60723c3260
not working properly with the patch in place. Approved by: bms(mentor)
2249 lines
56 KiB
C
2249 lines
56 KiB
C
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ip_output.c 8.3 (Berkeley) 1/21/94
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_ipfw.h"
|
|
#include "opt_ipdn.h"
|
|
#include "opt_ipdivert.h"
|
|
#include "opt_ipfilter.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_mac.h"
|
|
#include "opt_pfil_hooks.h"
|
|
#include "opt_random_ip_id.h"
|
|
#include "opt_mbuf_stress_test.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mac.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
|
|
#ifdef PFIL_HOOKS
|
|
#include <net/pfil.h>
|
|
#endif
|
|
|
|
#include <machine/in_cksum.h>
|
|
|
|
static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
|
|
|
|
#ifdef IPSEC
|
|
#include <netinet6/ipsec.h>
|
|
#include <netkey/key.h>
|
|
#ifdef IPSEC_DEBUG
|
|
#include <netkey/key_debug.h>
|
|
#else
|
|
#define KEYDEBUG(lev,arg)
|
|
#endif
|
|
#endif /*IPSEC*/
|
|
|
|
#ifdef FAST_IPSEC
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/xform.h>
|
|
#include <netipsec/key.h>
|
|
#endif /*FAST_IPSEC*/
|
|
|
|
#include <netinet/ip_fw.h>
|
|
#include <netinet/ip_dummynet.h>
|
|
|
|
#define print_ip(x, a, y) printf("%s %d.%d.%d.%d%s",\
|
|
x, (ntohl(a.s_addr)>>24)&0xFF,\
|
|
(ntohl(a.s_addr)>>16)&0xFF,\
|
|
(ntohl(a.s_addr)>>8)&0xFF,\
|
|
(ntohl(a.s_addr))&0xFF, y);
|
|
|
|
u_short ip_id;
|
|
|
|
#ifdef MBUF_STRESS_TEST
|
|
int mbuf_frag_size = 0;
|
|
SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
|
|
&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
|
|
#endif
|
|
|
|
static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
|
|
static struct ifnet *ip_multicast_if(struct in_addr *, int *);
|
|
static void ip_mloopback
|
|
(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
|
|
static int ip_getmoptions
|
|
(struct sockopt *, struct ip_moptions *);
|
|
static int ip_pcbopts(int, struct mbuf **, struct mbuf *);
|
|
static int ip_setmoptions
|
|
(struct sockopt *, struct ip_moptions **);
|
|
|
|
int ip_optcopy(struct ip *, struct ip *);
|
|
|
|
|
|
extern struct protosw inetsw[];
|
|
|
|
/*
|
|
* IP output. The packet in mbuf chain m contains a skeletal IP
|
|
* header (with len, off, ttl, proto, tos, src, dst).
|
|
* The mbuf chain containing the packet will be freed.
|
|
* The mbuf opt, if present, will not be freed.
|
|
* In the IP forwarding case, the packet will arrive with options already
|
|
* inserted, so must have a NULL opt pointer.
|
|
*/
|
|
int
|
|
ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
|
|
int flags, struct ip_moptions *imo, struct inpcb *inp)
|
|
{
|
|
struct ip *ip;
|
|
struct ifnet *ifp = NULL; /* keep compiler happy */
|
|
struct mbuf *m;
|
|
int hlen = sizeof (struct ip);
|
|
int len, off, error = 0;
|
|
struct sockaddr_in *dst = NULL; /* keep compiler happy */
|
|
struct in_ifaddr *ia = NULL;
|
|
int isbroadcast, sw_csum;
|
|
struct in_addr pkt_dst;
|
|
struct route iproute;
|
|
#ifdef IPSEC
|
|
struct secpolicy *sp = NULL;
|
|
#endif
|
|
#ifdef FAST_IPSEC
|
|
struct m_tag *mtag;
|
|
struct secpolicy *sp = NULL;
|
|
struct tdb_ident *tdbi;
|
|
int s;
|
|
#endif /* FAST_IPSEC */
|
|
struct ip_fw_args args;
|
|
int src_was_INADDR_ANY = 0; /* as the name says... */
|
|
|
|
args.eh = NULL;
|
|
args.rule = NULL;
|
|
args.next_hop = NULL;
|
|
args.divert_rule = 0; /* divert cookie */
|
|
|
|
/* Grab info from MT_TAG mbufs prepended to the chain. */
|
|
for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
|
|
switch(m0->_m_tag_id) {
|
|
default:
|
|
printf("ip_output: unrecognised MT_TAG tag %d\n",
|
|
m0->_m_tag_id);
|
|
break;
|
|
|
|
case PACKET_TAG_DUMMYNET:
|
|
/*
|
|
* the packet was already tagged, so part of the
|
|
* processing was already done, and we need to go down.
|
|
* Get parameters from the header.
|
|
*/
|
|
args.rule = ((struct dn_pkt *)m0)->rule;
|
|
opt = NULL ;
|
|
ro = & ( ((struct dn_pkt *)m0)->ro ) ;
|
|
imo = NULL ;
|
|
dst = ((struct dn_pkt *)m0)->dn_dst ;
|
|
ifp = ((struct dn_pkt *)m0)->ifp ;
|
|
flags = ((struct dn_pkt *)m0)->flags ;
|
|
break;
|
|
|
|
case PACKET_TAG_DIVERT:
|
|
args.divert_rule = (intptr_t)m0->m_data & 0xffff;
|
|
break;
|
|
|
|
case PACKET_TAG_IPFORWARD:
|
|
args.next_hop = (struct sockaddr_in *)m0->m_data;
|
|
break;
|
|
}
|
|
}
|
|
m = m0;
|
|
|
|
M_ASSERTPKTHDR(m);
|
|
|
|
if (ro == NULL) {
|
|
ro = &iproute;
|
|
bzero(ro, sizeof (*ro));
|
|
}
|
|
|
|
if (inp != NULL)
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
if (args.rule != NULL) { /* dummynet already saw us */
|
|
ip = mtod(m, struct ip *);
|
|
hlen = ip->ip_hl << 2 ;
|
|
if (ro->ro_rt)
|
|
ia = ifatoia(ro->ro_rt->rt_ifa);
|
|
goto sendit;
|
|
}
|
|
|
|
if (opt) {
|
|
len = 0;
|
|
m = ip_insertoptions(m, opt, &len);
|
|
if (len != 0)
|
|
hlen = len;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
|
|
|
|
/*
|
|
* Fill in IP header. If we are not allowing fragmentation,
|
|
* then the ip_id field is meaningless, but we don't set it
|
|
* to zero. Doing so causes various problems when devices along
|
|
* the path (routers, load balancers, firewalls, etc.) illegally
|
|
* disable DF on our packet. Note that a 16-bit counter
|
|
* will wrap around in less than 10 seconds at 100 Mbit/s on a
|
|
* medium with MTU 1500. See Steven M. Bellovin, "A Technique
|
|
* for Counting NATted Hosts", Proc. IMW'02, available at
|
|
* <http://www.research.att.com/~smb/papers/fnat.pdf>.
