twiceMaxRDPower = chan->ic_maxregpower * 2;
|
|
|
|
if (IEEE80211_IS_CHAN_5GHZ(chan)) {
|
|
twiceAntennaGain = ee->ee_antennaGainMax[0];
|
|
} else {
|
|
twiceAntennaGain = ee->ee_antennaGainMax[1];
|
|
}
|
|
|
|
twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
|
|
|
|
if (pRdEdgesPower) {
|
|
/* Get the edge power */
|
|
for (i = 0; i < NUM_EDGES; i++) {
|
|
if (pRdEdgesPower[i].rdEdge == 0)
|
|
break;
|
|
tempChannelList[i] = pRdEdgesPower[i].rdEdge;
|
|
}
|
|
numEdges = i;
|
|
|
|
ar5211GetLowerUpperValues(freq, tempChannelList,
|
|
numEdges, &lowerChannel, &upperChannel);
|
|
/* Get the index for this channel */
|
|
for (i = 0; i < numEdges; i++)
|
|
if (lowerChannel == tempChannelList[i])
|
|
break;
|
|
HALASSERT(i != numEdges);
|
|
|
|
if ((lowerChannel == upperChannel &&
|
|
lowerChannel == freq) ||
|
|
pRdEdgesPower[i].flag) {
|
|
twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
|
|
HALASSERT(twiceMaxEdgePower > 0);
|
|
}
|
|
}
|
|
|
|
/* extrapolate the power values for the test Groups */
|
|
for (i = 0; i < numChannels; i++)
|
|
tempChannelList[i] = pPowerInfo[i].testChannel;
|
|
|
|
ar5211GetLowerUpperValues(freq, tempChannelList,
|
|
numChannels, &lowerChannel, &upperChannel);
|
|
|
|
/* get the index for the channel */
|
|
for (i = 0; i < numChannels; i++) {
|
|
if (lowerChannel == tempChannelList[i])
|
|
lowerIndex = i;
|
|
if (upperChannel == tempChannelList[i]) {
|
|
upperIndex = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < NUM_RATES; i++) {
|
|
if (IEEE80211_IS_CHAN_OFDM(chan)) {
|
|
/* power for rates 6,9,12,18,24 is all the same */
|
|
if (i < 5) {
|
|
lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
|
|
upperPower = pPowerInfo[upperIndex].twicePwr6_24;
|
|
} else if (i == 5) {
|
|
lowerPower = pPowerInfo[lowerIndex].twicePwr36;
|
|
upperPower = pPowerInfo[upperIndex].twicePwr36;
|
|
} else if (i == 6) {
|
|
lowerPower = pPowerInfo[lowerIndex].twicePwr48;
|
|
upperPower = pPowerInfo[upperIndex].twicePwr48;
|
|
} else if (i == 7) {
|
|
lowerPower = pPowerInfo[lowerIndex].twicePwr54;
|
|
upperPower = pPowerInfo[upperIndex].twicePwr54;
|
|
}
|
|
} else {
|
|
switch (i) {
|
|
case 0:
|
|
case 1:
|
|
lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
|
|
upperPower = pPowerInfo[upperIndex].twicePwr6_24;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
lowerPower = pPowerInfo[lowerIndex].twicePwr36;
|
|
upperPower = pPowerInfo[upperIndex].twicePwr36;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
lowerPower = pPowerInfo[lowerIndex].twicePwr48;
|
|
upperPower = pPowerInfo[upperIndex].twicePwr48;
|
|
break;
|
|
case 6:
|
|
case 7:
|
|
lowerPower = pPowerInfo[lowerIndex].twicePwr54;
|
|
upperPower = pPowerInfo[upperIndex].twicePwr54;
|
|
break;
|
|
}
|
|
}
|
|
|
|
twicePower = ar5211GetInterpolatedValue(freq,
|
|
lowerChannel, upperChannel, lowerPower, upperPower, 0);
|
|
|
|
/* Reduce power by band edge restrictions */
|
|
twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
|
|
|
|
/*
|
|
* If turbo is set, reduce power to keep power
|
|
* consumption under 2 Watts. Note that we always do
|
|
* this unless specially configured. Then we limit
|
|
* power only for non-AP operation.
