freebsd-skq/sys/dev/firewire/fwohci.c

2905 lines
74 KiB
C

/*-
* Copyright (c) 2003 Hidetoshi Shimokawa
* Copyright (c) 1998-2002 Katsushi Kobayashi and Hidetoshi Shimokawa
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the acknowledgement as bellow:
*
* This product includes software developed by K. Kobayashi and H. Shimokawa
*
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*
*/
#define ATRQ_CH 0
#define ATRS_CH 1
#define ARRQ_CH 2
#define ARRS_CH 3
#define ITX_CH 4
#define IRX_CH 0x24
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/sockio.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <machine/bus.h>
#if defined(__DragonFly__) || __FreeBSD_version < 500000
#include <machine/clock.h> /* for DELAY() */
#endif
#ifdef __DragonFly__
#include "firewire.h"
#include "firewirereg.h"
#include "fwdma.h"
#include "fwohcireg.h"
#include "fwohcivar.h"
#include "firewire_phy.h"
#else
#include <dev/firewire/firewire.h>
#include <dev/firewire/firewirereg.h>
#include <dev/firewire/fwdma.h>
#include <dev/firewire/fwohcireg.h>
#include <dev/firewire/fwohcivar.h>
#include <dev/firewire/firewire_phy.h>
#endif
#undef OHCI_DEBUG
static char dbcode[16][0x10]={"OUTM", "OUTL","INPM","INPL",
"STOR","LOAD","NOP ","STOP",};
static char dbkey[8][0x10]={"ST0", "ST1","ST2","ST3",
"UNDEF","REG","SYS","DEV"};
static char dbcond[4][0x10]={"NEV","C=1", "C=0", "ALL"};
char fwohcicode[32][0x20]={
"No stat","Undef","long","miss Ack err",
"underrun","overrun","desc err", "data read err",
"data write err","bus reset","timeout","tcode err",
"Undef","Undef","unknown event","flushed",
"Undef","ack complete","ack pend","Undef",
"ack busy_X","ack busy_A","ack busy_B","Undef",
"Undef","Undef","Undef","ack tardy",
"Undef","ack data_err","ack type_err",""};
#define MAX_SPEED 3
extern char *linkspeed[];
uint32_t tagbit[4] = { 1 << 28, 1 << 29, 1 << 30, 1 << 31};
static struct tcode_info tinfo[] = {
/* hdr_len block flag*/
/* 0 WREQQ */ {16, FWTI_REQ | FWTI_TLABEL},
/* 1 WREQB */ {16, FWTI_REQ | FWTI_TLABEL | FWTI_BLOCK_ASY},
/* 2 WRES */ {12, FWTI_RES},
/* 3 XXX */ { 0, 0},
/* 4 RREQQ */ {12, FWTI_REQ | FWTI_TLABEL},
/* 5 RREQB */ {16, FWTI_REQ | FWTI_TLABEL},
/* 6 RRESQ */ {16, FWTI_RES},
/* 7 RRESB */ {16, FWTI_RES | FWTI_BLOCK_ASY},
/* 8 CYCS */ { 0, 0},
/* 9 LREQ */ {16, FWTI_REQ | FWTI_TLABEL | FWTI_BLOCK_ASY},
/* a STREAM */ { 4, FWTI_REQ | FWTI_BLOCK_STR},
/* b LRES */ {16, FWTI_RES | FWTI_BLOCK_ASY},
/* c XXX */ { 0, 0},
/* d XXX */ { 0, 0},
/* e PHY */ {12, FWTI_REQ},
/* f XXX */ { 0, 0}
};
#define OHCI_WRITE_SIGMASK 0xffff0000
#define OHCI_READ_SIGMASK 0xffff0000
#define OWRITE(sc, r, x) bus_space_write_4((sc)->bst, (sc)->bsh, (r), (x))
#define OREAD(sc, r) bus_space_read_4((sc)->bst, (sc)->bsh, (r))
static void fwohci_ibr (struct firewire_comm *);
static void fwohci_db_init (struct fwohci_softc *, struct fwohci_dbch *);
static void fwohci_db_free (struct fwohci_dbch *);
static void fwohci_arcv (struct fwohci_softc *, struct fwohci_dbch *, int);
static void fwohci_txd (struct fwohci_softc *, struct fwohci_dbch *);
static void fwohci_start_atq (struct firewire_comm *);
static void fwohci_start_ats (struct firewire_comm *);
static void fwohci_start (struct fwohci_softc *, struct fwohci_dbch *);
static uint32_t fwphy_wrdata ( struct fwohci_softc *, uint32_t, uint32_t);
static uint32_t fwphy_rddata ( struct fwohci_softc *, uint32_t);
static int fwohci_rx_enable (struct fwohci_softc *, struct fwohci_dbch *);
static int fwohci_tx_enable (struct fwohci_softc *, struct fwohci_dbch *);
static int fwohci_irx_enable (struct firewire_comm *, int);
static int fwohci_irx_disable (struct firewire_comm *, int);
#if BYTE_ORDER == BIG_ENDIAN
static void fwohci_irx_post (struct firewire_comm *, uint32_t *);
#endif
static int fwohci_itxbuf_enable (struct firewire_comm *, int);
static int fwohci_itx_disable (struct firewire_comm *, int);
static void fwohci_timeout (void *);
static void fwohci_set_intr (struct firewire_comm *, int);
static int fwohci_add_rx_buf (struct fwohci_dbch *, struct fwohcidb_tr *, int, struct fwdma_alloc *);
static int fwohci_add_tx_buf (struct fwohci_dbch *, struct fwohcidb_tr *, int);
static void dump_db (struct fwohci_softc *, uint32_t);
static void print_db (struct fwohcidb_tr *, struct fwohcidb *, uint32_t , uint32_t);
static void dump_dma (struct fwohci_softc *, uint32_t);
static uint32_t fwohci_cyctimer (struct firewire_comm *);
static void fwohci_rbuf_update (struct fwohci_softc *, int);
static void fwohci_tbuf_update (struct fwohci_softc *, int);
void fwohci_txbufdb (struct fwohci_softc *, int , struct fw_bulkxfer *);
#if FWOHCI_TASKQUEUE
static void fwohci_complete(void *, int);
#endif
/*
* memory allocated for DMA programs
*/
#define DMA_PROG_ALLOC (8 * PAGE_SIZE)
#define NDB FWMAXQUEUE
#define OHCI_VERSION 0x00
#define OHCI_ATRETRY 0x08
#define OHCI_CROMHDR 0x18
#define OHCI_BUS_OPT 0x20
#define OHCI_BUSIRMC (1 << 31)
#define OHCI_BUSCMC (1 << 30)
#define OHCI_BUSISC (1 << 29)
#define OHCI_BUSBMC (1 << 28)
#define OHCI_BUSPMC (1 << 27)
#define OHCI_BUSFNC OHCI_BUSIRMC | OHCI_BUSCMC | OHCI_BUSISC |\
OHCI_BUSBMC | OHCI_BUSPMC
#define OHCI_EUID_HI 0x24
#define OHCI_EUID_LO 0x28
#define OHCI_CROMPTR 0x34
#define OHCI_HCCCTL 0x50
#define OHCI_HCCCTLCLR 0x54
#define OHCI_AREQHI 0x100
#define OHCI_AREQHICLR 0x104
#define OHCI_AREQLO 0x108
#define OHCI_AREQLOCLR 0x10c
#define OHCI_PREQHI 0x110
#define OHCI_PREQHICLR 0x114
#define OHCI_PREQLO 0x118
#define OHCI_PREQLOCLR 0x11c
#define OHCI_PREQUPPER 0x120
#define OHCI_SID_BUF 0x64
#define OHCI_SID_CNT 0x68
#define OHCI_SID_ERR (1 << 31)
#define OHCI_SID_CNT_MASK 0xffc
#define OHCI_IT_STAT 0x90
#define OHCI_IT_STATCLR 0x94
#define OHCI_IT_MASK 0x98
#define OHCI_IT_MASKCLR 0x9c
#define OHCI_IR_STAT 0xa0
#define OHCI_IR_STATCLR 0xa4
#define OHCI_IR_MASK 0xa8
#define OHCI_IR_MASKCLR 0xac
#define OHCI_LNKCTL 0xe0
#define OHCI_LNKCTLCLR 0xe4
#define OHCI_PHYACCESS 0xec
#define OHCI_CYCLETIMER 0xf0
#define OHCI_DMACTL(off) (off)
#define OHCI_DMACTLCLR(off) (off + 4)
#define OHCI_DMACMD(off) (off + 0xc)
#define OHCI_DMAMATCH(off) (off + 0x10)
#define OHCI_ATQOFF 0x180
#define OHCI_ATQCTL OHCI_ATQOFF
#define OHCI_ATQCTLCLR (OHCI_ATQOFF + 4)
#define OHCI_ATQCMD (OHCI_ATQOFF + 0xc)
#define OHCI_ATQMATCH (OHCI_ATQOFF + 0x10)
#define OHCI_ATSOFF 0x1a0
#define OHCI_ATSCTL OHCI_ATSOFF
#define OHCI_ATSCTLCLR (OHCI_ATSOFF + 4)
#define OHCI_ATSCMD (OHCI_ATSOFF + 0xc)
#define OHCI_ATSMATCH (OHCI_ATSOFF + 0x10)
#define OHCI_ARQOFF 0x1c0
#define OHCI_ARQCTL OHCI_ARQOFF
#define OHCI_ARQCTLCLR (OHCI_ARQOFF + 4)
#define OHCI_ARQCMD (OHCI_ARQOFF + 0xc)
#define OHCI_ARQMATCH (OHCI_ARQOFF + 0x10)
#define OHCI_ARSOFF 0x1e0
#define OHCI_ARSCTL OHCI_ARSOFF
#define OHCI_ARSCTLCLR (OHCI_ARSOFF + 4)
#define OHCI_ARSCMD (OHCI_ARSOFF + 0xc)
#define OHCI_ARSMATCH (OHCI_ARSOFF + 0x10)
#define OHCI_ITOFF(CH) (0x200 + 0x10 * (CH))
#define OHCI_ITCTL(CH) (OHCI_ITOFF(CH))
#define OHCI_ITCTLCLR(CH) (OHCI_ITOFF(CH) + 4)
#define OHCI_ITCMD(CH) (OHCI_ITOFF(CH) + 0xc)
#define OHCI_IROFF(CH) (0x400 + 0x20 * (CH))
#define OHCI_IRCTL(CH) (OHCI_IROFF(CH))
#define OHCI_IRCTLCLR(CH) (OHCI_IROFF(CH) + 4)
#define OHCI_IRCMD(CH) (OHCI_IROFF(CH) + 0xc)
#define OHCI_IRMATCH(CH) (OHCI_IROFF(CH) + 0x10)
d_ioctl_t fwohci_ioctl;
/*
* Communication with PHY device
*/
static uint32_t
fwphy_wrdata( struct fwohci_softc *sc, uint32_t addr, uint32_t data)
{
uint32_t fun;
addr &= 0xf;
data &= 0xff;
fun = (PHYDEV_WRCMD | (addr << PHYDEV_REGADDR) | (data << PHYDEV_WRDATA));
OWRITE(sc, OHCI_PHYACCESS, fun);
DELAY(100);
return(fwphy_rddata( sc, addr));
}
static uint32_t
fwohci_set_bus_manager(struct firewire_comm *fc, u_int node)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
int i;
uint32_t bm;
#define OHCI_CSR_DATA 0x0c
#define OHCI_CSR_COMP 0x10
#define OHCI_CSR_CONT 0x14
#define OHCI_BUS_MANAGER_ID 0
OWRITE(sc, OHCI_CSR_DATA, node);
OWRITE(sc, OHCI_CSR_COMP, 0x3f);
OWRITE(sc, OHCI_CSR_CONT, OHCI_BUS_MANAGER_ID);
for (i = 0; !(OREAD(sc, OHCI_CSR_CONT) & (1<<31)) && (i < 1000); i++)
DELAY(10);
bm = OREAD(sc, OHCI_CSR_DATA);
if((bm & 0x3f) == 0x3f)
bm = node;
if (firewire_debug)
device_printf(sc->fc.dev,
"fw_set_bus_manager: %d->%d (loop=%d)\n", bm, node, i);
return(bm);
}
static uint32_t
fwphy_rddata(struct fwohci_softc *sc, u_int addr)
{
uint32_t fun, stat;
u_int i, retry = 0;
addr &= 0xf;
#define MAX_RETRY 100
again:
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_REG_FAIL);
fun = PHYDEV_RDCMD | (addr << PHYDEV_REGADDR);
OWRITE(sc, OHCI_PHYACCESS, fun);
for ( i = 0 ; i < MAX_RETRY ; i ++ ){
fun = OREAD(sc, OHCI_PHYACCESS);
if ((fun & PHYDEV_RDCMD) == 0 && (fun & PHYDEV_RDDONE) != 0)
break;
DELAY(100);
}
if(i >= MAX_RETRY) {
if (firewire_debug)
device_printf(sc->fc.dev, "phy read failed(1).\n");
if (++retry < MAX_RETRY) {
DELAY(100);
goto again;
}
}
/* Make sure that SCLK is started */
stat = OREAD(sc, FWOHCI_INTSTAT);
if ((stat & OHCI_INT_REG_FAIL) != 0 ||
((fun >> PHYDEV_REGADDR) & 0xf) != addr) {
if (firewire_debug)
device_printf(sc->fc.dev, "phy read failed(2).\n");
if (++retry < MAX_RETRY) {
DELAY(100);
goto again;
}
}
if (firewire_debug || retry >= MAX_RETRY)
device_printf(sc->fc.dev,
"fwphy_rddata: 0x%x loop=%d, retry=%d\n", addr, i, retry);
#undef MAX_RETRY
return((fun >> PHYDEV_RDDATA )& 0xff);
}
/* Device specific ioctl. */
int
fwohci_ioctl (struct cdev *dev, u_long cmd, caddr_t data, int flag, fw_proc *td)
{
struct firewire_softc *sc;
struct fwohci_softc *fc;
int unit = DEV2UNIT(dev);
int err = 0;
struct fw_reg_req_t *reg = (struct fw_reg_req_t *) data;
uint32_t *dmach = (uint32_t *) data;
sc = devclass_get_softc(firewire_devclass, unit);
if(sc == NULL){
return(EINVAL);
}
fc = (struct fwohci_softc *)sc->fc;
if (!data)
return(EINVAL);
switch (cmd) {
case FWOHCI_WRREG:
#define OHCI_MAX_REG 0x800
if(reg->addr <= OHCI_MAX_REG){
OWRITE(fc, reg->addr, reg->data);
reg->data = OREAD(fc, reg->addr);
}else{
err = EINVAL;
}
break;
case FWOHCI_RDREG:
if(reg->addr <= OHCI_MAX_REG){
reg->data = OREAD(fc, reg->addr);
}else{
err = EINVAL;
}
break;
/* Read DMA descriptors for debug */
case DUMPDMA:
if(*dmach <= OHCI_MAX_DMA_CH ){
dump_dma(fc, *dmach);
dump_db(fc, *dmach);
}else{
err = EINVAL;
}
break;
/* Read/Write Phy registers */
#define OHCI_MAX_PHY_REG 0xf
case FWOHCI_RDPHYREG:
if (reg->addr <= OHCI_MAX_PHY_REG)
reg->data = fwphy_rddata(fc, reg->addr);
else
err = EINVAL;
break;
case FWOHCI_WRPHYREG:
if (reg->addr <= OHCI_MAX_PHY_REG)
reg->data = fwphy_wrdata(fc, reg->addr, reg->data);
else
err = EINVAL;
break;
default:
err = EINVAL;
break;
}
return err;
}
static int
fwohci_probe_phy(struct fwohci_softc *sc, device_t dev)
{
uint32_t reg, reg2;
int e1394a = 1;
/*
* probe PHY parameters
* 0. to prove PHY version, whether compliance of 1394a.
