7005 lines
168 KiB
C
7005 lines
168 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
|
|
*/
|
|
|
|
/*
|
|
* External virtual filesystem routines
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_watchdog.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/asan.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/capsicum.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/counter.h>
|
|
#include <sys/dirent.h>
|
|
#include <sys/event.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/extattr.h>
|
|
#include <sys/file.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lockf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/pctrie.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/smr.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/watchdog.h>
|
|
|
|
#include <machine/stdarg.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/uma.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
static void delmntque(struct vnode *vp);
|
|
static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
|
|
int slpflag, int slptimeo);
|
|
static void syncer_shutdown(void *arg, int howto);
|
|
static int vtryrecycle(struct vnode *vp);
|
|
static void v_init_counters(struct vnode *);
|
|
static void vn_seqc_init(struct vnode *);
|
|
static void vn_seqc_write_end_free(struct vnode *vp);
|
|
static void vgonel(struct vnode *);
|
|
static bool vhold_recycle_free(struct vnode *);
|
|
static void vfs_knllock(void *arg);
|
|
static void vfs_knlunlock(void *arg);
|
|
static void vfs_knl_assert_lock(void *arg, int what);
|
|
static void destroy_vpollinfo(struct vpollinfo *vi);
|
|
static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
|
|
daddr_t startlbn, daddr_t endlbn);
|
|
static void vnlru_recalc(void);
|
|
|
|
/*
|
|
* These fences are intended for cases where some synchronization is
|
|
* needed between access of v_iflags and lockless vnode refcount (v_holdcnt
|
|
* and v_usecount) updates. Access to v_iflags is generally synchronized
|
|
* by the interlock, but we have some internal assertions that check vnode
|
|
* flags without acquiring the lock. Thus, these fences are INVARIANTS-only
|
|
* for now.
|
|
*/
|
|
#ifdef INVARIANTS
|
|
#define VNODE_REFCOUNT_FENCE_ACQ() atomic_thread_fence_acq()
|
|
#define VNODE_REFCOUNT_FENCE_REL() atomic_thread_fence_rel()
|
|
#else
|
|
#define VNODE_REFCOUNT_FENCE_ACQ()
|
|
#define VNODE_REFCOUNT_FENCE_REL()
|
|
#endif
|
|
|
|
/*
|
|
* Number of vnodes in existence. Increased whenever getnewvnode()
|
|
* allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
|
|
*/
|
|
static u_long __exclusive_cache_line numvnodes;
|
|
|
|
SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
|
|
"Number of vnodes in existence");
|
|
|
|
static counter_u64_t vnodes_created;
|
|
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
|
|
"Number of vnodes created by getnewvnode");
|
|
|
|
/*
|
|
* Conversion tables for conversion from vnode types to inode formats
|
|
* and back.
|
|
*/
|
|
enum vtype iftovt_tab[16] = {
|
|
VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
|
|
VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
|
|
};
|
|
int vttoif_tab[10] = {
|
|
0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
|
|
S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
|
|
};
|
|
|
|
/*
|
|
* List of allocates vnodes in the system.
|
|
*/
|
|
static TAILQ_HEAD(freelst, vnode) vnode_list;
|
|
static struct vnode *vnode_list_free_marker;
|
|
static struct vnode *vnode_list_reclaim_marker;
|
|
|
|
/*
|
|
* "Free" vnode target. Free vnodes are rarely completely free, but are
|
|
* just ones that are cheap to recycle. Usually they are for files which
|
|
* have been stat'd but not read; these usually have inode and namecache
|
|
* data attached to them. This target is the preferred minimum size of a
|
|
* sub-cache consisting mostly of such files. The system balances the size
|
|
* of this sub-cache with its complement to try to prevent either from
|
|
* thrashing while the other is relatively inactive. The targets express
|
|
* a preference for the best balance.
|
|
*
|
|
* "Above" this target there are 2 further targets (watermarks) related
|
|
* to recyling of free vnodes. In the best-operating case, the cache is
|
|
* exactly full, the free list has size between vlowat and vhiwat above the
|
|
* free target, and recycling from it and normal use maintains this state.
|
|
* Sometimes the free list is below vlowat or even empty, but this state
|
|
* is even better for immediate use provided the cache is not full.
|
|
* Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
|
|
* ones) to reach one of these states. The watermarks are currently hard-
|
|
* coded as 4% and 9% of the available space higher. These and the default
|
|
* of 25% for wantfreevnodes are too large if the memory size is large.
|
|
* E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
|
|
* whenever vnlru_proc() becomes active.
|
|
*/
|
|
static long wantfreevnodes;
|
|
static long __exclusive_cache_line freevnodes;
|
|
SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
|
|
&freevnodes, 0, "Number of \"free\" vnodes");
|
|
static long freevnodes_old;
|
|
|
|
static counter_u64_t recycles_count;
|
|
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
|
|
"Number of vnodes recycled to meet vnode cache targets");
|
|
|
|
static counter_u64_t recycles_free_count;
|
|
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
|
|
"Number of free vnodes recycled to meet vnode cache targets");
|
|
|
|
static counter_u64_t deferred_inact;
|
|
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
|
|
"Number of times inactive processing was deferred");
|
|
|
|
/* To keep more than one thread at a time from running vfs_getnewfsid */
|
|
static struct mtx mntid_mtx;
|
|
|
|
/*
|
|
* Lock for any access to the following:
|
|
* vnode_list
|
|
* numvnodes
|
|
* freevnodes
|
|
*/
|
|
static struct mtx __exclusive_cache_line vnode_list_mtx;
|
|
|
|
/* Publicly exported FS */
|
|
struct nfs_public nfs_pub;
|
|
|
|
static uma_zone_t buf_trie_zone;
|
|
static smr_t buf_trie_smr;
|
|
|
|
/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
|
|
static uma_zone_t vnode_zone;
|
|
MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
|
|
|
|
__read_frequently smr_t vfs_smr;
|
|
|
|
/*
|
|
* The workitem queue.
|
|
*
|
|
* It is useful to delay writes of file data and filesystem metadata
|
|
* for tens of seconds so that quickly created and deleted files need
|
|
* not waste disk bandwidth being created and removed. To realize this,
|
|
* we append vnodes to a "workitem" queue. When running with a soft
|
|
* updates implementation, most pending metadata dependencies should
|
|
* not wait for more than a few seconds. Thus, mounted on block devices
|
|
* are delayed only about a half the time that file data is delayed.
|
|
* Similarly, directory updates are more critical, so are only delayed
|
|
* about a third the time that file data is delayed. Thus, there are
|
|
* SYNCER_MAXDELAY queues that are processed round-robin at a rate of
|
|
* one each second (driven off the filesystem syncer process). The
|
|
* syncer_delayno variable indicates the next queue that is to be processed.
|
|
* Items that need to be processed soon are placed in this queue:
|
|
*
|
|
* syncer_workitem_pending[syncer_delayno]
|
|
*
|
|
* A delay of fifteen seconds is done by placing the request fifteen
|
|
* entries later in the queue:
|
|
*
|
|
* syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
|
|
*
|
|
*/
|
|
static int syncer_delayno;
|
|
static long syncer_mask;
|
|
LIST_HEAD(synclist, bufobj);
|
|
static struct synclist *syncer_workitem_pending;
|
|
/*
|
|
* The sync_mtx protects:
|
|
* bo->bo_synclist
|
|
* sync_vnode_count
|
|
* syncer_delayno
|
|
* syncer_state
|
|
* syncer_workitem_pending
|
|
* syncer_worklist_len
|
|
* rushjob
|
|
*/
|
|
static struct mtx sync_mtx;
|
|
static struct cv sync_wakeup;
|
|
|
|
#define SYNCER_MAXDELAY 32
|
|
static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
|
|
static int syncdelay = 30; /* max time to delay syncing data */
|
|
static int filedelay = 30; /* time to delay syncing files */
|
|
SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
|
|
"Time to delay syncing files (in seconds)");
|
|
static int dirdelay = 29; /* time to delay syncing directories */
|
|
SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
|
|
"Time to delay syncing directories (in seconds)");
|
|
static int metadelay = 28; /* time to delay syncing metadata */
|
|
SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
|
|
"Time to delay syncing metadata (in seconds)");
|
|
static int rushjob; /* number of slots to run ASAP */
|
|
static int stat_rush_requests; /* number of times I/O speeded up */
|
|
SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
|
|
"Number of times I/O speeded up (rush requests)");
|
|
|
|
#define VDBATCH_SIZE 8
|
|
struct vdbatch {
|
|
u_int index;
|
|
long freevnodes;
|
|
struct mtx lock;
|
|
struct vnode *tab[VDBATCH_SIZE];
|
|
};
|
|
DPCPU_DEFINE_STATIC(struct vdbatch, vd);
|
|
|
|
static void vdbatch_dequeue(struct vnode *vp);
|
|
|
|
/*
|
|
* When shutting down the syncer, run it at four times normal speed.
|
|
*/
|
|
#define SYNCER_SHUTDOWN_SPEEDUP 4
|
|
static int sync_vnode_count;
|
|
static int syncer_worklist_len;
|
|
static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
|
|
syncer_state;
|
|
|
|
/* Target for maximum number of vnodes. */
|
|
u_long desiredvnodes;
|
|
static u_long gapvnodes; /* gap between wanted and desired */
|
|
static u_long vhiwat; /* enough extras after expansion */
|
|
static u_long vlowat; /* minimal extras before expansion */
|
|
static u_long vstir; /* nonzero to stir non-free vnodes */
|
|
static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */
|
|
|
|
static u_long vnlru_read_freevnodes(void);
|
|
|
|
/*
|
|
* Note that no attempt is made to sanitize these parameters.
|
|
*/
|
|
static int
|
|
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
u_long val;
|
|
int error;
|
|
|
|
val = desiredvnodes;
|
|
error = sysctl_handle_long(oidp, &val, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
|
|
if (val == desiredvnodes)
|
|
return (0);
|
|
mtx_lock(&vnode_list_mtx);
|
|
desiredvnodes = val;
|
|
wantfreevnodes = desiredvnodes / 4;
|
|
vnlru_recalc();
|
|
mtx_unlock(&vnode_list_mtx);
|
|
/*
|
|
* XXX There is no protection against multiple threads changing
|
|
* desiredvnodes at the same time. Locking above only helps vnlru and
|
|
* getnewvnode.
|
|
*/
|
|
vfs_hash_changesize(desiredvnodes);
|
|
cache_changesize(desiredvnodes);
|
|
return (0);
|
|
}
|
|
|
|
SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
|
|
CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
|
|
"LU", "Target for maximum number of vnodes");
|
|
|
|
static int
|
|
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
u_long val;
|
|
int error;
|
|
|
|
val = wantfreevnodes;
|
|
error = sysctl_handle_long(oidp, &val, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
|
|
if (val == wantfreevnodes)
|
|
return (0);
|
|
mtx_lock(&vnode_list_mtx);
|
|
wantfreevnodes = val;
|
|
vnlru_recalc();
|
|
mtx_unlock(&vnode_list_mtx);
|
|
return (0);
|
|
}
|
|
|
|
SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
|
|
CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
|
|
"LU", "Target for minimum number of \"free\" vnodes");
|
|
|
|
SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
|
|
&wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
|
|
static int vnlru_nowhere;
|
|
SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
|
|
&vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
|
|
|
|
static int
|
|
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct vnode *vp;
|
|
struct nameidata nd;
|
|
char *buf;
|
|
unsigned long ndflags;
|
|
int error;
|
|
|
|
if (req->newptr == NULL)
|
|
return (EINVAL);
|
|
if (req->newlen >= PATH_MAX)
|
|
return (E2BIG);
|
|
|
|
buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
|
|
error = SYSCTL_IN(req, buf, req->newlen);
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
buf[req->newlen] = '\0';
|
|
|
|
ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME;
|
|
NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
|
|
if ((error = namei(&nd)) != 0)
|
|
goto out;
|
|
vp = nd.ni_vp;
|
|
|
|
if (VN_IS_DOOMED(vp)) {
|
|
/*
|
|
* This vnode is being recycled. Return != 0 to let the caller
|
|
* know that the sysctl had no effect. Return EAGAIN because a
|
|
* subsequent call will likely succeed (since namei will create
|
|
* a new vnode if necessary)
|
|
*/
|
|
error = EAGAIN;
|
|
goto putvnode;
|
|
}
|
|
|
|
counter_u64_add(recycles_count, 1);
|
|
vgone(vp);
|
|
putvnode:
|
|
NDFREE(&nd, 0);
|
|
out:
|
|
free(buf, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct thread *td = curthread;
|
|
struct vnode *vp;
|
|
struct file *fp;
|
|
int error;
|
|
int fd;
|
|
|
|
if (req->newptr == NULL)
|
|
return (EBADF);
|
|
|
|
error = sysctl_handle_int(oidp, &fd, 0, req);
|
|
if (error != 0)
|
|
return (error);
|
|
error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
|
|
if (error != 0)
|
|
return (error);
|
|
vp = fp->f_vnode;
|
|
|
|
error = vn_lock(vp, LK_EXCLUSIVE);
|
|
if (error != 0)
|
|
goto drop;
|
|
|
|
counter_u64_add(recycles_count, 1);
|
|
vgone(vp);
|
|
VOP_UNLOCK(vp);
|
|
drop:
|
|
fdrop(fp, td);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
|
|
CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
|
|
sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
|
|
SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
|
|
CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
|
|
sysctl_ftry_reclaim_vnode, "I",
|
|
"Try to reclaim a vnode by its file descriptor");
|
|
|
|
/* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
|
|
static int vnsz2log;
|
|
|
|
/*
|
|
* Support for the bufobj clean & dirty pctrie.
|
|
*/
|
|
static void *
|
|
buf_trie_alloc(struct pctrie *ptree)
|
|
{
|
|
return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
|
|
}
|
|
|
|
static void
|
|
buf_trie_free(struct pctrie *ptree, void *node)
|
|
{
|
|
uma_zfree_smr(buf_trie_zone, node);
|
|
}
|
|
PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
|
|
buf_trie_smr);
|
|
|
|
/*
|
|
* Initialize the vnode management data structures.
|
|
*
|
|
* Reevaluate the following cap on the number of vnodes after the physical
|
|
* memory size exceeds 512GB. In the limit, as the physical memory size
|
|
* grows, the ratio of the memory size in KB to vnodes approaches 64:1.
|
|
*/
|
|
#ifndef MAXVNODES_MAX
|
|
#define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */
|
|
#endif
|
|
|
|
static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
|
|
|
|
static struct vnode *
|
|
vn_alloc_marker(struct mount *mp)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
|
|
vp->v_type = VMARKER;
|
|
vp->v_mount = mp;
|
|
|
|
return (vp);
|
|
}
|
|
|
|
static void
|
|
vn_free_marker(struct vnode *vp)
|
|
{
|
|
|
|
MPASS(vp->v_type == VMARKER);
|
|
free(vp, M_VNODE_MARKER);
|
|
}
|
|
|
|
#ifdef KASAN
|
|
static int
|
|
vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
|
|
{
|
|
kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vnode_dtor(void *mem, int size, void *arg __unused)
|
|
{
|
|
size_t end1, end2, off1, off2;
|
|
|
|
_Static_assert(offsetof(struct vnode, v_vnodelist) <
|
|
offsetof(struct vnode, v_dbatchcpu),
|
|
"KASAN marks require updating");
|
|
|
|
off1 = offsetof(struct vnode, v_vnodelist);
|
|
off2 = offsetof(struct vnode, v_dbatchcpu);
|
|
end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
|
|
end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
|
|
|
|
/*
|
|
* Access to the v_vnodelist and v_dbatchcpu fields are permitted even
|
|
* after the vnode has been freed. Try to get some KASAN coverage by
|
|
* marking everything except those two fields as invalid. Because
|
|
* KASAN's tracking is not byte-granular, any preceding fields sharing
|
|
* the same 8-byte aligned word must also be marked valid.
|
|
*/
|
|
|
|
/* Handle the area from the start until v_vnodelist... */
|
|
off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
|
|
kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
|
|
|
|
/* ... then the area between v_vnodelist and v_dbatchcpu ... */
|
|
off1 = roundup2(end1, KASAN_SHADOW_SCALE);
|
|
off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
|
|
if (off2 > off1)
|
|
kasan_mark((void *)((char *)mem + off1), off2 - off1,
|
|
off2 - off1, KASAN_UMA_FREED);
|
|
|
|
/* ... and finally the area from v_dbatchcpu to the end. */
|
|
off2 = roundup2(end2, KASAN_SHADOW_SCALE);
|
|
kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
|
|
KASAN_UMA_FREED);
|
|
}
|
|
#endif /* KASAN */
|
|
|
|
/*
|
|
* Initialize a vnode as it first enters the zone.
|
|
*/
|
|
static int
|
|
vnode_init(void *mem, int size, int flags)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
vp = mem;
|
|
bzero(vp, size);
|
|
/*
|
|
* Setup locks.
|
|
*/
|
|
vp->v_vnlock = &vp->v_lock;
|
|
mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
|
|
/*
|
|
* By default, don't allow shared locks unless filesystems opt-in.
|
|
*/
|
|
lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
|
|
LK_NOSHARE | LK_IS_VNODE);
|
|
/*
|
|
* Initialize bufobj.
|
|
*/
|
|
bufobj_init(&vp->v_bufobj, vp);
|
|
/*
|
|
* Initialize namecache.
|
|
*/
|
|
cache_vnode_init(vp);
|
|
/*
|
|
* Initialize rangelocks.
|
|
*/
|
|
rangelock_init(&vp->v_rl);
|
|
|
|
vp->v_dbatchcpu = NOCPU;
|
|
|
|
/*
|
|
* Check vhold_recycle_free for an explanation.
|
|
*/
|
|
vp->v_holdcnt = VHOLD_NO_SMR;
|
|
vp->v_type = VNON;
|
|
mtx_lock(&vnode_list_mtx);
|
|
TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
|
|
mtx_unlock(&vnode_list_mtx);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free a vnode when it is cleared from the zone.
|
|
*/
|
|
static void
|
|
vnode_fini(void *mem, int size)
|
|
{
|
|
struct vnode *vp;
|
|
struct bufobj *bo;
|
|
|
|
vp = mem;
|
|
vdbatch_dequeue(vp);
|
|
mtx_lock(&vnode_list_mtx);
|
|
TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
|
|
mtx_unlock(&vnode_list_mtx);
|
|
rangelock_destroy(&vp->v_rl);
|
|
lockdestroy(vp->v_vnlock);
|
|
mtx_destroy(&vp->v_interlock);
|
|
bo = &vp->v_bufobj;
|
|
rw_destroy(BO_LOCKPTR(bo));
|
|
|
|
kasan_mark(mem, size, size, 0);
|
|
}
|
|
|
|
/*
|
|
* Provide the size of NFS nclnode and NFS fh for calculation of the
|
|
* vnode memory consumption. The size is specified directly to
|
|
* eliminate dependency on NFS-private header.
|
|
*
|
|
* Other filesystems may use bigger or smaller (like UFS and ZFS)
|
|
* private inode data, but the NFS-based estimation is ample enough.
|
|
* Still, we care about differences in the size between 64- and 32-bit
|
|
* platforms.
|
|
*
|
|
* Namecache structure size is heuristically
|
|
* sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
|
|
*/
|
|
#ifdef _LP64
|
|
#define NFS_NCLNODE_SZ (528 + 64)
|
|
#define NC_SZ 148
|
|
#else
|
|
#define NFS_NCLNODE_SZ (360 + 32)
|
|
#define NC_SZ 92
|
|
#endif
|
|
|
|
static void
|
|
vntblinit(void *dummy __unused)
|
|
{
|
|
struct vdbatch *vd;
|
|
uma_ctor ctor;
|
|
uma_dtor dtor;
|
|
int cpu, physvnodes, virtvnodes;
|
|
u_int i;
|
|
|
|
/*
|
|
* Desiredvnodes is a function of the physical memory size and the
|
|
* kernel's heap size. Generally speaking, it scales with the
|
|
* physical memory size. The ratio of desiredvnodes to the physical
|
|
* memory size is 1:16 until desiredvnodes exceeds 98,304.
|
|
* Thereafter, the
|
|
* marginal ratio of desiredvnodes to the physical memory size is
|
|
* 1:64. However, desiredvnodes is limited by the kernel's heap
|
|
* size. The memory required by desiredvnodes vnodes and vm objects
|
|
* must not exceed 1/10th of the kernel's heap size.
|
|
*/
|
|
physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
|
|
3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
|
|
virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
|
|
sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
|
|
desiredvnodes = min(physvnodes, virtvnodes);
|
|
if (desiredvnodes > MAXVNODES_MAX) {
|
|
if (bootverbose)
|
|
printf("Reducing kern.maxvnodes %lu -> %lu\n",
|
|
desiredvnodes, MAXVNODES_MAX);
|
|
desiredvnodes = MAXVNODES_MAX;
|
|
}
|
|
wantfreevnodes = desiredvnodes / 4;
|
|
mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
|
|
TAILQ_INIT(&vnode_list);
|
|
mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
|
|
/*
|
|
* The lock is taken to appease WITNESS.
|
|
*/
|
|
mtx_lock(&vnode_list_mtx);
|
|
vnlru_recalc();
|
|
mtx_unlock(&vnode_list_mtx);
|
|
vnode_list_free_marker = vn_alloc_marker(NULL);
|
|
TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
|
|
vnode_list_reclaim_marker = vn_alloc_marker(NULL);
|
|
TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
|
|
|
|
#ifdef KASAN
|
|
ctor = vnode_ctor;
|
|
dtor = vnode_dtor;
|
|
#else
|
|
ctor = NULL;
|
|
dtor = NULL;
|
|
#endif
|
|
vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
|
|
vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
|
|
uma_zone_set_smr(vnode_zone, vfs_smr);
|
|
|
|
/*
|
|
* Preallocate enough nodes to support one-per buf so that
|
|
* we can not fail an insert. reassignbuf() callers can not
|
|
* tolerate the insertion failure.
|
|
*/
|
|
buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
|
|
NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
|
|
UMA_ZONE_NOFREE | UMA_ZONE_SMR);
|
|
buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
|
|
uma_prealloc(buf_trie_zone, nbuf);
|
|
|
|
vnodes_created = counter_u64_alloc(M_WAITOK);
|
|
recycles_count = counter_u64_alloc(M_WAITOK);
|
|
recycles_free_count = counter_u64_alloc(M_WAITOK);
|
|
deferred_inact = counter_u64_alloc(M_WAITOK);
|
|
|
|
/*
|
|
* Initialize the filesystem syncer.
|
|
*/
|
|
syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
|
|
&syncer_mask);
|
|
syncer_maxdelay = syncer_mask + 1;
|
|
mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
|
|
cv_init(&sync_wakeup, "syncer");
|
|
for (i = 1; i <= sizeof(struct vnode); i <<= 1)
|
|
vnsz2log++;
|
|
vnsz2log--;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
vd = DPCPU_ID_PTR((cpu), vd);
|
|
bzero(vd, sizeof(*vd));
|
|
mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
|
|
}
|
|
}
|
|
SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
|
|
|
|
/*
|
|
* Mark a mount point as busy. Used to synchronize access and to delay
|
|
* unmounting. Eventually, mountlist_mtx is not released on failure.
|
|
*
|
|
* vfs_busy() is a custom lock, it can block the caller.
|
|
* vfs_busy() only sleeps if the unmount is active on the mount point.
|
|
* For a mountpoint mp, vfs_busy-enforced lock is before lock of any
|
|
* vnode belonging to mp.
|
|
*
|
|
* Lookup uses vfs_busy() to traverse mount points.
|
|
* root fs var fs
|
|
* / vnode lock A / vnode lock (/var) D
|
|
* /var vnode lock B /log vnode lock(/var/log) E
|
|
* vfs_busy lock C vfs_busy lock F
|
|
*
|
|
* Within each file system, the lock order is C->A->B and F->D->E.
|
|
*
|
|
* When traversing across mounts, the system follows that lock order:
|
|
*
|
|
* C->A->B
|
|
* |
|
|
* +->F->D->E
|
|
*
|
|
* The lookup() process for namei("/var") illustrates the process:
|
|
* VOP_LOOKUP() obtains B while A is held
|
|
* vfs_busy() obtains a shared lock on F while A and B are held
|
|
* vput() releases lock on B
|
|
* vput() releases lock on A
|
|
* VFS_ROOT() obtains lock on D while shared lock on F is held
|
|
* vfs_unbusy() releases shared lock on F
|
|
* vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
|
|
* Attempt to lock A (instead of vp_crossmp) while D is held would
|
|
* violate the global order, causing deadlocks.
|
|
*
|
|
* dounmount() locks B while F is drained.
|
|
*/
|
|
int
|
|
vfs_busy(struct mount *mp, int flags)
|
|
{
|
|
struct mount_pcpu *mpcpu;
|
|
|
|
MPASS((flags & ~MBF_MASK) == 0);
|
|
CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
|
|
|
|
if (vfs_op_thread_enter(mp, mpcpu)) {
|
|
MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
|
|
MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
|
|
MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
|
|
vfs_mp_count_add_pcpu(mpcpu, ref, 1);
|
|
vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
|
|
vfs_op_thread_exit(mp, mpcpu);
|
|
if (flags & MBF_MNTLSTLOCK)
|
|
mtx_unlock(&mountlist_mtx);
|
|
return (0);
|
|
}
|
|
|
|
MNT_ILOCK(mp);
|
|
vfs_assert_mount_counters(mp);
|
|
MNT_REF(mp);
|
|
/*
|
|
* If mount point is currently being unmounted, sleep until the
|
|
* mount point fate is decided. If thread doing the unmounting fails,
|
|
* it will clear MNTK_UNMOUNT flag before waking us up, indicating
|
|
* that this mount point has survived the unmount attempt and vfs_busy
|
|
* should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE
|
|
* flag in addition to MNTK_UNMOUNT, indicating that mount point is
|
|
* about to be really destroyed. vfs_busy needs to release its
|
|
* reference on the mount point in this case and return with ENOENT,
|
|
* telling the caller that mount mount it tried to busy is no longer
|
|
* valid.
|
|
*/
|
|
while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
|
|
if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
|
|
MNT_REL(mp);
|
|
MNT_IUNLOCK(mp);
|
|
CTR1(KTR_VFS, "%s: failed busying before sleeping",
|
|
__func__);
|
|
return (ENOENT);
|
|
}
|
|
if (flags & MBF_MNTLSTLOCK)
|
|
mtx_unlock(&mountlist_mtx);
|
|
mp->mnt_kern_flag |= MNTK_MWAIT;
|
|
msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
|
|
if (flags & MBF_MNTLSTLOCK)
|
|
mtx_lock(&mountlist_mtx);
|
|
MNT_ILOCK(mp);
|
|
}
|
|
if (flags & MBF_MNTLSTLOCK)
|
|
mtx_unlock(&mountlist_mtx);
|
|
mp->mnt_lockref++;
|
|
MNT_IUNLOCK(mp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free a busy filesystem.