|
|
*/
|
|
if (IEEE80211_IS_CHAN_TURBO(chan) &&
|
|
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
|
|
#ifdef AH_ENABLE_AP_SUPPORT
|
|
&& AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
|
|
#endif
|
|
) {
|
|
twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
|
|
}
|
|
|
|
/* Reduce power by max regulatory domain allowed restrictions */
|
|
pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
|
|
|
|
/* Use 6 Mb power level for transmit power scaling reduction */
|
|
/* We don't want to reduce higher rates if its not needed */
|
|
if (i == 0) {
|
|
scaledPower = pRatesPower[0] -
|
|
(tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
|
|
if (scaledPower < 1)
|
|
scaledPower = 1;
|
|
}
|
|
|
|
pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
|
|
}
|
|
|
|
/* Record txPower at Rate 6 for info gathering */
|
|
ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
|
|
|
|
#ifdef AH_DEBUG
|
|
HALDEBUG(ah, HAL_DEBUG_RESET,
|
|
"%s: final output power setting %d MHz:\n",
|
|
__func__, chan->ic_freq);
|
|
HALDEBUG(ah, HAL_DEBUG_RESET,
|
|
"6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
|
|
scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
|
|
tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
|
|
twiceAntennaReduction / 2);
|
|
if (IEEE80211_IS_CHAN_TURBO(chan) &&
|
|
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
|
|
ee->ee_turbo2WMaxPower5);
|
|
HALDEBUG(ah, HAL_DEBUG_RESET,
|
|
" %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
|
|
pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
|
|
pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
|
|
pRatesPower[6] / 2, pRatesPower[7] / 2);
|
|
#endif /* AH_DEBUG */
|
|
|
|
/* Write the power table into the hardware */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
|
|
((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
|
|
((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
|
|
((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
|
|
((paPreDEnable & 1)<< 6 ) | (pRatesPower[0] & mask));
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
|
|
((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
|
|
((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
|
|
((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
|
|
((paPreDEnable & 1)<< 6 ) | (pRatesPower[4] & mask));
|
|
|
|
/* set max power to the power value at rate 6 */
|
|
ar5211SetTxPowerLimit(ah, pRatesPower[0]);
|
|
|
|
AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
|
|
}
|
|
|
|
/*
|
|
* Get or interpolate the pcdac value from the calibrated data
|
|
*/
|
|
uint16_t
|
|
ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
|
|
const PCDACS_EEPROM *pSrcStruct)
|
|
{
|
|
uint16_t powerValue;
|
|
uint16_t lFreq, rFreq; /* left and right frequency values */
|
|
uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
|
|
uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
|
|
uint16_t lPwr, uPwr; /* lower and upper temp pwr values */
|
|
uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
|
|
|
|
if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
|
|
/* value was copied from srcStruct */
|
|
return powerValue;
|
|
|
|
ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
|
|
pSrcStruct->numChannels, &lFreq, &rFreq);
|
|
ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
|
|
&llPcdac, &ulPcdac);
|
|
ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
|
|
&lrPcdac, &urPcdac);
|
|
|
|
/* get the power index for the pcdac value */
|
|
ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
|
|
ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
|
|
lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
|
|
llPcdac, ulPcdac, lPwr, uPwr, 0);
|
|
|
|
ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
|
|
ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
|
|
rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
|
|
