2004-06-10 20:03:46 +00:00

777 lines
20 KiB
C

/*-
* Copyright (c) 2003 John Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <machine/apicreg.h>
#include <machine/frame.h>
#include <machine/intr_machdep.h>
#include <machine/apicvar.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include "acpi.h"
#include <contrib/dev/acpica/actables.h>
#include <dev/acpica/acpivar.h>
#include <dev/pci/pcivar.h>
#define NIOAPICS 32 /* Max number of I/O APICs */
#define NLAPICS 32 /* Max number of local APICs */
typedef void madt_entry_handler(APIC_HEADER *entry, void *arg);
/* These two arrays are indexed by APIC IDs. */
struct ioapic_info {
void *io_apic;
UINT32 io_vector;
} ioapics[NIOAPICS];
struct lapic_info {
u_int la_enabled:1;
u_int la_acpi_id:8;
} lapics[NLAPICS];
static int madt_found_sci_override;
static MULTIPLE_APIC_TABLE *madt;
static vm_paddr_t madt_physaddr;
static vm_offset_t madt_length;
MALLOC_DEFINE(M_MADT, "MADT Table", "ACPI MADT Table Items");
static enum intr_polarity interrupt_polarity(UINT16 Polarity, UINT8 Source);
static enum intr_trigger interrupt_trigger(UINT16 TriggerMode, UINT8 Source);
static int madt_find_cpu(u_int acpi_id, u_int *apic_id);
static int madt_find_interrupt(int intr, void **apic, u_int *pin);
static void *madt_map(vm_paddr_t pa, int offset, vm_offset_t length);
static void *madt_map_table(vm_paddr_t pa, int offset, const char *sig);
static void madt_parse_apics(APIC_HEADER *entry, void *arg);
static void madt_parse_interrupt_override(MADT_INTERRUPT_OVERRIDE *intr);
static void madt_parse_ints(APIC_HEADER *entry, void *arg __unused);
static void madt_parse_local_nmi(MADT_LOCAL_APIC_NMI *nmi);
static void madt_parse_nmi(MADT_NMI_SOURCE *nmi);
static int madt_probe(void);
static int madt_probe_cpus(void);
static void madt_probe_cpus_handler(APIC_HEADER *entry, void *arg __unused);
static int madt_probe_table(vm_paddr_t address);
static void madt_register(void *dummy);
static int madt_setup_local(void);
static int madt_setup_io(void);
static void madt_unmap(void *data, vm_offset_t length);
static void madt_unmap_table(void *table);
static void madt_walk_table(madt_entry_handler *handler, void *arg);
static struct apic_enumerator madt_enumerator = {
"MADT",
madt_probe,
madt_probe_cpus,
madt_setup_local,
madt_setup_io
};
/*
* Code to abuse the crashdump map to map in the tables for the early
* probe. We cheat and make the following assumptions about how we
* use this KVA: page 0 is used to map in the first page of each table
* found via the RSDT or XSDT and pages 1 to n are used to map in the
* RSDT or XSDT. The offset is in pages; the length is in bytes.