|
|
*/
|
|
if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
|
|
ip->ip_v = IPVERSION;
|
|
ip->ip_hl = hlen >> 2;
|
|
#ifdef RANDOM_IP_ID
|
|
ip->ip_id = ip_randomid();
|
|
#else
|
|
ip->ip_id = htons(ip_id++);
|
|
#endif
|
|
ipstat.ips_localout++;
|
|
} else {
|
|
hlen = ip->ip_hl << 2;
|
|
}
|
|
|
|
dst = (struct sockaddr_in *)&ro->ro_dst;
|
|
/*
|
|
* If there is a cached route,
|
|
* check that it is to the same destination
|
|
* and is still up. If not, free it and try again.
|
|
* The address family should also be checked in case of sharing the
|
|
* cache with IPv6.
|
|
*/
|
|
if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
|
|
dst->sin_family != AF_INET ||
|
|
dst->sin_addr.s_addr != pkt_dst.s_addr)) {
|
|
RTFREE(ro->ro_rt);
|
|
ro->ro_rt = (struct rtentry *)0;
|
|
}
|
|
if (ro->ro_rt == 0) {
|
|
bzero(dst, sizeof(*dst));
|
|
dst->sin_family = AF_INET;
|
|
dst->sin_len = sizeof(*dst);
|
|
dst->sin_addr = pkt_dst;
|
|
}
|
|
/*
|
|
* If routing to interface only,
|
|
* short circuit routing lookup.
|
|
*/
|
|
if (flags & IP_ROUTETOIF) {
|
|
if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
|
|
(ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
|
|
ipstat.ips_noroute++;
|
|
error = ENETUNREACH;
|
|
goto bad;
|
|
}
|
|
ifp = ia->ia_ifp;
|
|
ip->ip_ttl = 1;
|
|
isbroadcast = in_broadcast(dst->sin_addr, ifp);
|
|
} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
|
|
imo != NULL && imo->imo_multicast_ifp != NULL) {
|
|
/*
|
|
* Bypass the normal routing lookup for multicast
|
|
* packets if the interface is specified.
|
|
*/
|
|
ifp = imo->imo_multicast_ifp;
|
|
IFP_TO_IA(ifp, ia);
|
|
isbroadcast = 0; /* fool gcc */
|
|
} else {
|
|
/*
|
|
* We want to do any cloning requested by the link layer,
|
|
* as this is probably required in all cases for correct
|
|
* operation (as it is for ARP).
|
|
*/
|
|
if (ro->ro_rt == 0)
|
|
rtalloc(ro);
|
|
if (ro->ro_rt == 0) {
|
|
ipstat.ips_noroute++;
|
|
error = EHOSTUNREACH;
|
|
goto bad;
|
|
}
|
|
ia = ifatoia(ro->ro_rt->rt_ifa);
|
|
ifp = ro->ro_rt->rt_ifp;
|
|
ro->ro_rt->rt_rmx.rmx_pksent++;
|
|
if (ro->ro_rt->rt_flags & RTF_GATEWAY)
|
|
dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
|
|
if (ro->ro_rt->rt_flags & RTF_HOST)
|
|
isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
|
|
else
|
|
isbroadcast = in_broadcast(dst->sin_addr, ifp);
|
|
}
|
|
if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
|
|
struct in_multi *inm;
|
|
|
|
m->m_flags |= M_MCAST;
|
|
/*
|
|
* IP destination address is multicast. Make sure "dst"
|
|
* still points to the address in "ro". (It may have been
|
|
* changed to point to a gateway address, above.)
|
|
*/
|
|
dst = (struct sockaddr_in *)&ro->ro_dst;
|
|
/*
|
|
* See if the caller provided any multicast options
|
|
*/
|
|
if (imo != NULL) {
|
|
ip->ip_ttl = imo->imo_multicast_ttl;
|
|
if (imo->imo_multicast_vif != -1)
|
|
ip->ip_src.s_addr =
|
|
ip_mcast_src ?
|
|
ip_mcast_src(imo->imo_multicast_vif) :
|
|
INADDR_ANY;
|
|
} else
|
|
ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
|
|
/*
|
|
* Confirm that the outgoing interface supports multicast.
|
|
*/
|
|
if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
|
|
if ((ifp->if_flags & IFF_MULTICAST) == 0) {
|
|
ipstat.ips_noroute++;
|
|
error = ENETUNREACH;
|
|
goto bad;
|
|
}
|
|
}
|
|
/*
|
|
* If source address not specified yet, use address
|
|
* of outgoing interface.
|
|
*/
|
|
if (ip->ip_src.s_addr == INADDR_ANY) {
|
|
/* Interface may have no addresses. */
|
|
if (ia != NULL)
|
|
ip->ip_src = IA_SIN(ia)->sin_addr;
|
|
}
|
|
|
|
if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
|
|
/*
|
|
* XXX
|
|
* delayed checksums are not currently
|
|
* compatible with IP multicast routing
|
|
*/
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
|
|
in_delayed_cksum(m);
|
|
m->m_pkthdr.csum_flags &=
|
|
~CSUM_DELAY_DATA;
|
|
}
|
|
}
|
|
IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
|
|
if (inm != NULL &&
|
|
(imo == NULL || imo->imo_multicast_loop)) {
|
|
/*
|
|
* If we belong to the destination multicast group
|
|
* on the outgoing interface, and the caller did not
|
|
* forbid loopback, loop back a copy.
|
|
*/
|
|
ip_mloopback(ifp, m, dst, hlen);
|
|
}
|
|
else {
|
|
/*
|
|
* If we are acting as a multicast router, perform
|
|
* multicast forwarding as if the packet had just
|
|
* arrived on the interface to which we are about
|
|
* to send. The multicast forwarding function
|
|
* recursively calls this function, using the
|
|
* IP_FORWARDING flag to prevent infinite recursion.