lrPcdac, urPcdac, lPwr, uPwr, 0);
|
|
|
|
return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
|
|
lScaledPwr, rScaledPwr, 0);
|
|
}
|
|
|
|
/*
|
|
* Find the value from the calibrated source data struct
|
|
*/
|
|
HAL_BOOL
|
|
ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
|
|
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
|
|
{
|
|
const DATA_PER_CHANNEL *pChannelData;
|
|
const uint16_t *pPcdac;
|
|
uint16_t i, j;
|
|
|
|
pChannelData = pSrcStruct->pDataPerChannel;
|
|
for (i = 0; i < pSrcStruct->numChannels; i++ ) {
|
|
if (pChannelData->channelValue == channel) {
|
|
pPcdac = pChannelData->PcdacValues;
|
|
for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
|
|
if (*pPcdac == pcdacValue) {
|
|
*powerValue = pChannelData->PwrValues[j];
|
|
return AH_TRUE;
|
|
}
|
|
pPcdac++;
|
|
}
|
|
}
|
|
pChannelData++;
|
|
}
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Returns interpolated or the scaled up interpolated value
|
|
*/
|
|
uint16_t
|
|
ar5211GetInterpolatedValue(uint16_t target,
|
|
uint16_t srcLeft, uint16_t srcRight,
|
|
uint16_t targetLeft, uint16_t targetRight,
|
|
HAL_BOOL scaleUp)
|
|
{
|
|
uint16_t rv;
|
|
int16_t lRatio;
|
|
uint16_t scaleValue = EEP_SCALE;
|
|
|
|
/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
|
|
if ((targetLeft * targetRight) == 0)
|
|
return 0;
|
|
if (scaleUp)
|
|
scaleValue = 1;
|
|
|
|
if (srcRight != srcLeft) {
|
|
/*
|
|
* Note the ratio always need to be scaled,
|
|
* since it will be a fraction.
|
|
*/
|
|
lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
|
|
if (lRatio < 0) {
|
|
/* Return as Left target if value would be negative */
|
|
rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
|
|
} else if (lRatio > EEP_SCALE) {
|
|
/* Return as Right target if Ratio is greater than 100% (SCALE) */
|
|
rv = targetRight * (scaleUp ? EEP_SCALE : 1);
|
|
} else {
|
|
rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
|
|
targetLeft) / scaleValue;
|
|
}
|
|
} else {
|
|
rv = targetLeft;
|
|
if (scaleUp)
|
|
rv *= EEP_SCALE;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Look for value being within 0.1 of the search values
|
|
* however, NDIS can't do float calculations, so multiply everything
|
|
* up by EEP_SCALE so can do integer arithmatic
|
|
*
|
|
* INPUT value -value to search for
|
|
* INPUT pList -ptr to the list to search
|
|
* INPUT listSize -number of entries in list
|
|
* OUTPUT pLowerValue -return the lower value
|
|
* OUTPUT pUpperValue -return the upper value
|
|
*/
|
|
void
|
|
ar5211GetLowerUpperValues(uint16_t value,
|
|
const uint16_t *pList, uint16_t listSize,
|
|
uint16_t *pLowerValue, uint16_t *pUpperValue)
|
|
{
|
|
const uint16_t listEndValue = *(pList + listSize - 1);
|
|
uint32_t target = value * EEP_SCALE;
|
|
int i;
|
|
|
|
/*
|
|
* See if value is lower than the first value in the list
|
|
* if so return first value
|
|
*/
|
|
if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
|
|
*pLowerValue = *pList;
|
|
*pUpperValue = *pList;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* See if value is greater than last value in list
|
|
* if so return last value
|
|
*/
|
|
if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
|
|
*pLowerValue = listEndValue;
|
|
*pUpperValue = listEndValue;
|
|
return;
|
|
}
|
|
|
|
/* look for value being near or between 2 values in list */
|
|
for (i = 0; i < listSize; i++) {
|
|
/*
|
|
* If value is close to the current value of the list
|
|
* then target is not between values, it is one of the values
|
|
*/
|
|
if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
|
|
*pLowerValue = pList[i];
|
|
*pUpperValue = pList[i];
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Look for value being between current value and next value
|
|
* if so return these 2 values
|
|
*/
|
|
if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
|
|
*pLowerValue = pList[i];
|