|
|
*/
|
|
void
|
|
vfs_unbusy(struct mount *mp)
|
|
{
|
|
struct mount_pcpu *mpcpu;
|
|
int c;
|
|
|
|
CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
|
|
|
|
if (vfs_op_thread_enter(mp, mpcpu)) {
|
|
MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
|
|
vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
|
|
vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
|
|
vfs_op_thread_exit(mp, mpcpu);
|
|
return;
|
|
}
|
|
|
|
MNT_ILOCK(mp);
|
|
vfs_assert_mount_counters(mp);
|
|
MNT_REL(mp);
|
|
c = --mp->mnt_lockref;
|
|
if (mp->mnt_vfs_ops == 0) {
|
|
MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
|
|
MNT_IUNLOCK(mp);
|
|
return;
|
|
}
|
|
if (c < 0)
|
|
vfs_dump_mount_counters(mp);
|
|
if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
|
|
MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
|
|
CTR1(KTR_VFS, "%s: waking up waiters", __func__);
|
|
mp->mnt_kern_flag &= ~MNTK_DRAINING;
|
|
wakeup(&mp->mnt_lockref);
|
|
}
|
|
MNT_IUNLOCK(mp);
|
|
}
|
|
|
|
/*
|
|
* Lookup a mount point by filesystem identifier.
|
|
*/
|
|
struct mount *
|
|
vfs_getvfs(fsid_t *fsid)
|
|
{
|
|
struct mount *mp;
|
|
|
|
CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
|
|
if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
|
|
vfs_ref(mp);
|
|
mtx_unlock(&mountlist_mtx);
|
|
return (mp);
|
|
}
|
|
}
|
|
mtx_unlock(&mountlist_mtx);
|
|
CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
|
|
return ((struct mount *) 0);
|
|
}
|
|
|
|
/*
|
|
* Lookup a mount point by filesystem identifier, busying it before
|
|
* returning.
|
|
*
|
|
* To avoid congestion on mountlist_mtx, implement simple direct-mapped
|
|
* cache for popular filesystem identifiers. The cache is lockess, using
|
|
* the fact that struct mount's are never freed. In worst case we may
|
|
* get pointer to unmounted or even different filesystem, so we have to
|
|
* check what we got, and go slow way if so.
|
|
*/
|
|
struct mount *
|
|
vfs_busyfs(fsid_t *fsid)
|
|
{
|
|
#define FSID_CACHE_SIZE 256
|
|
typedef struct mount * volatile vmp_t;
|
|
static vmp_t cache[FSID_CACHE_SIZE];
|
|
struct mount *mp;
|
|
int error;
|
|
uint32_t hash;
|
|
|
|
CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
|
|
hash = fsid->val[0] ^ fsid->val[1];
|
|
hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
|
|
mp = cache[hash];
|
|
if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
|
|
goto slow;
|
|
if (vfs_busy(mp, 0) != 0) {
|
|
cache[hash] = NULL;
|
|
goto slow;
|
|
}
|
|
if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
|
|
return (mp);
|
|
else
|
|
vfs_unbusy(mp);
|
|
|
|
slow:
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
|
|
if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
|
|
error = vfs_busy(mp, MBF_MNTLSTLOCK);
|
|
if (error) {
|
|
cache[hash] = NULL;
|
|
mtx_unlock(&mountlist_mtx);
|
|
return (NULL);
|
|
}
|
|
cache[hash] = mp;
|
|
return (mp);
|
|
}
|
|
}
|
|
CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
|
|
mtx_unlock(&mountlist_mtx);
|
|
return ((struct mount *) 0);
|
|
}
|
|
|
|
/*
|
|
* Check if a user can access privileged mount options.
|
|
*/
|
|
int
|
|
vfs_suser(struct mount *mp, struct thread *td)
|
|
{
|
|
int error;
|
|
|
|
if (jailed(td->td_ucred)) {
|
|
/*
|
|
* If the jail of the calling thread lacks permission for
|
|
* this type of file system, deny immediately.
|
|
*/
|
|
if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
|
|
return (EPERM);
|
|
|
|
/*
|
|
* If the file system was mounted outside the jail of the
|
|
* calling thread, deny immediately.
|
|
*/
|
|
if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
|
|
return (EPERM);
|
|
}
|
|
|
|
/*
|
|
* If file system supports delegated administration, we don't check
|
|
* for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
|
|
* by the file system itself.
|
|
* If this is not the user that did original mount, we check for
|
|
* the PRIV_VFS_MOUNT_OWNER privilege.
|
|
*/
|
|
if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
|
|
mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
|
|
if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get a new unique fsid. Try to make its val[0] unique, since this value
|
|
* will be used to create fake device numbers for stat(). Also try (but
|
|
* not so hard) make its val[0] unique mod 2^16, since some emulators only
|
|
* support 16-bit device numbers. We end up with unique val[0]'s for the
|
|
* first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
|
|
*
|
|
* Keep in mind that several mounts may be running in parallel. Starting
|
|
* the search one past where the previous search terminated is both a
|
|
* micro-optimization and a defense against returning the same fsid to
|
|
* different mounts.
|
|
*/
|
|
void
|
|
vfs_getnewfsid(struct mount *mp)
|
|
{
|
|
static uint16_t mntid_base;
|
|
struct mount *nmp;
|
|
fsid_t tfsid;
|
|
int mtype;
|
|
|
|
CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
|
|
mtx_lock(&mntid_mtx);
|
|
mtype = mp->mnt_vfc->vfc_typenum;
|
|
tfsid.val[1] = mtype;
|
|
mtype = (mtype & 0xFF) << 24;
|
|
for (;;) {
|
|
tfsid.val[0] = makedev(255,
|
|
mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
|
|
mntid_base++;
|
|
if ((nmp = vfs_getvfs(&tfsid)) == NULL)
|
|
break;
|
|
vfs_rel(nmp);
|
|
}
|
|
mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
|
|
mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
|
|
mtx_unlock(&mntid_mtx);
|
|
}
|
|
|
|
/*
|
|
* Knob to control the precision of file timestamps:
|
|
*
|
|
* 0 = seconds only; nanoseconds zeroed.
|
|
* 1 = seconds and nanoseconds, accurate within 1/HZ.
|
|
* 2 = seconds and nanoseconds, truncated to microseconds.
|
|
* >=3 = seconds and nanoseconds, maximum precision.
|
|
*/
|
|
enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
|
|
|
|
static int timestamp_precision = TSP_USEC;
|
|
SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
|
|
×tamp_precision, 0, "File timestamp precision (0: seconds, "
|
|
"1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
|
|
"3+: sec + ns (max. precision))");
|
|
|
|
/*
|
|
* Get a current timestamp.
|
|
*/
|
|
void
|
|
vfs_timestamp(struct timespec *tsp)
|
|
{
|
|
struct timeval tv;
|
|
|
|
switch (timestamp_precision) {
|
|
case TSP_SEC:
|
|
tsp->tv_sec = time_second;
|
|
tsp->tv_nsec = 0;
|
|
break;
|
|
case TSP_HZ:
|
|
getnanotime(tsp);
|
|
break;
|
|
case TSP_USEC:
|
|
microtime(&tv);
|
|
TIMEVAL_TO_TIMESPEC(&tv, tsp);
|
|
break;
|
|
case TSP_NSEC:
|
|
default:
|
|
nanotime(tsp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set vnode attributes to VNOVAL
|
|
*/
|
|
void
|
|
vattr_null(struct vattr *vap)
|
|
{
|
|
|
|
vap->va_type = VNON;
|
|
vap->va_size = VNOVAL;
|
|
vap->va_bytes = VNOVAL;
|
|
vap->va_mode = VNOVAL;
|
|
vap->va_nlink = VNOVAL;
|
|
vap->va_uid = VNOVAL;
|
|
vap->va_gid = VNOVAL;
|
|
vap->va_fsid = VNOVAL;
|
|
vap->va_fileid = VNOVAL;
|
|
vap->va_blocksize = VNOVAL;
|
|
vap->va_rdev = VNOVAL;
|
|
vap->va_atime.tv_sec = VNOVAL;
|
|
vap->va_atime.tv_nsec = VNOVAL;
|
|
vap->va_mtime.tv_sec = VNOVAL;
|
|
vap->va_mtime.tv_nsec = VNOVAL;
|
|
vap->va_ctime.tv_sec = VNOVAL;
|
|
vap->va_ctime.tv_nsec = VNOVAL;
|
|
vap->va_birthtime.tv_sec = VNOVAL;
|
|
vap->va_birthtime.tv_nsec = VNOVAL;
|
|
vap->va_flags = VNOVAL;
|
|
vap->va_gen = VNOVAL;
|
|
vap->va_vaflags = 0;
|
|
}
|
|
|
|
/*
|
|
* Try to reduce the total number of vnodes.
|
|
*
|
|
* This routine (and its user) are buggy in at least the following ways:
|
|
* - all parameters were picked years ago when RAM sizes were significantly
|
|
* smaller
|
|
* - it can pick vnodes based on pages used by the vm object, but filesystems
|
|
* like ZFS don't use it making the pick broken
|
|
* - since ZFS has its own aging policy it gets partially combated by this one
|
|
* - a dedicated method should be provided for filesystems to let them decide
|
|
* whether the vnode should be recycled
|
|
*
|
|
* This routine is called when we have too many vnodes. It attempts
|
|
* to free <count> vnodes and will potentially free vnodes that still
|
|
* have VM backing store (VM backing store is typically the cause
|
|
* of a vnode blowout so we want to do this). Therefore, this operation
|
|
* is not considered cheap.
|
|
*
|
|
* A number of conditions may prevent a vnode from being reclaimed.
|
|
* the buffer cache may have references on the vnode, a directory
|
|
* vnode may still have references due to the namei cache representing
|
|
* underlying files, or the vnode may be in active use. It is not
|
|
* desirable to reuse such vnodes. These conditions may cause the
|
|
* number of vnodes to reach some minimum value regardless of what
|
|
* you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
|
|
*
|
|
* @param reclaim_nc_src Only reclaim directories with outgoing namecache
|
|
* entries if this argument is strue
|
|
* @param trigger Only reclaim vnodes with fewer than this many resident
|
|
* pages.
|
|
* @param target How many vnodes to reclaim.
|
|
* @return The number of vnodes that were reclaimed.
|
|
*/
|
|
static int
|
|
vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
|
|
{
|
|
struct vnode *vp, *mvp;
|
|
struct mount *mp;
|
|
struct vm_object *object;
|
|
u_long done;
|
|
bool retried;
|
|
|
|
mtx_assert(&vnode_list_mtx, MA_OWNED);
|
|
|
|
retried = false;
|
|
done = 0;
|
|
|
|
mvp = vnode_list_reclaim_marker;
|
|
restart:
|
|
vp = mvp;
|
|
while (done < target) {
|
|
vp = TAILQ_NEXT(vp, v_vnodelist);
|
|
if (__predict_false(vp == NULL))
|
|
break;
|
|
|
|
if (__predict_false(vp->v_type == VMARKER))
|
|
continue;
|
|
|
|
/*
|
|
* If it's been deconstructed already, it's still
|
|
* referenced, or it exceeds the trigger, skip it.
|
|
* Also skip free vnodes. We are trying to make space
|
|
* to expand the free list, not reduce it.
|
|
*/
|
|
if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
|
|
(!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
|
|
goto next_iter;
|
|
|
|
if (vp->v_type == VBAD || vp->v_type == VNON)
|
|
goto next_iter;
|
|
|
|
object = atomic_load_ptr(&vp->v_object);
|
|
if (object == NULL || object->resident_page_count > trigger) {
|
|
goto next_iter;
|
|
}
|
|
|
|
/*
|
|
* Handle races against vnode allocation. Filesystems lock the
|
|
* vnode some time after it gets returned from getnewvnode,
|
|
* despite type and hold count being manipulated earlier.
|
|
* Resorting to checking v_mount restores guarantees present
|
|
* before the global list was reworked to contain all vnodes.
|
|
*/
|
|
if (!VI_TRYLOCK(vp))
|
|
goto next_iter;
|
|
if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
|
|
VI_UNLOCK(vp);
|
|
goto next_iter;
|
|
}
|
|
if (vp->v_mount == NULL) {
|
|
VI_UNLOCK(vp);
|
|
goto next_iter;
|
|
}
|
|
vholdl(vp);
|
|
VI_UNLOCK(vp);
|
|
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
|
|
TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
|
|
mtx_unlock(&vnode_list_mtx);
|
|
|
|
if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
|
|
vdrop(vp);
|
|
goto next_iter_unlocked;
|
|
}
|
|
if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
|
|
vdrop(vp);
|
|
vn_finished_write(mp);
|
|
goto next_iter_unlocked;
|
|
}
|
|
|
|
VI_LOCK(vp);
|
|
if (vp->v_usecount > 0 ||
|
|
(!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
|
|
(vp->v_object != NULL && vp->v_object->handle == vp &&
|
|
vp->v_object->resident_page_count > trigger)) {
|
|
VOP_UNLOCK(vp);
|
|
vdropl(vp);
|
|
vn_finished_write(mp);
|
|
goto next_iter_unlocked;
|
|
}
|
|
counter_u64_add(recycles_count, 1);
|
|
vgonel(vp);
|
|
VOP_UNLOCK(vp);
|
|
vdropl(vp);
|
|
vn_finished_write(mp);
|
|
done++;
|
|
next_iter_unlocked:
|
|
if (should_yield())
|
|
kern_yield(PRI_USER);
|
|
mtx_lock(&vnode_list_mtx);
|
|
goto restart;
|
|
next_iter:
|
|
MPASS(vp->v_type != VMARKER);
|
|
if (!should_yield())
|
|
continue;
|
|
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
|
|
TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
|
|
mtx_unlock(&vnode_list_mtx);
|
|
kern_yield(PRI_USER);
|
|
mtx_lock(&vnode_list_mtx);
|
|
goto restart;
|
|
}
|
|
if (done == 0 && !retried) {
|
|
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
|
|
TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
|
|
retried = true;
|
|
goto restart;
|
|
}
|
|
return (done);
|
|
}
|
|
|
|
static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
|
|
SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
|
|
0,
|
|
"limit on vnode free requests per call to the vnlru_free routine");
|
|
|
|
/*
|
|
* Attempt to reduce the free list by the requested amount.
|
|
*/
|
|
static int
|
|
vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
|
|
{
|
|
struct vnode *vp;
|
|
struct mount *mp;
|
|
int ocount;
|
|
|
|
mtx_assert(&vnode_list_mtx, MA_OWNED);
|
|
if (count > max_vnlru_free)
|
|
count = max_vnlru_free;
|
|
ocount = count;
|
|
vp = mvp;
|
|
for (;;) {
|
|
if (count == 0) {
|
|
break;
|
|
}
|
|
vp = TAILQ_NEXT(vp, v_vnodelist);
|
|
if (__predict_false(vp == NULL)) {
|
|
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
|
|
TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
|
|
break;
|
|
}
|
|
if (__predict_false(vp->v_type == VMARKER))
|
|
continue;
|
|
if (vp->v_holdcnt > 0)
|
|
continue;
|
|
/*
|
|
* Don't recycle if our vnode is from different type
|
|
* of mount point. Note that mp is type-safe, the
|
|
* check does not reach unmapped address even if
|
|
* vnode is reclaimed.
|
|
*/
|
|
if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
|
|
mp->mnt_op != mnt_op) {
|
|
continue;
|
|
}
|
|
if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
|
|
continue;
|
|
}
|
|
if (!vhold_recycle_free(vp))
|
|
continue;
|
|
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
|
|
TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
|
|
mtx_unlock(&vnode_list_mtx);
|
|
if (vtryrecycle(vp) == 0)
|
|
count--;
|
|
mtx_lock(&vnode_list_mtx);
|
|
vp = mvp;
|
|
}
|
|
return (ocount - count);
|
|
}
|
|
|
|
static int
|
|
vnlru_free_locked(int count)
|
|
{
|
|
|
|
mtx_assert(&vnode_list_mtx, MA_OWNED);
|
|
return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
|
|
}
|
|
|
|
void
|
|
vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
|
|
{
|
|
|
|
MPASS(mnt_op != NULL);
|
|
MPASS(mvp != NULL);
|
|
VNPASS(mvp->v_type == VMARKER, mvp);
|
|
mtx_lock(&vnode_list_mtx);
|
|
vnlru_free_impl(count, mnt_op, mvp);
|
|
mtx_unlock(&vnode_list_mtx);
|
|
}
|
|
|
|
struct vnode *
|
|
vnlru_alloc_marker(void)
|
|
{
|
|
struct vnode *mvp;
|
|
|
|
mvp = vn_alloc_marker(NULL);
|
|
mtx_lock(&vnode_list_mtx);
|
|
TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
|
|
mtx_unlock(&vnode_list_mtx);
|
|
return (mvp);
|
|
}
|
|
|
|
void
|
|
vnlru_free_marker(struct vnode *mvp)
|
|
{
|
|
mtx_lock(&vnode_list_mtx);
|
|
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
|
|
mtx_unlock(&vnode_list_mtx);
|
|
vn_free_marker(mvp);
|
|
}
|
|
|
|
static void
|
|
vnlru_recalc(void)
|
|
{
|
|
|
|
mtx_assert(&vnode_list_mtx, MA_OWNED);
|
|
gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
|
|
vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
|
|
vlowat = vhiwat / 2;
|
|
}
|
|
|
|
/*
|
|
* Attempt to recycle vnodes in a context that is always safe to block.
|
|
* Calling vlrurecycle() from the bowels of filesystem code has some
|
|
* interesting deadlock problems.
|
|
*/
|
|
static struct proc *vnlruproc;
|
|
static int vnlruproc_sig;
|
|
|
|
/*
|
|
* The main freevnodes counter is only updated when threads requeue their vnode
|
|
* batches. CPUs are conditionally walked to compute a more accurate total.
|
|
*
|
|
* Limit how much of a slop are we willing to tolerate. Note: the actual value
|
|
* at any given moment can still exceed slop, but it should not be by significant
|
|
* margin in practice.
|
|
*/
|
|
#define VNLRU_FREEVNODES_SLOP 128
|
|
|
|
static __inline void
|
|
vfs_freevnodes_inc(void)
|
|
{
|
|
struct vdbatch *vd;
|
|
|
|
critical_enter();
|
|
vd = DPCPU_PTR(vd);
|
|
vd->freevnodes++;
|
|
critical_exit();
|
|
}
|
|
|
|
static __inline void
|
|
vfs_freevnodes_dec(void)
|
|
{
|
|
struct vdbatch *vd;
|
|
|
|
critical_enter();
|
|
vd = DPCPU_PTR(vd);
|
|
vd->freevnodes--;
|
|
critical_exit();
|
|
}
|
|
|
|
static u_long
|
|
vnlru_read_freevnodes(void)
|
|
{
|
|
struct vdbatch *vd;
|
|
long slop;
|
|
int cpu;
|
|
|
|
mtx_assert(&vnode_list_mtx, MA_OWNED);
|
|
if (freevnodes > freevnodes_old)
|
|
slop = freevnodes - freevnodes_old;
|
|
else
|
|
slop = freevnodes_old - freevnodes;
|
|
if (slop < VNLRU_FREEVNODES_SLOP)
|
|
return (freevnodes >= 0 ? freevnodes : 0);
|
|
freevnodes_old = freevnodes;
|
|
CPU_FOREACH(cpu) {
|
|
vd = DPCPU_ID_PTR((cpu), vd);
|
|
freevnodes_old += vd->freevnodes;
|
|
}
|
|
return (freevnodes_old >= 0 ? freevnodes_old : 0);
|
|
}
|
|
|
|
static bool
|
|
vnlru_under(u_long rnumvnodes, u_long limit)
|
|
{
|
|
u_long rfreevnodes, space;
|
|
|
|
if (__predict_false(rnumvnodes > desiredvnodes))
|
|
return (true);
|
|
|
|
space = desiredvnodes - rnumvnodes;
|
|
if (space < limit) {
|
|
rfreevnodes = vnlru_read_freevnodes();
|
|
if (rfreevnodes > wantfreevnodes)
|
|
space += rfreevnodes - wantfreevnodes;
|
|
}
|
|
return (space < limit);
|
|
}
|
|
|
|
static bool
|
|
vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
|
|
{
|
|
long rfreevnodes, space;
|
|
|
|
if (__predict_false(rnumvnodes > desiredvnodes))
|
|
return (true);
|
|
|
|
space = desiredvnodes - rnumvnodes;
|
|
if (space < limit) {
|
|
rfreevnodes = atomic_load_long(&freevnodes);
|
|
if (rfreevnodes > wantfreevnodes)
|
|
space += rfreevnodes - wantfreevnodes;
|
|
}
|
|
return (space < limit);
|
|
}
|
|
|
|
static void
|
|
vnlru_kick(void)
|
|
{
|
|
|
|
mtx_assert(&vnode_list_mtx, MA_OWNED);
|
|
if (vnlruproc_sig == 0) {
|
|
vnlruproc_sig = 1;
|
|
wakeup(vnlruproc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vnlru_proc(void)
|
|
{
|
|
u_long rnumvnodes, rfreevnodes, target;
|
|
unsigned long onumvnodes;
|
|
int done, force, trigger, usevnodes;
|
|
bool reclaim_nc_src, want_reread;
|
|
|
|
EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
|
|
SHUTDOWN_PRI_FIRST);
|
|
|
|
force = 0;
|
|
want_reread = false;
|
|
for (;;) {
|
|
kproc_suspend_check(vnlruproc);
|
|
mtx_lock(&vnode_list_mtx);
|
|
rnumvnodes = atomic_load_long(&numvnodes);
|
|
|
|
if (want_reread) {
|
|
force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
|
|
want_reread = false;
|
|
}
|
|
|
|
/*
|
|
* If numvnodes is too large (due to desiredvnodes being
|
|
* adjusted using its sysctl, or emergency growth), first
|
|
* try to reduce it by discarding from the free list.
|
|
*/
|
|
if (rnumvnodes > desiredvnodes) {
|
|
vnlru_free_locked(rnumvnodes - desiredvnodes);
|
|
rnumvnodes = atomic_load_long(&numvnodes);
|
|
}
|
|
/*
|
|
* Sleep if the vnode cache is in a good state. This is
|
|
* when it is not over-full and has space for about a 4%
|
|
* or 9% expansion (by growing its size or inexcessively
|
|
* reducing its free list). Otherwise, try to reclaim
|
|
* space for a 10% expansion.
|
|
*/
|
|
if (vstir && force == 0) {
|
|
force = 1;
|
|
vstir = 0;
|
|
}
|
|
if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
|
|
vnlruproc_sig = 0;
|
|
wakeup(&vnlruproc_sig);
|
|
msleep(vnlruproc, &vnode_list_mtx,
|
|
PVFS|PDROP, "vlruwt", hz);
|
|
continue;
|
|
}
|
|
rfreevnodes = vnlru_read_freevnodes();
|
|
|
|
onumvnodes = rnumvnodes;
|
|
/*
|
|
* Calculate parameters for recycling. These are the same
|
|
* throughout the loop to give some semblance of fairness.
|
|
* The trigger point is to avoid recycling vnodes with lots
|
|
* of resident pages. We aren't trying to free memory; we
|
|
* are trying to recycle or at least free vnodes.
|
|
*/
|
|
if (rnumvnodes <= desiredvnodes)
|
|
usevnodes = rnumvnodes - rfreevnodes;
|
|
else
|
|
usevnodes = rnumvnodes;
|
|
if (usevnodes <= 0)
|
|
usevnodes = 1;
|
|
/*
|
|
* The trigger value is is chosen to give a conservatively
|
|
* large value to ensure that it alone doesn't prevent
|
|
* making progress. The value can easily be so large that
|
|
* it is effectively infinite in some congested and
|
|
* misconfigured cases, and this is necessary. Normally
|
|
* it is about 8 to 100 (pages), which is quite large.
|
|
*/
|
|
trigger = vm_cnt.v_page_count * 2 / usevnodes;
|
|
if (force < 2)
|
|
trigger = vsmalltrigger;
|
|
reclaim_nc_src = force >= 3;
|
|
target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
|
|
target = target / 10 + 1;
|
|
done = vlrureclaim(reclaim_nc_src, trigger, target);
|
|
mtx_unlock(&vnode_list_mtx);
|
|
if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
|
|
uma_reclaim(UMA_RECLAIM_DRAIN);
|
|
if (done == 0) {
|
|
if (force == 0 || force == 1) {
|
|
force = 2;
|
|
continue;
|
|
}
|
|
if (force == 2) {
|
|
force = 3;
|
|
continue;
|
|
}
|
|
want_reread = true;
|
|
force = 0;
|
|
vnlru_nowhere++;
|
|
tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
|
|
} else {
|
|
want_reread = true;
|
|
kern_yield(PRI_USER);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct kproc_desc vnlru_kp = {
|
|
"vnlru",
|
|
vnlru_proc,
|
|
&vnlruproc
|
|
};
|
|
SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
|
|
&vnlru_kp);
|
|
|
|
/*
|
|
* Routines having to do with the management of the vnode table.
|
|
*/
|
|
|
|
/*
|
|
* Try to recycle a freed vnode. We abort if anyone picks up a reference
|
|
* before we actually vgone(). This function must be called with the vnode
|
|
* held to prevent the vnode from being returned to the free list midway
|
|
* through vgone().
|
|
*/
|
|
static int
|
|
vtryrecycle(struct vnode *vp)
|
|
{
|
|
struct mount *vnmp;
|
|
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
VNASSERT(vp->v_holdcnt, vp,
|
|
("vtryrecycle: Recycling vp %p without a reference.", vp));
|
|
/*
|
|
* This vnode may found and locked via some other list, if so we
|
|
* can't recycle it yet.
|
|
*/
|
|
if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
|
|
CTR2(KTR_VFS,
|
|
"%s: impossible to recycle, vp %p lock is already held",
|
|
__func__, vp);
|
|
vdrop(vp);
|
|
return (EWOULDBLOCK);
|
|
}
|
|
/*
|
|
* Don't recycle if its filesystem is being suspended.
|
|
*/
|
|
if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
|
|
VOP_UNLOCK(vp);
|
|
CTR2(KTR_VFS,
|
|
"%s: impossible to recycle, cannot start the write for %p",
|
|
__func__, vp);
|
|
vdrop(vp);
|
|
return (EBUSY);
|
|
}
|
|
/*
|
|
* If we got this far, we need to acquire the interlock and see if
|
|
* anyone picked up this vnode from another list. If not, we will
|
|
* mark it with DOOMED via vgonel() so that anyone who does find it
|
|
* will skip over it.
|
|
*/
|
|
VI_LOCK(vp);
|
|
if (vp->v_usecount) {
|
|
VOP_UNLOCK(vp);
|
|
vdropl(vp);
|
|
vn_finished_write(vnmp);
|
|
CTR2(KTR_VFS,
|
|
"%s: impossible to recycle, %p is already referenced",
|
|
__func__, vp);
|
|
return (EBUSY);
|
|
}
|
|
if (!VN_IS_DOOMED(vp)) {
|
|
counter_u64_add(recycles_free_count, 1);
|
|
vgonel(vp);
|
|
}
|
|
VOP_UNLOCK(vp);
|
|
vdropl(vp);
|
|
vn_finished_write(vnmp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new vnode.
|
|
*
|
|
* The operation never returns an error. Returning an error was disabled
|
|
* in r145385 (dated 2005) with the following comment:
|
|
*
|
|
* XXX Not all VFS_VGET/ffs_vget callers check returns.
|
|
*
|
|
* Given the age of this commit (almost 15 years at the time of writing this
|
|
* comment) restoring the ability to fail requires a significant audit of
|
|
* all codepaths.