* 1. to probe maximum speed supported by the PHY and
* number of port supported by core-logic.
* It is not actually available port on your PC .
*/
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS);
reg = fwphy_rddata(sc, FW_PHY_SPD_REG);
if((reg >> 5) != 7 ){
sc->fc.mode &= ~FWPHYASYST;
sc->fc.nport = reg & FW_PHY_NP;
sc->fc.speed = reg & FW_PHY_SPD >> 6;
if (sc->fc.speed > MAX_SPEED) {
device_printf(dev, "invalid speed %d (fixed to %d).\n",
sc->fc.speed, MAX_SPEED);
sc->fc.speed = MAX_SPEED;
}
device_printf(dev,
"Phy 1394 only %s, %d ports.\n",
linkspeed[sc->fc.speed], sc->fc.nport);
}else{
reg2 = fwphy_rddata(sc, FW_PHY_ESPD_REG);
sc->fc.mode |= FWPHYASYST;
sc->fc.nport = reg & FW_PHY_NP;
sc->fc.speed = (reg2 & FW_PHY_ESPD) >> 5;
if (sc->fc.speed > MAX_SPEED) {
device_printf(dev, "invalid speed %d (fixed to %d).\n",
sc->fc.speed, MAX_SPEED);
sc->fc.speed = MAX_SPEED;
}
device_printf(dev,
"Phy 1394a available %s, %d ports.\n",
linkspeed[sc->fc.speed], sc->fc.nport);
/* check programPhyEnable */
reg2 = fwphy_rddata(sc, 5);
#if 0
if (e1394a && (OREAD(sc, OHCI_HCCCTL) & OHCI_HCC_PRPHY)) {
#else /* XXX force to enable 1394a */
if (e1394a) {
#endif
if (firewire_debug)
device_printf(dev,
"Enable 1394a Enhancements\n");
/* enable EAA EMC */
reg2 |= 0x03;
/* set aPhyEnhanceEnable */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_PHYEN);
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_PRPHY);
} else {
/* for safe */
reg2 &= ~0x83;
}
reg2 = fwphy_wrdata(sc, 5, reg2);
}
reg = fwphy_rddata(sc, FW_PHY_SPD_REG);
if((reg >> 5) == 7 ){
reg = fwphy_rddata(sc, 4);
reg |= 1 << 6;
fwphy_wrdata(sc, 4, reg);
reg = fwphy_rddata(sc, 4);
}
return 0;
}
void
fwohci_reset(struct fwohci_softc *sc, device_t dev)
{
int i, max_rec, speed;
uint32_t reg, reg2;
struct fwohcidb_tr *db_tr;
/* Disable interrupts */
OWRITE(sc, FWOHCI_INTMASKCLR, ~0);
/* Now stopping all DMA channels */
OWRITE(sc, OHCI_ARQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ARSCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_IR_MASKCLR, ~0);
for( i = 0 ; i < sc->fc.nisodma ; i ++ ){
OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN);
}
/* FLUSH FIFO and reset Transmitter/Reciever */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_RESET);
if (firewire_debug)
device_printf(dev, "resetting OHCI...");
i = 0;
while(OREAD(sc, OHCI_HCCCTL) & OHCI_HCC_RESET) {
if (i++ > 100) break;
DELAY(1000);
}
if (firewire_debug)
printf("done (loop=%d)\n", i);
/* Probe phy */
fwohci_probe_phy(sc, dev);
/* Probe link */
reg = OREAD(sc, OHCI_BUS_OPT);
reg2 = reg | OHCI_BUSFNC;
max_rec = (reg & 0x0000f000) >> 12;
speed = (reg & 0x00000007);
device_printf(dev, "Link %s, max_rec %d bytes.\n",
linkspeed[speed], MAXREC(max_rec));
/* XXX fix max_rec */
sc->fc.maxrec = sc->fc.speed + 8;
if (max_rec != sc->fc.maxrec) {
reg2 = (reg2 & 0xffff0fff) | (sc->fc.maxrec << 12);
device_printf(dev, "max_rec %d -> %d\n",
MAXREC(max_rec), MAXREC(sc->fc.maxrec));
}
if (firewire_debug)
device_printf(dev, "BUS_OPT 0x%x -> 0x%x\n", reg, reg2);
OWRITE(sc, OHCI_BUS_OPT, reg2);
/* Initialize registers */
OWRITE(sc, OHCI_CROMHDR, sc->fc.config_rom[0]);
OWRITE(sc, OHCI_CROMPTR, sc->crom_dma.bus_addr);
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_BIGEND);
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_POSTWR);
OWRITE(sc, OHCI_SID_BUF, sc->sid_dma.bus_addr);
OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_SID);
/* Enable link */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LINKEN);
/* Force to start async RX DMA */
sc->arrq.xferq.flag &= ~FWXFERQ_RUNNING;
sc->arrs.xferq.flag &= ~FWXFERQ_RUNNING;
fwohci_rx_enable(sc, &sc->arrq);
fwohci_rx_enable(sc, &sc->arrs);
/* Initialize async TX */
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN | OHCI_CNTL_DMA_DEAD);
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN | OHCI_CNTL_DMA_DEAD);
/* AT Retries */
OWRITE(sc, FWOHCI_RETRY,
/* CycleLimit PhyRespRetries ATRespRetries ATReqRetries */
(0xffff << 16 ) | (0x0f << 8) | (0x0f << 4) | 0x0f) ;
sc->atrq.top = STAILQ_FIRST(&sc->atrq.db_trq);
sc->atrs.top = STAILQ_FIRST(&sc->atrs.db_trq);
sc->atrq.bottom = sc->atrq.top;
sc->atrs.bottom = sc->atrs.top;
for( i = 0, db_tr = sc->atrq.top; i < sc->atrq.ndb ;
i ++, db_tr = STAILQ_NEXT(db_tr, link)){
db_tr->xfer = NULL;
}
for( i = 0, db_tr = sc->atrs.top; i < sc->atrs.ndb ;
i ++, db_tr = STAILQ_NEXT(db_tr, link)){
db_tr->xfer = NULL;
}
/* Enable interrupts */
OWRITE(sc, FWOHCI_INTMASK,
OHCI_INT_ERR | OHCI_INT_PHY_SID
| OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS
| OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_PRRS
| OHCI_INT_PHY_BUS_R | OHCI_INT_PW_ERR);
fwohci_set_intr(&sc->fc, 1);
}
int
fwohci_init(struct fwohci_softc *sc, device_t dev)
{
int i, mver;
uint32_t reg;
uint8_t ui[8];
#if FWOHCI_TASKQUEUE
TASK_INIT(&sc->fwohci_task_complete, 0, fwohci_complete, sc);
#endif
/* OHCI version */
reg = OREAD(sc, OHCI_VERSION);
mver = (reg >> 16) & 0xff;
device_printf(dev, "OHCI version %x.%x (ROM=%d)\n",
mver, reg & 0xff, (reg>>24) & 1);
if (mver < 1 || mver > 9) {
device_printf(dev, "invalid OHCI version\n");
return (ENXIO);
}
/* Available Isochronous DMA channel probe */
OWRITE(sc, OHCI_IT_MASK, 0xffffffff);
OWRITE(sc, OHCI_IR_MASK, 0xffffffff);
reg = OREAD(sc, OHCI_IT_MASK) & OREAD(sc, OHCI_IR_MASK);
OWRITE(sc, OHCI_IT_MASKCLR, 0xffffffff);
OWRITE(sc, OHCI_IR_MASKCLR, 0xffffffff);
for (i = 0; i < 0x20; i++)
if ((reg & (1 << i)) == 0)
break;
sc->fc.nisodma = i;
device_printf(dev, "No. of Isochronous channels is %d.\n", i);
if (i == 0)
return (ENXIO);
sc->fc.arq = &sc->arrq.xferq;
sc->fc.ars = &sc->arrs.xferq;
sc->fc.atq = &sc->atrq.xferq;
sc->fc.ats = &sc->atrs.xferq;
sc->arrq.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE);
sc->arrs.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE);
sc->atrq.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE);
sc->atrs.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE);
sc->arrq.xferq.start = NULL;
sc->arrs.xferq.start = NULL;
sc->atrq.xferq.start = fwohci_start_atq;
sc->atrs.xferq.start = fwohci_start_ats;
sc->arrq.xferq.buf = NULL;
sc->arrs.xferq.buf = NULL;
sc->atrq.xferq.buf = NULL;
sc->atrs.xferq.buf = NULL;
sc->arrq.xferq.dmach = -1;
sc->arrs.xferq.dmach = -1;
sc->atrq.xferq.dmach = -1;
sc->atrs.xferq.dmach = -1;
sc->arrq.ndesc = 1;
sc->arrs.ndesc = 1;
sc->atrq.ndesc = 8; /* equal to maximum of mbuf chains */
sc->atrs.ndesc = 2;
sc->arrq.ndb = NDB;
sc->arrs.ndb = NDB / 2;
sc->atrq.ndb = NDB;
sc->atrs.ndb = NDB / 2;
for( i = 0 ; i < sc->fc.nisodma ; i ++ ){
sc->fc.it[i] = &sc->it[i].xferq;
sc->fc.ir[i] = &sc->ir[i].xferq;
sc->it[i].xferq.dmach = i;
sc->ir[i].xferq.dmach = i;
sc->it[i].ndb = 0;
sc->ir[i].ndb = 0;
}
sc->fc.tcode = tinfo;
sc->fc.dev = dev;
sc->fc.config_rom = fwdma_malloc(&sc->fc, CROMSIZE, CROMSIZE,
&sc->crom_dma, BUS_DMA_WAITOK);
if(sc->fc.config_rom == NULL){
device_printf(dev, "config_rom alloc failed.");
return ENOMEM;
}
#if 0
bzero(&sc->fc.config_rom[0], CROMSIZE);
sc->fc.config_rom[1] = 0x31333934;
sc->fc.config_rom[2] = 0xf000a002;
sc->fc.config_rom[3] = OREAD(sc, OHCI_EUID_HI);
sc->fc.config_rom[4] = OREAD(sc, OHCI_EUID_LO);
sc->fc.config_rom[5] = 0;
sc->fc.config_rom[0] = (4 << 24) | (5 << 16);
sc->fc.config_rom[0] |= fw_crc16(&sc->fc.config_rom[1], 5*4);
#endif
/* SID recieve buffer must align 2^11 */
#define OHCI_SIDSIZE (1 << 11)
sc->sid_buf = fwdma_malloc(&sc->fc, OHCI_SIDSIZE, OHCI_SIDSIZE,
&sc->sid_dma, BUS_DMA_WAITOK);
if (sc->sid_buf == NULL) {
device_printf(dev, "sid_buf alloc failed.");
return ENOMEM;
}
fwdma_malloc(&sc->fc, sizeof(uint32_t), sizeof(uint32_t),
&sc->dummy_dma, BUS_DMA_WAITOK);
if (sc->dummy_dma.v_addr == NULL) {
device_printf(dev, "dummy_dma alloc failed.");
return ENOMEM;
}
fwohci_db_init(sc, &sc->arrq);
if ((sc->arrq.flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
fwohci_db_init(sc, &sc->arrs);
if ((sc->arrs.flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
fwohci_db_init(sc, &sc->atrq);
if ((sc->atrq.flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
fwohci_db_init(sc, &sc->atrs);
if ((sc->atrs.flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
sc->fc.eui.hi = OREAD(sc, FWOHCIGUID_H);
sc->fc.eui.lo = OREAD(sc, FWOHCIGUID_L);
for( i = 0 ; i < 8 ; i ++)
ui[i] = FW_EUI64_BYTE(&sc->fc.eui,i);
device_printf(dev, "EUI64 %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
ui[0], ui[1], ui[2], ui[3], ui[4], ui[5], ui[6], ui[7]);
sc->fc.ioctl = fwohci_ioctl;
sc->fc.cyctimer = fwohci_cyctimer;
sc->fc.set_bmr = fwohci_set_bus_manager;
sc->fc.ibr = fwohci_ibr;
sc->fc.irx_enable = fwohci_irx_enable;
sc->fc.irx_disable = fwohci_irx_disable;
sc->fc.itx_enable = fwohci_itxbuf_enable;
sc->fc.itx_disable = fwohci_itx_disable;
#if BYTE_ORDER == BIG_ENDIAN
sc->fc.irx_post = fwohci_irx_post;
#else
sc->fc.irx_post = NULL;
#endif
sc->fc.itx_post = NULL;
sc->fc.timeout = fwohci_timeout;
sc->fc.poll = fwohci_poll;