|
*pUpperValue = pList[i + 1];
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the upper and lower pcdac given the channel and the pcdac
|
|
* used in the search
|
|
*/
|
|
void
|
|
ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
|
|
const PCDACS_EEPROM *pSrcStruct,
|
|
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
|
|
{
|
|
const DATA_PER_CHANNEL *pChannelData;
|
|
int i;
|
|
|
|
/* Find the channel information */
|
|
pChannelData = pSrcStruct->pDataPerChannel;
|
|
for (i = 0; i < pSrcStruct->numChannels; i++) {
|
|
if (pChannelData->channelValue == channel)
|
|
break;
|
|
pChannelData++;
|
|
}
|
|
ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
|
|
pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
|
|
}
|
|
|
|
#define DYN_ADJ_UP_MARGIN 15
|
|
#define DYN_ADJ_LO_MARGIN 20
|
|
|
|
static const GAIN_OPTIMIZATION_LADDER gainLadder = {
|
|
9, /* numStepsInLadder */
|
|
4, /* defaultStepNum */
|
|
{ { {4, 1, 1, 1}, 6, "FG8"},
|
|
{ {4, 0, 1, 1}, 4, "FG7"},
|
|
{ {3, 1, 1, 1}, 3, "FG6"},
|
|
{ {4, 0, 0, 1}, 1, "FG5"},
|
|
{ {4, 1, 1, 0}, 0, "FG4"}, /* noJack */
|
|
{ {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */
|
|
{ {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */
|
|
{ {4, 0, 0, 0}, -4, "FG1"}, /* noJack */
|
|
{ {2, 1, 1, 0}, -6, "FG0"} /* clip2 */
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Initialize the gain structure to good values
|
|
*/
|
|
void
|
|
ar5211InitializeGainValues(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
GAIN_VALUES *gv = &ahp->ah_gainValues;
|
|
|
|
/* initialize gain optimization values */
|
|
gv->currStepNum = gainLadder.defaultStepNum;
|
|
gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
|
|
gv->active = AH_TRUE;
|
|
gv->loTrig = 20;
|
|
gv->hiTrig = 35;
|
|
}
|
|
|
|
static HAL_BOOL
|
|
ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
|
|
{
|
|
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
|
|
uint32_t gStep, g;
|
|
uint32_t L1, L2, L3, L4;
|
|
|
|
if (IEEE80211_IS_CHAN_CCK(chan)) {
|
|
gStep = 0x18;
|
|
L1 = 0;
|
|
L2 = gStep + 4;
|
|
L3 = 0x40;
|
|
L4 = L3 + 50;
|
|
|
|
gv->loTrig = L1;
|
|
gv->hiTrig = L4+5;
|
|
} else {
|
|
gStep = 0x3f;
|
|
L1 = 0;
|
|
L2 = 50;
|
|
L3 = L1;
|
|
L4 = L3 + 50;
|
|
|
|
gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
|
|
gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
|
|
}
|
|
g = gv->currGain;
|
|
|
|
return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
|
|
}
|
|
|
|
/*
|
|
* Enable the probe gain check on the next packet
|
|
*/
|
|
static void
|
|
ar5211RequestRfgain(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
|
|
/* Enable the gain readback probe */
|
|
OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
|
|
SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
|
|
| AR_PHY_PAPD_PROBE_NEXT_TX);
|
|
|
|
ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
|
|
}
|
|
|
|
/*
|
|
* Exported call to check for a recent gain reading and return
|
|
* the current state of the thermal calibration gain engine.
|
|
*/
|
|
HAL_RFGAIN
|
|
ar5211GetRfgain(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
GAIN_VALUES *gv = &ahp->ah_gainValues;
|
|
uint32_t rddata;
|
|
|
|
if (!gv->active)
|
|
return HAL_RFGAIN_INACTIVE;
|
|
|
|
if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
|
|
/* Caller had asked to setup a new reading. Check it. */
|
|
rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
|
|
|
|
if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
|
|
/* bit got cleared, we have a new reading. */
|
|
gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
|
|
/* inactive by default */
|
|
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
|
|
|
|
if (!ar5211InvalidGainReadback(ah, gv) &&
|
|
ar5211IsGainAdjustNeeded(ah, gv) &&
|
|
ar5211AdjustGain(ah, gv) > 0) {
|
|
/*
|
|
* Change needed. Copy ladder info
|
|
* into eeprom info.