|
|
*
|
|
* The routine can try to free a vnode or stall for up to 1 second waiting for
|
|
* vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
|
|
*/
|
|
static u_long vn_alloc_cyclecount;
|
|
|
|
static struct vnode * __noinline
|
|
vn_alloc_hard(struct mount *mp)
|
|
{
|
|
u_long rnumvnodes, rfreevnodes;
|
|
|
|
mtx_lock(&vnode_list_mtx);
|
|
rnumvnodes = atomic_load_long(&numvnodes);
|
|
if (rnumvnodes + 1 < desiredvnodes) {
|
|
vn_alloc_cyclecount = 0;
|
|
goto alloc;
|
|
}
|
|
rfreevnodes = vnlru_read_freevnodes();
|
|
if (vn_alloc_cyclecount++ >= rfreevnodes) {
|
|
vn_alloc_cyclecount = 0;
|
|
vstir = 1;
|
|
}
|
|
/*
|
|
* Grow the vnode cache if it will not be above its target max
|
|
* after growing. Otherwise, if the free list is nonempty, try
|
|
* to reclaim 1 item from it before growing the cache (possibly
|
|
* above its target max if the reclamation failed or is delayed).
|
|
* Otherwise, wait for some space. In all cases, schedule
|
|
* vnlru_proc() if we are getting short of space. The watermarks
|
|
* should be chosen so that we never wait or even reclaim from
|
|
* the free list to below its target minimum.
|
|
*/
|
|
if (vnlru_free_locked(1) > 0)
|
|
goto alloc;
|
|
if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
|
|
/*
|
|
* Wait for space for a new vnode.
|
|
*/
|
|
vnlru_kick();
|
|
msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
|
|
if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
|
|
vnlru_read_freevnodes() > 1)
|
|
vnlru_free_locked(1);
|
|
}
|
|
alloc:
|
|
rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
|
|
if (vnlru_under(rnumvnodes, vlowat))
|
|
vnlru_kick();
|
|
mtx_unlock(&vnode_list_mtx);
|
|
return (uma_zalloc_smr(vnode_zone, M_WAITOK));
|
|
}
|
|
|
|
static struct vnode *
|
|
vn_alloc(struct mount *mp)
|
|
{
|
|
u_long rnumvnodes;
|
|
|
|
if (__predict_false(vn_alloc_cyclecount != 0))
|
|
return (vn_alloc_hard(mp));
|
|
rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
|
|
if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
|
|
atomic_subtract_long(&numvnodes, 1);
|
|
return (vn_alloc_hard(mp));
|
|
}
|
|
|
|
return (uma_zalloc_smr(vnode_zone, M_WAITOK));
|
|
}
|
|
|
|
static void
|
|
vn_free(struct vnode *vp)
|
|
{
|
|
|
|
atomic_subtract_long(&numvnodes, 1);
|
|
uma_zfree_smr(vnode_zone, vp);
|
|
}
|
|
|
|
/*
|
|
* Return the next vnode from the free list.
|
|
*/
|
|
int
|
|
getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
|
|
struct vnode **vpp)
|
|
{
|
|
struct vnode *vp;
|
|
struct thread *td;
|
|
struct lock_object *lo;
|
|
|
|
CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
|
|
|
|
KASSERT(vops->registered,
|
|
("%s: not registered vector op %p\n", __func__, vops));
|
|
|
|
td = curthread;
|
|
if (td->td_vp_reserved != NULL) {
|
|
vp = td->td_vp_reserved;
|
|
td->td_vp_reserved = NULL;
|
|
} else {
|
|
vp = vn_alloc(mp);
|
|
}
|
|
counter_u64_add(vnodes_created, 1);
|
|
/*
|
|
* Locks are given the generic name "vnode" when created.
|
|
* Follow the historic practice of using the filesystem
|
|
* name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
|
|
*
|
|
* Locks live in a witness group keyed on their name. Thus,
|
|
* when a lock is renamed, it must also move from the witness
|
|
* group of its old name to the witness group of its new name.
|
|
*
|
|
* The change only needs to be made when the vnode moves
|
|
* from one filesystem type to another. We ensure that each
|
|
* filesystem use a single static name pointer for its tag so
|
|
* that we can compare pointers rather than doing a strcmp().
|
|
*/
|
|
lo = &vp->v_vnlock->lock_object;
|
|
#ifdef WITNESS
|
|
if (lo->lo_name != tag) {
|
|
#endif
|
|
lo->lo_name = tag;
|
|
#ifdef WITNESS
|
|
WITNESS_DESTROY(lo);
|
|
WITNESS_INIT(lo, tag);
|
|
}
|
|
#endif
|
|
/*
|
|
* By default, don't allow shared locks unless filesystems opt-in.
|
|
*/
|
|
vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
|
|
/*
|
|
* Finalize various vnode identity bits.
|
|
*/
|
|
KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
|
|
KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
|
|
KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
|
|
vp->v_type = VNON;
|
|
vp->v_op = vops;
|
|
vp->v_irflag = 0;
|
|
v_init_counters(vp);
|
|
vn_seqc_init(vp);
|
|
vp->v_bufobj.bo_ops = &buf_ops_bio;
|
|
#ifdef DIAGNOSTIC
|
|
if (mp == NULL && vops != &dead_vnodeops)
|
|
printf("NULL mp in getnewvnode(9), tag %s\n", tag);
|
|
#endif
|
|
#ifdef MAC
|
|
mac_vnode_init(vp);
|
|
if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
|
|
mac_vnode_associate_singlelabel(mp, vp);
|
|
#endif
|
|
if (mp != NULL) {
|
|
vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
|
|
if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
|
|
vp->v_vflag |= VV_NOKNOTE;
|
|
}
|
|
|
|
/*
|
|
* For the filesystems which do not use vfs_hash_insert(),
|
|
* still initialize v_hash to have vfs_hash_index() useful.
|
|
* E.g., nullfs uses vfs_hash_index() on the lower vnode for
|
|
* its own hashing.
|
|
*/
|
|
vp->v_hash = (uintptr_t)vp >> vnsz2log;
|
|
|
|
*vpp = vp;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
getnewvnode_reserve(void)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
MPASS(td->td_vp_reserved == NULL);
|
|
td->td_vp_reserved = vn_alloc(NULL);
|
|
}
|
|
|
|
void
|
|
getnewvnode_drop_reserve(void)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
if (td->td_vp_reserved != NULL) {
|
|
vn_free(td->td_vp_reserved);
|
|
td->td_vp_reserved = NULL;
|
|
}
|
|
}
|
|
|
|
static void __noinline
|
|
freevnode(struct vnode *vp)
|
|
{
|
|
struct bufobj *bo;
|
|
|
|
/*
|
|
* The vnode has been marked for destruction, so free it.
|
|
*
|
|
* The vnode will be returned to the zone where it will
|
|
* normally remain until it is needed for another vnode. We
|
|
* need to cleanup (or verify that the cleanup has already
|
|
* been done) any residual data left from its current use
|
|
* so as not to contaminate the freshly allocated vnode.
|
|
*/
|
|
CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
|
|
/*
|
|
* Paired with vgone.
|
|
*/
|
|
vn_seqc_write_end_free(vp);
|
|
|
|
bo = &vp->v_bufobj;
|
|
VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
|
|
VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
|
|
VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
|
|
VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
|
|
VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
|
|
VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
|
|
VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
|
|
("clean blk trie not empty"));
|
|
VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
|
|
VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
|
|
("dirty blk trie not empty"));
|
|
VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
|
|
VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
|
|
VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
|
|
VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
|
|
("Dangling rangelock waiters"));
|
|
VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
|
|
("Leaked inactivation"));
|
|
VI_UNLOCK(vp);
|
|
#ifdef MAC
|
|
mac_vnode_destroy(vp);
|
|
#endif
|
|
if (vp->v_pollinfo != NULL) {
|
|
destroy_vpollinfo(vp->v_pollinfo);
|
|
vp->v_pollinfo = NULL;
|
|
}
|
|
vp->v_mountedhere = NULL;
|
|
vp->v_unpcb = NULL;
|
|
vp->v_rdev = NULL;
|
|
vp->v_fifoinfo = NULL;
|
|
vp->v_iflag = 0;
|
|
vp->v_vflag = 0;
|
|
bo->bo_flag = 0;
|
|
vn_free(vp);
|
|
}
|
|
|
|
/*
|
|
* Delete from old mount point vnode list, if on one.
|
|
*/
|
|
static void
|
|
delmntque(struct vnode *vp)
|
|
{
|
|
struct mount *mp;
|
|
|
|
VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
|
|
|
|
mp = vp->v_mount;
|
|
if (mp == NULL)
|
|
return;
|
|
MNT_ILOCK(mp);
|
|
VI_LOCK(vp);
|
|
vp->v_mount = NULL;
|
|
VI_UNLOCK(vp);
|
|
VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
|
|
("bad mount point vnode list size"));
|
|
TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
|
|
mp->mnt_nvnodelistsize--;
|
|
MNT_REL(mp);
|
|
MNT_IUNLOCK(mp);
|
|
}
|
|
|
|
static void
|
|
insmntque_stddtr(struct vnode *vp, void *dtr_arg)
|
|
{
|
|
|
|
vp->v_data = NULL;
|
|
vp->v_op = &dead_vnodeops;
|
|
vgone(vp);
|
|
vput(vp);
|
|
}
|
|
|
|
/*
|
|
* Insert into list of vnodes for the new mount point, if available.
|
|
*/
|
|
int
|
|
insmntque1(struct vnode *vp, struct mount *mp,
|
|
void (*dtr)(struct vnode *, void *), void *dtr_arg)
|
|
{
|
|
|
|
KASSERT(vp->v_mount == NULL,
|
|
("insmntque: vnode already on per mount vnode list"));
|
|
VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
|
|
ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
|
|
|
|
/*
|
|
* We acquire the vnode interlock early to ensure that the
|
|
* vnode cannot be recycled by another process releasing a
|
|
* holdcnt on it before we get it on both the vnode list
|
|
* and the active vnode list. The mount mutex protects only
|
|
* manipulation of the vnode list and the vnode freelist
|
|
* mutex protects only manipulation of the active vnode list.
|
|
* Hence the need to hold the vnode interlock throughout.
|
|
*/
|
|
MNT_ILOCK(mp);
|
|
VI_LOCK(vp);
|
|
if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
|
|
((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
|
|
mp->mnt_nvnodelistsize == 0)) &&
|
|
(vp->v_vflag & VV_FORCEINSMQ) == 0) {
|
|
VI_UNLOCK(vp);
|
|
MNT_IUNLOCK(mp);
|
|
if (dtr != NULL)
|
|
dtr(vp, dtr_arg);
|
|
return (EBUSY);
|
|
}
|
|
vp->v_mount = mp;
|
|
MNT_REF(mp);
|
|
TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
|
|
VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
|
|
("neg mount point vnode list size"));
|
|
mp->mnt_nvnodelistsize++;
|
|
VI_UNLOCK(vp);
|
|
MNT_IUNLOCK(mp);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
insmntque(struct vnode *vp, struct mount *mp)
|
|
{
|
|
|
|
return (insmntque1(vp, mp, insmntque_stddtr, NULL));
|
|
}
|
|
|
|
/*
|
|
* Flush out and invalidate all buffers associated with a bufobj
|
|
* Called with the underlying object locked.
|
|
*/
|
|
int
|
|
bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
|
|
{
|
|
int error;
|
|
|
|
BO_LOCK(bo);
|
|
if (flags & V_SAVE) {
|
|
error = bufobj_wwait(bo, slpflag, slptimeo);
|
|
if (error) {
|
|
BO_UNLOCK(bo);
|
|
return (error);
|
|
}
|
|
if (bo->bo_dirty.bv_cnt > 0) {
|
|
BO_UNLOCK(bo);
|
|
do {
|
|
error = BO_SYNC(bo, MNT_WAIT);
|
|
} while (error == ERELOOKUP);
|
|
if (error != 0)
|
|
return (error);
|
|
/*
|
|
* XXX We could save a lock/unlock if this was only
|
|
* enabled under INVARIANTS
|
|
*/
|
|
BO_LOCK(bo);
|
|
if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
|
|
panic("vinvalbuf: dirty bufs");
|
|
}
|
|
}
|
|
/*
|
|
* If you alter this loop please notice that interlock is dropped and
|
|
* reacquired in flushbuflist. Special care is needed to ensure that
|
|
* no race conditions occur from this.
|
|
*/
|
|
do {
|
|
error = flushbuflist(&bo->bo_clean,
|
|
flags, bo, slpflag, slptimeo);
|
|
if (error == 0 && !(flags & V_CLEANONLY))
|
|
error = flushbuflist(&bo->bo_dirty,
|
|
flags, bo, slpflag, slptimeo);
|
|
if (error != 0 && error != EAGAIN) {
|
|
BO_UNLOCK(bo);
|
|
return (error);
|
|
}
|
|
} while (error != 0);
|
|
|
|
/*
|
|
* Wait for I/O to complete. XXX needs cleaning up. The vnode can
|
|
* have write I/O in-progress but if there is a VM object then the
|
|
* VM object can also have read-I/O in-progress.
|
|
*/
|
|
do {
|
|
bufobj_wwait(bo, 0, 0);
|
|
if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
|
|
BO_UNLOCK(bo);
|
|
vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
|
|
BO_LOCK(bo);
|
|
}
|
|
} while (bo->bo_numoutput > 0);
|
|
BO_UNLOCK(bo);
|
|
|
|
/*
|
|
* Destroy the copy in the VM cache, too.
|
|
*/
|
|
if (bo->bo_object != NULL &&
|
|
(flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
|
|
VM_OBJECT_WLOCK(bo->bo_object);
|
|
vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
|
|
OBJPR_CLEANONLY : 0);
|
|
VM_OBJECT_WUNLOCK(bo->bo_object);
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
BO_LOCK(bo);
|
|
if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
|
|
V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
|
|
bo->bo_clean.bv_cnt > 0))
|
|
panic("vinvalbuf: flush failed");
|
|
if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
|
|
bo->bo_dirty.bv_cnt > 0)
|
|
panic("vinvalbuf: flush dirty failed");
|
|
BO_UNLOCK(bo);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Flush out and invalidate all buffers associated with a vnode.
|
|
* Called with the underlying object locked.
|
|
*/
|
|
int
|
|
vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
|
|
{
|
|
|
|
CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
|
|
ASSERT_VOP_LOCKED(vp, "vinvalbuf");
|
|
if (vp->v_object != NULL && vp->v_object->handle != vp)
|
|
return (0);
|
|
return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
|
|
}
|
|
|
|
/*
|
|
* Flush out buffers on the specified list.
|
|
*
|
|
*/
|
|
static int
|
|
flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
|
|
int slptimeo)
|
|
{
|
|
struct buf *bp, *nbp;
|
|
int retval, error;
|
|
daddr_t lblkno;
|
|
b_xflags_t xflags;
|
|
|
|
ASSERT_BO_WLOCKED(bo);
|
|
|
|
retval = 0;
|
|
TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
|
|
/*
|
|
* If we are flushing both V_NORMAL and V_ALT buffers then
|
|
* do not skip any buffers. If we are flushing only V_NORMAL
|
|
* buffers then skip buffers marked as BX_ALTDATA. If we are
|
|
* flushing only V_ALT buffers then skip buffers not marked
|
|
* as BX_ALTDATA.
|
|
*/
|
|
if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
|
|
(((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
|
|
((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
|
|
continue;
|
|
}
|
|
if (nbp != NULL) {
|
|
lblkno = nbp->b_lblkno;
|
|
xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
|
|
}
|
|
retval = EAGAIN;
|
|
error = BUF_TIMELOCK(bp,
|
|
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
|
|
"flushbuf", slpflag, slptimeo);
|
|
if (error) {
|
|
BO_LOCK(bo);
|
|
return (error != ENOLCK ? error : EAGAIN);
|
|
}
|
|
KASSERT(bp->b_bufobj == bo,
|
|
("bp %p wrong b_bufobj %p should be %p",
|
|
bp, bp->b_bufobj, bo));
|
|
/*
|
|
* XXX Since there are no node locks for NFS, I
|
|
* believe there is a slight chance that a delayed
|
|
* write will occur while sleeping just above, so
|
|
* check for it.
|
|
*/
|
|
if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
|
|
(flags & V_SAVE)) {
|
|
bremfree(bp);
|
|
bp->b_flags |= B_ASYNC;
|
|
bwrite(bp);
|
|
BO_LOCK(bo);
|
|
return (EAGAIN); /* XXX: why not loop ? */
|
|
}
|
|
bremfree(bp);
|
|
bp->b_flags |= (B_INVAL | B_RELBUF);
|
|
bp->b_flags &= ~B_ASYNC;
|
|
brelse(bp);
|
|
BO_LOCK(bo);
|
|
if (nbp == NULL)
|
|
break;
|
|
nbp = gbincore(bo, lblkno);
|
|
if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
|
|
!= xflags)
|
|
break; /* nbp invalid */
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
int
|
|
bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
|
|
{
|
|
struct buf *bp;
|
|
int error;
|
|
daddr_t lblkno;
|
|
|
|
ASSERT_BO_LOCKED(bo);
|
|
|
|
for (lblkno = startn;;) {
|
|
again:
|
|
bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
|
|
if (bp == NULL || bp->b_lblkno >= endn ||
|
|
bp->b_lblkno < startn)
|
|
break;
|
|
error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
|
|
LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
|
|
if (error != 0) {
|
|
BO_RLOCK(bo);
|
|
if (error == ENOLCK)
|
|
goto again;
|
|
return (error);
|
|
}
|
|
KASSERT(bp->b_bufobj == bo,
|
|
("bp %p wrong b_bufobj %p should be %p",
|
|
bp, bp->b_bufobj, bo));
|
|
lblkno = bp->b_lblkno + 1;
|
|
if ((bp->b_flags & B_MANAGED) == 0)
|
|
bremfree(bp);
|
|
bp->b_flags |= B_RELBUF;
|
|
/*
|
|
* In the VMIO case, use the B_NOREUSE flag to hint that the
|
|
* pages backing each buffer in the range are unlikely to be
|
|
* reused. Dirty buffers will have the hint applied once
|
|
* they've been written.
|
|
*/
|
|
if ((bp->b_flags & B_VMIO) != 0)
|
|
bp->b_flags |= B_NOREUSE;
|
|
brelse(bp);
|
|
BO_RLOCK(bo);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Truncate a file's buffer and pages to a specified length. This
|
|
* is in lieu of the old vinvalbuf mechanism, which performed unneeded
|
|
* sync activity.
|
|
*/
|
|
int
|
|
vtruncbuf(struct vnode *vp, off_t length, int blksize)
|
|
{
|
|
struct buf *bp, *nbp;
|
|
struct bufobj *bo;
|
|
daddr_t startlbn;
|
|
|
|
CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
|
|
vp, blksize, (uintmax_t)length);
|
|
|
|
/*
|
|
* Round up to the *next* lbn.
|
|
*/
|
|
startlbn = howmany(length, blksize);
|
|
|
|
ASSERT_VOP_LOCKED(vp, "vtruncbuf");
|
|
|
|
bo = &vp->v_bufobj;
|
|
restart_unlocked:
|
|
BO_LOCK(bo);
|
|
|
|
while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
|
|
;
|
|
|
|
if (length > 0) {
|
|
restartsync:
|
|
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
|
|
if (bp->b_lblkno > 0)
|
|
continue;
|
|
/*
|
|
* Since we hold the vnode lock this should only
|
|
* fail if we're racing with the buf daemon.
|
|
*/
|
|
if (BUF_LOCK(bp,
|
|
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
|
|
BO_LOCKPTR(bo)) == ENOLCK)
|
|
goto restart_unlocked;
|
|
|
|
VNASSERT((bp->b_flags & B_DELWRI), vp,
|
|
("buf(%p) on dirty queue without DELWRI", bp));
|
|
|
|
bremfree(bp);
|
|
bawrite(bp);
|
|
BO_LOCK(bo);
|
|
goto restartsync;
|
|
}
|
|
}
|
|
|
|
bufobj_wwait(bo, 0, 0);
|
|
BO_UNLOCK(bo);
|
|
vnode_pager_setsize(vp, length);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Invalidate the cached pages of a file's buffer within the range of block
|
|
* numbers [startlbn, endlbn).
|
|
*/
|
|
void
|
|
v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
|
|
int blksize)
|
|
{
|
|
struct bufobj *bo;
|
|
off_t start, end;
|
|
|
|
ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
|
|
|
|
start = blksize * startlbn;
|
|
end = blksize * endlbn;
|
|
|
|
bo = &vp->v_bufobj;
|
|
BO_LOCK(bo);
|
|
MPASS(blksize == bo->bo_bsize);
|
|
|
|
while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
|
|
;
|
|
|
|
BO_UNLOCK(bo);
|
|
vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
|
|
}
|
|
|
|
static int
|
|
v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
|
|
daddr_t startlbn, daddr_t endlbn)
|
|
{
|
|
struct buf *bp, *nbp;
|
|
bool anyfreed;
|
|
|
|
ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
|
|
ASSERT_BO_LOCKED(bo);
|
|
|
|
do {
|
|
anyfreed = false;
|
|
TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
|
|
if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
|
|
continue;
|
|
if (BUF_LOCK(bp,
|
|
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
|
|
BO_LOCKPTR(bo)) == ENOLCK) {
|
|
BO_LOCK(bo);
|
|
return (EAGAIN);
|
|
}
|
|
|
|
bremfree(bp);
|
|
bp->b_flags |= B_INVAL | B_RELBUF;
|
|
bp->b_flags &= ~B_ASYNC;
|
|
brelse(bp);
|
|
anyfreed = true;
|
|
|
|
BO_LOCK(bo);
|
|
if (nbp != NULL &&
|
|
(((nbp->b_xflags & BX_VNCLEAN) == 0) ||
|
|
nbp->b_vp != vp ||
|
|
(nbp->b_flags & B_DELWRI) != 0))
|
|
return (EAGAIN);
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
|
|
if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
|
|
continue;
|
|
if (BUF_LOCK(bp,
|
|
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
|
|
BO_LOCKPTR(bo)) == ENOLCK) {
|
|
BO_LOCK(bo);
|
|
return (EAGAIN);
|
|
}
|
|
bremfree(bp);
|
|
bp->b_flags |= B_INVAL | B_RELBUF;
|
|
bp->b_flags &= ~B_ASYNC;
|
|
brelse(bp);
|
|
anyfreed = true;
|
|
|
|
BO_LOCK(bo);
|
|
if (nbp != NULL &&
|
|
(((nbp->b_xflags & BX_VNDIRTY) == 0) ||
|
|
(nbp->b_vp != vp) ||
|
|
(nbp->b_flags & B_DELWRI) == 0))
|
|
return (EAGAIN);
|
|
}
|
|
} while (anyfreed);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
buf_vlist_remove(struct buf *bp)
|
|
{
|
|
struct bufv *bv;
|
|
b_xflags_t flags;
|
|
|
|
flags = bp->b_xflags;
|
|
|
|
KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
|
|
ASSERT_BO_WLOCKED(bp->b_bufobj);
|
|
KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
|
|
(flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
|
|
("%s: buffer %p has invalid queue state", __func__, bp));
|
|
|
|
if ((flags & BX_VNDIRTY) != 0)
|
|
bv = &bp->b_bufobj->bo_dirty;
|
|
else
|
|
bv = &bp->b_bufobj->bo_clean;
|
|
BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
|
|
TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
|
|
bv->bv_cnt--;
|
|
bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
|
|
}
|
|
|
|
/*
|
|
* Add the buffer to the sorted clean or dirty block list.
|
|
*
|
|
* NOTE: xflags is passed as a constant, optimizing this inline function!
|
|
*/
|
|
static void
|
|
buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
|
|
{
|
|
struct bufv *bv;
|
|
struct buf *n;
|
|
int error;
|
|
|
|
ASSERT_BO_WLOCKED(bo);
|
|
KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
|
|
("buf_vlist_add: bo %p does not allow bufs", bo));
|
|
KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
|
|
("dead bo %p", bo));
|
|
KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
|
|
("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
|
|
bp->b_xflags |= xflags;
|
|
if (xflags & BX_VNDIRTY)
|
|
bv = &bo->bo_dirty;
|
|
else
|
|
bv = &bo->bo_clean;
|
|
|
|
/*
|
|
* Keep the list ordered. Optimize empty list insertion. Assume
|
|
* we tend to grow at the tail so lookup_le should usually be cheaper
|
|
* than _ge.
|
|
*/
|
|
if (bv->bv_cnt == 0 ||
|
|
bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
|
|
TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
|
|
else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
|
|
TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
|
|
else
|
|
TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
|
|
error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
|
|
if (error)
|
|
panic("buf_vlist_add: Preallocated nodes insufficient.");
|
|
bv->bv_cnt++;
|
|
}
|
|
|
|
/*
|
|
* Look up a buffer using the buffer tries.
|
|
*/
|
|
struct buf *
|
|
gbincore(struct bufobj *bo, daddr_t lblkno)
|
|
{
|
|
struct buf *bp;
|
|
|
|
ASSERT_BO_LOCKED(bo);
|
|
bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
|
|
if (bp != NULL)
|
|
return (bp);
|
|
return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
|
|
}
|
|
|
|
/*
|
|
* Look up a buf using the buffer tries, without the bufobj lock. This relies
|
|
* on SMR for safe lookup, and bufs being in a no-free zone to provide type
|
|
* stability of the result. Like other lockless lookups, the found buf may
|
|
* already be invalid by the time this function returns.
|
|
*/
|
|
struct buf *
|
|
gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
|
|
{
|
|
struct buf *bp;
|
|
|
|
ASSERT_BO_UNLOCKED(bo);
|
|
bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
|
|
if (bp != NULL)
|
|
return (bp);
|
|
return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
|
|
}
|
|
|
|
/*
|
|
* Associate a buffer with a vnode.
|
|
*/
|
|
void
|
|
bgetvp(struct vnode *vp, struct buf *bp)
|
|
{
|
|
struct bufobj *bo;
|
|
|
|
bo = &vp->v_bufobj;
|
|
ASSERT_BO_WLOCKED(bo);
|
|
VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
|
|
|
|
CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
|
|
VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
|
|
("bgetvp: bp already attached! %p", bp));
|
|
|
|
vhold(vp);
|
|
bp->b_vp = vp;
|
|
bp->b_bufobj = bo;
|
|
/*
|
|
* Insert onto list for new vnode.
|
|
*/
|
|
buf_vlist_add(bp, bo, BX_VNCLEAN);
|
|
}
|
|
|
|
/*
|
|
* Disassociate a buffer from a vnode.
|
|
*/
|
|
void
|
|
brelvp(struct buf *bp)
|
|
{
|
|
struct bufobj *bo;
|
|
struct vnode *vp;
|
|
|
|
CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
|
|
KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
|
|
|
|
/*
|
|
* Delete from old vnode list, if on one.
|
|
*/
|
|
vp = bp->b_vp; /* XXX */
|
|
bo = bp->b_bufobj;
|
|
BO_LOCK(bo);
|
|
buf_vlist_remove(bp);
|
|
if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
|
|
bo->bo_flag &= ~BO_ONWORKLST;
|
|
mtx_lock(&sync_mtx);
|
|
LIST_REMOVE(bo, bo_synclist);
|
|
syncer_worklist_len--;
|
|
mtx_unlock(&sync_mtx);
|
|
}
|
|
bp->b_vp = NULL;
|
|
bp->b_bufobj = NULL;
|
|
BO_UNLOCK(bo);
|
|
vdrop(vp);
|
|
}
|
|
|
|
/*
|
|
* Add an item to the syncer work queue.