|
|
*
|
|
* Multicasts that are looped back by ip_mloopback(),
|
|
* above, will be forwarded by the ip_input() routine,
|
|
* if necessary.
|
|
*/
|
|
if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
|
|
/*
|
|
* If rsvp daemon is not running, do not
|
|
* set ip_moptions. This ensures that the packet
|
|
* is multicast and not just sent down one link
|
|
* as prescribed by rsvpd.
|
|
*/
|
|
if (!rsvp_on)
|
|
imo = NULL;
|
|
if (ip_mforward &&
|
|
ip_mforward(ip, ifp, m, imo) != 0) {
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Multicasts with a time-to-live of zero may be looped-
|
|
* back, above, but must not be transmitted on a network.
|
|
* Also, multicasts addressed to the loopback interface
|
|
* are not sent -- the above call to ip_mloopback() will
|
|
* loop back a copy if this host actually belongs to the
|
|
* destination group on the loopback interface.
|
|
*/
|
|
if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
|
|
goto sendit;
|
|
}
|
|
#ifndef notdef
|
|
/*
|
|
* If the source address is not specified yet, use the address
|
|
* of the outoing interface. In case, keep note we did that, so
|
|
* if the the firewall changes the next-hop causing the output
|
|
* interface to change, we can fix that.
|
|
*/
|
|
if (ip->ip_src.s_addr == INADDR_ANY) {
|
|
/* Interface may have no addresses. */
|
|
if (ia != NULL) {
|
|
ip->ip_src = IA_SIN(ia)->sin_addr;
|
|
src_was_INADDR_ANY = 1;
|
|
}
|
|
}
|
|
#endif /* notdef */
|
|
/*
|
|
* Verify that we have any chance at all of being able to queue
|
|
* the packet or packet fragments
|
|
*/
|
|
if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
|
|
ifp->if_snd.ifq_maxlen) {
|
|
error = ENOBUFS;
|
|
ipstat.ips_odropped++;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Look for broadcast address and
|
|
* verify user is allowed to send
|
|
* such a packet.
|
|
*/
|
|
if (isbroadcast) {
|
|
if ((ifp->if_flags & IFF_BROADCAST) == 0) {
|
|
error = EADDRNOTAVAIL;
|
|
goto bad;
|
|
}
|
|
if ((flags & IP_ALLOWBROADCAST) == 0) {
|
|
error = EACCES;
|
|
goto bad;
|
|
}
|
|
/* don't allow broadcast messages to be fragmented */
|
|
if (ip->ip_len > ifp->if_mtu) {
|
|
error = EMSGSIZE;
|
|
goto bad;
|
|
}
|
|
if (flags & IP_SENDONES)
|
|
ip->ip_dst.s_addr = INADDR_BROADCAST;
|
|
m->m_flags |= M_BCAST;
|
|
} else {
|
|
m->m_flags &= ~M_BCAST;
|
|
}
|
|
|
|
sendit:
|
|
#ifdef IPSEC
|
|
/* get SP for this packet */
|
|
if (inp == NULL)
|
|
sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
|
|
flags, &error);
|
|
else
|
|
sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
|
|
|
|
if (sp == NULL) {
|
|
ipsecstat.out_inval++;
|
|
goto bad;
|
|
}
|
|
|
|
error = 0;
|
|
|
|
/* check policy */
|
|
switch (sp->policy) {
|
|
case IPSEC_POLICY_DISCARD:
|
|
/*
|
|
* This packet is just discarded.
|
|
*/
|
|
ipsecstat.out_polvio++;
|
|
goto bad;
|
|
|
|
case IPSEC_POLICY_BYPASS:
|
|
case IPSEC_POLICY_NONE:
|
|
case IPSEC_POLICY_TCP:
|
|
/* no need to do IPsec. */
|
|
goto skip_ipsec;
|
|
|
|
case IPSEC_POLICY_IPSEC:
|
|
if (sp->req == NULL) {
|
|
/* acquire a policy */
|
|
error = key_spdacquire(sp);
|
|
goto bad;
|
|
}
|
|
break;
|
|
|
|
case IPSEC_POLICY_ENTRUST:
|
|
default:
|
|
printf("ip_output: Invalid policy found. %d\n", sp->policy);
|
|
}
|
|
{
|
|
struct ipsec_output_state state;
|
|
bzero(&state, sizeof(state));
|
|
state.m = m;
|
|
if (flags & IP_ROUTETOIF) {
|
|
state.ro = &iproute;
|
|
bzero(&iproute, sizeof(iproute));
|
|
} else
|
|
state.ro = ro;
|
|
state.dst = (struct sockaddr *)dst;
|
|
|
|
ip->ip_sum = 0;
|
|
|
|
/*
|
|
* XXX
|
|
* delayed checksums are not currently compatible with IPsec
|
|
*/
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
|
|
in_delayed_cksum(m);
|
|
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
|
|
}
|
|
|
|
ip->ip_len = htons(ip->ip_len);
|
|
ip->ip_off = htons(ip->ip_off);
|
|
|
|
error = ipsec4_output(&state, sp, flags);
|
|
|
|
m = state.m;
|
|
if (flags & IP_ROUTETOIF) {
|
|
/*
|
|
* if we have tunnel mode SA, we may need to ignore
|
|
* IP_ROUTETOIF.
|
|
*/
|
|
if (state.ro != &iproute || state.ro->ro_rt != NULL) {
|
|
flags &= ~IP_ROUTETOIF;
|
|
ro = state.ro;
|
|
}
|
|
} else
|
|
ro = state.ro;
|
|
dst = (struct sockaddr_in *)state.dst;
|
|
if (error) {
|
|
/* mbuf is already reclaimed in ipsec4_output. */
|
|
m0 = NULL;
|
|
switch (error) {
|
|
case EHOSTUNREACH:
|
|
case ENETUNREACH:
|
|
case EMSGSIZE:
|
|
case ENOBUFS:
|
|
case ENOMEM:
|
|
break;
|
|
default:
|
|
printf("ip4_output (ipsec): error code %d\n", error);
|
|
/*fall through*/
|
|
case ENOENT:
|
|
/* don't show these error codes to the user */
|
|
error = 0;
|
|
break;
|
|
}
|
|
goto bad;
|
|
}
|
|
|
|
/* be sure to update variables that are affected by ipsec4_output() */
|
|
ip = mtod(m, struct ip *);
|
|
hlen = ip->ip_hl << 2;
|
|
if (ro->ro_rt == NULL) {
|
|
if ((flags & IP_ROUTETOIF) == 0) {
|
|
printf("ip_output: "
|
|
"can't update route after IPsec processing\n");
|
|
error = EHOSTUNREACH; /*XXX*/
|
|
goto bad;
|
|
}
|
|
} else {
|
|
if (state.encap) {
|
|
ia = ifatoia(ro->ro_rt->rt_ifa);
|
|
ifp = ro->ro_rt->rt_ifp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* make it flipped, again. */
|
|
ip->ip_len = ntohs(ip->ip_len);
|
|
ip->ip_off = ntohs(ip->ip_off);
|
|
skip_ipsec:
|
|
#endif /*IPSEC*/
|
|
#ifdef FAST_IPSEC
|
|
/*
|
|
* Check the security policy (SP) for the packet and, if
|
|
* required, do IPsec-related processing. There are two
|
|
* cases here; the first time a packet is sent through
|
|
* it will be untagged and handled by ipsec4_checkpolicy.