sc->fc.set_intr = fwohci_set_intr;
sc->intmask = sc->irstat = sc->itstat = 0;
fw_init(&sc->fc);
fwohci_reset(sc, dev);
return 0;
}
void
fwohci_timeout(void *arg)
{
struct fwohci_softc *sc;
sc = (struct fwohci_softc *)arg;
}
uint32_t
fwohci_cyctimer(struct firewire_comm *fc)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
return(OREAD(sc, OHCI_CYCLETIMER));
}
int
fwohci_detach(struct fwohci_softc *sc, device_t dev)
{
int i;
if (sc->sid_buf != NULL)
fwdma_free(&sc->fc, &sc->sid_dma);
if (sc->fc.config_rom != NULL)
fwdma_free(&sc->fc, &sc->crom_dma);
fwohci_db_free(&sc->arrq);
fwohci_db_free(&sc->arrs);
fwohci_db_free(&sc->atrq);
fwohci_db_free(&sc->atrs);
for( i = 0 ; i < sc->fc.nisodma ; i ++ ){
fwohci_db_free(&sc->it[i]);
fwohci_db_free(&sc->ir[i]);
}
return 0;
}
#define LAST_DB(dbtr, db) do { \
struct fwohcidb_tr *_dbtr = (dbtr); \
int _cnt = _dbtr->dbcnt; \
db = &_dbtr->db[ (_cnt > 2) ? (_cnt -1) : 0]; \
} while (0)
static void
fwohci_execute_db(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct fwohcidb_tr *db_tr;
struct fwohcidb *db;
bus_dma_segment_t *s;
int i;
db_tr = (struct fwohcidb_tr *)arg;
db = &db_tr->db[db_tr->dbcnt];
if (error) {
if (firewire_debug || error != EFBIG)
printf("fwohci_execute_db: error=%d\n", error);
return;
}
for (i = 0; i < nseg; i++) {
s = &segs[i];
FWOHCI_DMA_WRITE(db->db.desc.addr, s->ds_addr);
FWOHCI_DMA_WRITE(db->db.desc.cmd, s->ds_len);
FWOHCI_DMA_WRITE(db->db.desc.res, 0);
db++;
db_tr->dbcnt++;
}
}
static void
fwohci_execute_db2(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t size, int error)
{
fwohci_execute_db(arg, segs, nseg, error);
}
static void
fwohci_start(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
int i, s;
int tcode, hdr_len, pl_off;
int fsegment = -1;
uint32_t off;
struct fw_xfer *xfer;
struct fw_pkt *fp;
struct fwohci_txpkthdr *ohcifp;
struct fwohcidb_tr *db_tr;
struct fwohcidb *db;
uint32_t *ld;
struct tcode_info *info;
static int maxdesc=0;
if(&sc->atrq == dbch){
off = OHCI_ATQOFF;
}else if(&sc->atrs == dbch){
off = OHCI_ATSOFF;
}else{
return;
}
if (dbch->flags & FWOHCI_DBCH_FULL)
return;
s = splfw();
db_tr = dbch->top;
txloop:
xfer = STAILQ_FIRST(&dbch->xferq.q);
if(xfer == NULL){
goto kick;
}
if(dbch->xferq.queued == 0 ){
device_printf(sc->fc.dev, "TX queue empty\n");
}
STAILQ_REMOVE_HEAD(&dbch->xferq.q, link);
db_tr->xfer = xfer;
xfer->state = FWXF_START;
fp = &xfer->send.hdr;
tcode = fp->mode.common.tcode;
ohcifp = (struct fwohci_txpkthdr *) db_tr->db[1].db.immed;
info = &tinfo[tcode];
hdr_len = pl_off = info->hdr_len;
ld = &ohcifp->mode.ld[0];
ld[0] = ld[1] = ld[2] = ld[3] = 0;
for( i = 0 ; i < pl_off ; i+= 4)
ld[i/4] = fp->mode.ld[i/4];
ohcifp->mode.common.spd = xfer->send.spd & 0x7;
if (tcode == FWTCODE_STREAM ){
hdr_len = 8;
ohcifp->mode.stream.len = fp->mode.stream.len;
} else if (tcode == FWTCODE_PHY) {
hdr_len = 12;
ld[1] = fp->mode.ld[1];
ld[2] = fp->mode.ld[2];
ohcifp->mode.common.spd = 0;
ohcifp->mode.common.tcode = FWOHCITCODE_PHY;
} else {
ohcifp->mode.asycomm.dst = fp->mode.hdr.dst;
ohcifp->mode.asycomm.srcbus = OHCI_ASYSRCBUS;
ohcifp->mode.asycomm.tlrt |= FWRETRY_X;
}
db = &db_tr->db[0];
FWOHCI_DMA_WRITE(db->db.desc.cmd,
OHCI_OUTPUT_MORE | OHCI_KEY_ST2 | hdr_len);
FWOHCI_DMA_WRITE(db->db.desc.addr, 0);
FWOHCI_DMA_WRITE(db->db.desc.res, 0);
/* Specify bound timer of asy. responce */
if(&sc->atrs == dbch){
FWOHCI_DMA_WRITE(db->db.desc.res,
(OREAD(sc, OHCI_CYCLETIMER) >> 12) + (1 << 13));
}
#if BYTE_ORDER == BIG_ENDIAN
if (tcode == FWTCODE_WREQQ || tcode == FWTCODE_RRESQ)
hdr_len = 12;
for (i = 0; i < hdr_len/4; i ++)
FWOHCI_DMA_WRITE(ld[i], ld[i]);
#endif
again:
db_tr->dbcnt = 2;
db = &db_tr->db[db_tr->dbcnt];
if (xfer->send.pay_len > 0) {
int err;
/* handle payload */
if (xfer->mbuf == NULL) {
err = bus_dmamap_load(dbch->dmat, db_tr->dma_map,
&xfer->send.payload[0], xfer->send.pay_len,
fwohci_execute_db, db_tr,
/*flags*/0);
} else {
/* XXX we can handle only 6 (=8-2) mbuf chains */
err = bus_dmamap_load_mbuf(dbch->dmat, db_tr->dma_map,
xfer->mbuf,
fwohci_execute_db2, db_tr,
/* flags */0);
if (err == EFBIG) {
struct mbuf *m0;
if (firewire_debug)
device_printf(sc->fc.dev, "EFBIG.\n");
m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m0 != NULL) {
m_copydata(xfer->mbuf, 0,
xfer->mbuf->m_pkthdr.len,
mtod(m0, caddr_t));
m0->m_len = m0->m_pkthdr.len =
xfer->mbuf->m_pkthdr.len;
m_freem(xfer->mbuf);
xfer->mbuf = m0;
goto again;
}
device_printf(sc->fc.dev, "m_getcl failed.\n");
}
}
if (err)
printf("dmamap_load: err=%d\n", err);
bus_dmamap_sync(dbch->dmat, db_tr->dma_map,
BUS_DMASYNC_PREWRITE);
#if 0 /* OHCI_OUTPUT_MODE == 0 */
for (i = 2; i < db_tr->dbcnt; i++)
FWOHCI_DMA_SET(db_tr->db[i].db.desc.cmd,
OHCI_OUTPUT_MORE);
#endif
}
if (maxdesc < db_tr->dbcnt) {
maxdesc = db_tr->dbcnt;
if (firewire_debug)
device_printf(sc->fc.dev, "maxdesc: %d\n", maxdesc);
}
/* last db */
LAST_DB(db_tr, db);
FWOHCI_DMA_SET(db->db.desc.cmd,
OHCI_OUTPUT_LAST | OHCI_INTERRUPT_ALWAYS | OHCI_BRANCH_ALWAYS);
FWOHCI_DMA_WRITE(db->db.desc.depend,
STAILQ_NEXT(db_tr, link)->bus_addr);
if(fsegment == -1 )
fsegment = db_tr->dbcnt;
if (dbch->pdb_tr != NULL) {
LAST_DB(dbch->pdb_tr, db);
FWOHCI_DMA_SET(db->db.desc.depend, db_tr->dbcnt);
}
dbch->pdb_tr = db_tr;
db_tr = STAILQ_NEXT(db_tr, link);
if(db_tr != dbch->bottom){
goto txloop;
} else {
device_printf(sc->fc.dev, "fwohci_start: lack of db_trq\n");
dbch->flags |= FWOHCI_DBCH_FULL;
}
kick:
/* kick asy q */
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREREAD);
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREWRITE);
if(dbch->xferq.flag & FWXFERQ_RUNNING) {
OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_WAKE);
} else {
if (firewire_debug)
device_printf(sc->fc.dev, "start AT DMA status=%x\n",
OREAD(sc, OHCI_DMACTL(off)));
OWRITE(sc, OHCI_DMACMD(off), dbch->top->bus_addr | fsegment);
OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_RUN);
dbch->xferq.flag |= FWXFERQ_RUNNING;
}
dbch->top = db_tr;
splx(s);
return;
}
static void
fwohci_start_atq(struct firewire_comm *fc)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
fwohci_start( sc, &(sc->atrq));
return;
}
static void
fwohci_start_ats(struct firewire_comm *fc)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
fwohci_start( sc, &(sc->atrs));
return;
}
void
fwohci_txd(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
int s, ch, err = 0;
struct fwohcidb_tr *tr;
struct fwohcidb *db;
struct fw_xfer *xfer;
uint32_t off;
u_int stat, status;
int packets;
struct firewire_comm *fc = (struct firewire_comm *)sc;
if(&sc->atrq == dbch){
off = OHCI_ATQOFF;
ch = ATRQ_CH;
}else if(&sc->atrs == dbch){
off = OHCI_ATSOFF;
ch = ATRS_CH;
}else{
return;
}
s = splfw();
tr = dbch->bottom;
packets = 0;
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_POSTREAD);
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_POSTWRITE);
while(dbch->xferq.queued > 0){
LAST_DB(tr, db);
status = FWOHCI_DMA_READ(db->db.desc.res) >> OHCI_STATUS_SHIFT;
if(!(status & OHCI_CNTL_DMA_ACTIVE)){
if (fc->status != FWBUSRESET)
/* maybe out of order?? */
goto out;
}
bus_dmamap_sync(dbch->dmat, tr->dma_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dbch->dmat, tr->dma_map);
#if 1
if (firewire_debug)
dump_db(sc, ch);
#endif
if(status & OHCI_CNTL_DMA_DEAD) {
/* Stop DMA */
OWRITE(sc, OHCI_DMACTLCLR(off), OHCI_CNTL_DMA_RUN);
device_printf(sc->fc.dev, "force reset AT FIFO\n");
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_LINKEN);
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS | OHCI_HCC_LINKEN);
OWRITE(sc, OHCI_DMACTLCLR(off), OHCI_CNTL_DMA_RUN);
}
stat = status & FWOHCIEV_MASK;
switch(stat){
case FWOHCIEV_ACKPEND:
case FWOHCIEV_ACKCOMPL:
err = 0;
break;
case FWOHCIEV_ACKBSA:
case FWOHCIEV_ACKBSB:
case FWOHCIEV_ACKBSX:
device_printf(sc->fc.dev, "txd err=%2x %s\n", stat, fwohcicode[stat]);
err = EBUSY;
break;
case FWOHCIEV_FLUSHED:
case FWOHCIEV_ACKTARD:
device_printf(sc->fc.dev, "txd err=%2x %s\n", stat, fwohcicode[stat]);
err = EAGAIN;
break;
case FWOHCIEV_MISSACK:
case FWOHCIEV_UNDRRUN:
case FWOHCIEV_OVRRUN:
case FWOHCIEV_DESCERR:
case FWOHCIEV_DTRDERR:
case FWOHCIEV_TIMEOUT:
case FWOHCIEV_TCODERR:
case FWOHCIEV_UNKNOWN:
case FWOHCIEV_ACKDERR:
case FWOHCIEV_ACKTERR:
default:
device_printf(sc->fc.dev, "txd err=%2x %s\n",
stat, fwohcicode[stat]);
err = EINVAL;
break;
}
if (tr->xfer != NULL) {
xfer = tr->xfer;
if (xfer->state == FWXF_RCVD) {
#if 0
if (firewire_debug)
printf("already rcvd\n");
#endif
fw_xfer_done(xfer);
} else {
xfer->state = FWXF_SENT;
if (err == EBUSY && fc->status != FWBUSRESET) {
xfer->state = FWXF_BUSY;
xfer->resp = err;
if (xfer->retry_req != NULL)
xfer->retry_req(xfer);
else {
xfer->recv.pay_len = 0;
fw_xfer_done(xfer);
}
} else if (stat != FWOHCIEV_ACKPEND) {
if (stat != FWOHCIEV_ACKCOMPL)
xfer->state = FWXF_SENTERR;
xfer->resp = err;
xfer->recv.pay_len = 0;
fw_xfer_done(xfer);
}
}
/*
* The watchdog timer takes care of split
* transcation timeout for ACKPEND case.
