44c01df173
shifts into the sign bit. Instead use (1U << 31) which gets the expected result. This fix is not ideal as it assumes a 32 bit int, but does fix the issue for most cases. A similar change was made in OpenBSD. Discussed with: -arch, rdivacky Reviewed by: cperciva
688 lines
16 KiB
C
688 lines
16 KiB
C
/*-
|
|
* Copyright (c) 2011 NetApp, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include <machine/vmparam.h>
|
|
#include <contrib/dev/acpica/include/acpi.h>
|
|
|
|
#include "io/iommu.h"
|
|
|
|
/*
|
|
* Documented in the "Intel Virtualization Technology for Directed I/O",
|
|
* Architecture Spec, September 2008.
|
|
*/
|
|
|
|
/* Section 10.4 "Register Descriptions" */
|
|
struct vtdmap {
|
|
volatile uint32_t version;
|
|
volatile uint32_t res0;
|
|
volatile uint64_t cap;
|
|
volatile uint64_t ext_cap;
|
|
volatile uint32_t gcr;
|
|
volatile uint32_t gsr;
|
|
volatile uint64_t rta;
|
|
volatile uint64_t ccr;
|
|
};
|
|
|
|
#define VTD_CAP_SAGAW(cap) (((cap) >> 8) & 0x1F)
|
|
#define VTD_CAP_ND(cap) ((cap) & 0x7)
|
|
#define VTD_CAP_CM(cap) (((cap) >> 7) & 0x1)
|
|
#define VTD_CAP_SPS(cap) (((cap) >> 34) & 0xF)
|
|
#define VTD_CAP_RWBF(cap) (((cap) >> 4) & 0x1)
|
|
|
|
#define VTD_ECAP_DI(ecap) (((ecap) >> 2) & 0x1)
|
|
#define VTD_ECAP_COHERENCY(ecap) ((ecap) & 0x1)
|
|
#define VTD_ECAP_IRO(ecap) (((ecap) >> 8) & 0x3FF)
|
|
|
|
#define VTD_GCR_WBF (1 << 27)
|
|
#define VTD_GCR_SRTP (1 << 30)
|
|
#define VTD_GCR_TE (1U << 31)
|
|
|
|
#define VTD_GSR_WBFS (1 << 27)
|
|
#define VTD_GSR_RTPS (1 << 30)
|
|
#define VTD_GSR_TES (1U << 31)
|
|
|
|
#define VTD_CCR_ICC (1UL << 63) /* invalidate context cache */
|
|
#define VTD_CCR_CIRG_GLOBAL (1UL << 61) /* global invalidation */
|
|
|
|
#define VTD_IIR_IVT (1UL << 63) /* invalidation IOTLB */
|
|
#define VTD_IIR_IIRG_GLOBAL (1ULL << 60) /* global IOTLB invalidation */
|
|
#define VTD_IIR_IIRG_DOMAIN (2ULL << 60) /* domain IOTLB invalidation */
|
|
#define VTD_IIR_IIRG_PAGE (3ULL << 60) /* page IOTLB invalidation */
|
|
#define VTD_IIR_DRAIN_READS (1ULL << 49) /* drain pending DMA reads */
|
|
#define VTD_IIR_DRAIN_WRITES (1ULL << 48) /* drain pending DMA writes */
|
|
#define VTD_IIR_DOMAIN_P 32
|
|
|
|
#define VTD_ROOT_PRESENT 0x1
|
|
#define VTD_CTX_PRESENT 0x1
|
|
#define VTD_CTX_TT_ALL (1UL << 2)
|
|
|
|
#define VTD_PTE_RD (1UL << 0)
|
|
#define VTD_PTE_WR (1UL << 1)
|
|
#define VTD_PTE_SUPERPAGE (1UL << 7)
|
|
#define VTD_PTE_ADDR_M (0x000FFFFFFFFFF000UL)
|
|
|
|
struct domain {
|
|
uint64_t *ptp; /* first level page table page */
|
|
int pt_levels; /* number of page table levels */
|
|
int addrwidth; /* 'AW' field in context entry */
|
|
int spsmask; /* supported super page sizes */
|
|
u_int id; /* domain id */
|
|
vm_paddr_t maxaddr; /* highest address to be mapped */
|
|
SLIST_ENTRY(domain) next;
|
|
};
|
|
|
|
static SLIST_HEAD(, domain) domhead;
|
|
|
|
#define DRHD_MAX_UNITS 8
|
|
static int drhd_num;
|
|