|
|
*/
|
|
static void
|
|
vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
|
|
{
|
|
int slot;
|
|
|
|
ASSERT_BO_WLOCKED(bo);
|
|
|
|
mtx_lock(&sync_mtx);
|
|
if (bo->bo_flag & BO_ONWORKLST)
|
|
LIST_REMOVE(bo, bo_synclist);
|
|
else {
|
|
bo->bo_flag |= BO_ONWORKLST;
|
|
syncer_worklist_len++;
|
|
}
|
|
|
|
if (delay > syncer_maxdelay - 2)
|
|
delay = syncer_maxdelay - 2;
|
|
slot = (syncer_delayno + delay) & syncer_mask;
|
|
|
|
LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
|
|
mtx_unlock(&sync_mtx);
|
|
}
|
|
|
|
static int
|
|
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, len;
|
|
|
|
mtx_lock(&sync_mtx);
|
|
len = syncer_worklist_len - sync_vnode_count;
|
|
mtx_unlock(&sync_mtx);
|
|
error = SYSCTL_OUT(req, &len, sizeof(len));
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
|
|
CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
|
|
sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
|
|
|
|
static struct proc *updateproc;
|
|
static void sched_sync(void);
|
|
static struct kproc_desc up_kp = {
|
|
"syncer",
|
|
sched_sync,
|
|
&updateproc
|
|
};
|
|
SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
|
|
|
|
static int
|
|
sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
|
|
{
|
|
struct vnode *vp;
|
|
struct mount *mp;
|
|
|
|
*bo = LIST_FIRST(slp);
|
|
if (*bo == NULL)
|
|
return (0);
|
|
vp = bo2vnode(*bo);
|
|
if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
|
|
return (1);
|
|
/*
|
|
* We use vhold in case the vnode does not
|
|
* successfully sync. vhold prevents the vnode from
|
|
* going away when we unlock the sync_mtx so that
|
|
* we can acquire the vnode interlock.
|
|
*/
|
|
vholdl(vp);
|
|
mtx_unlock(&sync_mtx);
|
|
VI_UNLOCK(vp);
|
|
if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
|
|
vdrop(vp);
|
|
mtx_lock(&sync_mtx);
|
|
return (*bo == LIST_FIRST(slp));
|
|
}
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
(void) VOP_FSYNC(vp, MNT_LAZY, td);
|
|
VOP_UNLOCK(vp);
|
|
vn_finished_write(mp);
|
|
BO_LOCK(*bo);
|
|
if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
|
|
/*
|
|
* Put us back on the worklist. The worklist
|
|
* routine will remove us from our current
|
|
* position and then add us back in at a later
|
|
* position.
|
|
*/
|
|
vn_syncer_add_to_worklist(*bo, syncdelay);
|
|
}
|
|
BO_UNLOCK(*bo);
|
|
vdrop(vp);
|
|
mtx_lock(&sync_mtx);
|
|
return (0);
|
|
}
|
|
|
|
static int first_printf = 1;
|
|
|
|
/*
|
|
* System filesystem synchronizer daemon.
|
|
*/
|
|
static void
|
|
sched_sync(void)
|
|
{
|
|
struct synclist *next, *slp;
|
|
struct bufobj *bo;
|
|
long starttime;
|
|
struct thread *td = curthread;
|
|
int last_work_seen;
|
|
int net_worklist_len;
|
|
int syncer_final_iter;
|
|
int error;
|
|
|
|
last_work_seen = 0;
|
|
syncer_final_iter = 0;
|
|
syncer_state = SYNCER_RUNNING;
|
|
starttime = time_uptime;
|
|
td->td_pflags |= TDP_NORUNNINGBUF;
|
|
|
|
EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
|
|
SHUTDOWN_PRI_LAST);
|
|
|
|
mtx_lock(&sync_mtx);
|
|
for (;;) {
|
|
if (syncer_state == SYNCER_FINAL_DELAY &&
|
|
syncer_final_iter == 0) {
|
|
mtx_unlock(&sync_mtx);
|
|
kproc_suspend_check(td->td_proc);
|
|
mtx_lock(&sync_mtx);
|
|
}
|
|
net_worklist_len = syncer_worklist_len - sync_vnode_count;
|
|
if (syncer_state != SYNCER_RUNNING &&
|
|
starttime != time_uptime) {
|
|
if (first_printf) {
|
|
printf("\nSyncing disks, vnodes remaining... ");
|
|
first_printf = 0;
|
|
}
|
|
printf("%d ", net_worklist_len);
|
|
}
|
|
starttime = time_uptime;
|
|
|
|
/*
|
|
* Push files whose dirty time has expired. Be careful
|
|
* of interrupt race on slp queue.
|
|
*
|
|
* Skip over empty worklist slots when shutting down.
|
|
*/
|
|
do {
|
|
slp = &syncer_workitem_pending[syncer_delayno];
|
|
syncer_delayno += 1;
|
|
if (syncer_delayno == syncer_maxdelay)
|
|
syncer_delayno = 0;
|
|
next = &syncer_workitem_pending[syncer_delayno];
|
|
/*
|
|
* If the worklist has wrapped since the
|
|
* it was emptied of all but syncer vnodes,
|
|
* switch to the FINAL_DELAY state and run
|
|
* for one more second.
|
|
*/
|
|
if (syncer_state == SYNCER_SHUTTING_DOWN &&
|
|
net_worklist_len == 0 &&
|
|
last_work_seen == syncer_delayno) {
|
|
syncer_state = SYNCER_FINAL_DELAY;
|
|
syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
|
|
}
|
|
} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
|
|
syncer_worklist_len > 0);
|
|
|
|
/*
|
|
* Keep track of the last time there was anything
|
|
* on the worklist other than syncer vnodes.
|
|
* Return to the SHUTTING_DOWN state if any
|
|
* new work appears.
|
|
*/
|
|
if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
|
|
last_work_seen = syncer_delayno;
|
|
if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
|
|
syncer_state = SYNCER_SHUTTING_DOWN;
|
|
while (!LIST_EMPTY(slp)) {
|
|
error = sync_vnode(slp, &bo, td);
|
|
if (error == 1) {
|
|
LIST_REMOVE(bo, bo_synclist);
|
|
LIST_INSERT_HEAD(next, bo, bo_synclist);
|
|
continue;
|
|
}
|
|
|
|
if (first_printf == 0) {
|
|
/*
|
|
* Drop the sync mutex, because some watchdog
|
|
* drivers need to sleep while patting
|
|
*/
|
|
mtx_unlock(&sync_mtx);
|
|
wdog_kern_pat(WD_LASTVAL);
|
|
mtx_lock(&sync_mtx);
|
|
}
|
|
}
|
|
if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
|
|
syncer_final_iter--;
|
|
/*
|
|
* The variable rushjob allows the kernel to speed up the
|
|
* processing of the filesystem syncer process. A rushjob
|
|
* value of N tells the filesystem syncer to process the next
|
|
* N seconds worth of work on its queue ASAP. Currently rushjob
|
|
* is used by the soft update code to speed up the filesystem
|
|
* syncer process when the incore state is getting so far
|
|
* ahead of the disk that the kernel memory pool is being
|
|
* threatened with exhaustion.
|
|
*/
|
|
if (rushjob > 0) {
|
|
rushjob -= 1;
|
|
continue;
|
|
}
|
|
/*
|
|
* Just sleep for a short period of time between
|
|
* iterations when shutting down to allow some I/O
|
|
* to happen.
|
|
*
|
|
* If it has taken us less than a second to process the
|
|
* current work, then wait. Otherwise start right over
|
|
* again. We can still lose time if any single round
|
|
* takes more than two seconds, but it does not really
|
|
* matter as we are just trying to generally pace the
|
|
* filesystem activity.
|
|
*/
|
|
if (syncer_state != SYNCER_RUNNING ||
|
|
time_uptime == starttime) {
|
|
thread_lock(td);
|
|
sched_prio(td, PPAUSE);
|
|
thread_unlock(td);
|
|
}
|
|
if (syncer_state != SYNCER_RUNNING)
|
|
cv_timedwait(&sync_wakeup, &sync_mtx,
|
|
hz / SYNCER_SHUTDOWN_SPEEDUP);
|
|
else if (time_uptime == starttime)
|
|
cv_timedwait(&sync_wakeup, &sync_mtx, hz);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Request the syncer daemon to speed up its work.
|
|
* We never push it to speed up more than half of its
|
|
* normal turn time, otherwise it could take over the cpu.
|
|
*/
|
|
int
|
|
speedup_syncer(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
mtx_lock(&sync_mtx);
|
|
if (rushjob < syncdelay / 2) {
|
|
rushjob += 1;
|
|
stat_rush_requests += 1;
|
|
ret = 1;
|
|
}
|
|
mtx_unlock(&sync_mtx);
|
|
cv_broadcast(&sync_wakeup);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Tell the syncer to speed up its work and run though its work
|
|
* list several times, then tell it to shut down.
|
|
*/
|
|
static void
|
|
syncer_shutdown(void *arg, int howto)
|
|
{
|
|
|
|
if (howto & RB_NOSYNC)
|
|
return;
|
|
mtx_lock(&sync_mtx);
|
|
syncer_state = SYNCER_SHUTTING_DOWN;
|
|
rushjob = 0;
|
|
mtx_unlock(&sync_mtx);
|
|
cv_broadcast(&sync_wakeup);
|
|
kproc_shutdown(arg, howto);
|
|
}
|
|
|
|
void
|
|
syncer_suspend(void)
|
|
{
|
|
|
|
syncer_shutdown(updateproc, 0);
|
|
}
|
|
|
|
void
|
|
syncer_resume(void)
|
|
{
|
|
|
|
mtx_lock(&sync_mtx);
|
|
first_printf = 1;
|
|
syncer_state = SYNCER_RUNNING;
|
|
mtx_unlock(&sync_mtx);
|
|
cv_broadcast(&sync_wakeup);
|
|
kproc_resume(updateproc);
|
|
}
|
|
|
|
/*
|
|
* Move the buffer between the clean and dirty lists of its vnode.
|
|
*/
|
|
void
|
|
reassignbuf(struct buf *bp)
|
|
{
|
|
struct vnode *vp;
|
|
struct bufobj *bo;
|
|
int delay;
|
|
#ifdef INVARIANTS
|
|
struct bufv *bv;
|
|
#endif
|
|
|
|
vp = bp->b_vp;
|
|
bo = bp->b_bufobj;
|
|
|
|
KASSERT((bp->b_flags & B_PAGING) == 0,
|
|
("%s: cannot reassign paging buffer %p", __func__, bp));
|
|
|
|
CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
|
|
bp, bp->b_vp, bp->b_flags);
|
|
|
|
BO_LOCK(bo);
|
|
buf_vlist_remove(bp);
|
|
|
|
/*
|
|
* If dirty, put on list of dirty buffers; otherwise insert onto list
|
|
* of clean buffers.
|
|
*/
|
|
if (bp->b_flags & B_DELWRI) {
|
|
if ((bo->bo_flag & BO_ONWORKLST) == 0) {
|
|
switch (vp->v_type) {
|
|
case VDIR:
|
|
delay = dirdelay;
|
|
break;
|
|
case VCHR:
|
|
delay = metadelay;
|
|
break;
|
|
default:
|
|
delay = filedelay;
|
|
}
|
|
vn_syncer_add_to_worklist(bo, delay);
|
|
}
|
|
buf_vlist_add(bp, bo, BX_VNDIRTY);
|
|
} else {
|
|
buf_vlist_add(bp, bo, BX_VNCLEAN);
|
|
|
|
if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
|
|
mtx_lock(&sync_mtx);
|
|
LIST_REMOVE(bo, bo_synclist);
|
|
syncer_worklist_len--;
|
|
mtx_unlock(&sync_mtx);
|
|
bo->bo_flag &= ~BO_ONWORKLST;
|
|
}
|
|
}
|
|
#ifdef INVARIANTS
|
|
bv = &bo->bo_clean;
|
|
bp = TAILQ_FIRST(&bv->bv_hd);
|
|
KASSERT(bp == NULL || bp->b_bufobj == bo,
|
|
("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
|
|
bp = TAILQ_LAST(&bv->bv_hd, buflists);
|
|
KASSERT(bp == NULL || bp->b_bufobj == bo,
|
|
("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
|
|
bv = &bo->bo_dirty;
|
|
bp = TAILQ_FIRST(&bv->bv_hd);
|
|
KASSERT(bp == NULL || bp->b_bufobj == bo,
|
|
("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
|
|
bp = TAILQ_LAST(&bv->bv_hd, buflists);
|
|
KASSERT(bp == NULL || bp->b_bufobj == bo,
|
|
("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
|
|
#endif
|
|
BO_UNLOCK(bo);
|
|
}
|
|
|
|
static void
|
|
v_init_counters(struct vnode *vp)
|
|
{
|
|
|
|
VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
|
|
vp, ("%s called for an initialized vnode", __FUNCTION__));
|
|
ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
|
|
|
|
refcount_init(&vp->v_holdcnt, 1);
|
|
refcount_init(&vp->v_usecount, 1);
|
|
}
|
|
|
|
/*
|
|
* Grab a particular vnode from the free list, increment its
|
|
* reference count and lock it. VIRF_DOOMED is set if the vnode
|
|
* is being destroyed. Only callers who specify LK_RETRY will
|
|
* see doomed vnodes. If inactive processing was delayed in
|
|
* vput try to do it here.
|
|
*
|
|
* usecount is manipulated using atomics without holding any locks.
|
|
*
|
|
* holdcnt can be manipulated using atomics without holding any locks,
|
|
* except when transitioning 1<->0, in which case the interlock is held.
|
|
*
|
|
* Consumers which don't guarantee liveness of the vnode can use SMR to
|
|
* try to get a reference. Note this operation can fail since the vnode
|
|
* may be awaiting getting freed by the time they get to it.
|
|
*/
|
|
enum vgetstate
|
|
vget_prep_smr(struct vnode *vp)
|
|
{
|
|
enum vgetstate vs;
|
|
|
|
VFS_SMR_ASSERT_ENTERED();
|
|
|
|
if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
|
|
vs = VGET_USECOUNT;
|
|
} else {
|
|
if (vhold_smr(vp))
|
|
vs = VGET_HOLDCNT;
|
|
else
|
|
vs = VGET_NONE;
|
|
}
|
|
return (vs);
|
|
}
|
|
|
|
enum vgetstate
|
|
vget_prep(struct vnode *vp)
|
|
{
|
|
enum vgetstate vs;
|
|
|
|
if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
|
|
vs = VGET_USECOUNT;
|
|
} else {
|
|
vhold(vp);
|
|
vs = VGET_HOLDCNT;
|
|
}
|
|
return (vs);
|
|
}
|
|
|
|
void
|
|
vget_abort(struct vnode *vp, enum vgetstate vs)
|
|
{
|
|
|
|
switch (vs) {
|
|
case VGET_USECOUNT:
|
|
vrele(vp);
|
|
break;
|
|
case VGET_HOLDCNT:
|
|
vdrop(vp);
|
|
break;
|
|
default:
|
|
__assert_unreachable();
|
|
}
|
|
}
|
|
|
|
int
|
|
vget(struct vnode *vp, int flags)
|
|
{
|
|
enum vgetstate vs;
|
|
|
|
vs = vget_prep(vp);
|
|
return (vget_finish(vp, flags, vs));
|
|
}
|
|
|
|
int
|
|
vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
|
|
{
|
|
int error;
|
|
|
|
if ((flags & LK_INTERLOCK) != 0)
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
else
|
|
ASSERT_VI_UNLOCKED(vp, __func__);
|
|
VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
|
|
VNPASS(vp->v_holdcnt > 0, vp);
|
|
VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
|
|
|
|
error = vn_lock(vp, flags);
|
|
if (__predict_false(error != 0)) {
|
|
vget_abort(vp, vs);
|
|
CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
|
|
vp);
|
|
return (error);
|
|
}
|
|
|
|
vget_finish_ref(vp, vs);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vget_finish_ref(struct vnode *vp, enum vgetstate vs)
|
|
{
|
|
int old;
|
|
|
|
VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
|
|
VNPASS(vp->v_holdcnt > 0, vp);
|
|
VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
|
|
|
|
if (vs == VGET_USECOUNT)
|
|
return;
|
|
|
|
/*
|
|
* We hold the vnode. If the usecount is 0 it will be utilized to keep
|
|
* the vnode around. Otherwise someone else lended their hold count and
|
|
* we have to drop ours.
|
|
*/
|
|
old = atomic_fetchadd_int(&vp->v_usecount, 1);
|
|
VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
|
|
if (old != 0) {
|
|
#ifdef INVARIANTS
|
|
old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
|
|
VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
|
|
#else
|
|
refcount_release(&vp->v_holdcnt);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
vref(struct vnode *vp)
|
|
{
|
|
enum vgetstate vs;
|
|
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
vs = vget_prep(vp);
|
|
vget_finish_ref(vp, vs);
|
|
}
|
|
|
|
void
|
|
vrefact(struct vnode *vp)
|
|
{
|
|
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
#ifdef INVARIANTS
|
|
int old = atomic_fetchadd_int(&vp->v_usecount, 1);
|
|
VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
|
|
#else
|
|
refcount_acquire(&vp->v_usecount);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
vlazy(struct vnode *vp)
|
|
{
|
|
struct mount *mp;
|
|
|
|
VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
|
|
|
|
if ((vp->v_mflag & VMP_LAZYLIST) != 0)
|
|
return;
|
|
/*
|
|
* We may get here for inactive routines after the vnode got doomed.
|
|
*/
|
|
if (VN_IS_DOOMED(vp))
|
|
return;
|
|
mp = vp->v_mount;
|
|
mtx_lock(&mp->mnt_listmtx);
|
|
if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
|
|
vp->v_mflag |= VMP_LAZYLIST;
|
|
TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
|
|
mp->mnt_lazyvnodelistsize++;
|
|
}
|
|
mtx_unlock(&mp->mnt_listmtx);
|
|
}
|
|
|
|
static void
|
|
vunlazy(struct vnode *vp)
|
|
{
|
|
struct mount *mp;
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
VNPASS(!VN_IS_DOOMED(vp), vp);
|
|
|
|
mp = vp->v_mount;
|
|
mtx_lock(&mp->mnt_listmtx);
|
|
VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
|
|
/*
|
|
* Don't remove the vnode from the lazy list if another thread
|
|
* has increased the hold count. It may have re-enqueued the
|
|
* vnode to the lazy list and is now responsible for its
|
|
* removal.
|
|
*/
|
|
if (vp->v_holdcnt == 0) {
|
|
vp->v_mflag &= ~VMP_LAZYLIST;
|
|
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
|
|
mp->mnt_lazyvnodelistsize--;
|
|
}
|
|
mtx_unlock(&mp->mnt_listmtx);
|
|
}
|
|
|
|
/*
|
|
* This routine is only meant to be called from vgonel prior to dooming
|
|
* the vnode.
|
|
*/
|
|
static void
|
|
vunlazy_gone(struct vnode *vp)
|
|
{
|
|
struct mount *mp;
|
|
|
|
ASSERT_VOP_ELOCKED(vp, __func__);
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
VNPASS(!VN_IS_DOOMED(vp), vp);
|
|
|
|
if (vp->v_mflag & VMP_LAZYLIST) {
|
|
mp = vp->v_mount;
|
|
mtx_lock(&mp->mnt_listmtx);
|
|
VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
|
|
vp->v_mflag &= ~VMP_LAZYLIST;
|
|
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
|
|
mp->mnt_lazyvnodelistsize--;
|
|
mtx_unlock(&mp->mnt_listmtx);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdefer_inactive(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
VNASSERT(vp->v_holdcnt > 0, vp,
|
|
("%s: vnode without hold count", __func__));
|
|
if (VN_IS_DOOMED(vp)) {
|
|
vdropl(vp);
|
|
return;
|
|
}
|
|
if (vp->v_iflag & VI_DEFINACT) {
|
|
VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
|
|
vdropl(vp);
|
|
return;
|
|
}
|
|
if (vp->v_usecount > 0) {
|
|
vp->v_iflag &= ~VI_OWEINACT;
|
|
vdropl(vp);
|
|
return;
|
|
}
|
|
vlazy(vp);
|
|
vp->v_iflag |= VI_DEFINACT;
|
|
VI_UNLOCK(vp);
|
|
counter_u64_add(deferred_inact, 1);
|
|
}
|
|
|
|
static void
|
|
vdefer_inactive_unlocked(struct vnode *vp)
|
|
{
|
|
|
|
VI_LOCK(vp);
|
|
if ((vp->v_iflag & VI_OWEINACT) == 0) {
|
|
vdropl(vp);
|
|
return;
|
|
}
|
|
vdefer_inactive(vp);
|
|
}
|
|
|
|
enum vput_op { VRELE, VPUT, VUNREF };
|
|
|
|
/*
|
|
* Handle ->v_usecount transitioning to 0.
|
|
*
|
|
* By releasing the last usecount we take ownership of the hold count which
|
|
* provides liveness of the vnode, meaning we have to vdrop.
|
|
*
|
|
* For all vnodes we may need to perform inactive processing. It requires an
|
|
* exclusive lock on the vnode, while it is legal to call here with only a
|
|
* shared lock (or no locks). If locking the vnode in an expected manner fails,
|
|
* inactive processing gets deferred to the syncer.
|
|
*
|
|
* XXX Some filesystems pass in an exclusively locked vnode and strongly depend
|
|
* on the lock being held all the way until VOP_INACTIVE. This in particular
|
|
* happens with UFS which adds half-constructed vnodes to the hash, where they
|
|
* can be found by other code.
|
|
*/
|
|
static void
|
|
vput_final(struct vnode *vp, enum vput_op func)
|
|
{
|
|
int error;
|
|
bool want_unlock;
|
|
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
VNPASS(vp->v_holdcnt > 0, vp);
|
|
|
|
VI_LOCK(vp);
|
|
|
|
/*
|
|
* By the time we got here someone else might have transitioned
|
|
* the count back to > 0.
|
|
*/
|
|
if (vp->v_usecount > 0)
|
|
goto out;
|
|
|
|
/*
|
|
* If the vnode is doomed vgone already performed inactive processing
|
|
* (if needed).
|
|
*/
|
|
if (VN_IS_DOOMED(vp))
|
|
goto out;
|
|
|
|
if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
|
|
goto out;
|
|
|
|
if (vp->v_iflag & VI_DOINGINACT)
|
|
goto out;
|
|
|
|
/*
|
|
* Locking operations here will drop the interlock and possibly the
|
|
* vnode lock, opening a window where the vnode can get doomed all the
|
|
* while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
|
|
* perform inactive.
|
|
*/
|
|
vp->v_iflag |= VI_OWEINACT;
|
|
want_unlock = false;
|
|
error = 0;
|
|
switch (func) {
|
|
case VRELE:
|
|
switch (VOP_ISLOCKED(vp)) {
|
|
case LK_EXCLUSIVE:
|
|
break;
|
|
case LK_EXCLOTHER:
|
|
case 0:
|
|
want_unlock = true;
|
|
error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
|
|
VI_LOCK(vp);
|
|
break;
|
|
default:
|
|
/*
|
|
* The lock has at least one sharer, but we have no way
|
|
* to conclude whether this is us. Play it safe and
|
|
* defer processing.
|
|
*/
|
|
error = EAGAIN;
|
|
break;
|
|
}
|
|
break;
|
|
case VPUT:
|
|
want_unlock = true;
|
|
if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
|
|
error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
|
|
LK_NOWAIT);
|
|
VI_LOCK(vp);
|
|
}
|
|
break;
|
|
case VUNREF:
|
|
if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
|
|
error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
|
|
VI_LOCK(vp);
|
|
}
|
|
break;
|
|
}
|
|
if (error == 0) {
|
|
if (func == VUNREF) {
|
|
VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
|
|
("recursive vunref"));
|
|
vp->v_vflag |= VV_UNREF;
|
|
}
|
|
for (;;) {
|
|
error = vinactive(vp);
|
|
if (want_unlock)
|
|
VOP_UNLOCK(vp);
|
|
if (error != ERELOOKUP || !want_unlock)
|
|
break;
|
|
VOP_LOCK(vp, LK_EXCLUSIVE);
|
|
}
|
|
if (func == VUNREF)
|
|
vp->v_vflag &= ~VV_UNREF;
|
|
vdropl(vp);
|
|
} else {
|
|
vdefer_inactive(vp);
|
|
}
|
|
return;
|
|
out:
|
|
if (func == VPUT)
|
|
VOP_UNLOCK(vp);
|
|
vdropl(vp);
|
|
}
|
|
|
|
/*
|
|
* Decrement ->v_usecount for a vnode.
|
|
*
|
|
* Releasing the last use count requires additional processing, see vput_final
|
|
* above for details.
|
|
*
|
|
* Comment above each variant denotes lock state on entry and exit.
|
|
*/
|
|
|
|
/*
|
|
* in: any
|
|
* out: same as passed in
|
|
*/
|
|
void
|
|
vrele(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VI_UNLOCKED(vp, __func__);
|
|
if (!refcount_release(&vp->v_usecount))
|
|
return;
|
|
vput_final(vp, VRELE);
|
|
}
|
|
|
|
/*
|
|
* in: locked
|
|
* out: unlocked
|
|
*/
|
|
void
|
|
vput(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VOP_LOCKED(vp, __func__);
|
|
ASSERT_VI_UNLOCKED(vp, __func__);
|
|
if (!refcount_release(&vp->v_usecount)) {
|
|
VOP_UNLOCK(vp);
|
|
return;
|
|
}
|
|
vput_final(vp, VPUT);
|
|
}
|
|
|
|
/*
|
|
* in: locked
|
|
* out: locked
|
|
*/
|
|
void
|
|
vunref(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VOP_LOCKED(vp, __func__);
|
|
ASSERT_VI_UNLOCKED(vp, __func__);
|
|
if (!refcount_release(&vp->v_usecount))
|
|
return;
|
|
vput_final(vp, VUNREF);
|
|
}
|
|
|
|
void
|
|
vhold(struct vnode *vp)
|
|
{
|
|
int old;
|
|
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
|
|
VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
|
|
("%s: wrong hold count %d", __func__, old));
|
|
if (old == 0)
|
|
vfs_freevnodes_dec();
|
|
}
|
|
|
|
void
|
|
vholdnz(struct vnode *vp)
|
|
{
|
|
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
#ifdef INVARIANTS
|
|
int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
|
|
VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
|
|
("%s: wrong hold count %d", __func__, old));
|
|
#else
|
|
atomic_add_int(&vp->v_holdcnt, 1);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Grab a hold count unless the vnode is freed.
|
|
*
|
|
* Only use this routine if vfs smr is the only protection you have against
|
|
* freeing the vnode.
|
|
*
|
|
* The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
|
|
* is not set. After the flag is set the vnode becomes immutable to anyone but
|
|
* the thread which managed to set the flag.
|
|
*
|
|
* It may be tempting to replace the loop with:
|
|
* count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
|
|
* if (count & VHOLD_NO_SMR) {
|
|
* backpedal and error out;
|
|
* }
|
|
*
|
|
* However, while this is more performant, it hinders debugging by eliminating
|
|
* the previously mentioned invariant.
|
|
*/
|
|
bool
|
|
vhold_smr(struct vnode *vp)
|
|
{
|
|
int count;
|
|
|
|
VFS_SMR_ASSERT_ENTERED();
|
|
|
|
count = atomic_load_int(&vp->v_holdcnt);
|
|
for (;;) {
|
|
if (count & VHOLD_NO_SMR) {
|
|
VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
|
|
("non-zero hold count with flags %d\n", count));
|
|
return (false);
|
|
}
|
|
VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
|
|
if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
|
|
if (count == 0)
|
|
vfs_freevnodes_dec();
|
|
return (true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hold a free vnode for recycling.
|
|
*
|
|
* Note: vnode_init references this comment.
|
|
*
|
|
* Attempts to recycle only need the global vnode list lock and have no use for
|
|
* SMR.