*/
} else {
printf("this shouldn't happen\n");
}
dbch->xferq.queued --;
tr->xfer = NULL;
packets ++;
tr = STAILQ_NEXT(tr, link);
dbch->bottom = tr;
if (dbch->bottom == dbch->top) {
/* we reaches the end of context program */
if (firewire_debug && dbch->xferq.queued > 0)
printf("queued > 0\n");
break;
}
}
out:
if ((dbch->flags & FWOHCI_DBCH_FULL) && packets > 0) {
printf("make free slot\n");
dbch->flags &= ~FWOHCI_DBCH_FULL;
fwohci_start(sc, dbch);
}
splx(s);
}
static void
fwohci_db_free(struct fwohci_dbch *dbch)
{
struct fwohcidb_tr *db_tr;
int idb;
if ((dbch->flags & FWOHCI_DBCH_INIT) == 0)
return;
for(db_tr = STAILQ_FIRST(&dbch->db_trq), idb = 0; idb < dbch->ndb;
db_tr = STAILQ_NEXT(db_tr, link), idb++){
if ((dbch->xferq.flag & FWXFERQ_EXTBUF) == 0 &&
db_tr->buf != NULL) {
fwdma_free_size(dbch->dmat, db_tr->dma_map,
db_tr->buf, dbch->xferq.psize);
db_tr->buf = NULL;
} else if (db_tr->dma_map != NULL)
bus_dmamap_destroy(dbch->dmat, db_tr->dma_map);
}
dbch->ndb = 0;
db_tr = STAILQ_FIRST(&dbch->db_trq);
fwdma_free_multiseg(dbch->am);
free(db_tr, M_FW);
STAILQ_INIT(&dbch->db_trq);
dbch->flags &= ~FWOHCI_DBCH_INIT;
}
static void
fwohci_db_init(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
int idb;
struct fwohcidb_tr *db_tr;
if ((dbch->flags & FWOHCI_DBCH_INIT) != 0)
goto out;
/* create dma_tag for buffers */
#define MAX_REQCOUNT 0xffff
if (bus_dma_tag_create(/*parent*/ sc->fc.dmat,
/*alignment*/ 1, /*boundary*/ 0,
/*lowaddr*/ BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/ BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/ dbch->xferq.psize,
/*nsegments*/ dbch->ndesc > 3 ? dbch->ndesc - 2 : 1,
/*maxsegsz*/ MAX_REQCOUNT,
/*flags*/ 0,
#if defined(__FreeBSD__) && __FreeBSD_version >= 501102
/*lockfunc*/busdma_lock_mutex,
/*lockarg*/&Giant,
#endif
&dbch->dmat))
return;
/* allocate DB entries and attach one to each DMA channels */
/* DB entry must start at 16 bytes bounary. */
STAILQ_INIT(&dbch->db_trq);
db_tr = (struct fwohcidb_tr *)
malloc(sizeof(struct fwohcidb_tr) * dbch->ndb,
M_FW, M_WAITOK | M_ZERO);
if(db_tr == NULL){
printf("fwohci_db_init: malloc(1) failed\n");
return;
}
#define DB_SIZE(x) (sizeof(struct fwohcidb) * (x)->ndesc)
dbch->am = fwdma_malloc_multiseg(&sc->fc, DB_SIZE(dbch),
DB_SIZE(dbch), dbch->ndb, BUS_DMA_WAITOK);
if (dbch->am == NULL) {
printf("fwohci_db_init: fwdma_malloc_multiseg failed\n");
free(db_tr, M_FW);
return;
}
/* Attach DB to DMA ch. */
for(idb = 0 ; idb < dbch->ndb ; idb++){
db_tr->dbcnt = 0;
db_tr->db = (struct fwohcidb *)fwdma_v_addr(dbch->am, idb);
db_tr->bus_addr = fwdma_bus_addr(dbch->am, idb);
/* create dmamap for buffers */
/* XXX do we need 4bytes alignment tag? */
/* XXX don't alloc dma_map for AR */
if (bus_dmamap_create(dbch->dmat, 0, &db_tr->dma_map) != 0) {
printf("bus_dmamap_create failed\n");
dbch->flags = FWOHCI_DBCH_INIT; /* XXX fake */
fwohci_db_free(dbch);
return;
}
STAILQ_INSERT_TAIL(&dbch->db_trq, db_tr, link);
if (dbch->xferq.flag & FWXFERQ_EXTBUF) {
if (idb % dbch->xferq.bnpacket == 0)
dbch->xferq.bulkxfer[idb / dbch->xferq.bnpacket
].start = (caddr_t)db_tr;
if ((idb + 1) % dbch->xferq.bnpacket == 0)
dbch->xferq.bulkxfer[idb / dbch->xferq.bnpacket
].end = (caddr_t)db_tr;
}
db_tr++;
}
STAILQ_LAST(&dbch->db_trq, fwohcidb_tr,link)->link.stqe_next
= STAILQ_FIRST(&dbch->db_trq);
out:
dbch->xferq.queued = 0;
dbch->pdb_tr = NULL;
dbch->top = STAILQ_FIRST(&dbch->db_trq);
dbch->bottom = dbch->top;
dbch->flags = FWOHCI_DBCH_INIT;
}
static int
fwohci_itx_disable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
OWRITE(sc, OHCI_ITCTLCLR(dmach),
OHCI_CNTL_DMA_RUN | OHCI_CNTL_CYCMATCH_S);
OWRITE(sc, OHCI_IT_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IT_STATCLR, 1 << dmach);
/* XXX we cannot free buffers until the DMA really stops */
pause("fwitxd", hz);
fwohci_db_free(&sc->it[dmach]);
sc->it[dmach].xferq.flag &= ~FWXFERQ_RUNNING;
return 0;
}
static int
fwohci_irx_disable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach);
/* XXX we cannot free buffers until the DMA really stops */
pause("fwirxd", hz);
fwohci_db_free(&sc->ir[dmach]);
sc->ir[dmach].xferq.flag &= ~FWXFERQ_RUNNING;
return 0;
}
#if BYTE_ORDER == BIG_ENDIAN
static void
fwohci_irx_post (struct firewire_comm *fc , uint32_t *qld)
{
qld[0] = FWOHCI_DMA_READ(qld[0]);
return;
}
#endif
static int
fwohci_tx_enable(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
int err = 0;
int idb, z, i, dmach = 0, ldesc;
uint32_t off = 0;
struct fwohcidb_tr *db_tr;
struct fwohcidb *db;
if(!(dbch->xferq.flag & FWXFERQ_EXTBUF)){
err = EINVAL;
return err;
}
z = dbch->ndesc;
for(dmach = 0 ; dmach < sc->fc.nisodma ; dmach++){
if( &sc->it[dmach] == dbch){
off = OHCI_ITOFF(dmach);
break;
}
}
if(off == 0){
err = EINVAL;
return err;
}
if(dbch->xferq.flag & FWXFERQ_RUNNING)
return err;
dbch->xferq.flag |= FWXFERQ_RUNNING;
for( i = 0, dbch->bottom = dbch->top; i < (dbch->ndb - 1); i++){
dbch->bottom = STAILQ_NEXT(dbch->bottom, link);
}
db_tr = dbch->top;
for (idb = 0; idb < dbch->ndb; idb ++) {
fwohci_add_tx_buf(dbch, db_tr, idb);
if(STAILQ_NEXT(db_tr, link) == NULL){
break;
}
db = db_tr->db;
ldesc = db_tr->dbcnt - 1;
FWOHCI_DMA_WRITE(db[0].db.desc.depend,
STAILQ_NEXT(db_tr, link)->bus_addr | z);
db[ldesc].db.desc.depend = db[0].db.desc.depend;
if(dbch->xferq.flag & FWXFERQ_EXTBUF){
if(((idb + 1 ) % dbch->xferq.bnpacket) == 0){
FWOHCI_DMA_SET(
db[ldesc].db.desc.cmd,
OHCI_INTERRUPT_ALWAYS);
/* OHCI 1.1 and above */
FWOHCI_DMA_SET(
db[0].db.desc.cmd,
OHCI_INTERRUPT_ALWAYS);
}
}
db_tr = STAILQ_NEXT(db_tr, link);
}
FWOHCI_DMA_CLEAR(
dbch->bottom->db[dbch->bottom->dbcnt - 1].db.desc.depend, 0xf);
return err;
}
static int
fwohci_rx_enable(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
int err = 0;
int idb, z, i, dmach = 0, ldesc;
uint32_t off = 0;
struct fwohcidb_tr *db_tr;
struct fwohcidb *db;
z = dbch->ndesc;
if(&sc->arrq == dbch){
off = OHCI_ARQOFF;
}else if(&sc->arrs == dbch){
off = OHCI_ARSOFF;
}else{
for(dmach = 0 ; dmach < sc->fc.nisodma ; dmach++){
if( &sc->ir[dmach] == dbch){
off = OHCI_IROFF(dmach);
break;
}
}
}
if(off == 0){
err = EINVAL;
return err;
}
if(dbch->xferq.flag & FWXFERQ_STREAM){
if(dbch->xferq.flag & FWXFERQ_RUNNING)
return err;
}else{
if(dbch->xferq.flag & FWXFERQ_RUNNING){
err = EBUSY;
return err;
}
}
dbch->xferq.flag |= FWXFERQ_RUNNING;
dbch->top = STAILQ_FIRST(&dbch->db_trq);
for( i = 0, dbch->bottom = dbch->top; i < (dbch->ndb - 1); i++){
dbch->bottom = STAILQ_NEXT(dbch->bottom, link);
}
db_tr = dbch->top;
for (idb = 0; idb < dbch->ndb; idb ++) {
fwohci_add_rx_buf(dbch, db_tr, idb, &sc->dummy_dma);
if (STAILQ_NEXT(db_tr, link) == NULL)
break;
db = db_tr->db;
ldesc = db_tr->dbcnt - 1;
FWOHCI_DMA_WRITE(db[ldesc].db.desc.depend,
STAILQ_NEXT(db_tr, link)->bus_addr | z);
if(dbch->xferq.flag & FWXFERQ_EXTBUF){
if(((idb + 1 ) % dbch->xferq.bnpacket) == 0){
FWOHCI_DMA_SET(
db[ldesc].db.desc.cmd,
OHCI_INTERRUPT_ALWAYS);
FWOHCI_DMA_CLEAR(
db[ldesc].db.desc.depend,
0xf);
}
}
db_tr = STAILQ_NEXT(db_tr, link);
}
FWOHCI_DMA_CLEAR(
dbch->bottom->db[db_tr->dbcnt - 1].db.desc.depend, 0xf);
dbch->buf_offset = 0;
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREREAD);
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREWRITE);
if(dbch->xferq.flag & FWXFERQ_STREAM){
return err;
}else{
OWRITE(sc, OHCI_DMACMD(off), dbch->top->bus_addr | z);
}
OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_RUN);
return err;
}
static int
fwohci_next_cycle(struct firewire_comm *fc, int cycle_now)
{
int sec, cycle, cycle_match;
cycle = cycle_now & 0x1fff;
sec = cycle_now >> 13;
#define CYCLE_MOD 0x10
#if 1
#define CYCLE_DELAY 8 /* min delay to start DMA */
#else
#define CYCLE_DELAY 7000 /* min delay to start DMA */
#endif
cycle = cycle + CYCLE_DELAY;
if (cycle >= 8000) {
sec ++;
cycle -= 8000;
}
cycle = roundup2(cycle, CYCLE_MOD);
if (cycle >= 8000) {
sec ++;
if (cycle == 8000)
cycle = 0;
else
cycle = CYCLE_MOD;
}
cycle_match = ((sec << 13) | cycle) & 0x7ffff;
return(cycle_match);
}
static int
fwohci_itxbuf_enable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
int err = 0;
unsigned short tag, ich;
struct fwohci_dbch *dbch;
int cycle_match, cycle_now, s, ldesc;
uint32_t stat;
struct fw_bulkxfer *first, *chunk, *prev;
struct fw_xferq *it;
dbch = &sc->it[dmach];
it = &dbch->xferq;
tag = (it->flag >> 6) & 3;
ich = it->flag & 0x3f;