static struct vtdmap *vtdmaps[DRHD_MAX_UNITS];
|
|
static int max_domains;
|
|
typedef int (*drhd_ident_func_t)(void);
|
|
|
|
static uint64_t root_table[PAGE_SIZE / sizeof(uint64_t)] __aligned(4096);
|
|
static uint64_t ctx_tables[256][PAGE_SIZE / sizeof(uint64_t)] __aligned(4096);
|
|
|
|
static MALLOC_DEFINE(M_VTD, "vtd", "vtd");
|
|
|
|
static int
|
|
vtd_max_domains(struct vtdmap *vtdmap)
|
|
{
|
|
int nd;
|
|
|
|
nd = VTD_CAP_ND(vtdmap->cap);
|
|
|
|
switch (nd) {
|
|
case 0:
|
|
return (16);
|
|
case 1:
|
|
return (64);
|
|
case 2:
|
|
return (256);
|
|
case 3:
|
|
return (1024);
|
|
case 4:
|
|
return (4 * 1024);
|
|
case 5:
|
|
return (16 * 1024);
|
|
case 6:
|
|
return (64 * 1024);
|
|
default:
|
|
panic("vtd_max_domains: invalid value of nd (0x%0x)", nd);
|
|
}
|
|
}
|
|
|
|
static u_int
|
|
domain_id(void)
|
|
{
|
|
u_int id;
|
|
struct domain *dom;
|
|
|
|
/* Skip domain id 0 - it is reserved when Caching Mode field is set */
|
|
for (id = 1; id < max_domains; id++) {
|
|
SLIST_FOREACH(dom, &domhead, next) {
|
|
if (dom->id == id)
|
|
break;
|
|
}
|
|
if (dom == NULL)
|
|
break; /* found it */
|
|
}
|
|
|
|
if (id >= max_domains)
|
|
panic("domain ids exhausted");
|
|
|
|
return (id);
|
|
}
|
|
|
|
static void
|
|
vtd_wbflush(struct vtdmap *vtdmap)
|
|
{
|
|
|
|
if (VTD_ECAP_COHERENCY(vtdmap->ext_cap) == 0)
|
|
pmap_invalidate_cache();
|
|
|
|
if (VTD_CAP_RWBF(vtdmap->cap)) {
|
|
vtdmap->gcr = VTD_GCR_WBF;
|
|
while ((vtdmap->gsr & VTD_GSR_WBFS) != 0)
|
|
;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vtd_ctx_global_invalidate(struct vtdmap *vtdmap)
|
|
{
|
|
|
|
vtdmap->ccr = VTD_CCR_ICC | VTD_CCR_CIRG_GLOBAL;
|
|
while ((vtdmap->ccr & VTD_CCR_ICC) != 0)
|
|
;
|
|
}
|
|
|
|
static void
|
|
vtd_iotlb_global_invalidate(struct vtdmap *vtdmap)
|
|
{
|
|
int offset;
|
|
volatile uint64_t *iotlb_reg, val;
|
|
|
|
vtd_wbflush(vtdmap);
|
|
|
|
offset = VTD_ECAP_IRO(vtdmap->ext_cap) * 16;
|
|
iotlb_reg = (volatile uint64_t *)((caddr_t)vtdmap + offset + 8);
|
|
|
|
*iotlb_reg = VTD_IIR_IVT | VTD_IIR_IIRG_GLOBAL |
|
|
VTD_IIR_DRAIN_READS | VTD_IIR_DRAIN_WRITES;
|
|
|
|
while (1) {
|
|
val = *iotlb_reg;
|
|
if ((val & VTD_IIR_IVT) == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vtd_translation_enable(struct vtdmap *vtdmap)
|
|
{
|
|
|
|
vtdmap->gcr = VTD_GCR_TE;
|
|
while ((vtdmap->gsr & VTD_GSR_TES) == 0)
|
|
;
|
|
}
|
|
|
|
static void
|
|
vtd_translation_disable(struct vtdmap *vtdmap)
|
|
{
|
|
|
|
vtdmap->gcr = 0;
|
|
while ((vtdmap->gsr & VTD_GSR_TES) != 0)
|
|
;
|
|
}
|
|
|
|
static int
|
|
vtd_init(void)
|
|
{
|
|
int i, units, remaining;
|
|
struct vtdmap *vtdmap;
|
|
vm_paddr_t ctx_paddr;
|
|
char *end, envname[32];
|
|
unsigned long mapaddr;
|
|
ACPI_STATUS status;
|
|
ACPI_TABLE_DMAR *dmar;
|
|
ACPI_DMAR_HEADER *hdr;
|
|
ACPI_DMAR_HARDWARE_UNIT *drhd;
|
|
|
|
/*
|
|
* Allow the user to override the ACPI DMAR table by specifying the
|
|
* physical address of each remapping unit.