|
|
* If the packet is resubmitted to ip_output (e.g. after
|
|
* AH, ESP, etc. processing), there will be a tag to bypass
|
|
* the lookup and related policy checking.
|
|
*/
|
|
mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
|
|
s = splnet();
|
|
if (mtag != NULL) {
|
|
tdbi = (struct tdb_ident *)(mtag + 1);
|
|
sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
|
|
if (sp == NULL)
|
|
error = -EINVAL; /* force silent drop */
|
|
m_tag_delete(m, mtag);
|
|
} else {
|
|
sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
|
|
&error, inp);
|
|
}
|
|
/*
|
|
* There are four return cases:
|
|
* sp != NULL apply IPsec policy
|
|
* sp == NULL, error == 0 no IPsec handling needed
|
|
* sp == NULL, error == -EINVAL discard packet w/o error
|
|
* sp == NULL, error != 0 discard packet, report error
|
|
*/
|
|
if (sp != NULL) {
|
|
/* Loop detection, check if ipsec processing already done */
|
|
KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
|
|
for (mtag = m_tag_first(m); mtag != NULL;
|
|
mtag = m_tag_next(m, mtag)) {
|
|
if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
|
|
continue;
|
|
if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
|
|
mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
|
|
continue;
|
|
/*
|
|
* Check if policy has an SA associated with it.
|
|
* This can happen when an SP has yet to acquire
|
|
* an SA; e.g. on first reference. If it occurs,
|
|
* then we let ipsec4_process_packet do its thing.
|
|
*/
|
|
if (sp->req->sav == NULL)
|
|
break;
|
|
tdbi = (struct tdb_ident *)(mtag + 1);
|
|
if (tdbi->spi == sp->req->sav->spi &&
|
|
tdbi->proto == sp->req->sav->sah->saidx.proto &&
|
|
bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
|
|
sizeof (union sockaddr_union)) == 0) {
|
|
/*
|
|
* No IPsec processing is needed, free
|
|
* reference to SP.
|
|
*
|
|
* NB: null pointer to avoid free at
|
|
* done: below.
|
|
*/
|
|
KEY_FREESP(&sp), sp = NULL;
|
|
splx(s);
|
|
goto spd_done;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do delayed checksums now because we send before
|
|
* this is done in the normal processing path.
|
|
*/
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
|
|
in_delayed_cksum(m);
|
|
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
|
|
}
|
|
|
|
ip->ip_len = htons(ip->ip_len);
|
|
ip->ip_off = htons(ip->ip_off);
|
|
|
|
/* NB: callee frees mbuf */
|
|
error = ipsec4_process_packet(m, sp->req, flags, 0);
|
|
/*
|
|
* Preserve KAME behaviour: ENOENT can be returned
|
|
* when an SA acquire is in progress. Don't propagate
|
|
* this to user-level; it confuses applications.
|
|
*
|
|
* XXX this will go away when the SADB is redone.
|
|
*/
|
|
if (error == ENOENT)
|
|
error = 0;
|
|
splx(s);
|
|
goto done;
|
|
} else {
|
|
splx(s);
|
|
|
|
if (error != 0) {
|
|
/*
|
|
* Hack: -EINVAL is used to signal that a packet
|
|
* should be silently discarded. This is typically
|
|
* because we asked key management for an SA and
|
|
* it was delayed (e.g. kicked up to IKE).
|
|
*/
|
|
if (error == -EINVAL)
|
|
error = 0;
|
|
goto bad;
|
|
} else {
|
|
/* No IPsec processing for this packet. */
|
|
}
|
|
#ifdef notyet
|
|
/*
|
|
* If deferred crypto processing is needed, check that
|
|
* the interface supports it.
|
|
*/
|
|
mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
|
|
if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
|
|
/* notify IPsec to do its own crypto */
|
|
ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
|
|
error = EHOSTUNREACH;
|
|
goto bad;
|
|
}
|
|
#endif
|
|
}
|
|
spd_done:
|
|
#endif /* FAST_IPSEC */
|
|
|
|
/*
|
|
* IpHack's section.
|
|
* - Xlate: translate packet's addr/port (NAT).
|
|
* - Firewall: deny/allow/etc.
|
|
* - Wrap: fake packet's addr/port <unimpl.>
|
|
* - Encapsulate: put it in another IP and send out. <unimp.>
|
|
*/
|
|
#ifdef PFIL_HOOKS
|
|
/*
|
|
* Run through list of hooks for output packets.
|
|
*/
|
|
error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
|
|
if (error != 0 || m == NULL)
|
|
goto done;
|
|
ip = mtod(m, struct ip *);
|
|
#endif /* PFIL_HOOKS */
|
|
|
|
/*
|
|
* Check with the firewall...
|
|
* but not if we are already being fwd'd from a firewall.
|
|
*/
|
|
if (fw_enable && IPFW_LOADED && !args.next_hop) {
|
|
struct sockaddr_in *old = dst;
|
|
|
|
args.m = m;
|
|
args.next_hop = dst;
|
|
args.oif = ifp;
|
|
off = ip_fw_chk_ptr(&args);
|
|
m = args.m;
|
|
dst = args.next_hop;
|
|
|
|
/*
|
|
* On return we must do the following:
|
|
* m == NULL -> drop the pkt (old interface, deprecated)
|
|
* (off & IP_FW_PORT_DENY_FLAG) -> drop the pkt (new interface)
|
|
* 1<=off<= 0xffff -> DIVERT
|
|
* (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe
|
|
* (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet
|
|
* dst != old -> IPFIREWALL_FORWARD
|
|
* off==0, dst==old -> accept
|
|
* If some of the above modules are not compiled in, then
|
|
* we should't have to check the corresponding condition
|
|
* (because the ipfw control socket should not accept
|
|
* unsupported rules), but better play safe and drop
|
|
* packets in case of doubt.