*/
static void *
madt_map(vm_paddr_t pa, int offset, vm_offset_t length)
{
vm_offset_t va, off;
void *data;
off = pa & PAGE_MASK;
length = roundup(length + off, PAGE_SIZE);
pa = pa & PG_FRAME;
va = (vm_offset_t)pmap_kenter_temporary(pa, offset) +
(offset * PAGE_SIZE);
data = (void *)(va + off);
length -= PAGE_SIZE;
while (length > 0) {
va += PAGE_SIZE;
pa += PAGE_SIZE;
length -= PAGE_SIZE;
pmap_kenter(va, pa);
invlpg(va);
}
return (data);
}
static void
madt_unmap(void *data, vm_offset_t length)
{
vm_offset_t va, off;
va = (vm_offset_t)data;
off = va & PAGE_MASK;
length = roundup(length + off, PAGE_SIZE);
va &= ~PAGE_MASK;
while (length > 0) {
pmap_kremove(va);
invlpg(va);
va += PAGE_SIZE;
length -= PAGE_SIZE;
}
}
static void *
madt_map_table(vm_paddr_t pa, int offset, const char *sig)
{
ACPI_TABLE_HEADER *header;
vm_offset_t length;
void *table;
header = madt_map(pa, offset, sizeof(ACPI_TABLE_HEADER));
if (strncmp(header->Signature, sig, 4) != 0) {
madt_unmap(header, sizeof(ACPI_TABLE_HEADER));
return (NULL);
}
length = header->Length;
madt_unmap(header, sizeof(ACPI_TABLE_HEADER));
table = madt_map(pa, offset, length);
if (ACPI_FAILURE(AcpiTbVerifyTableChecksum(table))) {
if (bootverbose)
printf("MADT: Failed checksum for table %s\n", sig);
madt_unmap(table, length);
return (NULL);
}
return (table);
}
static void
madt_unmap_table(void *table)
{
ACPI_TABLE_HEADER *header;
header = (ACPI_TABLE_HEADER *)table;
madt_unmap(table, header->Length);
}
/*
* Look for an ACPI Multiple APIC Description Table ("APIC")
*/
static int
madt_probe(void)
{
ACPI_POINTER rsdp_ptr;
RSDP_DESCRIPTOR *rsdp;
RSDT_DESCRIPTOR *rsdt;
XSDT_DESCRIPTOR *xsdt;
int i, count;
if (resource_disabled("acpi", 0))
return (ENXIO);
/*
* Map in the RSDP. Since ACPI uses AcpiOsMapMemory() which in turn
* calls pmap_mapdev() to find the RSDP, we assume that we can use
* pmap_mapdev() to map the RSDP.
*/
if (AcpiOsGetRootPointer(ACPI_LOGICAL_ADDRESSING, &rsdp_ptr) != AE_OK)
return (ENXIO);
#ifdef __i386__
KASSERT(rsdp_ptr.Pointer.Physical < KERNLOAD, ("RSDP too high"));
#endif
rsdp = pmap_mapdev(rsdp_ptr.Pointer.Physical, sizeof(RSDP_DESCRIPTOR));
if (rsdp == NULL) {
if (bootverbose)
printf("MADT: Failed to map RSDP\n");
return (ENXIO);
}
/*
* For ACPI < 2.0, use the RSDT. For ACPI >= 2.0, use the XSDT.
* We map the XSDT and RSDT at page 1 in the crashdump area.
* Page 0 is used to map in the headers of candidate ACPI tables.
*/
if (rsdp->Revision >= 2) {
/*
* AcpiOsGetRootPointer only verifies the checksum for
* the version 1.0 portion of the RSDP. Version 2.0 has
* an additional checksum that we verify first.
*/
if (AcpiTbChecksum(rsdp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) {
if (bootverbose)
printf("MADT: RSDP failed extended checksum\n");
return (ENXIO);
}
xsdt = madt_map_table(rsdp->XsdtPhysicalAddress, 1, XSDT_SIG);
if (xsdt == NULL) {
if (bootverbose)
printf("MADT: Failed to map XSDT\n");
return (ENXIO);
}
count = (xsdt->Length - sizeof(ACPI_TABLE_HEADER)) /
sizeof(UINT64);
for (i = 0; i < count; i++)
if (madt_probe_table(xsdt->TableOffsetEntry[i]))
break;
madt_unmap_table(xsdt);
} else {
rsdt = madt_map_table(rsdp->RsdtPhysicalAddress, 1, RSDT_SIG);
if (rsdt == NULL) {
if (bootverbose)
printf("MADT: Failed to map RSDT\n");
return (ENXIO);
}
count = (rsdt->Length - sizeof(ACPI_TABLE_HEADER)) /
sizeof(UINT32);
for (i = 0; i < count; i++)
if (madt_probe_table(rsdt->TableOffsetEntry[i]))
break;
madt_unmap_table(rsdt);
}
pmap_unmapdev((vm_offset_t)rsdp, sizeof(RSDP_DESCRIPTOR));
if (madt_physaddr == 0) {
if (bootverbose)
printf("MADT: No MADT table found\n");
return (ENXIO);
}
if (bootverbose)
printf("MADT: Found table at 0x%jx\n",
(uintmax_t)madt_physaddr);
/*
* Verify that we can map the full table and that its checksum is
* correct, etc.