|
|
*
|
|
* The following example specifies two remapping units at
|
|
* physical addresses 0xfed90000 and 0xfeda0000 respectively.
|
|
* set vtd.regmap.0.addr=0xfed90000
|
|
* set vtd.regmap.1.addr=0xfeda0000
|
|
*/
|
|
for (units = 0; units < DRHD_MAX_UNITS; units++) {
|
|
snprintf(envname, sizeof(envname), "vtd.regmap.%d.addr", units);
|
|
if (getenv_ulong(envname, &mapaddr) == 0)
|
|
break;
|
|
vtdmaps[units] = (struct vtdmap *)PHYS_TO_DMAP(mapaddr);
|
|
}
|
|
|
|
if (units > 0)
|
|
goto skip_dmar;
|
|
|
|
/* Search for DMAR table. */
|
|
status = AcpiGetTable(ACPI_SIG_DMAR, 0, (ACPI_TABLE_HEADER **)&dmar);
|
|
if (ACPI_FAILURE(status))
|
|
return (ENXIO);
|
|
|
|
end = (char *)dmar + dmar->Header.Length;
|
|
remaining = dmar->Header.Length - sizeof(ACPI_TABLE_DMAR);
|
|
while (remaining > sizeof(ACPI_DMAR_HEADER)) {
|
|
hdr = (ACPI_DMAR_HEADER *)(end - remaining);
|
|
if (hdr->Length > remaining)
|
|
break;
|
|
/*
|
|
* From Intel VT-d arch spec, version 1.3:
|
|
* BIOS implementations must report mapping structures
|
|
* in numerical order, i.e. All remapping structures of
|
|
* type 0 (DRHD) enumerated before remapping structures of
|
|
* type 1 (RMRR) and so forth.
|
|
*/
|
|
if (hdr->Type != ACPI_DMAR_TYPE_HARDWARE_UNIT)
|
|
break;
|
|
|
|
drhd = (ACPI_DMAR_HARDWARE_UNIT *)hdr;
|
|
vtdmaps[units++] = (struct vtdmap *)PHYS_TO_DMAP(drhd->Address);
|
|
if (units >= DRHD_MAX_UNITS)
|
|
break;
|
|
remaining -= hdr->Length;
|
|
}
|
|
|
|
if (units <= 0)
|
|
return (ENXIO);
|
|
|
|
skip_dmar:
|
|
drhd_num = units;
|
|
vtdmap = vtdmaps[0];
|
|
|
|
if (VTD_CAP_CM(vtdmap->cap) != 0)
|
|
panic("vtd_init: invalid caching mode");
|
|
|
|
max_domains = vtd_max_domains(vtdmap);
|
|
|
|
/*
|
|
* Set up the root-table to point to the context-entry tables
|
|
*/
|
|
for (i = 0; i < 256; i++) {
|
|
ctx_paddr = vtophys(ctx_tables[i]);
|
|
if (ctx_paddr & PAGE_MASK)
|
|
panic("ctx table (0x%0lx) not page aligned", ctx_paddr);
|
|
|
|
root_table[i * 2] = ctx_paddr | VTD_ROOT_PRESENT;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vtd_cleanup(void)
|
|
{
|
|
}
|
|
|
|
static void
|
|
vtd_enable(void)
|
|
{
|
|
int i;
|
|
struct vtdmap *vtdmap;
|
|
|
|
for (i = 0; i < drhd_num; i++) {
|
|
vtdmap = vtdmaps[i];
|
|
vtd_wbflush(vtdmap);
|
|
|
|
/* Update the root table address */
|
|
vtdmap->rta = vtophys(root_table);
|
|
vtdmap->gcr = VTD_GCR_SRTP;
|
|
while ((vtdmap->gsr & VTD_GSR_RTPS) == 0)
|
|
;
|
|
|
|
vtd_ctx_global_invalidate(vtdmap);
|
|
vtd_iotlb_global_invalidate(vtdmap);
|
|
|
|
vtd_translation_enable(vtdmap);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vtd_disable(void)
|
|
{
|
|
int i;
|
|
struct vtdmap *vtdmap;
|
|
|
|
for (i = 0; i < drhd_num; i++) {
|
|
vtdmap = vtdmaps[i];
|
|