|
|
*
|
|
* However, vnodes get inserted into the global list before they get fully
|
|
* initialized and stay there until UMA decides to free the memory. This in
|
|
* particular means the target can be found before it becomes usable and after
|
|
* it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
|
|
* VHOLD_NO_SMR.
|
|
*
|
|
* Note: the vnode may gain more references after we transition the count 0->1.
|
|
*/
|
|
static bool
|
|
vhold_recycle_free(struct vnode *vp)
|
|
{
|
|
int count;
|
|
|
|
mtx_assert(&vnode_list_mtx, MA_OWNED);
|
|
|
|
count = atomic_load_int(&vp->v_holdcnt);
|
|
for (;;) {
|
|
if (count & VHOLD_NO_SMR) {
|
|
VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
|
|
("non-zero hold count with flags %d\n", count));
|
|
return (false);
|
|
}
|
|
VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
|
|
if (count > 0) {
|
|
return (false);
|
|
}
|
|
if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
|
|
vfs_freevnodes_dec();
|
|
return (true);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __noinline
|
|
vdbatch_process(struct vdbatch *vd)
|
|
{
|
|
struct vnode *vp;
|
|
int i;
|
|
|
|
mtx_assert(&vd->lock, MA_OWNED);
|
|
MPASS(curthread->td_pinned > 0);
|
|
MPASS(vd->index == VDBATCH_SIZE);
|
|
|
|
mtx_lock(&vnode_list_mtx);
|
|
critical_enter();
|
|
freevnodes += vd->freevnodes;
|
|
for (i = 0; i < VDBATCH_SIZE; i++) {
|
|
vp = vd->tab[i];
|
|
TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
|
|
TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
|
|
MPASS(vp->v_dbatchcpu != NOCPU);
|
|
vp->v_dbatchcpu = NOCPU;
|
|
}
|
|
mtx_unlock(&vnode_list_mtx);
|
|
vd->freevnodes = 0;
|
|
bzero(vd->tab, sizeof(vd->tab));
|
|
vd->index = 0;
|
|
critical_exit();
|
|
}
|
|
|
|
static void
|
|
vdbatch_enqueue(struct vnode *vp)
|
|
{
|
|
struct vdbatch *vd;
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
VNASSERT(!VN_IS_DOOMED(vp), vp,
|
|
("%s: deferring requeue of a doomed vnode", __func__));
|
|
|
|
if (vp->v_dbatchcpu != NOCPU) {
|
|
VI_UNLOCK(vp);
|
|
return;
|
|
}
|
|
|
|
sched_pin();
|
|
vd = DPCPU_PTR(vd);
|
|
mtx_lock(&vd->lock);
|
|
MPASS(vd->index < VDBATCH_SIZE);
|
|
MPASS(vd->tab[vd->index] == NULL);
|
|
/*
|
|
* A hack: we depend on being pinned so that we know what to put in
|
|
* ->v_dbatchcpu.
|
|
*/
|
|
vp->v_dbatchcpu = curcpu;
|
|
vd->tab[vd->index] = vp;
|
|
vd->index++;
|
|
VI_UNLOCK(vp);
|
|
if (vd->index == VDBATCH_SIZE)
|
|
vdbatch_process(vd);
|
|
mtx_unlock(&vd->lock);
|
|
sched_unpin();
|
|
}
|
|
|
|
/*
|
|
* This routine must only be called for vnodes which are about to be
|
|
* deallocated. Supporting dequeue for arbitrary vndoes would require
|
|
* validating that the locked batch matches.
|
|
*/
|
|
static void
|
|
vdbatch_dequeue(struct vnode *vp)
|
|
{
|
|
struct vdbatch *vd;
|
|
int i;
|
|
short cpu;
|
|
|
|
VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
|
|
("%s: called for a used vnode\n", __func__));
|
|
|
|
cpu = vp->v_dbatchcpu;
|
|
if (cpu == NOCPU)
|
|
return;
|
|
|
|
vd = DPCPU_ID_PTR(cpu, vd);
|
|
mtx_lock(&vd->lock);
|
|
for (i = 0; i < vd->index; i++) {
|
|
if (vd->tab[i] != vp)
|
|
continue;
|
|
vp->v_dbatchcpu = NOCPU;
|
|
vd->index--;
|
|
vd->tab[i] = vd->tab[vd->index];
|
|
vd->tab[vd->index] = NULL;
|
|
break;
|
|
}
|
|
mtx_unlock(&vd->lock);
|
|
/*
|
|
* Either we dequeued the vnode above or the target CPU beat us to it.
|
|
*/
|
|
MPASS(vp->v_dbatchcpu == NOCPU);
|
|
}
|
|
|
|
/*
|
|
* Drop the hold count of the vnode. If this is the last reference to
|
|
* the vnode we place it on the free list unless it has been vgone'd
|
|
* (marked VIRF_DOOMED) in which case we will free it.
|
|
*
|
|
* Because the vnode vm object keeps a hold reference on the vnode if
|
|
* there is at least one resident non-cached page, the vnode cannot
|
|
* leave the active list without the page cleanup done.
|
|
*/
|
|
static void __noinline
|
|
vdropl_final(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
VNPASS(VN_IS_DOOMED(vp), vp);
|
|
/*
|
|
* Set the VHOLD_NO_SMR flag.
|
|
*
|
|
* We may be racing against vhold_smr. If they win we can just pretend
|
|
* we never got this far, they will vdrop later.
|
|
*/
|
|
if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
|
|
vfs_freevnodes_inc();
|
|
VI_UNLOCK(vp);
|
|
/*
|
|
* We lost the aforementioned race. Any subsequent access is
|
|
* invalid as they might have managed to vdropl on their own.
|
|
*/
|
|
return;
|
|
}
|
|
/*
|
|
* Don't bump freevnodes as this one is going away.
|
|
*/
|
|
freevnode(vp);
|
|
}
|
|
|
|
void
|
|
vdrop(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VI_UNLOCKED(vp, __func__);
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
if (refcount_release_if_not_last(&vp->v_holdcnt))
|
|
return;
|
|
VI_LOCK(vp);
|
|
vdropl(vp);
|
|
}
|
|
|
|
void
|
|
vdropl(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
if (!refcount_release(&vp->v_holdcnt)) {
|
|
VI_UNLOCK(vp);
|
|
return;
|
|
}
|
|
VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
|
|
VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
|
|
if (VN_IS_DOOMED(vp)) {
|
|
vdropl_final(vp);
|
|
return;
|
|
}
|
|
|
|
vfs_freevnodes_inc();
|
|
if (vp->v_mflag & VMP_LAZYLIST) {
|
|
vunlazy(vp);
|
|
}
|
|
/*
|
|
* Also unlocks the interlock. We can't assert on it as we
|
|
* released our hold and by now the vnode might have been
|
|
* freed.
|
|
*/
|
|
vdbatch_enqueue(vp);
|
|
}
|
|
|
|
/*
|
|
* Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
|
|
* flags. DOINGINACT prevents us from recursing in calls to vinactive.
|
|
*/
|
|
static int
|
|
vinactivef(struct vnode *vp)
|
|
{
|
|
struct vm_object *obj;
|
|
int error;
|
|
|
|
ASSERT_VOP_ELOCKED(vp, "vinactive");
|
|
ASSERT_VI_LOCKED(vp, "vinactive");
|
|
VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
|
|
("vinactive: recursed on VI_DOINGINACT"));
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
vp->v_iflag |= VI_DOINGINACT;
|
|
vp->v_iflag &= ~VI_OWEINACT;
|
|
VI_UNLOCK(vp);
|
|
/*
|
|
* Before moving off the active list, we must be sure that any
|
|
* modified pages are converted into the vnode's dirty
|
|
* buffers, since these will no longer be checked once the
|
|
* vnode is on the inactive list.
|
|
*
|
|
* The write-out of the dirty pages is asynchronous. At the
|
|
* point that VOP_INACTIVE() is called, there could still be
|
|
* pending I/O and dirty pages in the object.
|
|
*/
|
|
if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
|
|
vm_object_mightbedirty(obj)) {
|
|
VM_OBJECT_WLOCK(obj);
|
|
vm_object_page_clean(obj, 0, 0, 0);
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
}
|
|
error = VOP_INACTIVE(vp);
|
|
VI_LOCK(vp);
|
|
VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
|
|
("vinactive: lost VI_DOINGINACT"));
|
|
vp->v_iflag &= ~VI_DOINGINACT;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vinactive(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VOP_ELOCKED(vp, "vinactive");
|
|
ASSERT_VI_LOCKED(vp, "vinactive");
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
|
|
if ((vp->v_iflag & VI_OWEINACT) == 0)
|
|
return (0);
|
|
if (vp->v_iflag & VI_DOINGINACT)
|
|
return (0);
|
|
if (vp->v_usecount > 0) {
|
|
vp->v_iflag &= ~VI_OWEINACT;
|
|
return (0);
|
|
}
|
|
return (vinactivef(vp));
|
|
}
|
|
|
|
/*
|
|
* Remove any vnodes in the vnode table belonging to mount point mp.
|
|
*
|
|
* If FORCECLOSE is not specified, there should not be any active ones,
|
|
* return error if any are found (nb: this is a user error, not a
|
|
* system error). If FORCECLOSE is specified, detach any active vnodes
|
|
* that are found.
|
|
*
|
|
* If WRITECLOSE is set, only flush out regular file vnodes open for
|
|
* writing.
|
|
*
|
|
* SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
|
|
*
|
|
* `rootrefs' specifies the base reference count for the root vnode
|
|
* of this filesystem. The root vnode is considered busy if its
|
|
* v_usecount exceeds this value. On a successful return, vflush(, td)
|
|
* will call vrele() on the root vnode exactly rootrefs times.
|
|
* If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
|
|
* be zero.
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
static int busyprt = 0; /* print out busy vnodes */
|
|
SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
|
|
#endif
|
|
|
|
int
|
|
vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
|
|
{
|
|
struct vnode *vp, *mvp, *rootvp = NULL;
|
|
struct vattr vattr;
|
|
int busy = 0, error;
|
|
|
|
CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
|
|
rootrefs, flags);
|
|
if (rootrefs > 0) {
|
|
KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
|
|
("vflush: bad args"));
|
|
/*
|
|
* Get the filesystem root vnode. We can vput() it
|
|
* immediately, since with rootrefs > 0, it won't go away.
|
|
*/
|
|
if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
|
|
CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
|
|
__func__, error);
|
|
return (error);
|
|
}
|
|
vput(rootvp);
|
|
}
|
|
loop:
|
|
MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
|
|
vholdl(vp);
|
|
error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
|
|
if (error) {
|
|
vdrop(vp);
|
|
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
|
|
goto loop;
|
|
}
|
|
/*
|
|
* Skip over a vnodes marked VV_SYSTEM.
|
|
*/
|
|
if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
|
|
VOP_UNLOCK(vp);
|
|
vdrop(vp);
|
|
continue;
|
|
}
|
|
/*
|
|
* If WRITECLOSE is set, flush out unlinked but still open
|
|
* files (even if open only for reading) and regular file
|
|
* vnodes open for writing.
|
|
*/
|
|
if (flags & WRITECLOSE) {
|
|
if (vp->v_object != NULL) {
|
|
VM_OBJECT_WLOCK(vp->v_object);
|
|
vm_object_page_clean(vp->v_object, 0, 0, 0);
|
|
VM_OBJECT_WUNLOCK(vp->v_object);
|
|
}
|
|
do {
|
|
error = VOP_FSYNC(vp, MNT_WAIT, td);
|
|
} while (error == ERELOOKUP);
|
|
if (error != 0) {
|
|
VOP_UNLOCK(vp);
|
|
vdrop(vp);
|
|
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
|
|
return (error);
|
|
}
|
|
error = VOP_GETATTR(vp, &vattr, td->td_ucred);
|
|
VI_LOCK(vp);
|
|
|
|
if ((vp->v_type == VNON ||
|
|
(error == 0 && vattr.va_nlink > 0)) &&
|
|
(vp->v_writecount <= 0 || vp->v_type != VREG)) {
|
|
VOP_UNLOCK(vp);
|
|
vdropl(vp);
|
|
continue;
|
|
}
|
|
} else
|
|
VI_LOCK(vp);
|
|
/*
|
|
* With v_usecount == 0, all we need to do is clear out the
|
|
* vnode data structures and we are done.
|
|
*
|
|
* If FORCECLOSE is set, forcibly close the vnode.
|
|
*/
|
|
if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
|
|
vgonel(vp);
|
|
} else {
|
|
busy++;
|
|
#ifdef DIAGNOSTIC
|
|
if (busyprt)
|
|
vn_printf(vp, "vflush: busy vnode ");
|
|
#endif
|
|
}
|
|
VOP_UNLOCK(vp);
|
|
vdropl(vp);
|
|
}
|
|
if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
|
|
/*
|
|
* If just the root vnode is busy, and if its refcount
|
|
* is equal to `rootrefs', then go ahead and kill it.
|
|
*/
|
|
VI_LOCK(rootvp);
|
|
KASSERT(busy > 0, ("vflush: not busy"));
|
|
VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
|
|
("vflush: usecount %d < rootrefs %d",
|
|
rootvp->v_usecount, rootrefs));
|
|
if (busy == 1 && rootvp->v_usecount == rootrefs) {
|
|
VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
|
|
vgone(rootvp);
|
|
VOP_UNLOCK(rootvp);
|
|
busy = 0;
|
|
} else
|
|
VI_UNLOCK(rootvp);
|
|
}
|
|
if (busy) {
|
|
CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
|
|
busy);
|
|
return (EBUSY);
|
|
}
|
|
for (; rootrefs > 0; rootrefs--)
|
|
vrele(rootvp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Recycle an unused vnode to the front of the free list.
|
|
*/
|
|
int
|
|
vrecycle(struct vnode *vp)
|
|
{
|
|
int recycled;
|
|
|
|
VI_LOCK(vp);
|
|
recycled = vrecyclel(vp);
|
|
VI_UNLOCK(vp);
|
|
return (recycled);
|
|
}
|
|
|
|
/*
|
|
* vrecycle, with the vp interlock held.
|
|
*/
|
|
int
|
|
vrecyclel(struct vnode *vp)
|
|
{
|
|
int recycled;
|
|
|
|
ASSERT_VOP_ELOCKED(vp, __func__);
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
recycled = 0;
|
|
if (vp->v_usecount == 0) {
|
|
recycled = 1;
|
|
vgonel(vp);
|
|
}
|
|
return (recycled);
|
|
}
|
|
|
|
/*
|
|
* Eliminate all activity associated with a vnode
|
|
* in preparation for reuse.
|
|
*/
|
|
void
|
|
vgone(struct vnode *vp)
|
|
{
|
|
VI_LOCK(vp);
|
|
vgonel(vp);
|
|
VI_UNLOCK(vp);
|
|
}
|
|
|
|
static void
|
|
notify_lowervp_vfs_dummy(struct mount *mp __unused,
|
|
struct vnode *lowervp __unused)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Notify upper mounts about reclaimed or unlinked vnode.
|
|
*/
|
|
void
|
|
vfs_notify_upper(struct vnode *vp, int event)
|
|
{
|
|
static struct vfsops vgonel_vfsops = {
|
|
.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
|
|
.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
|
|
};
|
|
struct mount *mp, *ump, *mmp;
|
|
|
|
mp = vp->v_mount;
|
|
if (mp == NULL)
|
|
return;
|
|
if (TAILQ_EMPTY(&mp->mnt_uppers))
|
|
return;
|
|
|
|
mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
|
|
mmp->mnt_op = &vgonel_vfsops;
|
|
mmp->mnt_kern_flag |= MNTK_MARKER;
|
|
MNT_ILOCK(mp);
|
|
mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
|
|
for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
|
|
if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
|
|
ump = TAILQ_NEXT(ump, mnt_upper_link);
|
|
continue;
|
|
}
|
|
TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
|
|
MNT_IUNLOCK(mp);
|
|
switch (event) {
|
|
case VFS_NOTIFY_UPPER_RECLAIM:
|
|
VFS_RECLAIM_LOWERVP(ump, vp);
|
|
break;
|
|
case VFS_NOTIFY_UPPER_UNLINK:
|
|
VFS_UNLINK_LOWERVP(ump, vp);
|
|
break;
|
|
default:
|
|
KASSERT(0, ("invalid event %d", event));
|
|
break;
|
|
}
|
|
MNT_ILOCK(mp);
|
|
ump = TAILQ_NEXT(mmp, mnt_upper_link);
|
|
TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
|
|
}
|
|
free(mmp, M_TEMP);
|
|
mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
|
|
if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
|
|
mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
|
|
wakeup(&mp->mnt_uppers);
|
|
}
|
|
MNT_IUNLOCK(mp);
|
|
}
|
|
|
|
/*
|
|
* vgone, with the vp interlock held.
|
|
*/
|
|
static void
|
|
vgonel(struct vnode *vp)
|
|
{
|
|
struct thread *td;
|
|
struct mount *mp;
|
|
vm_object_t object;
|
|
bool active, doinginact, oweinact;
|
|
|
|
ASSERT_VOP_ELOCKED(vp, "vgonel");
|
|
ASSERT_VI_LOCKED(vp, "vgonel");
|
|
VNASSERT(vp->v_holdcnt, vp,
|
|
("vgonel: vp %p has no reference.", vp));
|
|
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
|
|
td = curthread;
|
|
|
|
/*
|
|
* Don't vgonel if we're already doomed.
|
|
*/
|
|
if (VN_IS_DOOMED(vp))
|
|
return;
|
|
/*
|
|
* Paired with freevnode.
|
|
*/
|
|
vn_seqc_write_begin_locked(vp);
|
|
vunlazy_gone(vp);
|
|
vn_irflag_set_locked(vp, VIRF_DOOMED);
|
|
|
|
/*
|
|
* Check to see if the vnode is in use. If so, we have to
|
|
* call VOP_CLOSE() and VOP_INACTIVE().
|
|
*
|
|
* It could be that VOP_INACTIVE() requested reclamation, in
|
|
* which case we should avoid recursion, so check
|
|
* VI_DOINGINACT. This is not precise but good enough.
|
|
*/
|
|
active = vp->v_usecount > 0;
|
|
oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
|
|
doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
|
|
|
|
/*
|
|
* If we need to do inactive VI_OWEINACT will be set.
|
|
*/
|
|
if (vp->v_iflag & VI_DEFINACT) {
|
|
VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
|
|
vp->v_iflag &= ~VI_DEFINACT;
|
|
vdropl(vp);
|
|
} else {
|
|
VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
|
|
VI_UNLOCK(vp);
|
|
}
|
|
cache_purge_vgone(vp);
|
|
vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
|
|
|
|
/*
|
|
* If purging an active vnode, it must be closed and
|
|
* deactivated before being reclaimed.
|
|
*/
|
|
if (active)
|
|
VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
|
|
if (!doinginact) {
|
|
do {
|
|
if (oweinact || active) {
|
|
VI_LOCK(vp);
|
|
vinactivef(vp);
|
|
oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
|
|
VI_UNLOCK(vp);
|
|
}
|
|
} while (oweinact);
|
|
}
|
|
if (vp->v_type == VSOCK)
|
|
vfs_unp_reclaim(vp);
|
|
|
|
/*
|
|
* Clean out any buffers associated with the vnode.
|
|
* If the flush fails, just toss the buffers.
|
|
*/
|
|
mp = NULL;
|
|
if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
|
|
(void) vn_start_secondary_write(vp, &mp, V_WAIT);
|
|
if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
|
|
while (vinvalbuf(vp, 0, 0, 0) != 0)
|
|
;
|
|
}
|
|
|
|
BO_LOCK(&vp->v_bufobj);
|
|
KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
|
|
vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
|
|
TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
|
|
vp->v_bufobj.bo_clean.bv_cnt == 0,
|
|
("vp %p bufobj not invalidated", vp));
|
|
|
|
/*
|
|
* For VMIO bufobj, BO_DEAD is set later, or in
|
|
* vm_object_terminate() after the object's page queue is
|
|
* flushed.
|
|
*/
|
|
object = vp->v_bufobj.bo_object;
|
|
if (object == NULL)
|
|
vp->v_bufobj.bo_flag |= BO_DEAD;
|
|
BO_UNLOCK(&vp->v_bufobj);
|
|
|
|
/*
|
|
* Handle the VM part. Tmpfs handles v_object on its own (the
|
|
* OBJT_VNODE check). Nullfs or other bypassing filesystems
|
|
* should not touch the object borrowed from the lower vnode
|
|
* (the handle check).
|
|
*/
|
|
if (object != NULL && object->type == OBJT_VNODE &&
|
|
object->handle == vp)
|
|
vnode_destroy_vobject(vp);
|
|
|
|
/*
|
|
* Reclaim the vnode.
|
|
*/
|
|
if (VOP_RECLAIM(vp))
|
|
panic("vgone: cannot reclaim");
|
|
if (mp != NULL)
|
|
vn_finished_secondary_write(mp);
|
|
VNASSERT(vp->v_object == NULL, vp,
|
|
("vop_reclaim left v_object vp=%p", vp));
|
|
/*
|
|
* Clear the advisory locks and wake up waiting threads.
|
|
*/
|
|
(void)VOP_ADVLOCKPURGE(vp);
|
|
vp->v_lockf = NULL;
|
|
/*
|
|
* Delete from old mount point vnode list.
|
|
*/
|
|
delmntque(vp);
|
|
/*
|
|
* Done with purge, reset to the standard lock and invalidate
|
|
* the vnode.
|
|
*/
|
|
VI_LOCK(vp);
|
|
vp->v_vnlock = &vp->v_lock;
|
|
vp->v_op = &dead_vnodeops;
|
|
vp->v_type = VBAD;
|
|
}
|
|
|
|
/*
|
|
* Print out a description of a vnode.
|
|
*/
|
|
static const char * const typename[] =
|
|
{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
|
|
"VMARKER"};
|
|
|
|
_Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
|
|
"new hold count flag not added to vn_printf");
|
|
|
|
void
|
|
vn_printf(struct vnode *vp, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
char buf[256], buf2[16];
|
|
u_long flags;
|
|
u_int holdcnt;
|
|
short irflag;
|
|
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
printf("%p: ", (void *)vp);
|
|
printf("type %s\n", typename[vp->v_type]);
|
|
holdcnt = atomic_load_int(&vp->v_holdcnt);
|
|
printf(" usecount %d, writecount %d, refcount %d seqc users %d",
|
|
vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
|
|
vp->v_seqc_users);
|
|
switch (vp->v_type) {
|
|
case VDIR:
|
|
printf(" mountedhere %p\n", vp->v_mountedhere);
|
|
break;
|
|
case VCHR:
|
|
printf(" rdev %p\n", vp->v_rdev);
|
|
break;
|
|
case VSOCK:
|
|
printf(" socket %p\n", vp->v_unpcb);
|
|
break;
|
|
case VFIFO:
|
|
printf(" fifoinfo %p\n", vp->v_fifoinfo);
|
|
break;
|
|
default:
|
|
printf("\n");
|
|
break;
|
|
}
|
|
buf[0] = '\0';
|
|
buf[1] = '\0';
|
|
if (holdcnt & VHOLD_NO_SMR)
|
|
strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
|
|
printf(" hold count flags (%s)\n", buf + 1);
|
|
|
|
buf[0] = '\0';
|
|
buf[1] = '\0';
|
|
irflag = vn_irflag_read(vp);
|
|
if (irflag & VIRF_DOOMED)
|
|
strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
|
|
if (irflag & VIRF_PGREAD)
|
|
strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
|
|
if (irflag & VIRF_MOUNTPOINT)
|
|
strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
|
|
flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT);
|
|
if (flags != 0) {
|
|
snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
|
|
strlcat(buf, buf2, sizeof(buf));
|
|
}
|
|
if (vp->v_vflag & VV_ROOT)
|
|
strlcat(buf, "|VV_ROOT", sizeof(buf));
|
|
if (vp->v_vflag & VV_ISTTY)
|
|
strlcat(buf, "|VV_ISTTY", sizeof(buf));
|
|
if (vp->v_vflag & VV_NOSYNC)
|
|
strlcat(buf, "|VV_NOSYNC", sizeof(buf));
|
|
if (vp->v_vflag & VV_ETERNALDEV)
|
|
strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
|
|
if (vp->v_vflag & VV_CACHEDLABEL)
|
|
strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
|
|
if (vp->v_vflag & VV_VMSIZEVNLOCK)
|
|
strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
|
|
if (vp->v_vflag & VV_COPYONWRITE)
|
|
strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
|
|
if (vp->v_vflag & VV_SYSTEM)
|
|
strlcat(buf, "|VV_SYSTEM", sizeof(buf));
|
|
if (vp->v_vflag & VV_PROCDEP)
|
|
strlcat(buf, "|VV_PROCDEP", sizeof(buf));
|
|
if (vp->v_vflag & VV_NOKNOTE)
|
|
strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
|
|
if (vp->v_vflag & VV_DELETED)
|
|
strlcat(buf, "|VV_DELETED", sizeof(buf));
|
|
if (vp->v_vflag & VV_MD)
|
|
strlcat(buf, "|VV_MD", sizeof(buf));
|
|
if (vp->v_vflag & VV_FORCEINSMQ)
|
|
strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
|
|
if (vp->v_vflag & VV_READLINK)
|
|
strlcat(buf, "|VV_READLINK", sizeof(buf));
|
|
flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
|
|
VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
|
|
VV_PROCDEP | VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ |
|
|
VV_READLINK);
|
|
if (flags != 0) {
|
|
snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
|
|
strlcat(buf, buf2, sizeof(buf));
|
|
}
|
|
if (vp->v_iflag & VI_TEXT_REF)
|
|
strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
|
|
if (vp->v_iflag & VI_MOUNT)
|
|
strlcat(buf, "|VI_MOUNT", sizeof(buf));
|
|
if (vp->v_iflag & VI_DOINGINACT)
|
|
strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
|
|
if (vp->v_iflag & VI_OWEINACT)
|
|
strlcat(buf, "|VI_OWEINACT", sizeof(buf));
|
|
if (vp->v_iflag & VI_DEFINACT)
|
|
strlcat(buf, "|VI_DEFINACT", sizeof(buf));
|
|
if (vp->v_iflag & VI_FOPENING)
|
|
strlcat(buf, "|VI_FOPENING", sizeof(buf));
|
|
flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT |
|
|
VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
|
|
if (flags != 0) {
|
|
snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
|
|
strlcat(buf, buf2, sizeof(buf));
|
|
}
|
|
if (vp->v_mflag & VMP_LAZYLIST)
|
|
strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
|
|
flags = vp->v_mflag & ~(VMP_LAZYLIST);
|
|
if (flags != 0) {
|
|
snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
|
|
strlcat(buf, buf2, sizeof(buf));
|
|
}
|
|
printf(" flags (%s)", buf + 1);
|
|
if (mtx_owned(VI_MTX(vp)))
|
|
printf(" VI_LOCKed");
|
|
printf("\n");
|
|
if (vp->v_object != NULL)
|
|
printf(" v_object %p ref %d pages %d "
|
|
"cleanbuf %d dirtybuf %d\n",
|
|
vp->v_object, vp->v_object->ref_count,
|
|
vp->v_object->resident_page_count,
|
|
vp->v_bufobj.bo_clean.bv_cnt,
|
|
vp->v_bufobj.bo_dirty.bv_cnt);
|
|
printf(" ");
|
|
lockmgr_printinfo(vp->v_vnlock);
|
|
if (vp->v_data != NULL)
|
|
VOP_PRINT(vp);
|
|
}
|
|
|
|
#ifdef DDB
|
|
/*
|
|
* List all of the locked vnodes in the system.
|
|
* Called when debugging the kernel.