*/
madt = madt_map_table(madt_physaddr, 0, APIC_SIG);
if (madt == NULL)
return (ENXIO);
madt_unmap_table(madt);
madt = NULL;
return (0);
}
/*
* See if a given ACPI table is the MADT.
*/
static int
madt_probe_table(vm_paddr_t address)
{
ACPI_TABLE_HEADER *table;
table = madt_map(address, 0, sizeof(ACPI_TABLE_HEADER));
if (table == NULL) {
if (bootverbose)
printf("MADT: Failed to map table at 0x%jx\n",
(uintmax_t)address);
return (0);
}
if (bootverbose)
printf("Table '%.4s' at 0x%jx\n", table->Signature,
(uintmax_t)address);
if (strncmp(table->Signature, APIC_SIG, 4) != 0) {
madt_unmap(table, sizeof(ACPI_TABLE_HEADER));
return (0);
}
madt_physaddr = address;
madt_length = table->Length;
madt_unmap(table, sizeof(ACPI_TABLE_HEADER));
return (1);
}
/*
* Run through the MP table enumerating CPUs.
*/
static int
madt_probe_cpus(void)
{
madt = madt_map_table(madt_physaddr, 0, APIC_SIG);
KASSERT(madt != NULL, ("Unable to re-map MADT"));
madt_walk_table(madt_probe_cpus_handler, NULL);
madt_unmap_table(madt);
madt = NULL;
return (0);
}
/*
* Initialize the local APIC on the BSP.
*/
static int
madt_setup_local(void)
{
madt = pmap_mapdev(madt_physaddr, madt_length);
lapic_init((uintptr_t)madt->LocalApicAddress);
printf("ACPI APIC Table: <%.*s %.*s>\n",
(int)sizeof(madt->OemId), madt->OemId,
(int)sizeof(madt->OemTableId), madt->OemTableId);
/*
* We ignore 64-bit local APIC override entries. Should we
* perhaps emit a warning here if we find one?
*/
return (0);
}
/*
* Enumerate I/O APICs and setup interrupt sources.
*/
static int
madt_setup_io(void)
{
void *ioapic;
u_int pin;
int i;
/* Try to initialize ACPI so that we can access the FADT. */
i = acpi_Startup();
if (ACPI_FAILURE(i)) {
printf("MADT: ACPI Startup failed with %s\n",
AcpiFormatException(i));
printf("Try disabling either ACPI or apic support.\n");
panic("Using MADT but ACPI doesn't work");
}
/* First, we run through adding I/O APIC's. */
if (madt->PCATCompat)
ioapic_enable_mixed_mode();
madt_walk_table(madt_parse_apics, NULL);
/* Second, we run through the table tweaking interrupt sources. */
madt_walk_table(madt_parse_ints, NULL);
/*
* If there was not an explicit override entry for the SCI,
* force it to use level trigger and active-low polarity.
*/
if (!madt_found_sci_override) {
if (madt_find_interrupt(AcpiGbl_FADT->SciInt, &ioapic, &pin)
!= 0)
printf("MADT: Could not find APIC for SCI IRQ %d\n",
AcpiGbl_FADT->SciInt);
else {
printf(
"MADT: Forcing active-low polarity and level trigger for SCI\n");
ioapic_set_polarity(ioapic, pin, INTR_POLARITY_LOW);
ioapic_set_triggermode(ioapic, pin, INTR_TRIGGER_LEVEL);
}
}
/* Third, we register all the I/O APIC's. */
for (i = 0; i < NIOAPICS; i++)
if (ioapics[i].io_apic != NULL)
ioapic_register(ioapics[i].io_apic);
/* Finally, we throw the switch to enable the I/O APIC's. */
acpi_SetDefaultIntrModel(ACPI_INTR_APIC);
return (0);
}
static void
madt_register(void *dummy __unused)
{
apic_register_enumerator(&madt_enumerator);
}
SYSINIT(madt_register, SI_SUB_CPU - 1, SI_ORDER_FIRST, madt_register, NULL)
/*
* Call the handler routine for each entry in the MADT table.