vtd_translation_disable(vtdmap);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vtd_add_device(void *arg, int bus, int slot, int func)
|
|
{
|
|
int idx;
|
|
uint64_t *ctxp;
|
|
struct domain *dom = arg;
|
|
vm_paddr_t pt_paddr;
|
|
struct vtdmap *vtdmap;
|
|
|
|
if (bus < 0 || bus > PCI_BUSMAX ||
|
|
slot < 0 || slot > PCI_SLOTMAX ||
|
|
func < 0 || func > PCI_FUNCMAX)
|
|
panic("vtd_add_device: invalid bsf %d/%d/%d", bus, slot, func);
|
|
|
|
vtdmap = vtdmaps[0];
|
|
ctxp = ctx_tables[bus];
|
|
pt_paddr = vtophys(dom->ptp);
|
|
idx = (slot << 3 | func) * 2;
|
|
|
|
if (ctxp[idx] & VTD_CTX_PRESENT) {
|
|
panic("vtd_add_device: device %d/%d/%d is already owned by "
|
|
"domain %d", bus, slot, func,
|
|
(uint16_t)(ctxp[idx + 1] >> 8));
|
|
}
|
|
|
|
/*
|
|
* Order is important. The 'present' bit is set only after all fields
|
|
* of the context pointer are initialized.
|
|
*/
|
|
ctxp[idx + 1] = dom->addrwidth | (dom->id << 8);
|
|
|
|
if (VTD_ECAP_DI(vtdmap->ext_cap))
|
|
ctxp[idx] = VTD_CTX_TT_ALL;
|
|
else
|
|
ctxp[idx] = 0;
|
|
|
|
ctxp[idx] |= pt_paddr | VTD_CTX_PRESENT;
|
|
|
|
/*
|
|
* 'Not Present' entries are not cached in either the Context Cache
|
|
* or in the IOTLB, so there is no need to invalidate either of them.
|
|
*/
|
|
}
|
|
|
|
static void
|
|
vtd_remove_device(void *arg, int bus, int slot, int func)
|
|
{
|
|
int i, idx;
|
|
uint64_t *ctxp;
|
|
struct vtdmap *vtdmap;
|
|
|
|
if (bus < 0 || bus > PCI_BUSMAX ||
|
|
slot < 0 || slot > PCI_SLOTMAX ||
|
|
func < 0 || func > PCI_FUNCMAX)
|
|
panic("vtd_add_device: invalid bsf %d/%d/%d", bus, slot, func);
|
|
|
|
ctxp = ctx_tables[bus];
|
|
idx = (slot << 3 | func) * 2;
|
|
|
|
/*
|
|
* Order is important. The 'present' bit is must be cleared first.
|
|
*/
|
|
ctxp[idx] = 0;
|
|
ctxp[idx + 1] = 0;
|
|
|
|
/*
|
|
* Invalidate the Context Cache and the IOTLB.
|
|
*
|
|
* XXX use device-selective invalidation for Context Cache
|
|
* XXX use domain-selective invalidation for IOTLB
|
|
*/
|
|
for (i = 0; i < drhd_num; i++) {
|
|
vtdmap = vtdmaps[i];
|
|
vtd_ctx_global_invalidate(vtdmap);
|
|
vtd_iotlb_global_invalidate(vtdmap);
|
|
}
|
|
}
|
|
|
|
#define CREATE_MAPPING 0
|
|
#define REMOVE_MAPPING 1
|
|
|
|
static uint64_t
|
|
vtd_update_mapping(void *arg, vm_paddr_t gpa, vm_paddr_t hpa, uint64_t len,
|
|
int remove)
|
|
{
|
|
struct domain *dom;
|
|
int i, spshift, ptpshift, ptpindex, nlevels;
|
|
uint64_t spsize, *ptp;
|
|
|
|
dom = arg;
|
|
ptpindex = 0;
|
|
ptpshift = 0;
|
|
|
|
if (gpa & PAGE_MASK)
|
|
panic("vtd_create_mapping: unaligned gpa 0x%0lx", gpa);
|
|
|
|
if (hpa & PAGE_MASK)
|
|
panic("vtd_create_mapping: unaligned hpa 0x%0lx", hpa);
|
|
|
|
if (len & PAGE_MASK)
|
|
panic("vtd_create_mapping: unaligned len 0x%0lx", len);
|
|
|
|
/*
|
|
* Compute the size of the mapping that we can accomodate.