if ((dbch->flags & FWOHCI_DBCH_INIT) == 0) {
dbch->ndb = it->bnpacket * it->bnchunk;
dbch->ndesc = 3;
fwohci_db_init(sc, dbch);
if ((dbch->flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
err = fwohci_tx_enable(sc, dbch);
}
if(err)
return err;
ldesc = dbch->ndesc - 1;
s = splfw();
prev = STAILQ_LAST(&it->stdma, fw_bulkxfer, link);
while ((chunk = STAILQ_FIRST(&it->stvalid)) != NULL) {
struct fwohcidb *db;
fwdma_sync_multiseg(it->buf, chunk->poffset, it->bnpacket,
BUS_DMASYNC_PREWRITE);
fwohci_txbufdb(sc, dmach, chunk);
if (prev != NULL) {
db = ((struct fwohcidb_tr *)(prev->end))->db;
#if 0 /* XXX necessary? */
FWOHCI_DMA_SET(db[ldesc].db.desc.cmd,
OHCI_BRANCH_ALWAYS);
#endif
#if 0 /* if bulkxfer->npacket changes */
db[ldesc].db.desc.depend = db[0].db.desc.depend =
((struct fwohcidb_tr *)
(chunk->start))->bus_addr | dbch->ndesc;
#else
FWOHCI_DMA_SET(db[0].db.desc.depend, dbch->ndesc);
FWOHCI_DMA_SET(db[ldesc].db.desc.depend, dbch->ndesc);
#endif
}
STAILQ_REMOVE_HEAD(&it->stvalid, link);
STAILQ_INSERT_TAIL(&it->stdma, chunk, link);
prev = chunk;
}
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREWRITE);
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREREAD);
splx(s);
stat = OREAD(sc, OHCI_ITCTL(dmach));
if (firewire_debug && (stat & OHCI_CNTL_CYCMATCH_S))
printf("stat 0x%x\n", stat);
if (stat & (OHCI_CNTL_DMA_ACTIVE | OHCI_CNTL_CYCMATCH_S))
return 0;
#if 0
OWRITE(sc, OHCI_ITCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
#endif
OWRITE(sc, OHCI_IT_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IT_STATCLR, 1 << dmach);
OWRITE(sc, OHCI_IT_MASK, 1 << dmach);
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IT);
first = STAILQ_FIRST(&it->stdma);
OWRITE(sc, OHCI_ITCMD(dmach),
((struct fwohcidb_tr *)(first->start))->bus_addr | dbch->ndesc);
if (firewire_debug) {
printf("fwohci_itxbuf_enable: kick 0x%08x\n", stat);
#if 1
dump_dma(sc, ITX_CH + dmach);
#endif
}
if ((stat & OHCI_CNTL_DMA_RUN) == 0) {
#if 1
/* Don't start until all chunks are buffered */
if (STAILQ_FIRST(&it->stfree) != NULL)
goto out;
#endif
#if 1
/* Clear cycle match counter bits */
OWRITE(sc, OHCI_ITCTLCLR(dmach), 0xffff0000);
/* 2bit second + 13bit cycle */
cycle_now = (fc->cyctimer(fc) >> 12) & 0x7fff;
cycle_match = fwohci_next_cycle(fc, cycle_now);
OWRITE(sc, OHCI_ITCTL(dmach),
OHCI_CNTL_CYCMATCH_S | (cycle_match << 16)
| OHCI_CNTL_DMA_RUN);
#else
OWRITE(sc, OHCI_ITCTL(dmach), OHCI_CNTL_DMA_RUN);
#endif
if (firewire_debug) {
printf("cycle_match: 0x%04x->0x%04x\n",
cycle_now, cycle_match);
dump_dma(sc, ITX_CH + dmach);
dump_db(sc, ITX_CH + dmach);
}
} else if ((stat & OHCI_CNTL_CYCMATCH_S) == 0) {
device_printf(sc->fc.dev,
"IT DMA underrun (0x%08x)\n", stat);
OWRITE(sc, OHCI_ITCTL(dmach), OHCI_CNTL_DMA_WAKE);
}
out:
return err;
}
static int
fwohci_irx_enable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
int err = 0, s, ldesc;
unsigned short tag, ich;
uint32_t stat;
struct fwohci_dbch *dbch;
struct fwohcidb_tr *db_tr;
struct fw_bulkxfer *first, *prev, *chunk;
struct fw_xferq *ir;
dbch = &sc->ir[dmach];
ir = &dbch->xferq;
if ((ir->flag & FWXFERQ_RUNNING) == 0) {
tag = (ir->flag >> 6) & 3;
ich = ir->flag & 0x3f;
OWRITE(sc, OHCI_IRMATCH(dmach), tagbit[tag] | ich);
ir->queued = 0;
dbch->ndb = ir->bnpacket * ir->bnchunk;
dbch->ndesc = 2;
fwohci_db_init(sc, dbch);
if ((dbch->flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
err = fwohci_rx_enable(sc, dbch);
}
if(err)
return err;
first = STAILQ_FIRST(&ir->stfree);
if (first == NULL) {
device_printf(fc->dev, "IR DMA no free chunk\n");
return 0;
}
ldesc = dbch->ndesc - 1;
s = splfw();
prev = STAILQ_LAST(&ir->stdma, fw_bulkxfer, link);
while ((chunk = STAILQ_FIRST(&ir->stfree)) != NULL) {
struct fwohcidb *db;
#if 1 /* XXX for if_fwe */
if (chunk->mbuf != NULL) {
db_tr = (struct fwohcidb_tr *)(chunk->start);
db_tr->dbcnt = 1;
err = bus_dmamap_load_mbuf(dbch->dmat, db_tr->dma_map,
chunk->mbuf, fwohci_execute_db2, db_tr,
/* flags */0);
FWOHCI_DMA_SET(db_tr->db[1].db.desc.cmd,
OHCI_UPDATE | OHCI_INPUT_LAST |
OHCI_INTERRUPT_ALWAYS | OHCI_BRANCH_ALWAYS);
}
#endif
db = ((struct fwohcidb_tr *)(chunk->end))->db;
FWOHCI_DMA_WRITE(db[ldesc].db.desc.res, 0);
FWOHCI_DMA_CLEAR(db[ldesc].db.desc.depend, 0xf);
if (prev != NULL) {
db = ((struct fwohcidb_tr *)(prev->end))->db;
FWOHCI_DMA_SET(db[ldesc].db.desc.depend, dbch->ndesc);
}
STAILQ_REMOVE_HEAD(&ir->stfree, link);
STAILQ_INSERT_TAIL(&ir->stdma, chunk, link);
prev = chunk;
}
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREWRITE);
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREREAD);
splx(s);
stat = OREAD(sc, OHCI_IRCTL(dmach));
if (stat & OHCI_CNTL_DMA_ACTIVE)
return 0;
if (stat & OHCI_CNTL_DMA_RUN) {
OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
device_printf(sc->fc.dev, "IR DMA overrun (0x%08x)\n", stat);
}
if (firewire_debug)
printf("start IR DMA 0x%x\n", stat);
OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_MASK, 1 << dmach);
OWRITE(sc, OHCI_IRCTLCLR(dmach), 0xf0000000);
OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_ISOHDR);
OWRITE(sc, OHCI_IRCMD(dmach),
((struct fwohcidb_tr *)(first->start))->bus_addr
| dbch->ndesc);
OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IR);
#if 0
dump_db(sc, IRX_CH + dmach);
#endif
return err;
}
int
fwohci_stop(struct fwohci_softc *sc, device_t dev)
{
u_int i;
/* Now stopping all DMA channel */
OWRITE(sc, OHCI_ARQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ARSCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN);
for( i = 0 ; i < sc->fc.nisodma ; i ++ ){
OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN);
}
/* FLUSH FIFO and reset Transmitter/Reciever */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_RESET);
/* Stop interrupt */
OWRITE(sc, FWOHCI_INTMASKCLR,
OHCI_INT_EN | OHCI_INT_ERR | OHCI_INT_PHY_SID
| OHCI_INT_PHY_INT
| OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS
| OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_PRRS
| OHCI_INT_DMA_ARRQ | OHCI_INT_DMA_ARRS
| OHCI_INT_PHY_BUS_R);
if (sc->fc.arq !=0 && sc->fc.arq->maxq > 0)
fw_drain_txq(&sc->fc);
/* XXX Link down? Bus reset? */
return 0;
}
int
fwohci_resume(struct fwohci_softc *sc, device_t dev)
{
int i;
struct fw_xferq *ir;
struct fw_bulkxfer *chunk;
fwohci_reset(sc, dev);
/* XXX resume isochronous receive automatically. (how about TX?) */
for(i = 0; i < sc->fc.nisodma; i ++) {
ir = &sc->ir[i].xferq;
if((ir->flag & FWXFERQ_RUNNING) != 0) {
device_printf(sc->fc.dev,
"resume iso receive ch: %d\n", i);
ir->flag &= ~FWXFERQ_RUNNING;
/* requeue stdma to stfree */
while((chunk = STAILQ_FIRST(&ir->stdma)) != NULL) {
STAILQ_REMOVE_HEAD(&ir->stdma, link);
STAILQ_INSERT_TAIL(&ir->stfree, chunk, link);
}
sc->fc.irx_enable(&sc->fc, i);
}
}
bus_generic_resume(dev);
sc->fc.ibr(&sc->fc);
return 0;
}
#define ACK_ALL
static void
fwohci_intr_body(struct fwohci_softc *sc, uint32_t stat, int count)
{
uint32_t irstat, itstat;
u_int i;
struct firewire_comm *fc = (struct firewire_comm *)sc;
#ifdef OHCI_DEBUG
if(stat & OREAD(sc, FWOHCI_INTMASK))
device_printf(fc->dev, "INTERRUPT < %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s> 0x%08x, 0x%08x\n",
stat & OHCI_INT_EN ? "DMA_EN ":"",
stat & OHCI_INT_PHY_REG ? "PHY_REG ":"",
stat & OHCI_INT_CYC_LONG ? "CYC_LONG ":"",
stat & OHCI_INT_ERR ? "INT_ERR ":"",
stat & OHCI_INT_CYC_ERR ? "CYC_ERR ":"",
stat & OHCI_INT_CYC_LOST ? "CYC_LOST ":"",
stat & OHCI_INT_CYC_64SECOND ? "CYC_64SECOND ":"",
stat & OHCI_INT_CYC_START ? "CYC_START ":"",
stat & OHCI_INT_PHY_INT ? "PHY_INT ":"",
stat & OHCI_INT_PHY_BUS_R ? "BUS_RESET ":"",
stat & OHCI_INT_PHY_SID ? "SID ":"",
stat & OHCI_INT_LR_ERR ? "DMA_LR_ERR ":"",
stat & OHCI_INT_PW_ERR ? "DMA_PW_ERR ":"",
stat & OHCI_INT_DMA_IR ? "DMA_IR ":"",
stat & OHCI_INT_DMA_IT ? "DMA_IT " :"",
stat & OHCI_INT_DMA_PRRS ? "DMA_PRRS " :"",
stat & OHCI_INT_DMA_PRRQ ? "DMA_PRRQ " :"",
stat & OHCI_INT_DMA_ARRS ? "DMA_ARRS " :"",
stat & OHCI_INT_DMA_ARRQ ? "DMA_ARRQ " :"",
stat & OHCI_INT_DMA_ATRS ? "DMA_ATRS " :"",
stat & OHCI_INT_DMA_ATRQ ? "DMA_ATRQ " :"",
stat, OREAD(sc, FWOHCI_INTMASK)
);
#endif
/* Bus reset */
if(stat & OHCI_INT_PHY_BUS_R ){
if (fc->status == FWBUSRESET)
goto busresetout;
/* Disable bus reset interrupt until sid recv. */
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_PHY_BUS_R);
device_printf(fc->dev, "BUS reset\n");