|
|
*/
|
|
DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
|
|
{
|
|
struct mount *mp;
|
|
struct vnode *vp;
|
|
|
|
/*
|
|
* Note: because this is DDB, we can't obey the locking semantics
|
|
* for these structures, which means we could catch an inconsistent
|
|
* state and dereference a nasty pointer. Not much to be done
|
|
* about that.
|
|
*/
|
|
db_printf("Locked vnodes\n");
|
|
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
|
|
TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
|
|
if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
|
|
vn_printf(vp, "vnode ");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Show details about the given vnode.
|
|
*/
|
|
DB_SHOW_COMMAND(vnode, db_show_vnode)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
if (!have_addr)
|
|
return;
|
|
vp = (struct vnode *)addr;
|
|
vn_printf(vp, "vnode ");
|
|
}
|
|
|
|
/*
|
|
* Show details about the given mount point.
|
|
*/
|
|
DB_SHOW_COMMAND(mount, db_show_mount)
|
|
{
|
|
struct mount *mp;
|
|
struct vfsopt *opt;
|
|
struct statfs *sp;
|
|
struct vnode *vp;
|
|
char buf[512];
|
|
uint64_t mflags;
|
|
u_int flags;
|
|
|
|
if (!have_addr) {
|
|
/* No address given, print short info about all mount points. */
|
|
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
|
|
db_printf("%p %s on %s (%s)\n", mp,
|
|
mp->mnt_stat.f_mntfromname,
|
|
mp->mnt_stat.f_mntonname,
|
|
mp->mnt_stat.f_fstypename);
|
|
if (db_pager_quit)
|
|
break;
|
|
}
|
|
db_printf("\nMore info: show mount <addr>\n");
|
|
return;
|
|
}
|
|
|
|
mp = (struct mount *)addr;
|
|
db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
|
|
mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
|
|
|
|
buf[0] = '\0';
|
|
mflags = mp->mnt_flag;
|
|
#define MNT_FLAG(flag) do { \
|
|
if (mflags & (flag)) { \
|
|
if (buf[0] != '\0') \
|
|
strlcat(buf, ", ", sizeof(buf)); \
|
|
strlcat(buf, (#flag) + 4, sizeof(buf)); \
|
|
mflags &= ~(flag); \
|
|
} \
|
|
} while (0)
|
|
MNT_FLAG(MNT_RDONLY);
|
|
MNT_FLAG(MNT_SYNCHRONOUS);
|
|
MNT_FLAG(MNT_NOEXEC);
|
|
MNT_FLAG(MNT_NOSUID);
|
|
MNT_FLAG(MNT_NFS4ACLS);
|
|
MNT_FLAG(MNT_UNION);
|
|
MNT_FLAG(MNT_ASYNC);
|
|
MNT_FLAG(MNT_SUIDDIR);
|
|
MNT_FLAG(MNT_SOFTDEP);
|
|
MNT_FLAG(MNT_NOSYMFOLLOW);
|
|
MNT_FLAG(MNT_GJOURNAL);
|
|
MNT_FLAG(MNT_MULTILABEL);
|
|
MNT_FLAG(MNT_ACLS);
|
|
MNT_FLAG(MNT_NOATIME);
|
|
MNT_FLAG(MNT_NOCLUSTERR);
|
|
MNT_FLAG(MNT_NOCLUSTERW);
|
|
MNT_FLAG(MNT_SUJ);
|
|
MNT_FLAG(MNT_EXRDONLY);
|
|
MNT_FLAG(MNT_EXPORTED);
|
|
MNT_FLAG(MNT_DEFEXPORTED);
|
|
MNT_FLAG(MNT_EXPORTANON);
|
|
MNT_FLAG(MNT_EXKERB);
|
|
MNT_FLAG(MNT_EXPUBLIC);
|
|
MNT_FLAG(MNT_LOCAL);
|
|
MNT_FLAG(MNT_QUOTA);
|
|
MNT_FLAG(MNT_ROOTFS);
|
|
MNT_FLAG(MNT_USER);
|
|
MNT_FLAG(MNT_IGNORE);
|
|
MNT_FLAG(MNT_UPDATE);
|
|
MNT_FLAG(MNT_DELEXPORT);
|
|
MNT_FLAG(MNT_RELOAD);
|
|
MNT_FLAG(MNT_FORCE);
|
|
MNT_FLAG(MNT_SNAPSHOT);
|
|
MNT_FLAG(MNT_BYFSID);
|
|
#undef MNT_FLAG
|
|
if (mflags != 0) {
|
|
if (buf[0] != '\0')
|
|
strlcat(buf, ", ", sizeof(buf));
|
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
|
|
"0x%016jx", mflags);
|
|
}
|
|
db_printf(" mnt_flag = %s\n", buf);
|
|
|
|
buf[0] = '\0';
|
|
flags = mp->mnt_kern_flag;
|
|
#define MNT_KERN_FLAG(flag) do { \
|
|
if (flags & (flag)) { \
|
|
if (buf[0] != '\0') \
|
|
strlcat(buf, ", ", sizeof(buf)); \
|
|
strlcat(buf, (#flag) + 5, sizeof(buf)); \
|
|
flags &= ~(flag); \
|
|
} \
|
|
} while (0)
|
|
MNT_KERN_FLAG(MNTK_UNMOUNTF);
|
|
MNT_KERN_FLAG(MNTK_ASYNC);
|
|
MNT_KERN_FLAG(MNTK_SOFTDEP);
|
|
MNT_KERN_FLAG(MNTK_DRAINING);
|
|
MNT_KERN_FLAG(MNTK_REFEXPIRE);
|
|
MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
|
|
MNT_KERN_FLAG(MNTK_SHARED_WRITES);
|
|
MNT_KERN_FLAG(MNTK_NO_IOPF);
|
|
MNT_KERN_FLAG(MNTK_VGONE_UPPER);
|
|
MNT_KERN_FLAG(MNTK_VGONE_WAITER);
|
|
MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
|
|
MNT_KERN_FLAG(MNTK_MARKER);
|
|
MNT_KERN_FLAG(MNTK_USES_BCACHE);
|
|
MNT_KERN_FLAG(MNTK_FPLOOKUP);
|
|
MNT_KERN_FLAG(MNTK_NOASYNC);
|
|
MNT_KERN_FLAG(MNTK_UNMOUNT);
|
|
MNT_KERN_FLAG(MNTK_MWAIT);
|
|
MNT_KERN_FLAG(MNTK_SUSPEND);
|
|
MNT_KERN_FLAG(MNTK_SUSPEND2);
|
|
MNT_KERN_FLAG(MNTK_SUSPENDED);
|
|
MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
|
|
MNT_KERN_FLAG(MNTK_NOKNOTE);
|
|
#undef MNT_KERN_FLAG
|
|
if (flags != 0) {
|
|
if (buf[0] != '\0')
|
|
strlcat(buf, ", ", sizeof(buf));
|
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
|
|
"0x%08x", flags);
|
|
}
|
|
db_printf(" mnt_kern_flag = %s\n", buf);
|
|
|
|
db_printf(" mnt_opt = ");
|
|
opt = TAILQ_FIRST(mp->mnt_opt);
|
|
if (opt != NULL) {
|
|
db_printf("%s", opt->name);
|
|
opt = TAILQ_NEXT(opt, link);
|
|
while (opt != NULL) {
|
|
db_printf(", %s", opt->name);
|
|
opt = TAILQ_NEXT(opt, link);
|
|
}
|
|
}
|
|
db_printf("\n");
|
|
|
|
sp = &mp->mnt_stat;
|
|
db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx "
|
|
"bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
|
|
"ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
|
|
"asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
|
|
(u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
|
|
(uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
|
|
(uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
|
|
(intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
|
|
(intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
|
|
(uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
|
|
(uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
|
|
(u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
|
|
|
|
db_printf(" mnt_cred = { uid=%u ruid=%u",
|
|
(u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
|
|
if (jailed(mp->mnt_cred))
|
|
db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
|
|
db_printf(" }\n");
|
|
db_printf(" mnt_ref = %d (with %d in the struct)\n",
|
|
vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
|
|
db_printf(" mnt_gen = %d\n", mp->mnt_gen);
|
|
db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
|
|
db_printf(" mnt_lazyvnodelistsize = %d\n",
|
|
mp->mnt_lazyvnodelistsize);
|
|
db_printf(" mnt_writeopcount = %d (with %d in the struct)\n",
|
|
vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
|
|
db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max);
|
|
db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed);
|
|
db_printf(" mnt_lockref = %d (with %d in the struct)\n",
|
|
vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
|
|
db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
|
|
db_printf(" mnt_secondary_accwrites = %d\n",
|
|
mp->mnt_secondary_accwrites);
|
|
db_printf(" mnt_gjprovider = %s\n",
|
|
mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
|
|
db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
|
|
|
|
db_printf("\n\nList of active vnodes\n");
|
|
TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
|
|
if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
|
|
vn_printf(vp, "vnode ");
|
|
if (db_pager_quit)
|
|
break;
|
|
}
|
|
}
|
|
db_printf("\n\nList of inactive vnodes\n");
|
|
TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
|
|
if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
|
|
vn_printf(vp, "vnode ");
|
|
if (db_pager_quit)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif /* DDB */
|
|
|
|
/*
|
|
* Fill in a struct xvfsconf based on a struct vfsconf.
|
|
*/
|
|
static int
|
|
vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
|
|
{
|
|
struct xvfsconf xvfsp;
|
|
|
|
bzero(&xvfsp, sizeof(xvfsp));
|
|
strcpy(xvfsp.vfc_name, vfsp->vfc_name);
|
|
xvfsp.vfc_typenum = vfsp->vfc_typenum;
|
|
xvfsp.vfc_refcount = vfsp->vfc_refcount;
|
|
xvfsp.vfc_flags = vfsp->vfc_flags;
|
|
/*
|
|
* These are unused in userland, we keep them
|
|
* to not break binary compatibility.
|
|
*/
|
|
xvfsp.vfc_vfsops = NULL;
|
|
xvfsp.vfc_next = NULL;
|
|
return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
struct xvfsconf32 {
|
|
uint32_t vfc_vfsops;
|
|
char vfc_name[MFSNAMELEN];
|
|
int32_t vfc_typenum;
|
|
int32_t vfc_refcount;
|
|
int32_t vfc_flags;
|
|
uint32_t vfc_next;
|
|
};
|
|
|
|
static int
|
|
vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
|
|
{
|
|
struct xvfsconf32 xvfsp;
|
|
|
|
bzero(&xvfsp, sizeof(xvfsp));
|
|
strcpy(xvfsp.vfc_name, vfsp->vfc_name);
|
|
xvfsp.vfc_typenum = vfsp->vfc_typenum;
|
|
xvfsp.vfc_refcount = vfsp->vfc_refcount;
|
|
xvfsp.vfc_flags = vfsp->vfc_flags;
|
|
return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Top level filesystem related information gathering.
|
|
*/
|
|
static int
|
|
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct vfsconf *vfsp;
|
|
int error;
|
|
|
|
error = 0;
|
|
vfsconf_slock();
|
|
TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (req->flags & SCTL_MASK32)
|
|
error = vfsconf2x32(req, vfsp);
|
|
else
|
|
#endif
|
|
error = vfsconf2x(req, vfsp);
|
|
if (error)
|
|
break;
|
|
}
|
|
vfsconf_sunlock();
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
|
|
"S,xvfsconf", "List of all configured filesystems");
|
|
|
|
#ifndef BURN_BRIDGES
|
|
static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
|
|
|
|
static int
|
|
vfs_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *)arg1 - 1; /* XXX */
|
|
u_int namelen = arg2 + 1; /* XXX */
|
|
struct vfsconf *vfsp;
|
|
|
|
log(LOG_WARNING, "userland calling deprecated sysctl, "
|
|
"please rebuild world\n");
|
|
|
|
#if 1 || defined(COMPAT_PRELITE2)
|
|
/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
|
|
if (namelen == 1)
|
|
return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
|
|
#endif
|
|
|
|
switch (name[1]) {
|
|
case VFS_MAXTYPENUM:
|
|
if (namelen != 2)
|
|
return (ENOTDIR);
|
|
return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
|
|
case VFS_CONF:
|
|
if (namelen != 3)
|
|
return (ENOTDIR); /* overloaded */
|
|
vfsconf_slock();
|
|
TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
|
|
if (vfsp->vfc_typenum == name[2])
|
|
break;
|
|
}
|
|
vfsconf_sunlock();
|
|
if (vfsp == NULL)
|
|
return (EOPNOTSUPP);
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (req->flags & SCTL_MASK32)
|
|
return (vfsconf2x32(req, vfsp));
|
|
else
|
|
#endif
|
|
return (vfsconf2x(req, vfsp));
|
|
}
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
|
|
CTLFLAG_MPSAFE, vfs_sysctl,
|
|
"Generic filesystem");
|
|
|
|
#if 1 || defined(COMPAT_PRELITE2)
|
|
|
|
static int
|
|
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
struct vfsconf *vfsp;
|
|
struct ovfsconf ovfs;
|
|
|
|
vfsconf_slock();
|
|
TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
|
|
bzero(&ovfs, sizeof(ovfs));
|
|
ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
|
|
strcpy(ovfs.vfc_name, vfsp->vfc_name);
|
|
ovfs.vfc_index = vfsp->vfc_typenum;
|
|
ovfs.vfc_refcount = vfsp->vfc_refcount;
|
|
ovfs.vfc_flags = vfsp->vfc_flags;
|
|
error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
|
|
if (error != 0) {
|
|
vfsconf_sunlock();
|
|
return (error);
|
|
}
|
|
}
|
|
vfsconf_sunlock();
|
|
return (0);
|
|
}
|
|
|
|
#endif /* 1 || COMPAT_PRELITE2 */
|
|
#endif /* !BURN_BRIDGES */
|
|
|
|
#define KINFO_VNODESLOP 10
|
|
#ifdef notyet
|
|
/*
|
|
* Dump vnode list (via sysctl).
|
|
*/
|
|
/* ARGSUSED */
|
|
static int
|
|
sysctl_vnode(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct xvnode *xvn;
|
|
struct mount *mp;
|
|
struct vnode *vp;
|
|
int error, len, n;
|
|
|
|
/*
|
|
* Stale numvnodes access is not fatal here.
|
|
*/
|
|
req->lock = 0;
|
|
len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
|
|
if (!req->oldptr)
|
|
/* Make an estimate */
|
|
return (SYSCTL_OUT(req, 0, len));
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
|
|
n = 0;
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
|
|
if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
|
|
continue;
|
|
MNT_ILOCK(mp);
|
|
TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
|
|
if (n == len)
|
|
break;
|
|
vref(vp);
|
|
xvn[n].xv_size = sizeof *xvn;
|
|
xvn[n].xv_vnode = vp;
|
|
xvn[n].xv_id = 0; /* XXX compat */
|
|
#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
|
|
XV_COPY(usecount);
|
|
XV_COPY(writecount);
|
|
XV_COPY(holdcnt);
|
|
XV_COPY(mount);
|
|
XV_COPY(numoutput);
|
|
XV_COPY(type);
|
|
#undef XV_COPY
|
|
xvn[n].xv_flag = vp->v_vflag;
|
|
|
|
switch (vp->v_type) {
|
|
case VREG:
|
|
case VDIR:
|
|
case VLNK:
|
|
break;
|
|
case VBLK:
|
|
case VCHR:
|
|
if (vp->v_rdev == NULL) {
|
|
vrele(vp);
|
|
continue;
|
|
}
|
|
xvn[n].xv_dev = dev2udev(vp->v_rdev);
|
|
break;
|
|
case VSOCK:
|
|
xvn[n].xv_socket = vp->v_socket;
|
|
break;
|
|
case VFIFO:
|
|
xvn[n].xv_fifo = vp->v_fifoinfo;
|
|
break;
|
|
case VNON:
|
|
case VBAD:
|
|
default:
|
|
/* shouldn't happen? */
|
|
vrele(vp);
|
|
continue;
|
|
}
|
|
vrele(vp);
|
|
++n;
|
|
}
|
|
MNT_IUNLOCK(mp);
|
|
mtx_lock(&mountlist_mtx);
|
|
vfs_unbusy(mp);
|
|
if (n == len)
|
|
break;
|
|
}
|
|
mtx_unlock(&mountlist_mtx);
|
|
|
|
error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
|
|
free(xvn, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
|
|
CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
|
|
"");
|
|
#endif
|
|
|
|
static void
|
|
unmount_or_warn(struct mount *mp)
|
|
{
|
|
int error;
|
|
|
|
error = dounmount(mp, MNT_FORCE, curthread);
|
|
if (error != 0) {
|
|
printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
|
|
if (error == EBUSY)
|
|
printf("BUSY)\n");
|
|
else
|
|
printf("%d)\n", error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unmount all filesystems. The list is traversed in reverse order
|
|
* of mounting to avoid dependencies.
|
|
*/
|
|
void
|
|
vfs_unmountall(void)
|
|
{
|
|
struct mount *mp, *tmp;
|
|
|
|
CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
|
|
|
|
/*
|
|
* Since this only runs when rebooting, it is not interlocked.
|
|
*/
|
|
TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
|
|
vfs_ref(mp);
|
|
|
|
/*
|
|
* Forcibly unmounting "/dev" before "/" would prevent clean
|
|
* unmount of the latter.
|
|
*/
|
|
if (mp == rootdevmp)
|
|
continue;
|
|
|
|
unmount_or_warn(mp);
|
|
}
|
|
|
|
if (rootdevmp != NULL)
|
|
unmount_or_warn(rootdevmp);
|
|
}
|
|
|
|
static void
|
|
vfs_deferred_inactive(struct vnode *vp, int lkflags)
|
|
{
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
|
|
if ((vp->v_iflag & VI_OWEINACT) == 0) {
|
|
vdropl(vp);
|
|
return;
|
|
}
|
|
if (vn_lock(vp, lkflags) == 0) {
|
|
VI_LOCK(vp);
|
|
vinactive(vp);
|
|
VOP_UNLOCK(vp);
|
|
vdropl(vp);
|
|
return;
|
|
}
|
|
vdefer_inactive_unlocked(vp);
|
|
}
|
|
|
|
static int
|
|
vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
|
|
{
|
|
|
|
return (vp->v_iflag & VI_DEFINACT);
|
|
}
|
|
|
|
static void __noinline
|
|
vfs_periodic_inactive(struct mount *mp, int flags)
|
|
{
|
|
struct vnode *vp, *mvp;
|
|
int lkflags;
|
|
|
|
lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
|
|
if (flags != MNT_WAIT)
|
|
lkflags |= LK_NOWAIT;
|
|
|
|
MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
|
|
if ((vp->v_iflag & VI_DEFINACT) == 0) {
|
|
VI_UNLOCK(vp);
|
|
continue;
|
|
}
|
|
vp->v_iflag &= ~VI_DEFINACT;
|
|
vfs_deferred_inactive(vp, lkflags);
|
|
}
|
|
}
|
|
|
|
static inline bool
|
|
vfs_want_msync(struct vnode *vp)
|
|
{
|
|
struct vm_object *obj;
|
|
|
|
/*
|
|
* This test may be performed without any locks held.
|
|
* We rely on vm_object's type stability.
|
|
*/
|
|
if (vp->v_vflag & VV_NOSYNC)
|
|
return (false);
|
|
obj = vp->v_object;
|
|
return (obj != NULL && vm_object_mightbedirty(obj));
|
|
}
|
|
|
|
static int
|
|
vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
|
|
{
|
|
|
|
if (vp->v_vflag & VV_NOSYNC)
|
|
return (false);
|
|
if (vp->v_iflag & VI_DEFINACT)
|
|
return (true);
|
|
return (vfs_want_msync(vp));
|
|
}
|
|
|
|
static void __noinline
|
|
vfs_periodic_msync_inactive(struct mount *mp, int flags)
|
|
{
|
|
struct vnode *vp, *mvp;
|
|
struct vm_object *obj;
|
|
int lkflags, objflags;
|
|
bool seen_defer;
|
|
|
|
lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
|
|
if (flags != MNT_WAIT) {
|
|
lkflags |= LK_NOWAIT;
|
|
objflags = OBJPC_NOSYNC;
|
|
} else {
|
|
objflags = OBJPC_SYNC;
|
|
}
|
|
|
|
MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
|
|
seen_defer = false;
|
|
if (vp->v_iflag & VI_DEFINACT) {
|
|
vp->v_iflag &= ~VI_DEFINACT;
|
|
seen_defer = true;
|
|
}
|
|
if (!vfs_want_msync(vp)) {
|
|
if (seen_defer)
|
|
vfs_deferred_inactive(vp, lkflags);
|
|
else
|
|
VI_UNLOCK(vp);
|
|
continue;
|
|
}
|
|
if (vget(vp, lkflags) == 0) {
|
|
obj = vp->v_object;
|
|
if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
|
|
VM_OBJECT_WLOCK(obj);
|
|
vm_object_page_clean(obj, 0, 0, objflags);
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
}
|
|
vput(vp);
|
|
if (seen_defer)
|
|
vdrop(vp);
|
|
} else {
|
|
if (seen_defer)
|
|
vdefer_inactive_unlocked(vp);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
vfs_periodic(struct mount *mp, int flags)
|
|
{
|
|
|
|
CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
|
|
|
|
if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
|
|
vfs_periodic_inactive(mp, flags);
|
|
else
|
|
vfs_periodic_msync_inactive(mp, flags);
|
|
}
|
|
|
|
static void
|
|
destroy_vpollinfo_free(struct vpollinfo *vi)
|
|
{
|
|
|
|
knlist_destroy(&vi->vpi_selinfo.si_note);
|
|
mtx_destroy(&vi->vpi_lock);
|
|
free(vi, M_VNODEPOLL);
|
|
}
|
|
|
|
static void
|
|
destroy_vpollinfo(struct vpollinfo *vi)
|
|
{
|
|
|
|
knlist_clear(&vi->vpi_selinfo.si_note, 1);
|
|
seldrain(&vi->vpi_selinfo);
|
|
destroy_vpollinfo_free(vi);
|
|
}
|
|
|
|
/*
|
|
* Initialize per-vnode helper structure to hold poll-related state.
|
|
*/
|
|
void
|
|
v_addpollinfo(struct vnode *vp)
|
|
{
|
|
struct vpollinfo *vi;
|
|
|
|
if (vp->v_pollinfo != NULL)
|
|
return;
|
|
vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
|
|
mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
|
|
knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
|
|
vfs_knlunlock, vfs_knl_assert_lock);
|
|
VI_LOCK(vp);
|
|
if (vp->v_pollinfo != NULL) {
|
|
VI_UNLOCK(vp);
|
|
destroy_vpollinfo_free(vi);
|
|
return;
|
|
}
|
|
vp->v_pollinfo = vi;
|
|
VI_UNLOCK(vp);
|
|
}
|
|
|
|
/*
|
|
* Record a process's interest in events which might happen to
|
|
* a vnode. Because poll uses the historic select-style interface
|
|
* internally, this routine serves as both the ``check for any
|
|
* pending events'' and the ``record my interest in future events''
|
|
* functions. (These are done together, while the lock is held,
|
|
* to avoid race conditions.)
|
|
*/
|
|
int
|
|
vn_pollrecord(struct vnode *vp, struct thread *td, int events)
|
|
{
|
|
|
|
v_addpollinfo(vp);
|
|
mtx_lock(&vp->v_pollinfo->vpi_lock);
|
|
if (vp->v_pollinfo->vpi_revents & events) {
|
|
/*
|
|
* This leaves events we are not interested
|
|
* in available for the other process which
|
|
* which presumably had requested them
|
|
* (otherwise they would never have been
|
|
* recorded).
|
|
*/
|
|
events &= vp->v_pollinfo->vpi_revents;
|
|
vp->v_pollinfo->vpi_revents &= ~events;
|
|
|
|
mtx_unlock(&vp->v_pollinfo->vpi_lock);
|
|
return (events);
|
|
}
|
|
vp->v_pollinfo->vpi_events |= events;
|
|
selrecord(td, &vp->v_pollinfo->vpi_selinfo);
|
|
mtx_unlock(&vp->v_pollinfo->vpi_lock);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Routine to create and manage a filesystem syncer vnode.
|
|
*/
|
|
#define sync_close ((int (*)(struct vop_close_args *))nullop)
|
|
static int sync_fsync(struct vop_fsync_args *);
|
|
static int sync_inactive(struct vop_inactive_args *);
|
|
static int sync_reclaim(struct vop_reclaim_args *);
|
|
|
|
static struct vop_vector sync_vnodeops = {
|
|
.vop_bypass = VOP_EOPNOTSUPP,
|
|
.vop_close = sync_close, /* close */
|
|
.vop_fsync = sync_fsync, /* fsync */
|
|
.vop_inactive = sync_inactive, /* inactive */
|
|
.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
|
|
.vop_reclaim = sync_reclaim, /* reclaim */
|
|
.vop_lock1 = vop_stdlock, /* lock */
|
|
.vop_unlock = vop_stdunlock, /* unlock */
|
|
.vop_islocked = vop_stdislocked, /* islocked */
|
|
};
|
|
VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
|
|
|
|
/*
|
|
* Create a new filesystem syncer vnode for the specified mount point.
|
|
*/
|
|
void
|
|
vfs_allocate_syncvnode(struct mount *mp)
|
|
{
|
|
struct vnode *vp;
|
|
struct bufobj *bo;
|
|
static long start, incr, next;
|
|
int error;
|
|
|
|
/* Allocate a new vnode */
|
|
error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
|
|
if (error != 0)
|
|
panic("vfs_allocate_syncvnode: getnewvnode() failed");
|
|
vp->v_type = VNON;
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
vp->v_vflag |= VV_FORCEINSMQ;
|
|
error = insmntque(vp, mp);
|
|
if (error != 0)
|
|
panic("vfs_allocate_syncvnode: insmntque() failed");
|
|
vp->v_vflag &= ~VV_FORCEINSMQ;
|
|
VOP_UNLOCK(vp);
|
|
/*
|
|
* Place the vnode onto the syncer worklist. We attempt to
|
|
* scatter them about on the list so that they will go off
|
|
* at evenly distributed times even if all the filesystems
|
|
* are mounted at once.
|
|
*/
|
|
next += incr;
|
|
if (next == 0 || next > syncer_maxdelay) {
|
|
start /= 2;
|
|
incr /= 2;
|
|
if (start == 0) {
|
|
start = syncer_maxdelay / 2;
|
|
incr = syncer_maxdelay;
|
|
}
|
|
next = start;
|
|
}
|
|
bo = &vp->v_bufobj;
|
|
BO_LOCK(bo);
|
|
vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
|
|
/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
|
|
mtx_lock(&sync_mtx);
|
|
sync_vnode_count++;
|
|
if (mp->mnt_syncer == NULL) {
|
|
mp->mnt_syncer = vp;
|
|
vp = NULL;
|
|
}
|
|
mtx_unlock(&sync_mtx);
|
|
BO_UNLOCK(bo);
|
|
if (vp != NULL) {
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
vgone(vp);
|
|
vput(vp);
|
|
}
|
|
}
|
|
|
|
void
|
|
vfs_deallocate_syncvnode(struct mount *mp)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
mtx_lock(&sync_mtx);
|
|
vp = mp->mnt_syncer;
|
|
if (vp != NULL)
|
|
mp->mnt_syncer = NULL;
|
|
mtx_unlock(&sync_mtx);
|
|
if (vp != NULL)
|
|
vrele(vp);
|
|
}
|
|
|
|
/*
|
|
* Do a lazy sync of the filesystem.