|
|
*
|
|
* This is based on three factors:
|
|
* - supported super page size
|
|
* - alignment of the region starting at 'gpa' and 'hpa'
|
|
* - length of the region 'len'
|
|
*/
|
|
spshift = 48;
|
|
for (i = 3; i >= 0; i--) {
|
|
spsize = 1UL << spshift;
|
|
if ((dom->spsmask & (1 << i)) != 0 &&
|
|
(gpa & (spsize - 1)) == 0 &&
|
|
(hpa & (spsize - 1)) == 0 &&
|
|
(len >= spsize)) {
|
|
break;
|
|
}
|
|
spshift -= 9;
|
|
}
|
|
|
|
ptp = dom->ptp;
|
|
nlevels = dom->pt_levels;
|
|
while (--nlevels >= 0) {
|
|
ptpshift = 12 + nlevels * 9;
|
|
ptpindex = (gpa >> ptpshift) & 0x1FF;
|
|
|
|
/* We have reached the leaf mapping */
|
|
if (spshift >= ptpshift) {
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We are working on a non-leaf page table page.
|
|
*
|
|
* Create a downstream page table page if necessary and point
|
|
* to it from the current page table.
|
|
*/
|
|
if (ptp[ptpindex] == 0) {
|
|
void *nlp = malloc(PAGE_SIZE, M_VTD, M_WAITOK | M_ZERO);
|
|
ptp[ptpindex] = vtophys(nlp)| VTD_PTE_RD | VTD_PTE_WR;
|
|
}
|
|
|
|
ptp = (uint64_t *)PHYS_TO_DMAP(ptp[ptpindex] & VTD_PTE_ADDR_M);
|
|
}
|
|
|
|
if ((gpa & ((1UL << ptpshift) - 1)) != 0)
|
|
panic("gpa 0x%lx and ptpshift %d mismatch", gpa, ptpshift);
|
|
|
|
/*
|
|
* Update the 'gpa' -> 'hpa' mapping
|
|
*/
|
|
if (remove) {
|
|
ptp[ptpindex] = 0;
|
|
} else {
|
|
ptp[ptpindex] = hpa | VTD_PTE_RD | VTD_PTE_WR;
|
|
|
|
if (nlevels > 0)
|
|
ptp[ptpindex] |= VTD_PTE_SUPERPAGE;
|
|
}
|
|
|
|
return (1UL << ptpshift);
|
|
}
|
|
|
|
static uint64_t
|
|
vtd_create_mapping(void *arg, vm_paddr_t gpa, vm_paddr_t hpa, uint64_t len)
|
|
{
|
|
|
|
return (vtd_update_mapping(arg, gpa, hpa, len, CREATE_MAPPING));
|
|
}
|
|
|
|
static uint64_t
|
|
vtd_remove_mapping(void *arg, vm_paddr_t gpa, uint64_t len)
|
|
{
|
|
|
|
return (vtd_update_mapping(arg, gpa, 0, len, REMOVE_MAPPING));
|
|
}
|
|
|
|
static void
|
|
vtd_invalidate_tlb(void *dom)
|
|
{
|
|
int i;
|
|
struct vtdmap *vtdmap;
|
|
|
|
/*
|
|
* Invalidate the IOTLB.
|
|
* XXX use domain-selective invalidation for IOTLB
|
|
*/
|
|
for (i = 0; i < drhd_num; i++) {
|
|
vtdmap = vtdmaps[i];
|
|
vtd_iotlb_global_invalidate(vtdmap);
|
|
}
|
|
}
|
|
|
|
static void *
|
|
vtd_create_domain(vm_paddr_t maxaddr)
|
|
{
|
|
struct domain *dom;
|
|
vm_paddr_t addr;
|
|
int tmp, i, gaw, agaw, sagaw, res, pt_levels, addrwidth;
|
|
struct vtdmap *vtdmap;
|
|
|
|
if (drhd_num <= 0)
|
|
panic("vtd_create_domain: no dma remapping hardware available");
|
|
|
|
vtdmap = vtdmaps[0];
|
|
|
|
/*
|
|
* Calculate AGAW.
|
|
* Section 3.4.2 "Adjusted Guest Address Width", Architecture Spec.