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_CYC_LOST);
OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCSRC);
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN);
sc->atrq.xferq.flag &= ~FWXFERQ_RUNNING;
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN);
sc->atrs.xferq.flag &= ~FWXFERQ_RUNNING;
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_BUS_R);
#endif
fw_busreset(fc);
OWRITE(sc, OHCI_CROMHDR, ntohl(sc->fc.config_rom[0]));
OWRITE(sc, OHCI_BUS_OPT, ntohl(sc->fc.config_rom[2]));
}
busresetout:
if((stat & OHCI_INT_DMA_IR )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_IR);
#endif
#if defined(__DragonFly__) || __FreeBSD_version < 500000
irstat = sc->irstat;
sc->irstat = 0;
#else
irstat = atomic_readandclear_int(&sc->irstat);
#endif
for(i = 0; i < fc->nisodma ; i++){
struct fwohci_dbch *dbch;
if((irstat & (1 << i)) != 0){
dbch = &sc->ir[i];
if ((dbch->xferq.flag & FWXFERQ_OPEN) == 0) {
device_printf(sc->fc.dev,
"dma(%d) not active\n", i);
continue;
}
fwohci_rbuf_update(sc, i);
}
}
}
if((stat & OHCI_INT_DMA_IT )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_IT);
#endif
#if defined(__DragonFly__) || __FreeBSD_version < 500000
itstat = sc->itstat;
sc->itstat = 0;
#else
itstat = atomic_readandclear_int(&sc->itstat);
#endif
for(i = 0; i < fc->nisodma ; i++){
if((itstat & (1 << i)) != 0){
fwohci_tbuf_update(sc, i);
}
}
}
if((stat & OHCI_INT_DMA_PRRS )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_PRRS);
#endif
#if 0
dump_dma(sc, ARRS_CH);
dump_db(sc, ARRS_CH);
#endif
fwohci_arcv(sc, &sc->arrs, count);
}
if((stat & OHCI_INT_DMA_PRRQ )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_PRRQ);
#endif
#if 0
dump_dma(sc, ARRQ_CH);
dump_db(sc, ARRQ_CH);
#endif
fwohci_arcv(sc, &sc->arrq, count);
}
if(stat & OHCI_INT_PHY_SID){
uint32_t *buf, node_id;
int plen;
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_SID);
#endif
/* Enable bus reset interrupt */
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_PHY_BUS_R);
/* Allow async. request to us */
OWRITE(sc, OHCI_AREQHI, 1 << 31);
/* XXX insecure ?? */
OWRITE(sc, OHCI_PREQHI, 0x7fffffff);
OWRITE(sc, OHCI_PREQLO, 0xffffffff);
OWRITE(sc, OHCI_PREQUPPER, 0x10000);
/* Set ATRetries register */
OWRITE(sc, OHCI_ATRETRY, 1<<(13+16) | 0xfff);
/*
** Checking whether the node is root or not. If root, turn on
** cycle master.
*/
node_id = OREAD(sc, FWOHCI_NODEID);
plen = OREAD(sc, OHCI_SID_CNT);
device_printf(fc->dev, "node_id=0x%08x, gen=%d, ",
node_id, (plen >> 16) & 0xff);
if (!(node_id & OHCI_NODE_VALID)) {
printf("Bus reset failure\n");
goto sidout;
}
if (node_id & OHCI_NODE_ROOT) {
printf("CYCLEMASTER mode\n");
OWRITE(sc, OHCI_LNKCTL,
OHCI_CNTL_CYCMTR | OHCI_CNTL_CYCTIMER);
} else {
printf("non CYCLEMASTER mode\n");
OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCMTR);
OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_CYCTIMER);
}
fc->nodeid = node_id & 0x3f;
if (plen & OHCI_SID_ERR) {
device_printf(fc->dev, "SID Error\n");
goto sidout;
}
plen &= OHCI_SID_CNT_MASK;
if (plen < 4 || plen > OHCI_SIDSIZE) {
device_printf(fc->dev, "invalid SID len = %d\n", plen);
goto sidout;
}
plen -= 4; /* chop control info */
buf = (uint32_t *)malloc(OHCI_SIDSIZE, M_FW, M_NOWAIT);
if (buf == NULL) {
device_printf(fc->dev, "malloc failed\n");
goto sidout;
}
for (i = 0; i < plen / 4; i ++)
buf[i] = FWOHCI_DMA_READ(sc->sid_buf[i+1]);
#if 1 /* XXX needed?? */
/* pending all pre-bus_reset packets */
fwohci_txd(sc, &sc->atrq);
fwohci_txd(sc, &sc->atrs);
fwohci_arcv(sc, &sc->arrs, -1);
fwohci_arcv(sc, &sc->arrq, -1);
fw_drain_txq(fc);
#endif
fw_sidrcv(fc, buf, plen);
free(buf, M_FW);
}
sidout:
if((stat & OHCI_INT_DMA_ATRQ )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_ATRQ);
#endif
fwohci_txd(sc, &(sc->atrq));
}
if((stat & OHCI_INT_DMA_ATRS )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_ATRS);
#endif
fwohci_txd(sc, &(sc->atrs));
}
if((stat & OHCI_INT_PW_ERR )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PW_ERR);
#endif
device_printf(fc->dev, "posted write error\n");
}
if((stat & OHCI_INT_ERR )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_ERR);
#endif
device_printf(fc->dev, "unrecoverable error\n");
}
if((stat & OHCI_INT_PHY_INT)) {
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_INT);
#endif
device_printf(fc->dev, "phy int\n");
}
return;
}
#if FWOHCI_TASKQUEUE
static void
fwohci_complete(void *arg, int pending)
{
struct fwohci_softc *sc = (struct fwohci_softc *)arg;
uint32_t stat;
again:
stat = atomic_readandclear_int(&sc->intstat);
if (stat)
fwohci_intr_body(sc, stat, -1);
else
return;
goto again;
}
#endif
static uint32_t
fwochi_check_stat(struct fwohci_softc *sc)
{
uint32_t stat, irstat, itstat;
stat = OREAD(sc, FWOHCI_INTSTAT);
if (stat == 0xffffffff) {
device_printf(sc->fc.dev,
"device physically ejected?\n");
return(stat);
}
#ifdef ACK_ALL
if (stat)
OWRITE(sc, FWOHCI_INTSTATCLR, stat);
#endif
if (stat & OHCI_INT_DMA_IR) {
irstat = OREAD(sc, OHCI_IR_STAT);
OWRITE(sc, OHCI_IR_STATCLR, irstat);
atomic_set_int(&sc->irstat, irstat);
}
if (stat & OHCI_INT_DMA_IT) {
itstat = OREAD(sc, OHCI_IT_STAT);
OWRITE(sc, OHCI_IT_STATCLR, itstat);
atomic_set_int(&sc->itstat, itstat);
}
return(stat);
}
void
fwohci_intr(void *arg)
{
struct fwohci_softc *sc = (struct fwohci_softc *)arg;
uint32_t stat;
#if !FWOHCI_TASKQUEUE
uint32_t bus_reset = 0;
#endif
if (!(sc->intmask & OHCI_INT_EN)) {
/* polling mode */
return;
}
#if !FWOHCI_TASKQUEUE
again:
#endif
stat = fwochi_check_stat(sc);
if (stat == 0 || stat == 0xffffffff)
return;
#if FWOHCI_TASKQUEUE
atomic_set_int(&sc->intstat, stat);
/* XXX mask bus reset intr. during bus reset phase */
if (stat)
taskqueue_enqueue(taskqueue_swi_giant, &sc->fwohci_task_complete);
#else
/* We cannot clear bus reset event during bus reset phase */
if ((stat & ~bus_reset) == 0)
return;
bus_reset = stat & OHCI_INT_PHY_BUS_R;
fwohci_intr_body(sc, stat, -1);
goto again;
#endif
}
void
fwohci_poll(struct firewire_comm *fc, int quick, int count)
{
int s;
uint32_t stat;
struct fwohci_softc *sc;
sc = (struct fwohci_softc *)fc;
stat = OHCI_INT_DMA_IR | OHCI_INT_DMA_IT |
OHCI_INT_DMA_PRRS | OHCI_INT_DMA_PRRQ |
OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS;
#if 0
if (!quick) {
#else
if (1) {
#endif
stat = fwochi_check_stat(sc);
if (stat == 0 || stat == 0xffffffff)
return;
}
s = splfw();
fwohci_intr_body(sc, stat, count);
splx(s);
}
static void
fwohci_set_intr(struct firewire_comm *fc, int enable)
{
struct fwohci_softc *sc;
sc = (struct fwohci_softc *)fc;
if (firewire_debug)
device_printf(sc->fc.dev, "fwohci_set_intr: %d\n", enable);
if (enable) {
sc->intmask |= OHCI_INT_EN;
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_EN);
} else {
sc->intmask &= ~OHCI_INT_EN;
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_EN);
}
}
static void
fwohci_tbuf_update(struct fwohci_softc *sc, int dmach)
{
struct firewire_comm *fc = &sc->fc;
struct fwohcidb *db;
struct fw_bulkxfer *chunk;
struct fw_xferq *it;
uint32_t stat, count;
int s, w=0, ldesc;
it = fc->it[dmach];
ldesc = sc->it[dmach].ndesc - 1;
s = splfw(); /* unnecessary ? */
fwdma_sync_multiseg_all(sc->it[dmach].am, BUS_DMASYNC_POSTREAD);
if (firewire_debug)
dump_db(sc, ITX_CH + dmach);
while ((chunk = STAILQ_FIRST(&it->stdma)) != NULL) {
db = ((struct fwohcidb_tr *)(chunk->end))->db;
stat = FWOHCI_DMA_READ(db[ldesc].db.desc.res)
>> OHCI_STATUS_SHIFT;
db = ((struct fwohcidb_tr *)(chunk->start))->db;
/* timestamp */
count = FWOHCI_DMA_READ(db[ldesc].db.desc.res)
& OHCI_COUNT_MASK;
if (stat == 0)
break;
STAILQ_REMOVE_HEAD(&it->stdma, link);
switch (stat & FWOHCIEV_MASK){
case FWOHCIEV_ACKCOMPL:
#if 0
device_printf(fc->dev, "0x%08x\n", count);
#endif
break;
default:
device_printf(fc->dev,
"Isochronous transmit err %02x(%s)\n",
stat, fwohcicode[stat & 0x1f]);
}
STAILQ_INSERT_TAIL(&it->stfree, chunk, link);
w++;
}
splx(s);
if (w)
wakeup(it);
}
static void
fwohci_rbuf_update(struct fwohci_softc *sc, int dmach)
{
struct firewire_comm *fc = &sc->fc;
struct fwohcidb_tr *db_tr;
struct fw_bulkxfer *chunk;
struct fw_xferq *ir;
uint32_t stat;
int s, w=0, ldesc;
ir = fc->ir[dmach];
ldesc = sc->ir[dmach].ndesc - 1;
#if 0
dump_db(sc, dmach);
#endif
s = splfw();
fwdma_sync_multiseg_all(sc->ir[dmach].am, BUS_DMASYNC_POSTREAD);
while ((chunk = STAILQ_FIRST(&ir->stdma)) != NULL) {
db_tr = (struct fwohcidb_tr *)chunk->end;