|
|
*/
|
|
ar5211SetRfgain(ah, gv);
|
|
ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
|
|
}
|
|
}
|
|
}
|
|
return ahp->ah_rfgainState;
|
|
}
|
|
|
|
/*
|
|
* Check to see if our readback gain level sits within the linear
|
|
* region of our current variable attenuation window
|
|
*/
|
|
static HAL_BOOL
|
|
ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
|
|
{
|
|
return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
|
|
}
|
|
|
|
/*
|
|
* Move the rabbit ears in the correct direction.
|
|
*/
|
|
static int32_t
|
|
ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
|
|
{
|
|
/* return > 0 for valid adjustments. */
|
|
if (!gv->active)
|
|
return -1;
|
|
|
|
gv->currStep = &gainLadder.optStep[gv->currStepNum];
|
|
if (gv->currGain >= gv->hiTrig) {
|
|
if (gv->currStepNum == 0) {
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
|
|
"%s: Max gain limit.\n", __func__);
|
|
return -1;
|
|
}
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
|
|
"%s: Adding gain: currG=%d [%s] --> ",
|
|
__func__, gv->currGain, gv->currStep->stepName);
|
|
gv->targetGain = gv->currGain;
|
|
while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
|
|
gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
|
|
gv->currStep->stepGain);
|
|
gv->currStep = &gainLadder.optStep[gv->currStepNum];
|
|
}
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
|
|
gv->targetGain, gv->currStep->stepName);
|
|
return 1;
|
|
}
|
|
if (gv->currGain <= gv->loTrig) {
|
|
if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
|
|
"%s: Min gain limit.\n", __func__);
|
|
return -2;
|
|
}
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
|
|
"%s: Deducting gain: currG=%d [%s] --> ",
|
|
__func__, gv->currGain, gv->currStep->stepName);
|
|
gv->targetGain = gv->currGain;
|
|
while (gv->targetGain <= gv->loTrig &&
|
|
gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
|
|
gv->targetGain -= 2 *
|
|
(gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
|
|
gv->currStep = &gainLadder.optStep[gv->currStepNum];
|
|
}
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
|
|
gv->targetGain, gv->currStep->stepName);
|
|
return 2;
|
|
}
|
|
return 0; /* caller didn't call needAdjGain first */
|
|
}
|
|
|
|
/*
|
|
* Adjust the 5GHz EEPROM information with the desired calibration values.
|
|
*/
|
|
static void
|
|
ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
|
|
{
|
|
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
|
|
if (!gv->active)
|
|
return;
|
|
ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
|
|
ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
|
|
ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
|
|
ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
|
|
}
|
|
|
|
static void
|
|
ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
|
|
{
|
|
struct ath_hal_5211 *ahp = AH5211(ah);
|
|
uint32_t val;
|
|
|
|
val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
|
|
switch (opmode) {
|
|
case HAL_M_HOSTAP:
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val
|
|
| AR_STA_ID1_STA_AP
|
|
| AR_STA_ID1_RTS_USE_DEF
|
|
| ahp->ah_staId1Defaults);
|
|
break;
|
|
case HAL_M_IBSS:
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val
|
|
| AR_STA_ID1_ADHOC
|
|
| AR_STA_ID1_DESC_ANTENNA
|
|
| ahp->ah_staId1Defaults);
|
|
break;
|
|
case HAL_M_STA:
|
|
case HAL_M_MONITOR:
|
|
OS_REG_WRITE(ah, AR_STA_ID1, val
|
|
| AR_STA_ID1_DEFAULT_ANTENNA
|
|
| ahp->ah_staId1Defaults);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
ar5211SetPCUConfig(struct ath_hal *ah)
|
|
{
|
|
ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
|
|
}
|