*/
static void
madt_walk_table(madt_entry_handler *handler, void *arg)
{
APIC_HEADER *entry;
u_char *p, *end;
end = (u_char *)(madt) + madt->Length;
for (p = (u_char *)(madt + 1); p < end; ) {
entry = (APIC_HEADER *)p;
handler(entry, arg);
p += entry->Length;
}
}
static void
madt_probe_cpus_handler(APIC_HEADER *entry, void *arg)
{
MADT_PROCESSOR_APIC *proc;
struct lapic_info *la;
switch (entry->Type) {
case APIC_PROCESSOR:
/*
* The MADT does not include a BSP flag, so we have to
* let the MP code figure out which CPU is the BSP on
* its own.
*/
proc = (MADT_PROCESSOR_APIC *)entry;
if (bootverbose)
printf("MADT: Found CPU APIC ID %d ACPI ID %d: %s\n",
proc->LocalApicId, proc->ProcessorId,
proc->ProcessorEnabled ? "enabled" : "disabled");
if (!proc->ProcessorEnabled)
break;
if (proc->LocalApicId >= NLAPICS)
panic("%s: CPU ID %d too high", __func__,
proc->LocalApicId);
la = &lapics[proc->LocalApicId];
KASSERT(la->la_enabled == 0,
("Duplicate local APIC ID %d", proc->LocalApicId));
la->la_enabled = 1;
la->la_acpi_id = proc->ProcessorId;
lapic_create(proc->LocalApicId, 0);
break;
}
}
/*
* Add an I/O APIC from an entry in the table.
*/
static void
madt_parse_apics(APIC_HEADER *entry, void *arg __unused)
{
MADT_IO_APIC *apic;
switch (entry->Type) {
case APIC_IO:
apic = (MADT_IO_APIC *)entry;
if (bootverbose)
printf("MADT: Found IO APIC ID %d, Interrupt %d at %p\n",
apic->IoApicId, apic->Interrupt,
(void *)(uintptr_t)apic->Address);
if (apic->IoApicId >= NIOAPICS)
panic("%s: I/O APIC ID %d too high", __func__,
apic->IoApicId);
if (ioapics[apic->IoApicId].io_apic != NULL)
panic("%s: Double APIC ID %d", __func__,
apic->IoApicId);
ioapics[apic->IoApicId].io_apic = ioapic_create(
(uintptr_t)apic->Address, apic->IoApicId,
apic->Interrupt);
ioapics[apic->IoApicId].io_vector = apic->Interrupt;
break;
default:
break;
}
}
/*
* Determine properties of an interrupt source. Note that for ACPI these
* functions are only used for ISA interrupts, so we assume ISA bus values
* (Active Hi, Edge Triggered) for conforming values except for the ACPI
* SCI for which we use Active Lo, Level Triggered.
*/
static enum intr_polarity
interrupt_polarity(UINT16 Polarity, UINT8 Source)
{
switch (Polarity) {
case POLARITY_CONFORMS:
if (Source == AcpiGbl_FADT->SciInt)
return (INTR_POLARITY_LOW);
else
return (INTR_POLARITY_HIGH);
case POLARITY_ACTIVE_HIGH:
return (INTR_POLARITY_HIGH);
case POLARITY_ACTIVE_LOW:
return (INTR_POLARITY_LOW);
default:
panic("Bogus Interrupt Polarity");
}
}
static enum intr_trigger
interrupt_trigger(UINT16 TriggerMode, UINT8 Source)
{
switch (TriggerMode) {
case TRIGGER_CONFORMS:
if (Source == AcpiGbl_FADT->SciInt)
return (INTR_TRIGGER_LEVEL);
else
return (INTR_TRIGGER_EDGE);
case TRIGGER_EDGE:
return (INTR_TRIGGER_EDGE);
case TRIGGER_LEVEL:
return (INTR_TRIGGER_LEVEL);
default:
panic("Bogus Interrupt Trigger Mode");
}
}
/*
* Find the local APIC ID associated with a given ACPI Processor ID.