|
|
*/
|
|
if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
|
|
if (m)
|
|
m_freem(m);
|
|
error = EACCES;
|
|
goto done;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
if (off == 0 && dst == old) /* common case */
|
|
goto pass;
|
|
if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
|
|
/*
|
|
* pass the pkt to dummynet. Need to include
|
|
* pipe number, m, ifp, ro, dst because these are
|
|
* not recomputed in the next pass.
|
|
* All other parameters have been already used and
|
|
* so they are not needed anymore.
|
|
* XXX note: if the ifp or ro entry are deleted
|
|
* while a pkt is in dummynet, we are in trouble!
|
|
*/
|
|
args.ro = ro;
|
|
args.dst = dst;
|
|
args.flags = flags;
|
|
|
|
error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
|
|
&args);
|
|
goto done;
|
|
}
|
|
#ifdef IPDIVERT
|
|
if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
|
|
struct mbuf *clone = NULL;
|
|
|
|
/* Clone packet if we're doing a 'tee' */
|
|
if ((off & IP_FW_PORT_TEE_FLAG) != 0)
|
|
clone = m_dup(m, M_DONTWAIT);
|
|
|
|
/*
|
|
* XXX
|
|
* delayed checksums are not currently compatible
|
|
* with divert sockets.
|
|
*/
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
|
|
in_delayed_cksum(m);
|
|
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
|
|
}
|
|
|
|
/* Restore packet header fields to original values */
|
|
ip->ip_len = htons(ip->ip_len);
|
|
ip->ip_off = htons(ip->ip_off);
|
|
|
|
/* Deliver packet to divert input routine */
|
|
divert_packet(m, 0, off & 0xffff, args.divert_rule);
|
|
|
|
/* If 'tee', continue with original packet */
|
|
if (clone != NULL) {
|
|
m = clone;
|
|
ip = mtod(m, struct ip *);
|
|
goto pass;
|
|
}
|
|
goto done;
|
|
}
|
|
#endif
|
|
|
|
/* IPFIREWALL_FORWARD */
|
|
/*
|
|
* Check dst to make sure it is directly reachable on the
|
|
* interface we previously thought it was.
|
|
* If it isn't (which may be likely in some situations) we have
|
|
* to re-route it (ie, find a route for the next-hop and the
|
|
* associated interface) and set them here. This is nested
|
|
* forwarding which in most cases is undesirable, except where
|
|
* such control is nigh impossible. So we do it here.
|
|
* And I'm babbling.
|
|
*/
|
|
if (off == 0 && old != dst) { /* FORWARD, dst has changed */
|
|
#if 0
|
|
/*
|
|
* XXX To improve readability, this block should be
|
|
* changed into a function call as below:
|
|
*/
|
|
error = ip_ipforward(&m, &dst, &ifp);
|
|
if (error)
|
|
goto bad;
|
|
if (m == NULL) /* ip_input consumed the mbuf */
|
|
goto done;
|
|
#else
|
|
struct in_ifaddr *ia;
|
|
|
|
/*
|
|
* XXX sro_fwd below is static, and a pointer
|
|
* to it gets passed to routines downstream.
|
|
* This could have surprisingly bad results in
|
|
* practice, because its content is overwritten
|
|
* by subsequent packets.
|
|
*/
|
|
/* There must be a better way to do this next line... */
|
|
static struct route sro_fwd;
|
|
struct route *ro_fwd = &sro_fwd;
|
|
|
|
#if 0
|
|
print_ip("IPFIREWALL_FORWARD: New dst ip: ",
|
|
dst->sin_addr, "\n");
|
|
#endif
|
|
|
|
/*
|
|
* We need to figure out if we have been forwarded
|
|
* to a local socket. If so, then we should somehow
|
|
* "loop back" to ip_input, and get directed to the
|
|
* PCB as if we had received this packet. This is
|
|
* because it may be dificult to identify the packets
|
|
* you want to forward until they are being output
|
|
* and have selected an interface. (e.g. locally
|
|
* initiated packets) If we used the loopback inteface,
|
|
* we would not be able to control what happens
|
|
* as the packet runs through ip_input() as
|
|
* it is done through an ISR.
|
|
*/
|
|
LIST_FOREACH(ia,
|
|
INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
|
|
/*
|
|
* If the addr to forward to is one
|
|
* of ours, we pretend to
|
|
* be the destination for this packet.
|
|
*/
|
|
if (IA_SIN(ia)->sin_addr.s_addr ==
|
|
dst->sin_addr.s_addr)
|
|
break;
|
|
}
|
|
if (ia) { /* tell ip_input "dont filter" */
|
|
struct m_hdr tag;
|
|
|
|
tag.mh_type = MT_TAG;
|
|
tag.mh_flags = PACKET_TAG_IPFORWARD;
|
|
tag.mh_data = (caddr_t)args.next_hop;
|
|
tag.mh_next = m;
|
|
tag.mh_nextpkt = NULL;
|
|
|
|
if (m->m_pkthdr.rcvif == NULL)
|
|
m->m_pkthdr.rcvif = ifunit("lo0");
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
m0->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_IP_CHECKED | CSUM_IP_VALID;
|
|
ip->ip_len = htons(ip->ip_len);
|
|
ip->ip_off = htons(ip->ip_off);
|
|
ip_input((struct mbuf *)&tag);
|
|
goto done;
|
|
}
|
|
/*
|
|
* Some of the logic for this was
|
|
* nicked from above.
|
|
*/
|
|
bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
|
|
|
|
ro_fwd->ro_rt = 0;
|
|
rtalloc_ign(ro_fwd, RTF_CLONING);
|
|
|
|
if (ro_fwd->ro_rt == 0) {
|
|
ipstat.ips_noroute++;
|
|
error = EHOSTUNREACH;
|
|
goto bad;
|
|
}
|
|
|
|
ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
|
|
ifp = ro_fwd->ro_rt->rt_ifp;
|
|
ro_fwd->ro_rt->rt_rmx.rmx_pksent++;
|
|
if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
|
|
dst = (struct sockaddr_in *)
|
|
ro_fwd->ro_rt->rt_gateway;
|
|
if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
|
|
isbroadcast =
|
|
(ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
|
|
else
|
|
isbroadcast = in_broadcast(dst->sin_addr, ifp);
|
|
if (ro->ro_rt)
|
|
RTFREE(ro->ro_rt);
|
|
ro->ro_rt = ro_fwd->ro_rt;
|
|
dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
|
|
|
|
#endif /* ... block to be put into a function */
|
|
/*
|
|
* If we added a default src ip earlier,
|
|
* which would have been gotten from the-then
|
|
* interface, do it again, from the new one.