|
|
*/
|
|
static int
|
|
sync_fsync(struct vop_fsync_args *ap)
|
|
{
|
|
struct vnode *syncvp = ap->a_vp;
|
|
struct mount *mp = syncvp->v_mount;
|
|
int error, save;
|
|
struct bufobj *bo;
|
|
|
|
/*
|
|
* We only need to do something if this is a lazy evaluation.
|
|
*/
|
|
if (ap->a_waitfor != MNT_LAZY)
|
|
return (0);
|
|
|
|
/*
|
|
* Move ourselves to the back of the sync list.
|
|
*/
|
|
bo = &syncvp->v_bufobj;
|
|
BO_LOCK(bo);
|
|
vn_syncer_add_to_worklist(bo, syncdelay);
|
|
BO_UNLOCK(bo);
|
|
|
|
/*
|
|
* Walk the list of vnodes pushing all that are dirty and
|
|
* not already on the sync list.
|
|
*/
|
|
if (vfs_busy(mp, MBF_NOWAIT) != 0)
|
|
return (0);
|
|
if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
|
|
vfs_unbusy(mp);
|
|
return (0);
|
|
}
|
|
save = curthread_pflags_set(TDP_SYNCIO);
|
|
/*
|
|
* The filesystem at hand may be idle with free vnodes stored in the
|
|
* batch. Return them instead of letting them stay there indefinitely.
|
|
*/
|
|
vfs_periodic(mp, MNT_NOWAIT);
|
|
error = VFS_SYNC(mp, MNT_LAZY);
|
|
curthread_pflags_restore(save);
|
|
vn_finished_write(mp);
|
|
vfs_unbusy(mp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* The syncer vnode is no referenced.
|
|
*/
|
|
static int
|
|
sync_inactive(struct vop_inactive_args *ap)
|
|
{
|
|
|
|
vgone(ap->a_vp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The syncer vnode is no longer needed and is being decommissioned.
|
|
*
|
|
* Modifications to the worklist must be protected by sync_mtx.
|
|
*/
|
|
static int
|
|
sync_reclaim(struct vop_reclaim_args *ap)
|
|
{
|
|
struct vnode *vp = ap->a_vp;
|
|
struct bufobj *bo;
|
|
|
|
bo = &vp->v_bufobj;
|
|
BO_LOCK(bo);
|
|
mtx_lock(&sync_mtx);
|
|
if (vp->v_mount->mnt_syncer == vp)
|
|
vp->v_mount->mnt_syncer = NULL;
|
|
if (bo->bo_flag & BO_ONWORKLST) {
|
|
LIST_REMOVE(bo, bo_synclist);
|
|
syncer_worklist_len--;
|
|
sync_vnode_count--;
|
|
bo->bo_flag &= ~BO_ONWORKLST;
|
|
}
|
|
mtx_unlock(&sync_mtx);
|
|
BO_UNLOCK(bo);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vn_need_pageq_flush(struct vnode *vp)
|
|
{
|
|
struct vm_object *obj;
|
|
|
|
obj = vp->v_object;
|
|
return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
|
|
vm_object_mightbedirty(obj));
|
|
}
|
|
|
|
/*
|
|
* Check if vnode represents a disk device
|
|
*/
|
|
bool
|
|
vn_isdisk_error(struct vnode *vp, int *errp)
|
|
{
|
|
int error;
|
|
|
|
if (vp->v_type != VCHR) {
|
|
error = ENOTBLK;
|
|
goto out;
|
|
}
|
|
error = 0;
|
|
dev_lock();
|
|
if (vp->v_rdev == NULL)
|
|
error = ENXIO;
|
|
else if (vp->v_rdev->si_devsw == NULL)
|
|
error = ENXIO;
|
|
else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
|
|
error = ENOTBLK;
|
|
dev_unlock();
|
|
out:
|
|
*errp = error;
|
|
return (error == 0);
|
|
}
|
|
|
|
bool
|
|
vn_isdisk(struct vnode *vp)
|
|
{
|
|
int error;
|
|
|
|
return (vn_isdisk_error(vp, &error));
|
|
}
|
|
|
|
/*
|
|
* VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
|
|
* the comment above cache_fplookup for details.
|
|
*/
|
|
int
|
|
vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
|
|
{
|
|
int error;
|
|
|
|
VFS_SMR_ASSERT_ENTERED();
|
|
|
|
/* Check the owner. */
|
|
if (cred->cr_uid == file_uid) {
|
|
if (file_mode & S_IXUSR)
|
|
return (0);
|
|
goto out_error;
|
|
}
|
|
|
|
/* Otherwise, check the groups (first match) */
|
|
if (groupmember(file_gid, cred)) {
|
|
if (file_mode & S_IXGRP)
|
|
return (0);
|
|
goto out_error;
|
|
}
|
|
|
|
/* Otherwise, check everyone else. */
|
|
if (file_mode & S_IXOTH)
|
|
return (0);
|
|
out_error:
|
|
/*
|
|
* Permission check failed, but it is possible denial will get overwritten
|
|
* (e.g., when root is traversing through a 700 directory owned by someone
|
|
* else).
|
|
*
|
|
* vaccess() calls priv_check_cred which in turn can descent into MAC
|
|
* modules overriding this result. It's quite unclear what semantics
|
|
* are allowed for them to operate, thus for safety we don't call them
|
|
* from within the SMR section. This also means if any such modules
|
|
* are present, we have to let the regular lookup decide.
|
|
*/
|
|
error = priv_check_cred_vfs_lookup_nomac(cred);
|
|
switch (error) {
|
|
case 0:
|
|
return (0);
|
|
case EAGAIN:
|
|
/*
|
|
* MAC modules present.
|
|
*/
|
|
return (EAGAIN);
|
|
case EPERM:
|
|
return (EACCES);
|
|
default:
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Common filesystem object access control check routine. Accepts a
|
|
* vnode's type, "mode", uid and gid, requested access mode, and credentials.
|
|
* Returns 0 on success, or an errno on failure.
|
|
*/
|
|
int
|
|
vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
|
|
accmode_t accmode, struct ucred *cred)
|
|
{
|
|
accmode_t dac_granted;
|
|
accmode_t priv_granted;
|
|
|
|
KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
|
|
("invalid bit in accmode"));
|
|
KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
|
|
("VAPPEND without VWRITE"));
|
|
|
|
/*
|
|
* Look for a normal, non-privileged way to access the file/directory
|
|
* as requested. If it exists, go with that.
|
|
*/
|
|
|
|
dac_granted = 0;
|
|
|
|
/* Check the owner. */
|
|
if (cred->cr_uid == file_uid) {
|
|
dac_granted |= VADMIN;
|
|
if (file_mode & S_IXUSR)
|
|
dac_granted |= VEXEC;
|
|
if (file_mode & S_IRUSR)
|
|
dac_granted |= VREAD;
|
|
if (file_mode & S_IWUSR)
|
|
dac_granted |= (VWRITE | VAPPEND);
|
|
|
|
if ((accmode & dac_granted) == accmode)
|
|
return (0);
|
|
|
|
goto privcheck;
|
|
}
|
|
|
|
/* Otherwise, check the groups (first match) */
|
|
if (groupmember(file_gid, cred)) {
|
|
if (file_mode & S_IXGRP)
|
|
dac_granted |= VEXEC;
|
|
if (file_mode & S_IRGRP)
|
|
dac_granted |= VREAD;
|
|
if (file_mode & S_IWGRP)
|
|
dac_granted |= (VWRITE | VAPPEND);
|
|
|
|
if ((accmode & dac_granted) == accmode)
|
|
return (0);
|
|
|
|
goto privcheck;
|
|
}
|
|
|
|
/* Otherwise, check everyone else. */
|
|
if (file_mode & S_IXOTH)
|
|
dac_granted |= VEXEC;
|
|
if (file_mode & S_IROTH)
|
|
dac_granted |= VREAD;
|
|
if (file_mode & S_IWOTH)
|
|
dac_granted |= (VWRITE | VAPPEND);
|
|
if ((accmode & dac_granted) == accmode)
|
|
return (0);
|
|
|
|
privcheck:
|
|
/*
|
|
* Build a privilege mask to determine if the set of privileges
|
|
* satisfies the requirements when combined with the granted mask
|
|
* from above. For each privilege, if the privilege is required,
|
|
* bitwise or the request type onto the priv_granted mask.
|
|
*/
|
|
priv_granted = 0;
|
|
|
|
if (type == VDIR) {
|
|
/*
|
|
* For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
|
|
* requests, instead of PRIV_VFS_EXEC.
|
|
*/
|
|
if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
|
|
!priv_check_cred(cred, PRIV_VFS_LOOKUP))
|
|
priv_granted |= VEXEC;
|
|
} else {
|
|
/*
|
|
* Ensure that at least one execute bit is on. Otherwise,
|
|
* a privileged user will always succeed, and we don't want
|
|
* this to happen unless the file really is executable.
|
|
*/
|
|
if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
|
|
(file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
|
|
!priv_check_cred(cred, PRIV_VFS_EXEC))
|
|
priv_granted |= VEXEC;
|
|
}
|
|
|
|
if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
|
|
!priv_check_cred(cred, PRIV_VFS_READ))
|
|
priv_granted |= VREAD;
|
|
|
|
if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
|
|
!priv_check_cred(cred, PRIV_VFS_WRITE))
|
|
priv_granted |= (VWRITE | VAPPEND);
|
|
|
|
if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
|
|
!priv_check_cred(cred, PRIV_VFS_ADMIN))
|
|
priv_granted |= VADMIN;
|
|
|
|
if ((accmode & (priv_granted | dac_granted)) == accmode) {
|
|
return (0);
|
|
}
|
|
|
|
return ((accmode & VADMIN) ? EPERM : EACCES);
|
|
}
|
|
|
|
/*
|
|
* Credential check based on process requesting service, and per-attribute
|
|
* permissions.
|
|
*/
|
|
int
|
|
extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
|
|
struct thread *td, accmode_t accmode)
|
|
{
|
|
|
|
/*
|
|
* Kernel-invoked always succeeds.
|
|
*/
|
|
if (cred == NOCRED)
|
|
return (0);
|
|
|
|
/*
|
|
* Do not allow privileged processes in jail to directly manipulate
|
|
* system attributes.
|
|
*/
|
|
switch (attrnamespace) {
|
|
case EXTATTR_NAMESPACE_SYSTEM:
|
|
/* Potentially should be: return (EPERM); */
|
|
return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
|
|
case EXTATTR_NAMESPACE_USER:
|
|
return (VOP_ACCESS(vp, accmode, cred, td));
|
|
default:
|
|
return (EPERM);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_VFS_LOCKS
|
|
/*
|
|
* This only exists to suppress warnings from unlocked specfs accesses. It is
|
|
* no longer ok to have an unlocked VFS.
|
|
*/
|
|
#define IGNORE_LOCK(vp) (KERNEL_PANICKED() || (vp) == NULL || \
|
|
(vp)->v_type == VCHR || (vp)->v_type == VBAD)
|
|
|
|
int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */
|
|
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
|
|
"Drop into debugger on lock violation");
|
|
|
|
int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */
|
|
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
|
|
0, "Check for interlock across VOPs");
|
|
|
|
int vfs_badlock_print = 1; /* Print lock violations. */
|
|
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
|
|
0, "Print lock violations");
|
|
|
|
int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */
|
|
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
|
|
0, "Print vnode details on lock violations");
|
|
|
|
#ifdef KDB
|
|
int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */
|
|
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
|
|
&vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
|
|
#endif
|
|
|
|
static void
|
|
vfs_badlock(const char *msg, const char *str, struct vnode *vp)
|
|
{
|
|
|
|
#ifdef KDB
|
|
if (vfs_badlock_backtrace)
|
|
kdb_backtrace();
|
|
#endif
|
|
if (vfs_badlock_vnode)
|
|
vn_printf(vp, "vnode ");
|
|
if (vfs_badlock_print)
|
|
printf("%s: %p %s\n", str, (void *)vp, msg);
|
|
if (vfs_badlock_ddb)
|
|
kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
|
|
}
|
|
|
|
void
|
|
assert_vi_locked(struct vnode *vp, const char *str)
|
|
{
|
|
|
|
if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
|
|
vfs_badlock("interlock is not locked but should be", str, vp);
|
|
}
|
|
|
|
void
|
|
assert_vi_unlocked(struct vnode *vp, const char *str)
|
|
{
|
|
|
|
if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
|
|
vfs_badlock("interlock is locked but should not be", str, vp);
|
|
}
|
|
|
|
void
|
|
assert_vop_locked(struct vnode *vp, const char *str)
|
|
{
|
|
int locked;
|
|
|
|
if (!IGNORE_LOCK(vp)) {
|
|
locked = VOP_ISLOCKED(vp);
|
|
if (locked == 0 || locked == LK_EXCLOTHER)
|
|
vfs_badlock("is not locked but should be", str, vp);
|
|
}
|
|
}
|
|
|
|
void
|
|
assert_vop_unlocked(struct vnode *vp, const char *str)
|
|
{
|
|
|
|
if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
|
|
vfs_badlock("is locked but should not be", str, vp);
|
|
}
|
|
|
|
void
|
|
assert_vop_elocked(struct vnode *vp, const char *str)
|
|
{
|
|
|
|
if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
|
|
vfs_badlock("is not exclusive locked but should be", str, vp);
|
|
}
|
|
#endif /* DEBUG_VFS_LOCKS */
|
|
|
|
void
|
|
vop_rename_fail(struct vop_rename_args *ap)
|
|
{
|
|
|
|
if (ap->a_tvp != NULL)
|
|
vput(ap->a_tvp);
|
|
if (ap->a_tdvp == ap->a_tvp)
|
|
vrele(ap->a_tdvp);
|
|
else
|
|
vput(ap->a_tdvp);
|
|
vrele(ap->a_fdvp);
|
|
vrele(ap->a_fvp);
|
|
}
|
|
|
|
void
|
|
vop_rename_pre(void *ap)
|
|
{
|
|
struct vop_rename_args *a = ap;
|
|
|
|
#ifdef DEBUG_VFS_LOCKS
|
|
if (a->a_tvp)
|
|
ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
|
|
ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
|
|
ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
|
|
ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
|
|
|
|
/* Check the source (from). */
|
|
if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
|
|
(a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
|
|
ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
|
|
if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
|
|
ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
|
|
|
|
/* Check the target. */
|
|
if (a->a_tvp)
|
|
ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
|
|
ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
|
|
#endif
|
|
/*
|
|
* It may be tempting to add vn_seqc_write_begin/end calls here and
|
|
* in vop_rename_post but that's not going to work out since some
|
|
* filesystems relookup vnodes mid-rename. This is probably a bug.
|
|
*
|
|
* For now filesystems are expected to do the relevant calls after they
|
|
* decide what vnodes to operate on.
|
|
*/
|
|
if (a->a_tdvp != a->a_fdvp)
|
|
vhold(a->a_fdvp);
|
|
if (a->a_tvp != a->a_fvp)
|
|
vhold(a->a_fvp);
|
|
vhold(a->a_tdvp);
|
|
if (a->a_tvp)
|
|
vhold(a->a_tvp);
|
|
}
|
|
|
|
#ifdef DEBUG_VFS_LOCKS
|
|
void
|
|
vop_fplookup_vexec_debugpre(void *ap __unused)
|
|
{
|
|
|
|
VFS_SMR_ASSERT_ENTERED();
|
|
}
|
|
|
|
void
|
|
vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
|
|
{
|
|
|
|
VFS_SMR_ASSERT_ENTERED();
|
|
}
|
|
|
|
void
|
|
vop_fplookup_symlink_debugpre(void *ap __unused)
|
|
{
|
|
|
|
VFS_SMR_ASSERT_ENTERED();
|
|
}
|
|
|
|
void
|
|
vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
|
|
{
|
|
|
|
VFS_SMR_ASSERT_ENTERED();
|
|
}
|
|
void
|
|
vop_strategy_debugpre(void *ap)
|
|
{
|
|
struct vop_strategy_args *a;
|
|
struct buf *bp;
|
|
|
|
a = ap;
|
|
bp = a->a_bp;
|
|
|
|
/*
|
|
* Cluster ops lock their component buffers but not the IO container.
|
|
*/
|
|
if ((bp->b_flags & B_CLUSTER) != 0)
|
|
return;
|
|
|
|
if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
|
|
if (vfs_badlock_print)
|
|
printf(
|
|
"VOP_STRATEGY: bp is not locked but should be\n");
|
|
if (vfs_badlock_ddb)
|
|
kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
|
|
}
|
|
}
|
|
|
|
void
|
|
vop_lock_debugpre(void *ap)
|
|
{
|
|
struct vop_lock1_args *a = ap;
|
|
|
|
if ((a->a_flags & LK_INTERLOCK) == 0)
|
|
ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
|
|
else
|
|
ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
|
|
}
|
|
|
|
void
|
|
vop_lock_debugpost(void *ap, int rc)
|
|
{
|
|
struct vop_lock1_args *a = ap;
|
|
|
|
ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
|
|
if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
|
|
ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
|
|
}
|
|
|
|
void
|
|
vop_unlock_debugpre(void *ap)
|
|
{
|
|
struct vop_unlock_args *a = ap;
|
|
|
|
ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
|
|
}
|
|
|
|
void
|
|
vop_need_inactive_debugpre(void *ap)
|
|
{
|
|
struct vop_need_inactive_args *a = ap;
|
|
|
|
ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
|
|
}
|
|
|
|
void
|
|
vop_need_inactive_debugpost(void *ap, int rc)
|
|
{
|
|
struct vop_need_inactive_args *a = ap;
|
|
|
|
ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
|
|
}
|
|
#endif
|
|
|
|
void
|
|
vop_create_pre(void *ap)
|
|
{
|
|
struct vop_create_args *a;
|
|
struct vnode *dvp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vn_seqc_write_begin(dvp);
|
|
}
|
|
|
|
void
|
|
vop_create_post(void *ap, int rc)
|
|
{
|
|
struct vop_create_args *a;
|
|
struct vnode *dvp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vn_seqc_write_end(dvp);
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
|
|
}
|
|
|
|
void
|
|
vop_whiteout_pre(void *ap)
|
|
{
|
|
struct vop_whiteout_args *a;
|
|
struct vnode *dvp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vn_seqc_write_begin(dvp);
|
|
}
|
|
|
|
void
|
|
vop_whiteout_post(void *ap, int rc)
|
|
{
|
|
struct vop_whiteout_args *a;
|
|
struct vnode *dvp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vn_seqc_write_end(dvp);
|
|
}
|
|
|
|
void
|
|
vop_deleteextattr_pre(void *ap)
|
|
{
|
|
struct vop_deleteextattr_args *a;
|
|
struct vnode *vp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_begin(vp);
|
|
}
|
|
|
|
void
|
|
vop_deleteextattr_post(void *ap, int rc)
|
|
{
|
|
struct vop_deleteextattr_args *a;
|
|
struct vnode *vp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_end(vp);
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
|
|
}
|
|
|
|
void
|
|
vop_link_pre(void *ap)
|
|
{
|
|
struct vop_link_args *a;
|
|
struct vnode *vp, *tdvp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
tdvp = a->a_tdvp;
|
|
vn_seqc_write_begin(vp);
|
|
vn_seqc_write_begin(tdvp);
|
|
}
|
|
|
|
void
|
|
vop_link_post(void *ap, int rc)
|
|
{
|
|
struct vop_link_args *a;
|
|
struct vnode *vp, *tdvp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
tdvp = a->a_tdvp;
|
|
vn_seqc_write_end(vp);
|
|
vn_seqc_write_end(tdvp);
|
|
if (!rc) {
|
|
VFS_KNOTE_LOCKED(vp, NOTE_LINK);
|
|
VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
|
|
}
|
|
}
|
|
|
|
void
|
|
vop_mkdir_pre(void *ap)
|
|
{
|
|
struct vop_mkdir_args *a;
|
|
struct vnode *dvp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vn_seqc_write_begin(dvp);
|
|
}
|
|
|
|
void
|
|
vop_mkdir_post(void *ap, int rc)
|
|
{
|
|
struct vop_mkdir_args *a;
|
|
struct vnode *dvp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vn_seqc_write_end(dvp);
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
|
|
}
|
|
|
|
#ifdef DEBUG_VFS_LOCKS
|
|
void
|
|
vop_mkdir_debugpost(void *ap, int rc)
|
|
{
|
|
struct vop_mkdir_args *a;
|
|
|
|
a = ap;
|
|
if (!rc)
|
|
cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
vop_mknod_pre(void *ap)
|
|
{
|
|
struct vop_mknod_args *a;
|
|
struct vnode *dvp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vn_seqc_write_begin(dvp);
|
|
}
|
|
|
|
void
|
|
vop_mknod_post(void *ap, int rc)
|
|
{
|
|
struct vop_mknod_args *a;
|
|
struct vnode *dvp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vn_seqc_write_end(dvp);
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
|
|
}
|
|
|
|
void
|
|
vop_reclaim_post(void *ap, int rc)
|
|
{
|
|
struct vop_reclaim_args *a;
|
|
struct vnode *vp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
ASSERT_VOP_IN_SEQC(vp);
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
|
|
}
|
|
|
|
void
|
|
vop_remove_pre(void *ap)
|
|
{
|
|
struct vop_remove_args *a;
|
|
struct vnode *dvp, *vp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_begin(dvp);
|
|
vn_seqc_write_begin(vp);
|
|
}
|
|
|
|
void
|
|
vop_remove_post(void *ap, int rc)
|
|
{
|
|
struct vop_remove_args *a;
|
|
struct vnode *dvp, *vp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_end(dvp);
|
|
vn_seqc_write_end(vp);
|
|
if (!rc) {
|
|
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
|
|
VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
|
|
}
|
|
}
|
|
|
|
void
|
|
vop_rename_post(void *ap, int rc)
|
|
{
|
|
struct vop_rename_args *a = ap;
|
|
long hint;
|
|
|
|
if (!rc) {
|
|
hint = NOTE_WRITE;
|
|
if (a->a_fdvp == a->a_tdvp) {
|
|
if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
|
|
hint |= NOTE_LINK;
|
|
VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
|
|
VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
|
|
} else {
|
|
hint |= NOTE_EXTEND;
|
|
if (a->a_fvp->v_type == VDIR)
|
|
hint |= NOTE_LINK;
|
|
VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
|
|
|
|
if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
|
|
a->a_tvp->v_type == VDIR)
|
|
hint &= ~NOTE_LINK;
|
|
VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
|
|
}
|
|
|
|
VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
|
|
if (a->a_tvp)
|
|
VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
|
|
}
|
|
if (a->a_tdvp != a->a_fdvp)
|
|
vdrop(a->a_fdvp);
|
|
if (a->a_tvp != a->a_fvp)
|
|
vdrop(a->a_fvp);
|
|
vdrop(a->a_tdvp);
|
|
if (a->a_tvp)
|
|
vdrop(a->a_tvp);
|
|
}
|
|
|
|
void
|
|
vop_rmdir_pre(void *ap)
|
|
{
|
|
struct vop_rmdir_args *a;
|
|
struct vnode *dvp, *vp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_begin(dvp);
|
|
vn_seqc_write_begin(vp);
|
|
}
|
|
|
|
void
|
|
vop_rmdir_post(void *ap, int rc)
|
|
{
|
|
struct vop_rmdir_args *a;
|
|
struct vnode *dvp, *vp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_end(dvp);
|
|
vn_seqc_write_end(vp);
|
|
if (!rc) {
|
|
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
|
|
VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
|
|
}
|
|
}
|
|
|
|
void
|
|
vop_setattr_pre(void *ap)
|
|
{
|
|
struct vop_setattr_args *a;
|
|
struct vnode *vp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_begin(vp);
|
|
}
|
|
|
|
void
|
|
vop_setattr_post(void *ap, int rc)
|
|
{
|
|
struct vop_setattr_args *a;
|
|
struct vnode *vp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_end(vp);
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
|
|
}
|
|
|
|
void
|
|
vop_setacl_pre(void *ap)
|
|
{
|
|
struct vop_setacl_args *a;
|
|
struct vnode *vp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_begin(vp);
|
|
}
|
|
|
|
void
|
|
vop_setacl_post(void *ap, int rc __unused)
|
|
{
|
|
struct vop_setacl_args *a;
|
|
struct vnode *vp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_end(vp);
|
|
}
|
|
|
|
void
|
|
vop_setextattr_pre(void *ap)
|
|
{
|
|
struct vop_setextattr_args *a;
|
|
struct vnode *vp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_begin(vp);
|
|
}
|
|
|
|
void
|
|
vop_setextattr_post(void *ap, int rc)
|
|
{
|
|
struct vop_setextattr_args *a;
|
|
struct vnode *vp;
|
|
|
|
a = ap;
|
|
vp = a->a_vp;
|
|
vn_seqc_write_end(vp);
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
|
|
}
|
|
|
|
void
|
|
vop_symlink_pre(void *ap)
|
|
{
|
|
struct vop_symlink_args *a;
|
|
struct vnode *dvp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vn_seqc_write_begin(dvp);
|
|
}
|
|
|
|
void
|
|
vop_symlink_post(void *ap, int rc)
|
|
{
|
|
struct vop_symlink_args *a;
|
|
struct vnode *dvp;
|
|
|
|
a = ap;
|
|
dvp = a->a_dvp;
|
|
vn_seqc_write_end(dvp);
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
|
|
}
|
|
|
|
void
|
|
vop_open_post(void *ap, int rc)
|
|
{
|
|
struct vop_open_args *a = ap;
|
|
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
|
|
}
|
|
|
|
void
|
|
vop_close_post(void *ap, int rc)
|
|
{
|
|
struct vop_close_args *a = ap;
|
|
|
|
if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
|
|
!VN_IS_DOOMED(a->a_vp))) {
|
|
VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
|
|
NOTE_CLOSE_WRITE : NOTE_CLOSE);
|
|
}
|
|
}
|
|
|
|
void
|
|
vop_read_post(void *ap, int rc)
|
|
{
|
|
struct vop_read_args *a = ap;
|
|
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
|
|
}
|
|
|
|
void
|
|
vop_read_pgcache_post(void *ap, int rc)
|
|
{
|
|
struct vop_read_pgcache_args *a = ap;
|
|
|
|
if (!rc)
|
|
VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
|
|
}
|
|
|
|
void
|
|
vop_readdir_post(void *ap, int rc)
|
|
{
|
|
struct vop_readdir_args *a = ap;
|
|
|
|
if (!rc)
|
|
VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
|
|
}
|
|
|
|
static struct knlist fs_knlist;
|
|
|
|
static void
|
|
vfs_event_init(void *arg)
|
|
{
|
|
knlist_init_mtx(&fs_knlist, NULL);
|
|
}
|
|
/* XXX - correct order? */
|
|
SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
|
|
|
|
void
|
|
vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
|
|
{
|
|
|
|
KNOTE_UNLOCKED(&fs_knlist, event);
|
|
}
|
|
|
|
static int filt_fsattach(struct knote *kn);
|
|
static void filt_fsdetach(struct knote *kn);
|
|
static int filt_fsevent(struct knote *kn, long hint);
|
|
|
|
struct filterops fs_filtops = {
|
|
.f_isfd = 0,
|
|
.f_attach = filt_fsattach,
|
|
.f_detach = filt_fsdetach,
|
|
.f_event = filt_fsevent
|
|
};
|
|
|
|
static int
|
|
filt_fsattach(struct knote *kn)
|
|
{
|
|
|
|
kn->kn_flags |= EV_CLEAR;
|
|
knlist_add(&fs_knlist, kn, 0);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_fsdetach(struct knote *kn)
|
|
{
|
|
|
|
knlist_remove(&fs_knlist, kn, 0);
|
|
}
|
|
|
|
static int
|
|
filt_fsevent(struct knote *kn, long hint)
|
|
{
|
|
|
|
kn->kn_fflags |= kn->kn_sfflags & hint;
|
|
|
|
return (kn->kn_fflags != 0);
|
|
}
|
|
|
|
static int
|
|
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct vfsidctl vc;
|
|
int error;
|
|
struct mount *mp;
|
|
|
|
error = SYSCTL_IN(req, &vc, sizeof(vc));
|
|
if (error)
|
|
return (error);
|
|
if (vc.vc_vers != VFS_CTL_VERS1)
|
|
return (EINVAL);
|
|
mp = vfs_getvfs(&vc.vc_fsid);
|
|
if (mp == NULL)
|
|
return (ENOENT);
|
|
/* ensure that a specific sysctl goes to the right filesystem. */
|
|
if (strcmp(vc.vc_fstypename, "*") != 0 &&
|
|
strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
|
|
vfs_rel(mp);
|
|
return (EINVAL);
|
|
}
|
|
VCTLTOREQ(&vc, req);
|
|
error = VFS_SYSCTL(mp, vc.vc_op, req);
|
|
vfs_rel(mp);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
|
|
NULL, 0, sysctl_vfs_ctl, "",
|
|
"Sysctl by fsid");
|
|
|
|
/*
|
|
* Function to initialize a va_filerev field sensibly.