*/
static int
madt_find_cpu(u_int acpi_id, u_int *apic_id)
{
int i;
for (i = 0; i < NLAPICS; i++) {
if (!lapics[i].la_enabled)
continue;
if (lapics[i].la_acpi_id != acpi_id)
continue;
*apic_id = i;
return (0);
}
return (ENOENT);
}
/*
* Find the IO APIC and pin on that APIC associated with a given global
* interrupt.
*/
static int
madt_find_interrupt(int intr, void **apic, u_int *pin)
{
int i, best;
best = -1;
for (i = 0; i < NIOAPICS; i++) {
if (ioapics[i].io_apic == NULL ||
ioapics[i].io_vector > intr)
continue;
if (best == -1 ||
ioapics[best].io_vector < ioapics[i].io_vector)
best = i;
}
if (best == -1)
return (ENOENT);
*apic = ioapics[best].io_apic;
*pin = intr - ioapics[best].io_vector;
if (*pin > 32)
printf("WARNING: Found intpin of %u for vector %d\n", *pin,
intr);
return (0);
}
/*
* Parse an interrupt source override for an ISA interrupt.
*/
static void
madt_parse_interrupt_override(MADT_INTERRUPT_OVERRIDE *intr)
{
void *new_ioapic, *old_ioapic;
u_int new_pin, old_pin;
enum intr_trigger trig;
enum intr_polarity pol;
char buf[64];
if (bootverbose)
printf("MADT: intr override: source %u, irq %u\n",
intr->Source, intr->Interrupt);
KASSERT(intr->Bus == 0, ("bus for interrupt overrides must be zero"));
if (madt_find_interrupt(intr->Interrupt, &new_ioapic,
&new_pin) != 0) {
printf("MADT: Could not find APIC for vector %d (IRQ %d)\n",
intr->Interrupt, intr->Source);
return;
}
/*
* Lookup the appropriate trigger and polarity modes for this
* entry.
*/
trig = interrupt_trigger(intr->TriggerMode, intr->Source);
pol = interrupt_polarity(intr->Polarity, intr->Source);
/*
* If the SCI is identity mapped but has edge trigger and
* active-hi polarity or the force_sci_lo tunable is set,
* force it to use level/lo.
*/
if (intr->Source == AcpiGbl_FADT->SciInt) {
madt_found_sci_override = 1;
if (getenv_string("hw.acpi.sci.trigger", buf, sizeof(buf))) {
if (tolower(buf[0]) == 'e')
trig = INTR_TRIGGER_EDGE;
else if (tolower(buf[0]) == 'l')
trig = INTR_TRIGGER_LEVEL;
else
panic(
"Invalid trigger %s: must be 'edge' or 'level'",
buf);
printf("MADT: Forcing SCI to %s trigger\n",
trig == INTR_TRIGGER_EDGE ? "edge" : "level");
}
if (getenv_string("hw.acpi.sci.polarity", buf, sizeof(buf))) {
if (tolower(buf[0]) == 'h')
pol = INTR_POLARITY_HIGH;
else if (tolower(buf[0]) == 'l')
pol = INTR_POLARITY_LOW;
else
panic(
"Invalid polarity %s: must be 'high' or 'low'",
buf);
printf("MADT: Forcing SCI to active %s polarity\n",
pol == INTR_POLARITY_HIGH ? "high" : "low");
}
}
/* Remap the IRQ if it is mapped to a different interrupt vector. */
if (intr->Source != intr->Interrupt) {
/*
* If the SCI is remapped to a non-ISA global interrupt,
* then override the vector we use to setup and allocate
* the interrupt.