|
|
*/
|
|
if (src_was_INADDR_ANY)
|
|
ip->ip_src = IA_SIN(ia)->sin_addr;
|
|
goto pass ;
|
|
}
|
|
|
|
/*
|
|
* if we get here, none of the above matches, and
|
|
* we have to drop the pkt
|
|
*/
|
|
m_freem(m);
|
|
error = EACCES; /* not sure this is the right error msg */
|
|
goto done;
|
|
}
|
|
|
|
pass:
|
|
/* 127/8 must not appear on wire - RFC1122. */
|
|
if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
|
|
(ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
|
|
if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
|
|
ipstat.ips_badaddr++;
|
|
error = EADDRNOTAVAIL;
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
m->m_pkthdr.csum_flags |= CSUM_IP;
|
|
sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
|
|
if (sw_csum & CSUM_DELAY_DATA) {
|
|
in_delayed_cksum(m);
|
|
sw_csum &= ~CSUM_DELAY_DATA;
|
|
}
|
|
m->m_pkthdr.csum_flags &= ifp->if_hwassist;
|
|
|
|
/*
|
|
* If small enough for interface, or the interface will take
|
|
* care of the fragmentation for us, can just send directly.
|
|
*/
|
|
if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
|
|
((ip->ip_off & IP_DF) == 0))) {
|
|
ip->ip_len = htons(ip->ip_len);
|
|
ip->ip_off = htons(ip->ip_off);
|
|
ip->ip_sum = 0;
|
|
if (sw_csum & CSUM_DELAY_IP)
|
|
ip->ip_sum = in_cksum(m, hlen);
|
|
|
|
/* Record statistics for this interface address. */
|
|
if (!(flags & IP_FORWARDING) && ia) {
|
|
ia->ia_ifa.if_opackets++;
|
|
ia->ia_ifa.if_obytes += m->m_pkthdr.len;
|
|
}
|
|
|
|
#ifdef IPSEC
|
|
/* clean ipsec history once it goes out of the node */
|
|
ipsec_delaux(m);
|
|
#endif
|
|
|
|
#ifdef MBUF_STRESS_TEST
|
|
if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
|
|
m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
|
|
#endif
|
|
error = (*ifp->if_output)(ifp, m,
|
|
(struct sockaddr *)dst, ro->ro_rt);
|
|
goto done;
|
|
}
|
|
|
|
if (ip->ip_off & IP_DF) {
|
|
error = EMSGSIZE;
|
|
/*
|
|
* This case can happen if the user changed the MTU
|
|
* of an interface after enabling IP on it. Because
|
|
* most netifs don't keep track of routes pointing to
|
|
* them, there is no way for one to update all its
|
|
* routes when the MTU is changed.
|
|
*/
|
|
if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
|
|
(ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
|
|
ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
|
|
}
|
|
ipstat.ips_cantfrag++;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Too large for interface; fragment if possible. If successful,
|
|
* on return, m will point to a list of packets to be sent.
|
|
*/
|
|
error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
|
|
if (error)
|
|
goto bad;
|
|
for (; m; m = m0) {
|
|
m0 = m->m_nextpkt;
|
|
m->m_nextpkt = 0;
|
|
#ifdef IPSEC
|
|
/* clean ipsec history once it goes out of the node */
|
|
ipsec_delaux(m);
|
|
#endif
|
|
if (error == 0) {
|
|
/* Record statistics for this interface address. */
|
|
if (ia != NULL) {
|
|
ia->ia_ifa.if_opackets++;
|
|
ia->ia_ifa.if_obytes += m->m_pkthdr.len;
|
|
}
|
|
|
|
error = (*ifp->if_output)(ifp, m,
|
|
(struct sockaddr *)dst, ro->ro_rt);
|
|
} else
|
|
m_freem(m);
|
|
}
|
|
|
|
if (error == 0)
|
|
ipstat.ips_fragmented++;
|
|
|
|
done:
|
|
if (ro == &iproute && ro->ro_rt) {
|
|
RTFREE(ro->ro_rt);
|
|
ro->ro_rt = NULL;
|
|
}
|
|
#ifdef IPSEC
|
|
if (sp != NULL) {
|
|
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
|
|
printf("DP ip_output call free SP:%p\n", sp));
|
|
key_freesp(sp);
|
|
}
|
|
#endif
|
|
#ifdef FAST_IPSEC
|
|
if (sp != NULL)
|
|
KEY_FREESP(&sp);
|
|
#endif
|
|
return (error);
|
|
bad:
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Create a chain of fragments which fit the given mtu. m_frag points to the
|
|
* mbuf to be fragmented; on return it points to the chain with the fragments.
|
|
* Return 0 if no error. If error, m_frag may contain a partially built
|
|
* chain of fragments that should be freed by the caller.
|
|
*
|
|
* if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
|
|
* sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
|
|
*/
|
|
int
|
|
ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
|
|
u_long if_hwassist_flags, int sw_csum)
|
|
{
|
|
int error = 0;
|
|
int hlen = ip->ip_hl << 2;
|
|
int len = (mtu - hlen) & ~7; /* size of payload in each fragment */
|
|
int off;
|
|
struct mbuf *m0 = *m_frag; /* the original packet */
|
|
int firstlen;
|
|
struct mbuf **mnext;
|
|
int nfrags;
|
|
|
|
if (ip->ip_off & IP_DF) { /* Fragmentation not allowed */
|
|
ipstat.ips_cantfrag++;
|
|
return EMSGSIZE;
|
|
}
|
|
|
|
/*
|
|
* Must be able to put at least 8 bytes per fragment.
|
|
*/
|
|
if (len < 8)
|
|
return EMSGSIZE;
|
|
|
|
/*
|
|
* If the interface will not calculate checksums on
|
|
* fragmented packets, then do it here.
|
|
*/
|
|
if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
|
|
(if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
|
|
in_delayed_cksum(m0);
|
|
m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
|
|
}
|
|
|
|
if (len > PAGE_SIZE) {
|
|
/*
|
|
* Fragment large datagrams such that each segment
|
|
* contains a multiple of PAGE_SIZE amount of data,
|
|
* plus headers. This enables a receiver to perform
|
|
* page-flipping zero-copy optimizations.