stat = FWOHCI_DMA_READ(db_tr->db[ldesc].db.desc.res)
>> OHCI_STATUS_SHIFT;
if (stat == 0)
break;
if (chunk->mbuf != NULL) {
bus_dmamap_sync(sc->ir[dmach].dmat, db_tr->dma_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ir[dmach].dmat, db_tr->dma_map);
} else if (ir->buf != NULL) {
fwdma_sync_multiseg(ir->buf, chunk->poffset,
ir->bnpacket, BUS_DMASYNC_POSTREAD);
} else {
/* XXX */
printf("fwohci_rbuf_update: this shouldn't happend\n");
}
STAILQ_REMOVE_HEAD(&ir->stdma, link);
STAILQ_INSERT_TAIL(&ir->stvalid, chunk, link);
switch (stat & FWOHCIEV_MASK) {
case FWOHCIEV_ACKCOMPL:
chunk->resp = 0;
break;
default:
chunk->resp = EINVAL;
device_printf(fc->dev,
"Isochronous receive err %02x(%s)\n",
stat, fwohcicode[stat & 0x1f]);
}
w++;
}
splx(s);
if (w) {
if (ir->flag & FWXFERQ_HANDLER)
ir->hand(ir);
else
wakeup(ir);
}
}
void
dump_dma(struct fwohci_softc *sc, uint32_t ch)
{
uint32_t off, cntl, stat, cmd, match;
if(ch == 0){
off = OHCI_ATQOFF;
}else if(ch == 1){
off = OHCI_ATSOFF;
}else if(ch == 2){
off = OHCI_ARQOFF;
}else if(ch == 3){
off = OHCI_ARSOFF;
}else if(ch < IRX_CH){
off = OHCI_ITCTL(ch - ITX_CH);
}else{
off = OHCI_IRCTL(ch - IRX_CH);
}
cntl = stat = OREAD(sc, off);
cmd = OREAD(sc, off + 0xc);
match = OREAD(sc, off + 0x10);
device_printf(sc->fc.dev, "ch %1x cntl:0x%08x cmd:0x%08x match:0x%08x\n",
ch,
cntl,
cmd,
match);
stat &= 0xffff ;
if (stat) {
device_printf(sc->fc.dev, "dma %d ch:%s%s%s%s%s%s %s(%x)\n",
ch,
stat & OHCI_CNTL_DMA_RUN ? "RUN," : "",
stat & OHCI_CNTL_DMA_WAKE ? "WAKE," : "",
stat & OHCI_CNTL_DMA_DEAD ? "DEAD," : "",
stat & OHCI_CNTL_DMA_ACTIVE ? "ACTIVE," : "",
stat & OHCI_CNTL_DMA_BT ? "BRANCH," : "",
stat & OHCI_CNTL_DMA_BAD ? "BADDMA," : "",
fwohcicode[stat & 0x1f],
stat & 0x1f
);
}else{
device_printf(sc->fc.dev, "dma %d ch: Nostat\n", ch);
}
}
void
dump_db(struct fwohci_softc *sc, uint32_t ch)
{
struct fwohci_dbch *dbch;
struct fwohcidb_tr *cp = NULL, *pp, *np = NULL;
struct fwohcidb *curr = NULL, *prev, *next = NULL;
int idb, jdb;
uint32_t cmd, off;
if(ch == 0){
off = OHCI_ATQOFF;
dbch = &sc->atrq;
}else if(ch == 1){
off = OHCI_ATSOFF;
dbch = &sc->atrs;
}else if(ch == 2){
off = OHCI_ARQOFF;
dbch = &sc->arrq;
}else if(ch == 3){
off = OHCI_ARSOFF;
dbch = &sc->arrs;
}else if(ch < IRX_CH){
off = OHCI_ITCTL(ch - ITX_CH);
dbch = &sc->it[ch - ITX_CH];
}else {
off = OHCI_IRCTL(ch - IRX_CH);
dbch = &sc->ir[ch - IRX_CH];
}
cmd = OREAD(sc, off + 0xc);
if( dbch->ndb == 0 ){
device_printf(sc->fc.dev, "No DB is attached ch=%d\n", ch);
return;
}
pp = dbch->top;
prev = pp->db;
for(idb = 0 ; idb < dbch->ndb ; idb ++ ){
cp = STAILQ_NEXT(pp, link);
if(cp == NULL){
curr = NULL;
goto outdb;
}
np = STAILQ_NEXT(cp, link);
for(jdb = 0 ; jdb < dbch->ndesc ; jdb ++ ){
if ((cmd & 0xfffffff0) == cp->bus_addr) {
curr = cp->db;
if(np != NULL){
next = np->db;
}else{
next = NULL;
}
goto outdb;
}
}
pp = STAILQ_NEXT(pp, link);
if(pp == NULL){
curr = NULL;
goto outdb;
}
prev = pp->db;
}
outdb:
if( curr != NULL){
#if 0
printf("Prev DB %d\n", ch);
print_db(pp, prev, ch, dbch->ndesc);
#endif
printf("Current DB %d\n", ch);
print_db(cp, curr, ch, dbch->ndesc);
#if 0
printf("Next DB %d\n", ch);
print_db(np, next, ch, dbch->ndesc);
#endif
}else{
printf("dbdump err ch = %d cmd = 0x%08x\n", ch, cmd);
}
return;
}
void
print_db(struct fwohcidb_tr *db_tr, struct fwohcidb *db,
uint32_t ch, uint32_t max)
{
fwohcireg_t stat;
int i, key;
uint32_t cmd, res;
if(db == NULL){
printf("No Descriptor is found\n");
return;
}
printf("ch = %d\n%8s %s %s %s %s %4s %8s %8s %4s:%4s\n",
ch,
"Current",
"OP ",
"KEY",
"INT",
"BR ",
"len",
"Addr",
"Depend",
"Stat",
"Cnt");
for( i = 0 ; i <= max ; i ++){
cmd = FWOHCI_DMA_READ(db[i].db.desc.cmd);
res = FWOHCI_DMA_READ(db[i].db.desc.res);
key = cmd & OHCI_KEY_MASK;
stat = res >> OHCI_STATUS_SHIFT;
#if defined(__DragonFly__) || __FreeBSD_version < 500000
printf("%08x %s %s %s %s %5d %08x %08x %04x:%04x",
db_tr->bus_addr,
#else
printf("%08jx %s %s %s %s %5d %08x %08x %04x:%04x",
(uintmax_t)db_tr->bus_addr,
#endif
dbcode[(cmd >> 28) & 0xf],
dbkey[(cmd >> 24) & 0x7],
dbcond[(cmd >> 20) & 0x3],
dbcond[(cmd >> 18) & 0x3],
cmd & OHCI_COUNT_MASK,
FWOHCI_DMA_READ(db[i].db.desc.addr),
FWOHCI_DMA_READ(db[i].db.desc.depend),
stat,
res & OHCI_COUNT_MASK);
if(stat & 0xff00){
printf(" %s%s%s%s%s%s %s(%x)\n",
stat & OHCI_CNTL_DMA_RUN ? "RUN," : "",
stat & OHCI_CNTL_DMA_WAKE ? "WAKE," : "",
stat & OHCI_CNTL_DMA_DEAD ? "DEAD," : "",
stat & OHCI_CNTL_DMA_ACTIVE ? "ACTIVE," : "",
stat & OHCI_CNTL_DMA_BT ? "BRANCH," : "",
stat & OHCI_CNTL_DMA_BAD ? "BADDMA," : "",
fwohcicode[stat & 0x1f],
stat & 0x1f
);
}else{
printf(" Nostat\n");
}
if(key == OHCI_KEY_ST2 ){
printf("0x%08x 0x%08x 0x%08x 0x%08x\n",
FWOHCI_DMA_READ(db[i+1].db.immed[0]),
FWOHCI_DMA_READ(db[i+1].db.immed[1]),
FWOHCI_DMA_READ(db[i+1].db.immed[2]),
FWOHCI_DMA_READ(db[i+1].db.immed[3]));
}
if(key == OHCI_KEY_DEVICE){
return;
}
if((cmd & OHCI_BRANCH_MASK)
== OHCI_BRANCH_ALWAYS){
return;
}
if((cmd & OHCI_CMD_MASK)
== OHCI_OUTPUT_LAST){
return;
}
if((cmd & OHCI_CMD_MASK)
== OHCI_INPUT_LAST){
return;
}
if(key == OHCI_KEY_ST2 ){
i++;
}
}
return;
}
void
fwohci_ibr(struct firewire_comm *fc)
{
struct fwohci_softc *sc;
uint32_t fun;
device_printf(fc->dev, "Initiate bus reset\n");
sc = (struct fwohci_softc *)fc;
/*
* Make sure our cached values from the config rom are
* initialised.
*/
OWRITE(sc, OHCI_CROMHDR, ntohl(sc->fc.config_rom[0]));
OWRITE(sc, OHCI_BUS_OPT, ntohl(sc->fc.config_rom[2]));
/*
* Set root hold-off bit so that non cyclemaster capable node
* shouldn't became the root node.
*/
#if 1
fun = fwphy_rddata(sc, FW_PHY_IBR_REG);
fun |= FW_PHY_IBR | FW_PHY_RHB;
fun = fwphy_wrdata(sc, FW_PHY_IBR_REG, fun);
#else /* Short bus reset */
fun = fwphy_rddata(sc, FW_PHY_ISBR_REG);
fun |= FW_PHY_ISBR | FW_PHY_RHB;
fun = fwphy_wrdata(sc, FW_PHY_ISBR_REG, fun);
#endif
}
void
fwohci_txbufdb(struct fwohci_softc *sc, int dmach, struct fw_bulkxfer *bulkxfer)
{
struct fwohcidb_tr *db_tr, *fdb_tr;
struct fwohci_dbch *dbch;
struct fwohcidb *db;
struct fw_pkt *fp;
struct fwohci_txpkthdr *ohcifp;
unsigned short chtag;
int idb;
dbch = &sc->it[dmach];
chtag = sc->it[dmach].xferq.flag & 0xff;
db_tr = (struct fwohcidb_tr *)(bulkxfer->start);
fdb_tr = (struct fwohcidb_tr *)(bulkxfer->end);
/*
device_printf(sc->fc.dev, "DB %08x %08x %08x\n", bulkxfer, db_tr->bus_addr, fdb_tr->bus_addr);
*/
for (idb = 0; idb < dbch->xferq.bnpacket; idb ++) {
db = db_tr->db;
fp = (struct fw_pkt *)db_tr->buf;
ohcifp = (struct fwohci_txpkthdr *) db[1].db.immed;
ohcifp->mode.ld[0] = fp->mode.ld[0];
ohcifp->mode.common.spd = 0 & 0x7;
ohcifp->mode.stream.len = fp->mode.stream.len;
ohcifp->mode.stream.chtag = chtag;
ohcifp->mode.stream.tcode = 0xa;
#if BYTE_ORDER == BIG_ENDIAN
FWOHCI_DMA_WRITE(db[1].db.immed[0], db[1].db.immed[0]);
FWOHCI_DMA_WRITE(db[1].db.immed[1], db[1].db.immed[1]);
#endif
FWOHCI_DMA_CLEAR(db[2].db.desc.cmd, OHCI_COUNT_MASK);
FWOHCI_DMA_SET(db[2].db.desc.cmd, fp->mode.stream.len);
FWOHCI_DMA_WRITE(db[2].db.desc.res, 0);
#if 0 /* if bulkxfer->npackets changes */
db[2].db.desc.cmd = OHCI_OUTPUT_LAST
| OHCI_UPDATE
| OHCI_BRANCH_ALWAYS;
db[0].db.desc.depend =
= db[dbch->ndesc - 1].db.desc.depend
= STAILQ_NEXT(db_tr, link)->bus_addr | dbch->ndesc;
#else
FWOHCI_DMA_SET(db[0].db.desc.depend, dbch->ndesc);
FWOHCI_DMA_SET(db[dbch->ndesc - 1].db.desc.depend, dbch->ndesc);
#endif
bulkxfer->end = (caddr_t)db_tr;
db_tr = STAILQ_NEXT(db_tr, link);
}
db = ((struct fwohcidb_tr *)bulkxfer->end)->db;
FWOHCI_DMA_CLEAR(db[0].db.desc.depend, 0xf);
FWOHCI_DMA_CLEAR(db[dbch->ndesc - 1].db.desc.depend, 0xf);
#if 0 /* if bulkxfer->npackets changes */
db[dbch->ndesc - 1].db.desc.control |= OHCI_INTERRUPT_ALWAYS;
/* OHCI 1.1 and above */
db[0].db.desc.control |= OHCI_INTERRUPT_ALWAYS;
#endif
/*
db_tr = (struct fwohcidb_tr *)bulkxfer->start;
fdb_tr = (struct fwohcidb_tr *)bulkxfer->end;
device_printf(sc->fc.dev, "DB %08x %3d %08x %08x\n", bulkxfer, bulkxfer->npacket, db_tr->bus_addr, fdb_tr->bus_addr);
*/
return;
}
static int
fwohci_add_tx_buf(struct fwohci_dbch *dbch, struct fwohcidb_tr *db_tr,
int poffset)
{
struct fwohcidb *db = db_tr->db;
struct fw_xferq *it;
int err = 0;
it = &dbch->xferq;
if(it->buf == 0){
err = EINVAL;
return err;
}
db_tr->buf = fwdma_v_addr(it->buf, poffset);
db_tr->dbcnt = 3;
FWOHCI_DMA_WRITE(db[0].db.desc.cmd,
OHCI_OUTPUT_MORE | OHCI_KEY_ST2 | 8);