*/
if (intr->Interrupt > 15 &&
intr->Source == AcpiGbl_FADT->SciInt)
acpi_OverrideInterruptLevel(intr->Interrupt);
else
ioapic_remap_vector(new_ioapic, new_pin, intr->Source);
if (madt_find_interrupt(intr->Source, &old_ioapic,
&old_pin) != 0)
printf("MADT: Could not find APIC for source IRQ %d\n",
intr->Source);
else if (ioapic_get_vector(old_ioapic, old_pin) ==
intr->Source)
ioapic_disable_pin(old_ioapic, old_pin);
}
/* Program the polarity and trigger mode. */
ioapic_set_triggermode(new_ioapic, new_pin, trig);
ioapic_set_polarity(new_ioapic, new_pin, pol);
}
/*
* Parse an entry for an NMI routed to an IO APIC.
*/
static void
madt_parse_nmi(MADT_NMI_SOURCE *nmi)
{
void *ioapic;
u_int pin;
if (madt_find_interrupt(nmi->Interrupt, &ioapic, &pin) != 0) {
printf("MADT: Could not find APIC for vector %d\n",
nmi->Interrupt);
return;
}
ioapic_set_nmi(ioapic, pin);
if (nmi->TriggerMode != TRIGGER_CONFORMS)
ioapic_set_triggermode(ioapic, pin,
interrupt_trigger(nmi->TriggerMode, 0));
if (nmi->Polarity != TRIGGER_CONFORMS)
ioapic_set_polarity(ioapic, pin,
interrupt_polarity(nmi->Polarity, 0));
}
/*
* Parse an entry for an NMI routed to a local APIC LVT pin.
*/
static void
madt_parse_local_nmi(MADT_LOCAL_APIC_NMI *nmi)
{
u_int apic_id, pin;
if (nmi->ProcessorId == 0xff)
apic_id = APIC_ID_ALL;
else if (madt_find_cpu(nmi->ProcessorId, &apic_id) != 0) {
if (bootverbose)
printf("MADT: Ignoring local NMI routed to ACPI CPU %u\n",
nmi->ProcessorId);
return;
}
if (nmi->Lint == 0)
pin = LVT_LINT0;
else
pin = LVT_LINT1;
lapic_set_lvt_mode(apic_id, pin, APIC_LVT_DM_NMI);
if (nmi->TriggerMode != TRIGGER_CONFORMS)
lapic_set_lvt_triggermode(apic_id, pin,
interrupt_trigger(nmi->TriggerMode, 0));
if (nmi->Polarity != POLARITY_CONFORMS)
lapic_set_lvt_polarity(apic_id, pin,
interrupt_polarity(nmi->Polarity, 0));
}
/*
* Parse interrupt entries.
*/
static void
madt_parse_ints(APIC_HEADER *entry, void *arg __unused)
{
switch (entry->Type) {
case APIC_XRUPT_OVERRIDE:
madt_parse_interrupt_override(
(MADT_INTERRUPT_OVERRIDE *)entry);
break;
case APIC_NMI:
madt_parse_nmi((MADT_NMI_SOURCE *)entry);
break;
case APIC_LOCAL_NMI:
madt_parse_local_nmi((MADT_LOCAL_APIC_NMI *)entry);
break;
}
}
/*
* Setup per-CPU ACPI IDs.
*/
static void
madt_set_ids(void *dummy)
{
struct lapic_info *la;
struct pcpu *pc;
u_int i;
if (madt == NULL)
return;
for (i = 0; i <= mp_maxid; i++) {
if (CPU_ABSENT(i))
continue;
pc = pcpu_find(i);
KASSERT(pc != NULL, ("no pcpu data for CPU %d", i));
la = &lapics[pc->pc_apic_id];
if (!la->la_enabled)
panic("APIC: CPU with APIC ID %u is not enabled",
pc->pc_apic_id);
pc->pc_acpi_id = la->la_acpi_id;
if (bootverbose)
printf("APIC: CPU %u has ACPI ID %u\n", i,
la->la_acpi_id);
}
}
SYSINIT(madt_set_ids, SI_SUB_CPU, SI_ORDER_ANY, madt_set_ids, NULL)