|
|
*
|
|
* XXX When does this help given that sender and receiver
|
|
* could have different page sizes, and also mtu could
|
|
* be less than the receiver's page size ?
|
|
*/
|
|
int newlen;
|
|
struct mbuf *m;
|
|
|
|
for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
|
|
off += m->m_len;
|
|
|
|
/*
|
|
* firstlen (off - hlen) must be aligned on an
|
|
* 8-byte boundary
|
|
*/
|
|
if (off < hlen)
|
|
goto smart_frag_failure;
|
|
off = ((off - hlen) & ~7) + hlen;
|
|
newlen = (~PAGE_MASK) & mtu;
|
|
if ((newlen + sizeof (struct ip)) > mtu) {
|
|
/* we failed, go back the default */
|
|
smart_frag_failure:
|
|
newlen = len;
|
|
off = hlen + len;
|
|
}
|
|
len = newlen;
|
|
|
|
} else {
|
|
off = hlen + len;
|
|
}
|
|
|
|
firstlen = off - hlen;
|
|
mnext = &m0->m_nextpkt; /* pointer to next packet */
|
|
|
|
/*
|
|
* Loop through length of segment after first fragment,
|
|
* make new header and copy data of each part and link onto chain.
|
|
* Here, m0 is the original packet, m is the fragment being created.
|
|
* The fragments are linked off the m_nextpkt of the original
|
|
* packet, which after processing serves as the first fragment.
|
|
*/
|
|
for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
|
|
struct ip *mhip; /* ip header on the fragment */
|
|
struct mbuf *m;
|
|
int mhlen = sizeof (struct ip);
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_HEADER);
|
|
if (m == 0) {
|
|
error = ENOBUFS;
|
|
ipstat.ips_odropped++;
|
|
goto done;
|
|
}
|
|
m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
|
|
/*
|
|
* In the first mbuf, leave room for the link header, then
|
|
* copy the original IP header including options. The payload
|
|
* goes into an additional mbuf chain returned by m_copy().
|
|
*/
|
|
m->m_data += max_linkhdr;
|
|
mhip = mtod(m, struct ip *);
|
|
*mhip = *ip;
|
|
if (hlen > sizeof (struct ip)) {
|
|
mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
|
|
mhip->ip_v = IPVERSION;
|
|
mhip->ip_hl = mhlen >> 2;
|
|
}
|
|
m->m_len = mhlen;
|
|
/* XXX do we need to add ip->ip_off below ? */
|
|
mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
|
|
if (off + len >= ip->ip_len) { /* last fragment */
|
|
len = ip->ip_len - off;
|
|
m->m_flags |= M_LASTFRAG;
|
|
} else
|
|
mhip->ip_off |= IP_MF;
|
|
mhip->ip_len = htons((u_short)(len + mhlen));
|
|
m->m_next = m_copy(m0, off, len);
|
|
if (m->m_next == 0) { /* copy failed */
|
|
m_free(m);
|
|
error = ENOBUFS; /* ??? */
|
|
ipstat.ips_odropped++;
|
|
goto done;
|
|
}
|
|
m->m_pkthdr.len = mhlen + len;
|
|
m->m_pkthdr.rcvif = (struct ifnet *)0;
|
|
#ifdef MAC
|
|
mac_create_fragment(m0, m);
|
|
#endif
|
|
m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
|
|
mhip->ip_off = htons(mhip->ip_off);
|
|
mhip->ip_sum = 0;
|
|
if (sw_csum & CSUM_DELAY_IP)
|
|
mhip->ip_sum = in_cksum(m, mhlen);
|
|
*mnext = m;
|
|
mnext = &m->m_nextpkt;
|
|
}
|
|
ipstat.ips_ofragments += nfrags;
|
|
|
|
/* set first marker for fragment chain */
|
|
m0->m_flags |= M_FIRSTFRAG | M_FRAG;
|
|
m0->m_pkthdr.csum_data = nfrags;
|
|
|
|
/*
|
|
* Update first fragment by trimming what's been copied out
|
|
* and updating header.
|
|
*/
|
|
m_adj(m0, hlen + firstlen - ip->ip_len);
|
|
m0->m_pkthdr.len = hlen + firstlen;
|
|
ip->ip_len = htons((u_short)m0->m_pkthdr.len);
|
|
ip->ip_off |= IP_MF;
|
|
ip->ip_off = htons(ip->ip_off);
|
|
ip->ip_sum = 0;
|
|
if (sw_csum & CSUM_DELAY_IP)
|
|
ip->ip_sum = in_cksum(m0, hlen);
|
|
|
|
done:
|
|
*m_frag = m0;
|
|
return error;
|
|
}
|
|
|
|
void
|
|
in_delayed_cksum(struct mbuf *m)
|
|
{
|
|
struct ip *ip;
|
|
u_short csum, offset;
|
|
|
|
ip = mtod(m, struct ip *);
|
|
offset = ip->ip_hl << 2 ;
|
|
csum = in_cksum_skip(m, ip->ip_len, offset);
|
|
if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
|
|
csum = 0xffff;
|
|
offset += m->m_pkthdr.csum_data; /* checksum offset */
|
|
|
|
if (offset + sizeof(u_short) > m->m_len) {
|
|
printf("delayed m_pullup, m->len: %d off: %d p: %d\n",
|
|
m->m_len, offset, ip->ip_p);
|
|
/*
|
|
* XXX
|
|
* this shouldn't happen, but if it does, the
|
|
* correct behavior may be to insert the checksum
|
|
* in the existing chain instead of rearranging it.
|
|
*/
|
|
m = m_pullup(m, offset + sizeof(u_short));
|
|
}
|
|
*(u_short *)(m->m_data + offset) = csum;
|
|
}
|
|
|
|
/*
|
|
* Insert IP options into preformed packet.
|
|
* Adjust IP destination as required for IP source routing,
|
|
* as indicated by a non-zero in_addr at the start of the options.
|
|
*
|
|
* XXX This routine assumes that the packet has no options in place.