FWOHCI_DMA_WRITE(db[0].db.desc.addr, 0);
bzero((void *)&db[1].db.immed[0], sizeof(db[1].db.immed));
FWOHCI_DMA_WRITE(db[2].db.desc.addr,
fwdma_bus_addr(it->buf, poffset) + sizeof(uint32_t));
FWOHCI_DMA_WRITE(db[2].db.desc.cmd,
OHCI_OUTPUT_LAST | OHCI_UPDATE | OHCI_BRANCH_ALWAYS);
#if 1
FWOHCI_DMA_WRITE(db[0].db.desc.res, 0);
FWOHCI_DMA_WRITE(db[2].db.desc.res, 0);
#endif
return 0;
}
int
fwohci_add_rx_buf(struct fwohci_dbch *dbch, struct fwohcidb_tr *db_tr,
int poffset, struct fwdma_alloc *dummy_dma)
{
struct fwohcidb *db = db_tr->db;
struct fw_xferq *ir;
int i, ldesc;
bus_addr_t dbuf[2];
int dsiz[2];
ir = &dbch->xferq;
if (ir->buf == NULL && (dbch->xferq.flag & FWXFERQ_EXTBUF) == 0) {
db_tr->buf = fwdma_malloc_size(dbch->dmat, &db_tr->dma_map,
ir->psize, &dbuf[0], BUS_DMA_NOWAIT);
if (db_tr->buf == NULL)
return(ENOMEM);
db_tr->dbcnt = 1;
dsiz[0] = ir->psize;
bus_dmamap_sync(dbch->dmat, db_tr->dma_map,
BUS_DMASYNC_PREREAD);
} else {
db_tr->dbcnt = 0;
if (dummy_dma != NULL) {
dsiz[db_tr->dbcnt] = sizeof(uint32_t);
dbuf[db_tr->dbcnt++] = dummy_dma->bus_addr;
}
dsiz[db_tr->dbcnt] = ir->psize;
if (ir->buf != NULL) {
db_tr->buf = fwdma_v_addr(ir->buf, poffset);
dbuf[db_tr->dbcnt] = fwdma_bus_addr( ir->buf, poffset);
}
db_tr->dbcnt++;
}
for(i = 0 ; i < db_tr->dbcnt ; i++){
FWOHCI_DMA_WRITE(db[i].db.desc.addr, dbuf[i]);
FWOHCI_DMA_WRITE(db[i].db.desc.cmd, OHCI_INPUT_MORE | dsiz[i]);
if (ir->flag & FWXFERQ_STREAM) {
FWOHCI_DMA_SET(db[i].db.desc.cmd, OHCI_UPDATE);
}
FWOHCI_DMA_WRITE(db[i].db.desc.res, dsiz[i]);
}
ldesc = db_tr->dbcnt - 1;
if (ir->flag & FWXFERQ_STREAM) {
FWOHCI_DMA_SET(db[ldesc].db.desc.cmd, OHCI_INPUT_LAST);
}
FWOHCI_DMA_SET(db[ldesc].db.desc.cmd, OHCI_BRANCH_ALWAYS);
return 0;
}
static int
fwohci_arcv_swap(struct fw_pkt *fp, int len)
{
struct fw_pkt *fp0;
uint32_t ld0;
int slen, hlen;
#if BYTE_ORDER == BIG_ENDIAN
int i;
#endif
ld0 = FWOHCI_DMA_READ(fp->mode.ld[0]);
#if 0
printf("ld0: x%08x\n", ld0);
#endif
fp0 = (struct fw_pkt *)&ld0;
/* determine length to swap */
switch (fp0->mode.common.tcode) {
case FWTCODE_RREQQ:
case FWTCODE_WRES:
case FWTCODE_WREQQ:
case FWTCODE_RRESQ:
case FWOHCITCODE_PHY:
slen = 12;
break;
case FWTCODE_RREQB:
case FWTCODE_WREQB:
case FWTCODE_LREQ:
case FWTCODE_RRESB:
case FWTCODE_LRES:
slen = 16;
break;
default:
printf("Unknown tcode %d\n", fp0->mode.common.tcode);
return(0);
}
hlen = tinfo[fp0->mode.common.tcode].hdr_len;
if (hlen > len) {
if (firewire_debug)
printf("splitted header\n");
return(-hlen);
}
#if BYTE_ORDER == BIG_ENDIAN
for(i = 0; i < slen/4; i ++)
fp->mode.ld[i] = FWOHCI_DMA_READ(fp->mode.ld[i]);
#endif
return(hlen);
}
static int
fwohci_get_plen(struct fwohci_softc *sc, struct fwohci_dbch *dbch, struct fw_pkt *fp)
{
struct tcode_info *info;
int r;
info = &tinfo[fp->mode.common.tcode];
r = info->hdr_len + sizeof(uint32_t);
if ((info->flag & FWTI_BLOCK_ASY) != 0)
r += roundup2(fp->mode.wreqb.len, sizeof(uint32_t));
if (r == sizeof(uint32_t))
/* XXX */
device_printf(sc->fc.dev, "Unknown tcode %d\n",
fp->mode.common.tcode);
if (r > dbch->xferq.psize) {
device_printf(sc->fc.dev, "Invalid packet length %d\n", r);
/* panic ? */
}
return r;
}
static void
fwohci_arcv_free_buf(struct fwohci_dbch *dbch, struct fwohcidb_tr *db_tr)
{
struct fwohcidb *db = &db_tr->db[0];
FWOHCI_DMA_CLEAR(db->db.desc.depend, 0xf);
FWOHCI_DMA_WRITE(db->db.desc.res, dbch->xferq.psize);
FWOHCI_DMA_SET(dbch->bottom->db[0].db.desc.depend, 1);
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_PREWRITE);
dbch->bottom = db_tr;
}
static void
fwohci_arcv(struct fwohci_softc *sc, struct fwohci_dbch *dbch, int count)
{
struct fwohcidb_tr *db_tr;
struct iovec vec[2];
struct fw_pkt pktbuf;
int nvec;
struct fw_pkt *fp;
uint8_t *ld;
uint32_t stat, off, status;
u_int spd;
int len, plen, hlen, pcnt, offset;
int s;
caddr_t buf;
int resCount;
if(&sc->arrq == dbch){
off = OHCI_ARQOFF;
}else if(&sc->arrs == dbch){
off = OHCI_ARSOFF;
}else{
return;
}
s = splfw();
db_tr = dbch->top;
pcnt = 0;
/* XXX we cannot handle a packet which lies in more than two buf */
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_POSTREAD);
fwdma_sync_multiseg_all(dbch->am, BUS_DMASYNC_POSTWRITE);
status = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res) >> OHCI_STATUS_SHIFT;
resCount = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res) & OHCI_COUNT_MASK;
#if 0
printf("status 0x%04x, resCount 0x%04x\n", status, resCount);
#endif
while (status & OHCI_CNTL_DMA_ACTIVE) {
len = dbch->xferq.psize - resCount;
ld = (uint8_t *)db_tr->buf;
if (dbch->pdb_tr == NULL) {
len -= dbch->buf_offset;
ld += dbch->buf_offset;
}
if (len > 0)
bus_dmamap_sync(dbch->dmat, db_tr->dma_map,
BUS_DMASYNC_POSTREAD);
while (len > 0 ) {
if (count >= 0 && count-- == 0)
goto out;
if(dbch->pdb_tr != NULL){
/* we have a fragment in previous buffer */
int rlen;
offset = dbch->buf_offset;
if (offset < 0)
offset = - offset;
buf = dbch->pdb_tr->buf + offset;
rlen = dbch->xferq.psize - offset;
if (firewire_debug)
printf("rlen=%d, offset=%d\n",
rlen, dbch->buf_offset);
if (dbch->buf_offset < 0) {
/* splitted in header, pull up */
char *p;
p = (char *)&pktbuf;
bcopy(buf, p, rlen);
p += rlen;
/* this must be too long but harmless */
rlen = sizeof(pktbuf) - rlen;
if (rlen < 0)
printf("why rlen < 0\n");
bcopy(db_tr->buf, p, rlen);
ld += rlen;
len -= rlen;
hlen = fwohci_arcv_swap(&pktbuf, sizeof(pktbuf));
if (hlen < 0) {
printf("hlen < 0 shouldn't happen");
}
offset = sizeof(pktbuf);
vec[0].iov_base = (char *)&pktbuf;
vec[0].iov_len = offset;
} else {
/* splitted in payload */
offset = rlen;
vec[0].iov_base = buf;
vec[0].iov_len = rlen;
}
fp=(struct fw_pkt *)vec[0].iov_base;
nvec = 1;
} else {
/* no fragment in previous buffer */
fp=(struct fw_pkt *)ld;
hlen = fwohci_arcv_swap(fp, len);
if (hlen == 0)
/* XXX need reset */
goto out;
if (hlen < 0) {
dbch->pdb_tr = db_tr;
dbch->buf_offset = - dbch->buf_offset;
/* sanity check */
if (resCount != 0)
printf("resCount = %d !?\n",
resCount);
/* XXX clear pdb_tr */
goto out;
}
offset = 0;
nvec = 0;
}
plen = fwohci_get_plen(sc, dbch, fp) - offset;
if (plen < 0) {
/* minimum header size + trailer
= sizeof(fw_pkt) so this shouldn't happens */
printf("plen(%d) is negative! offset=%d\n",
plen, offset);
/* XXX clear pdb_tr */
goto out;
}
if (plen > 0) {
len -= plen;
if (len < 0) {
dbch->pdb_tr = db_tr;
if (firewire_debug)
printf("splitted payload\n");
/* sanity check */
if (resCount != 0)
printf("resCount = %d !?\n",
resCount);
/* XXX clear pdb_tr */
goto out;
}
vec[nvec].iov_base = ld;
vec[nvec].iov_len = plen;
nvec ++;
ld += plen;
}
dbch->buf_offset = ld - (uint8_t *)db_tr->buf;
if (nvec == 0)
printf("nvec == 0\n");
/* DMA result-code will be written at the tail of packet */
#if BYTE_ORDER == BIG_ENDIAN
stat = FWOHCI_DMA_READ(((struct fwohci_trailer *)(ld - sizeof(struct fwohci_trailer)))->stat) >> 16;
#else
stat = ((struct fwohci_trailer *)(ld - sizeof(struct fwohci_trailer)))->stat;
#endif
#if 0
printf("plen: %d, stat %x\n",
plen ,stat);
#endif
spd = (stat >> 5) & 0x3;
stat &= 0x1f;
switch(stat){
case FWOHCIEV_ACKPEND:
#if 0
printf("fwohci_arcv: ack pending tcode=0x%x..\n", fp->mode.common.tcode);
#endif
/* fall through */
case FWOHCIEV_ACKCOMPL:
{
struct fw_rcv_buf rb;
if ((vec[nvec-1].iov_len -=
sizeof(struct fwohci_trailer)) == 0)
nvec--;
rb.fc = &sc->fc;
rb.vec = vec;
rb.nvec = nvec;
rb.spd = spd;
fw_rcv(&rb);
break;
}
case FWOHCIEV_BUSRST:
if (sc->fc.status != FWBUSRESET)
printf("got BUSRST packet!?\n");
break;
default:
device_printf(sc->fc.dev, "Async DMA Receive error err = %02x %s\n", stat, fwohcicode[stat]);
#if 0 /* XXX */
goto out;
#endif
break;
}
pcnt ++;
if (dbch->pdb_tr != NULL) {
fwohci_arcv_free_buf(dbch, dbch->pdb_tr);
dbch->pdb_tr = NULL;
}
}
out:
if (resCount == 0) {
/* done on this buffer */
if (dbch->pdb_tr == NULL) {
fwohci_arcv_free_buf(dbch, db_tr);
dbch->buf_offset = 0;
} else
if (dbch->pdb_tr != db_tr)
printf("pdb_tr != db_tr\n");
db_tr = STAILQ_NEXT(db_tr, link);
status = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res)
>> OHCI_STATUS_SHIFT;
resCount = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res)
& OHCI_COUNT_MASK;
/* XXX check buffer overrun */
dbch->top = db_tr;
} else {
dbch->buf_offset = dbch->xferq.psize - resCount;
break;
}
/* XXX make sure DMA is not dead */
}
#if 0
if (pcnt < 1)
printf("fwohci_arcv: no packets\n");
#endif
splx(s);
}