|
|
* XXX: Wouldn't a random number make a lot more sense ??
|
|
*/
|
|
u_quad_t
|
|
init_va_filerev(void)
|
|
{
|
|
struct bintime bt;
|
|
|
|
getbinuptime(&bt);
|
|
return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
|
|
}
|
|
|
|
static int filt_vfsread(struct knote *kn, long hint);
|
|
static int filt_vfswrite(struct knote *kn, long hint);
|
|
static int filt_vfsvnode(struct knote *kn, long hint);
|
|
static void filt_vfsdetach(struct knote *kn);
|
|
static struct filterops vfsread_filtops = {
|
|
.f_isfd = 1,
|
|
.f_detach = filt_vfsdetach,
|
|
.f_event = filt_vfsread
|
|
};
|
|
static struct filterops vfswrite_filtops = {
|
|
.f_isfd = 1,
|
|
.f_detach = filt_vfsdetach,
|
|
.f_event = filt_vfswrite
|
|
};
|
|
static struct filterops vfsvnode_filtops = {
|
|
.f_isfd = 1,
|
|
.f_detach = filt_vfsdetach,
|
|
.f_event = filt_vfsvnode
|
|
};
|
|
|
|
static void
|
|
vfs_knllock(void *arg)
|
|
{
|
|
struct vnode *vp = arg;
|
|
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
}
|
|
|
|
static void
|
|
vfs_knlunlock(void *arg)
|
|
{
|
|
struct vnode *vp = arg;
|
|
|
|
VOP_UNLOCK(vp);
|
|
}
|
|
|
|
static void
|
|
vfs_knl_assert_lock(void *arg, int what)
|
|
{
|
|
#ifdef DEBUG_VFS_LOCKS
|
|
struct vnode *vp = arg;
|
|
|
|
if (what == LA_LOCKED)
|
|
ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
|
|
else
|
|
ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
|
|
#endif
|
|
}
|
|
|
|
int
|
|
vfs_kqfilter(struct vop_kqfilter_args *ap)
|
|
{
|
|
struct vnode *vp = ap->a_vp;
|
|
struct knote *kn = ap->a_kn;
|
|
struct knlist *knl;
|
|
|
|
switch (kn->kn_filter) {
|
|
case EVFILT_READ:
|
|
kn->kn_fop = &vfsread_filtops;
|
|
break;
|
|
case EVFILT_WRITE:
|
|
kn->kn_fop = &vfswrite_filtops;
|
|
break;
|
|
case EVFILT_VNODE:
|
|
kn->kn_fop = &vfsvnode_filtops;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
kn->kn_hook = (caddr_t)vp;
|
|
|
|
v_addpollinfo(vp);
|
|
if (vp->v_pollinfo == NULL)
|
|
return (ENOMEM);
|
|
knl = &vp->v_pollinfo->vpi_selinfo.si_note;
|
|
vhold(vp);
|
|
knlist_add(knl, kn, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Detach knote from vnode
|
|
*/
|
|
static void
|
|
filt_vfsdetach(struct knote *kn)
|
|
{
|
|
struct vnode *vp = (struct vnode *)kn->kn_hook;
|
|
|
|
KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
|
|
knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
|
|
vdrop(vp);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_vfsread(struct knote *kn, long hint)
|
|
{
|
|
struct vnode *vp = (struct vnode *)kn->kn_hook;
|
|
struct vattr va;
|
|
int res;
|
|
|
|
/*
|
|
* filesystem is gone, so set the EOF flag and schedule
|
|
* the knote for deletion.
|
|
*/
|
|
if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
|
|
VI_LOCK(vp);
|
|
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
|
|
VI_UNLOCK(vp);
|
|
return (1);
|
|
}
|
|
|
|
if (VOP_GETATTR(vp, &va, curthread->td_ucred))
|
|
return (0);
|
|
|
|
VI_LOCK(vp);
|
|
kn->kn_data = va.va_size - kn->kn_fp->f_offset;
|
|
res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
|
|
VI_UNLOCK(vp);
|
|
return (res);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_vfswrite(struct knote *kn, long hint)
|
|
{
|
|
struct vnode *vp = (struct vnode *)kn->kn_hook;
|
|
|
|
VI_LOCK(vp);
|
|
|
|
/*
|
|
* filesystem is gone, so set the EOF flag and schedule
|
|
* the knote for deletion.
|
|
*/
|
|
if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
|
|
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
|
|
|
|
kn->kn_data = 0;
|
|
VI_UNLOCK(vp);
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
filt_vfsvnode(struct knote *kn, long hint)
|
|
{
|
|
struct vnode *vp = (struct vnode *)kn->kn_hook;
|
|
int res;
|
|
|
|
VI_LOCK(vp);
|
|
if (kn->kn_sfflags & hint)
|
|
kn->kn_fflags |= hint;
|
|
if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
|
|
kn->kn_flags |= EV_EOF;
|
|
VI_UNLOCK(vp);
|
|
return (1);
|
|
}
|
|
res = (kn->kn_fflags != 0);
|
|
VI_UNLOCK(vp);
|
|
return (res);
|
|
}
|
|
|
|
/*
|
|
* Returns whether the directory is empty or not.
|
|
* If it is empty, the return value is 0; otherwise
|
|
* the return value is an error value (which may
|
|
* be ENOTEMPTY).
|
|
*/
|
|
int
|
|
vfs_emptydir(struct vnode *vp)
|
|
{
|
|
struct uio uio;
|
|
struct iovec iov;
|
|
struct dirent *dirent, *dp, *endp;
|
|
int error, eof;
|
|
|
|
error = 0;
|
|
eof = 0;
|
|
|
|
ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
|
|
|
|
dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
|
|
iov.iov_base = dirent;
|
|
iov.iov_len = sizeof(struct dirent);
|
|
|
|
uio.uio_iov = &iov;
|
|
uio.uio_iovcnt = 1;
|
|
uio.uio_offset = 0;
|
|
uio.uio_resid = sizeof(struct dirent);
|
|
uio.uio_segflg = UIO_SYSSPACE;
|
|
uio.uio_rw = UIO_READ;
|
|
uio.uio_td = curthread;
|
|
|
|
while (eof == 0 && error == 0) {
|
|
error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
|
|
NULL, NULL);
|
|
if (error != 0)
|
|
break;
|
|
endp = (void *)((uint8_t *)dirent +
|
|
sizeof(struct dirent) - uio.uio_resid);
|
|
for (dp = dirent; dp < endp;
|
|
dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
|
|
if (dp->d_type == DT_WHT)
|
|
continue;
|
|
if (dp->d_namlen == 0)
|
|
continue;
|
|
if (dp->d_type != DT_DIR &&
|
|
dp->d_type != DT_UNKNOWN) {
|
|
error = ENOTEMPTY;
|
|
break;
|
|
}
|
|
if (dp->d_namlen > 2) {
|
|
error = ENOTEMPTY;
|
|
break;
|
|
}
|
|
if (dp->d_namlen == 1 &&
|
|
dp->d_name[0] != '.') {
|
|
error = ENOTEMPTY;
|
|
break;
|
|
}
|
|
if (dp->d_namlen == 2 &&
|
|
dp->d_name[1] != '.') {
|
|
error = ENOTEMPTY;
|
|
break;
|
|
}
|
|
uio.uio_resid = sizeof(struct dirent);
|
|
}
|
|
}
|
|
free(dirent, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
|
|
{
|
|
int error;
|
|
|
|
if (dp->d_reclen > ap->a_uio->uio_resid)
|
|
return (ENAMETOOLONG);
|
|
error = uiomove(dp, dp->d_reclen, ap->a_uio);
|
|
if (error) {
|
|
if (ap->a_ncookies != NULL) {
|
|
if (ap->a_cookies != NULL)
|
|
free(ap->a_cookies, M_TEMP);
|
|
ap->a_cookies = NULL;
|
|
*ap->a_ncookies = 0;
|
|
}
|
|
return (error);
|
|
}
|
|
if (ap->a_ncookies == NULL)
|
|
return (0);
|
|
|
|
KASSERT(ap->a_cookies,
|
|
("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
|
|
|
|
*ap->a_cookies = realloc(*ap->a_cookies,
|
|
(*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
|
|
(*ap->a_cookies)[*ap->a_ncookies] = off;
|
|
*ap->a_ncookies += 1;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The purpose of this routine is to remove granularity from accmode_t,
|
|
* reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
|
|
* VADMIN and VAPPEND.
|
|
*
|
|
* If it returns 0, the caller is supposed to continue with the usual
|
|
* access checks using 'accmode' as modified by this routine. If it
|
|
* returns nonzero value, the caller is supposed to return that value
|
|
* as errno.
|
|
*
|
|
* Note that after this routine runs, accmode may be zero.
|
|
*/
|
|
int
|
|
vfs_unixify_accmode(accmode_t *accmode)
|
|
{
|
|
/*
|
|
* There is no way to specify explicit "deny" rule using
|
|
* file mode or POSIX.1e ACLs.
|
|
*/
|
|
if (*accmode & VEXPLICIT_DENY) {
|
|
*accmode = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* None of these can be translated into usual access bits.
|
|
* Also, the common case for NFSv4 ACLs is to not contain
|
|
* either of these bits. Caller should check for VWRITE
|
|
* on the containing directory instead.
|
|
*/
|
|
if (*accmode & (VDELETE_CHILD | VDELETE))
|
|
return (EPERM);
|
|
|
|
if (*accmode & VADMIN_PERMS) {
|
|
*accmode &= ~VADMIN_PERMS;
|
|
*accmode |= VADMIN;
|
|
}
|
|
|
|
/*
|
|
* There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
|
|
* or VSYNCHRONIZE using file mode or POSIX.1e ACL.
|
|
*/
|
|
*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Clear out a doomed vnode (if any) and replace it with a new one as long
|
|
* as the fs is not being unmounted. Return the root vnode to the caller.
|
|
*/
|
|
static int __noinline
|
|
vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
|
|
{
|
|
struct vnode *vp;
|
|
int error;
|
|
|
|
restart:
|
|
if (mp->mnt_rootvnode != NULL) {
|
|
MNT_ILOCK(mp);
|
|
vp = mp->mnt_rootvnode;
|
|
if (vp != NULL) {
|
|
if (!VN_IS_DOOMED(vp)) {
|
|
vrefact(vp);
|
|
MNT_IUNLOCK(mp);
|
|
error = vn_lock(vp, flags);
|
|
if (error == 0) {
|
|
*vpp = vp;
|
|
return (0);
|
|
}
|
|
vrele(vp);
|
|
goto restart;
|
|
}
|
|
/*
|
|
* Clear the old one.
|
|
*/
|
|
mp->mnt_rootvnode = NULL;
|
|
}
|
|
MNT_IUNLOCK(mp);
|
|
if (vp != NULL) {
|
|
vfs_op_barrier_wait(mp);
|
|
vrele(vp);
|
|
}
|
|
}
|
|
error = VFS_CACHEDROOT(mp, flags, vpp);
|
|
if (error != 0)
|
|
return (error);
|
|
if (mp->mnt_vfs_ops == 0) {
|
|
MNT_ILOCK(mp);
|
|
if (mp->mnt_vfs_ops != 0) {
|
|
MNT_IUNLOCK(mp);
|
|
return (0);
|
|
}
|
|
if (mp->mnt_rootvnode == NULL) {
|
|
vrefact(*vpp);
|
|
mp->mnt_rootvnode = *vpp;
|
|
} else {
|
|
if (mp->mnt_rootvnode != *vpp) {
|
|
if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
|
|
panic("%s: mismatch between vnode returned "
|
|
" by VFS_CACHEDROOT and the one cached "
|
|
" (%p != %p)",
|
|
__func__, *vpp, mp->mnt_rootvnode);
|
|
}
|
|
}
|
|
}
|
|
MNT_IUNLOCK(mp);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
|
|
{
|
|
struct mount_pcpu *mpcpu;
|
|
struct vnode *vp;
|
|
int error;
|
|
|
|
if (!vfs_op_thread_enter(mp, mpcpu))
|
|
return (vfs_cache_root_fallback(mp, flags, vpp));
|
|
vp = atomic_load_ptr(&mp->mnt_rootvnode);
|
|
if (vp == NULL || VN_IS_DOOMED(vp)) {
|
|
vfs_op_thread_exit(mp, mpcpu);
|
|
return (vfs_cache_root_fallback(mp, flags, vpp));
|
|
}
|
|
vrefact(vp);
|
|
vfs_op_thread_exit(mp, mpcpu);
|
|
error = vn_lock(vp, flags);
|
|
if (error != 0) {
|
|
vrele(vp);
|
|
return (vfs_cache_root_fallback(mp, flags, vpp));
|
|
}
|
|
*vpp = vp;
|
|
return (0);
|
|
}
|
|
|
|
struct vnode *
|
|
vfs_cache_root_clear(struct mount *mp)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
/*
|
|
* ops > 0 guarantees there is nobody who can see this vnode
|
|
*/
|
|
MPASS(mp->mnt_vfs_ops > 0);
|
|
vp = mp->mnt_rootvnode;
|
|
if (vp != NULL)
|
|
vn_seqc_write_begin(vp);
|
|
mp->mnt_rootvnode = NULL;
|
|
return (vp);
|
|
}
|
|
|
|
void
|
|
vfs_cache_root_set(struct mount *mp, struct vnode *vp)
|
|
{
|
|
|
|
MPASS(mp->mnt_vfs_ops > 0);
|
|
vrefact(vp);
|
|
mp->mnt_rootvnode = vp;
|
|
}
|
|
|
|
/*
|
|
* These are helper functions for filesystems to traverse all
|
|
* their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
|
|
*
|
|
* This interface replaces MNT_VNODE_FOREACH.
|
|
*/
|
|
|
|
struct vnode *
|
|
__mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
if (should_yield())
|
|
kern_yield(PRI_USER);
|
|
MNT_ILOCK(mp);
|
|
KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
|
|
for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
|
|
vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
|
|
/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
|
|
if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
|
|
continue;
|
|
VI_LOCK(vp);
|
|
if (VN_IS_DOOMED(vp)) {
|
|
VI_UNLOCK(vp);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
if (vp == NULL) {
|
|
__mnt_vnode_markerfree_all(mvp, mp);
|
|
/* MNT_IUNLOCK(mp); -- done in above function */
|
|
mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
|
|
return (NULL);
|
|
}
|
|
TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
|
|
TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
|
|
MNT_IUNLOCK(mp);
|
|
return (vp);
|
|
}
|
|
|
|
struct vnode *
|
|
__mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
*mvp = vn_alloc_marker(mp);
|
|
MNT_ILOCK(mp);
|
|
MNT_REF(mp);
|
|
|
|
TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
|
|
/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
|
|
if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
|
|
continue;
|
|
VI_LOCK(vp);
|
|
if (VN_IS_DOOMED(vp)) {
|
|
VI_UNLOCK(vp);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
if (vp == NULL) {
|
|
MNT_REL(mp);
|
|
MNT_IUNLOCK(mp);
|
|
vn_free_marker(*mvp);
|
|
*mvp = NULL;
|
|
return (NULL);
|
|
}
|
|
TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
|
|
MNT_IUNLOCK(mp);
|
|
return (vp);
|
|
}
|
|
|
|
void
|
|
__mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
|
|
{
|
|
|
|
if (*mvp == NULL) {
|
|
MNT_IUNLOCK(mp);
|
|
return;
|
|
}
|
|
|
|
mtx_assert(MNT_MTX(mp), MA_OWNED);
|
|
|
|
KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
|
|
TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
|
|
MNT_REL(mp);
|
|
MNT_IUNLOCK(mp);
|
|
vn_free_marker(*mvp);
|
|
*mvp = NULL;
|
|
}
|
|
|
|
/*
|
|
* These are helper functions for filesystems to traverse their
|
|
* lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
|
|
*/
|
|
static void
|
|
mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
|
|
{
|
|
|
|
KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
|
|
|
|
MNT_ILOCK(mp);
|
|
MNT_REL(mp);
|
|
MNT_IUNLOCK(mp);
|
|
vn_free_marker(*mvp);
|
|
*mvp = NULL;
|
|
}
|
|
|
|
/*
|
|
* Relock the mp mount vnode list lock with the vp vnode interlock in the
|
|
* conventional lock order during mnt_vnode_next_lazy iteration.
|
|
*
|
|
* On entry, the mount vnode list lock is held and the vnode interlock is not.
|
|
* The list lock is dropped and reacquired. On success, both locks are held.
|
|
* On failure, the mount vnode list lock is held but the vnode interlock is
|
|
* not, and the procedure may have yielded.
|
|
*/
|
|
static bool
|
|
mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
|
|
struct vnode *vp)
|
|
{
|
|
|
|
VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
|
|
TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
|
|
("%s: bad marker", __func__));
|
|
VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
|
|
("%s: inappropriate vnode", __func__));
|
|
ASSERT_VI_UNLOCKED(vp, __func__);
|
|
mtx_assert(&mp->mnt_listmtx, MA_OWNED);
|
|
|
|
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
|
|
TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
|
|
|
|
/*
|
|
* Note we may be racing against vdrop which transitioned the hold
|
|
* count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
|
|
* if we are the only user after we get the interlock we will just
|
|
* vdrop.
|
|
*/
|
|
vhold(vp);
|
|
mtx_unlock(&mp->mnt_listmtx);
|
|
VI_LOCK(vp);
|
|
if (VN_IS_DOOMED(vp)) {
|
|
VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
|
|
goto out_lost;
|
|
}
|
|
VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
|
|
/*
|
|
* There is nothing to do if we are the last user.
|
|
*/
|
|
if (!refcount_release_if_not_last(&vp->v_holdcnt))
|
|
goto out_lost;
|
|
mtx_lock(&mp->mnt_listmtx);
|
|
return (true);
|
|
out_lost:
|
|
vdropl(vp);
|
|
maybe_yield();
|
|
mtx_lock(&mp->mnt_listmtx);
|
|
return (false);
|
|
}
|
|
|
|
static struct vnode *
|
|
mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
|
|
void *cbarg)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
mtx_assert(&mp->mnt_listmtx, MA_OWNED);
|
|
KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
|
|
restart:
|
|
vp = TAILQ_NEXT(*mvp, v_lazylist);
|
|
while (vp != NULL) {
|
|
if (vp->v_type == VMARKER) {
|
|
vp = TAILQ_NEXT(vp, v_lazylist);
|
|
continue;
|
|
}
|
|
/*
|
|
* See if we want to process the vnode. Note we may encounter a
|
|
* long string of vnodes we don't care about and hog the list
|
|
* as a result. Check for it and requeue the marker.
|
|
*/
|
|
VNPASS(!VN_IS_DOOMED(vp), vp);
|
|
if (!cb(vp, cbarg)) {
|
|
if (!should_yield()) {
|
|
vp = TAILQ_NEXT(vp, v_lazylist);
|
|
continue;
|
|
}
|
|
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
|
|
v_lazylist);
|
|
TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
|
|
v_lazylist);
|
|
mtx_unlock(&mp->mnt_listmtx);
|
|
kern_yield(PRI_USER);
|
|
mtx_lock(&mp->mnt_listmtx);
|
|
goto restart;
|
|
}
|
|
/*
|
|
* Try-lock because this is the wrong lock order.
|
|
*/
|
|
if (!VI_TRYLOCK(vp) &&
|
|
!mnt_vnode_next_lazy_relock(*mvp, mp, vp))
|
|
goto restart;
|
|
KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
|
|
KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
|
|
("alien vnode on the lazy list %p %p", vp, mp));
|
|
VNPASS(vp->v_mount == mp, vp);
|
|
VNPASS(!VN_IS_DOOMED(vp), vp);
|
|
break;
|
|
}
|
|
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
|
|
|
|
/* Check if we are done */
|
|
if (vp == NULL) {
|
|
mtx_unlock(&mp->mnt_listmtx);
|
|
mnt_vnode_markerfree_lazy(mvp, mp);
|
|
return (NULL);
|
|
}
|
|
TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
|
|
mtx_unlock(&mp->mnt_listmtx);
|
|
ASSERT_VI_LOCKED(vp, "lazy iter");
|
|
return (vp);
|
|
}
|
|
|
|
struct vnode *
|
|
__mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
|
|
void *cbarg)
|
|
{
|
|
|
|
if (should_yield())
|
|
kern_yield(PRI_USER);
|
|
mtx_lock(&mp->mnt_listmtx);
|
|
return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
|
|
}
|
|
|
|
struct vnode *
|
|
__mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
|
|
void *cbarg)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
|
|
return (NULL);
|
|
|
|
*mvp = vn_alloc_marker(mp);
|
|
MNT_ILOCK(mp);
|
|
MNT_REF(mp);
|
|
MNT_IUNLOCK(mp);
|
|
|
|
mtx_lock(&mp->mnt_listmtx);
|
|
vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
|
|
if (vp == NULL) {
|
|
mtx_unlock(&mp->mnt_listmtx);
|
|
mnt_vnode_markerfree_lazy(mvp, mp);
|
|
return (NULL);
|
|
}
|
|
TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
|
|
return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
|
|
}
|
|
|
|
void
|
|
__mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
|
|
{
|
|
|
|
if (*mvp == NULL)
|
|
return;
|
|
|
|
mtx_lock(&mp->mnt_listmtx);
|
|
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
|
|
mtx_unlock(&mp->mnt_listmtx);
|
|
mnt_vnode_markerfree_lazy(mvp, mp);
|
|
}
|
|
|
|
int
|
|
vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
|
|
{
|
|
|
|
if ((cnp->cn_flags & NOEXECCHECK) != 0) {
|
|
cnp->cn_flags &= ~NOEXECCHECK;
|
|
return (0);
|
|
}
|
|
|
|
return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread));
|
|
}
|
|
|
|
/*
|
|
* Do not use this variant unless you have means other than the hold count
|
|
* to prevent the vnode from getting freed.
|
|
*/
|
|
void
|
|
vn_seqc_write_begin_unheld_locked(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
VNPASS(vp->v_seqc_users >= 0, vp);
|
|
vp->v_seqc_users++;
|
|
if (vp->v_seqc_users == 1)
|
|
seqc_sleepable_write_begin(&vp->v_seqc);
|
|
}
|
|
|
|
void
|
|
vn_seqc_write_begin_locked(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
VNPASS(vp->v_holdcnt > 0, vp);
|
|
vn_seqc_write_begin_unheld_locked(vp);
|
|
}
|
|
|
|
void
|
|
vn_seqc_write_begin(struct vnode *vp)
|
|
{
|
|
|
|
VI_LOCK(vp);
|
|
vn_seqc_write_begin_locked(vp);
|
|
VI_UNLOCK(vp);
|
|
}
|
|
|
|
void
|
|
vn_seqc_write_begin_unheld(struct vnode *vp)
|
|
{
|
|
|
|
VI_LOCK(vp);
|
|
vn_seqc_write_begin_unheld_locked(vp);
|
|
VI_UNLOCK(vp);
|
|
}
|
|
|
|
void
|
|
vn_seqc_write_end_locked(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
VNPASS(vp->v_seqc_users > 0, vp);
|
|
vp->v_seqc_users--;
|
|
if (vp->v_seqc_users == 0)
|
|
seqc_sleepable_write_end(&vp->v_seqc);
|
|
}
|
|
|
|
void
|
|
vn_seqc_write_end(struct vnode *vp)
|
|
{
|
|
|
|
VI_LOCK(vp);
|
|
vn_seqc_write_end_locked(vp);
|
|
VI_UNLOCK(vp);
|
|
}
|
|
|
|
/*
|
|
* Special case handling for allocating and freeing vnodes.
|
|
*
|
|
* The counter remains unchanged on free so that a doomed vnode will
|
|
* keep testing as in modify as long as it is accessible with SMR.
|
|
*/
|
|
static void
|
|
vn_seqc_init(struct vnode *vp)
|
|
{
|
|
|
|
vp->v_seqc = 0;
|
|
vp->v_seqc_users = 0;
|
|
}
|
|
|
|
static void
|
|
vn_seqc_write_end_free(struct vnode *vp)
|
|
{
|
|
|
|
VNPASS(seqc_in_modify(vp->v_seqc), vp);
|
|
VNPASS(vp->v_seqc_users == 1, vp);
|
|
}
|
|
|
|
void
|
|
vn_irflag_set_locked(struct vnode *vp, short toset)
|
|
{
|
|
short flags;
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
flags = vn_irflag_read(vp);
|
|
VNASSERT((flags & toset) == 0, vp,
|
|
("%s: some of the passed flags already set (have %d, passed %d)\n",
|
|
__func__, flags, toset));
|
|
atomic_store_short(&vp->v_irflag, flags | toset);
|
|
}
|
|
|
|
void
|
|
vn_irflag_set(struct vnode *vp, short toset)
|
|
{
|
|
|
|
VI_LOCK(vp);
|
|
vn_irflag_set_locked(vp, toset);
|
|
VI_UNLOCK(vp);
|
|
}
|
|
|
|
void
|
|
vn_irflag_set_cond_locked(struct vnode *vp, short toset)
|
|
{
|
|
short flags;
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
flags = vn_irflag_read(vp);
|
|
atomic_store_short(&vp->v_irflag, flags | toset);
|
|
}
|
|
|
|
void
|
|
vn_irflag_set_cond(struct vnode *vp, short toset)
|
|
{
|
|
|
|
VI_LOCK(vp);
|
|
vn_irflag_set_cond_locked(vp, toset);
|
|
VI_UNLOCK(vp);
|
|
}
|
|
|
|
void
|
|
vn_irflag_unset_locked(struct vnode *vp, short tounset)
|
|
{
|
|
short flags;
|
|
|
|
ASSERT_VI_LOCKED(vp, __func__);
|
|
flags = vn_irflag_read(vp);
|
|
VNASSERT((flags & tounset) == tounset, vp,
|
|
("%s: some of the passed flags not set (have %d, passed %d)\n",
|
|
__func__, flags, tounset));
|
|
atomic_store_short(&vp->v_irflag, flags & ~tounset);
|
|
}
|
|
|
|
void
|
|
vn_irflag_unset(struct vnode *vp, short tounset)
|
|
{
|
|
|
|
VI_LOCK(vp);
|
|
vn_irflag_unset_locked(vp, tounset);
|
|
VI_UNLOCK(vp);
|
|
}
|