|
|
*/
|
|
addr = 0;
|
|
for (gaw = 0; addr < maxaddr; gaw++)
|
|
addr = 1ULL << gaw;
|
|
|
|
res = (gaw - 12) % 9;
|
|
if (res == 0)
|
|
agaw = gaw;
|
|
else
|
|
agaw = gaw + 9 - res;
|
|
|
|
if (agaw > 64)
|
|
agaw = 64;
|
|
|
|
/*
|
|
* Select the smallest Supported AGAW and the corresponding number
|
|
* of page table levels.
|
|
*/
|
|
pt_levels = 2;
|
|
sagaw = 30;
|
|
addrwidth = 0;
|
|
tmp = VTD_CAP_SAGAW(vtdmap->cap);
|
|
for (i = 0; i < 5; i++) {
|
|
if ((tmp & (1 << i)) != 0 && sagaw >= agaw)
|
|
break;
|
|
pt_levels++;
|
|
addrwidth++;
|
|
sagaw += 9;
|
|
if (sagaw > 64)
|
|
sagaw = 64;
|
|
}
|
|
|
|
if (i >= 5) {
|
|
panic("vtd_create_domain: SAGAW 0x%lx does not support AGAW %d",
|
|
VTD_CAP_SAGAW(vtdmap->cap), agaw);
|
|
}
|
|
|
|
dom = malloc(sizeof(struct domain), M_VTD, M_ZERO | M_WAITOK);
|
|
dom->pt_levels = pt_levels;
|
|
dom->addrwidth = addrwidth;
|
|
dom->id = domain_id();
|
|
dom->maxaddr = maxaddr;
|
|
dom->ptp = malloc(PAGE_SIZE, M_VTD, M_ZERO | M_WAITOK);
|
|
if ((uintptr_t)dom->ptp & PAGE_MASK)
|
|
panic("vtd_create_domain: ptp (%p) not page aligned", dom->ptp);
|
|
|
|
#ifdef notyet
|
|
/*
|
|
* XXX superpage mappings for the iommu do not work correctly.
|
|
*
|
|
* By default all physical memory is mapped into the host_domain.
|
|
* When a VM is allocated wired memory the pages belonging to it
|
|
* are removed from the host_domain and added to the vm's domain.
|
|
*
|
|
* If the page being removed was mapped using a superpage mapping
|
|
* in the host_domain then we need to demote the mapping before
|
|
* removing the page.
|
|
*
|
|
* There is not any code to deal with the demotion at the moment
|
|
* so we disable superpage mappings altogether.
|
|
*/
|
|
dom->spsmask = VTD_CAP_SPS(vtdmap->cap);
|
|
#endif
|
|
|
|
SLIST_INSERT_HEAD(&domhead, dom, next);
|
|
|
|
return (dom);
|
|
}
|
|
|
|
static void
|
|
vtd_free_ptp(uint64_t *ptp, int level)
|
|
{
|
|
int i;
|
|
uint64_t *nlp;
|
|
|
|
if (level > 1) {
|
|
for (i = 0; i < 512; i++) {
|
|
if ((ptp[i] & (VTD_PTE_RD | VTD_PTE_WR)) == 0)
|
|
continue;
|
|
if ((ptp[i] & VTD_PTE_SUPERPAGE) != 0)
|
|
continue;
|
|
nlp = (uint64_t *)PHYS_TO_DMAP(ptp[i] & VTD_PTE_ADDR_M);
|
|
vtd_free_ptp(nlp, level - 1);
|
|
}
|
|
}
|
|
|
|
bzero(ptp, PAGE_SIZE);
|
|
free(ptp, M_VTD);
|
|
}
|
|
|
|
static void
|
|
vtd_destroy_domain(void *arg)
|
|
{
|
|
struct domain *dom;
|
|
|
|
dom = arg;
|
|
|
|
SLIST_REMOVE(&domhead, dom, domain, next);
|
|
vtd_free_ptp(dom->ptp, dom->pt_levels);
|
|
free(dom, M_VTD);
|
|
}
|
|
|
|
struct iommu_ops iommu_ops_intel = {
|
|
vtd_init,
|
|
vtd_cleanup,
|
|
vtd_enable,
|
|
vtd_disable,
|
|
vtd_create_domain,
|
|
vtd_destroy_domain,
|
|
vtd_create_mapping,
|
|
vtd_remove_mapping,
|
|
vtd_add_device,
|
|
vtd_remove_device,
|
|
vtd_invalidate_tlb,
|
|
};
|