|
|
*/
|
|
static struct mbuf *
|
|
ip_insertoptions(m, opt, phlen)
|
|
register struct mbuf *m;
|
|
struct mbuf *opt;
|
|
int *phlen;
|
|
{
|
|
register struct ipoption *p = mtod(opt, struct ipoption *);
|
|
struct mbuf *n;
|
|
register struct ip *ip = mtod(m, struct ip *);
|
|
unsigned optlen;
|
|
|
|
optlen = opt->m_len - sizeof(p->ipopt_dst);
|
|
if (optlen + ip->ip_len > IP_MAXPACKET) {
|
|
*phlen = 0;
|
|
return (m); /* XXX should fail */
|
|
}
|
|
if (p->ipopt_dst.s_addr)
|
|
ip->ip_dst = p->ipopt_dst;
|
|
if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
|
|
MGETHDR(n, M_DONTWAIT, MT_HEADER);
|
|
if (n == 0) {
|
|
*phlen = 0;
|
|
return (m);
|
|
}
|
|
n->m_pkthdr.rcvif = (struct ifnet *)0;
|
|
#ifdef MAC
|
|
mac_create_mbuf_from_mbuf(m, n);
|
|
#endif
|
|
n->m_pkthdr.len = m->m_pkthdr.len + optlen;
|
|
m->m_len -= sizeof(struct ip);
|
|
m->m_data += sizeof(struct ip);
|
|
n->m_next = m;
|
|
m = n;
|
|
m->m_len = optlen + sizeof(struct ip);
|
|
m->m_data += max_linkhdr;
|
|
bcopy(ip, mtod(m, void *), sizeof(struct ip));
|
|
} else {
|
|
m->m_data -= optlen;
|
|
m->m_len += optlen;
|
|
m->m_pkthdr.len += optlen;
|
|
bcopy(ip, mtod(m, void *), sizeof(struct ip));
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
bcopy(p->ipopt_list, ip + 1, optlen);
|
|
*phlen = sizeof(struct ip) + optlen;
|
|
ip->ip_v = IPVERSION;
|
|
ip->ip_hl = *phlen >> 2;
|
|
ip->ip_len += optlen;
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Copy options from ip to jp,
|
|
* omitting those not copied during fragmentation.
|
|
*/
|
|
int
|
|
ip_optcopy(ip, jp)
|
|
struct ip *ip, *jp;
|
|
{
|
|
register u_char *cp, *dp;
|
|
int opt, optlen, cnt;
|
|
|
|
cp = (u_char *)(ip + 1);
|
|
dp = (u_char *)(jp + 1);
|
|
cnt = (ip->ip_hl << 2) - sizeof (struct ip);
|
|
for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
|
opt = cp[0];
|
|
if (opt == IPOPT_EOL)
|
|
break;
|
|
if (opt == IPOPT_NOP) {
|
|
/* Preserve for IP mcast tunnel's LSRR alignment. */
|
|
*dp++ = IPOPT_NOP;
|
|
optlen = 1;
|
|
continue;
|
|
}
|
|
|
|
KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
|
|
("ip_optcopy: malformed ipv4 option"));
|
|
optlen = cp[IPOPT_OLEN];
|
|
KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
|
|
("ip_optcopy: malformed ipv4 option"));
|
|
|
|
/* bogus lengths should have been caught by ip_dooptions */
|
|
if (optlen > cnt)
|
|
optlen = cnt;
|
|
if (IPOPT_COPIED(opt)) {
|
|
bcopy(cp, dp, optlen);
|
|
dp += optlen;
|
|
}
|
|
}
|
|
for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
|
|
*dp++ = IPOPT_EOL;
|
|
return (optlen);
|
|
}
|
|
|
|
/*
|
|
* IP socket option processing.
|
|
*/
|
|
int
|
|
ip_ctloutput(so, sopt)
|
|
struct socket *so;
|
|
struct sockopt *sopt;
|
|
{
|
|
struct inpcb *inp = sotoinpcb(so);
|
|
int error, optval;
|
|
|
|
error = optval = 0;
|
|
if (sopt->sopt_level != IPPROTO_IP) {
|
|
return (EINVAL);
|
|
}
|
|
|
|
switch (sopt->sopt_dir) {
|
|
case SOPT_SET:
|
|
switch (sopt->sopt_name) {
|
|
case IP_OPTIONS:
|
|
#ifdef notyet
|
|
case IP_RETOPTS:
|
|
#endif
|
|
{
|
|
struct mbuf *m;
|
|
if (sopt->sopt_valsize > MLEN) {
|
|
error = EMSGSIZE;
|
|
break;
|
|
}
|
|
MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
|
|
if (m == 0) {
|
|
error = ENOBUFS;
|
|
break;
|
|
}
|
|
m->m_len = sopt->sopt_valsize;
|
|
error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
|
|
m->m_len);
|
|
|
|
return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
|
|
m));
|
|
}
|
|
|
|
case IP_TOS:
|
|
case IP_TTL:
|
|
case IP_RECVOPTS:
|
|
case IP_RECVRETOPTS:
|
|
case IP_RECVDSTADDR:
|
|
case IP_RECVTTL:
|
|
case IP_RECVIF:
|
|
case IP_FAITH:
|
|
case IP_ONESBCAST:
|
|
error = sooptcopyin(sopt, &optval, sizeof optval,
|
|
sizeof optval);
|
|
if (error)
|
|
break;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case IP_TOS:
|
|
inp->inp_ip_tos = optval;
|
|
break;
|
|
|
|
case IP_TTL:
|
|
inp->inp_ip_ttl = optval;
|
|
break;
|
|
#define OPTSET(bit) \
|
|
if (optval) \
|
|
inp->inp_flags |= bit; \
|
|
else \
|
|
inp->inp_flags &= ~bit;
|
|
|
|
case IP_RECVOPTS:
|
|
OPTSET(INP_RECVOPTS);
|
|
break;
|
|
|
|
case IP_RECVRETOPTS:
|
|
OPTSET(INP_RECVRETOPTS);
|
|
break;
|
|
|
|
case IP_RECVDSTADDR:
|
|
OPTSET(INP_RECVDSTADDR);
|
|
break;
|
|
|
|
case IP_RECVTTL:
|
|
OPTSET(INP_RECVTTL);
|
|
break;
|
|
|
|
case IP_RECVIF:
|
|
OPTSET(INP_RECVIF);
|
|
break;
|
|
|
|
case IP_FAITH:
|
|
OPTSET(INP_FAITH);
|
|
break;
|
|
|
|
case IP_ONESBCAST:
|
|
OPTSET(INP_ONESBCAST);
|
|
break;
|
|
}
|
|
break;
|
|
#undef OPTSET
|
|
|
|
case IP_MULTICAST_IF:
|
|
case IP_MULTICAST_VIF:
|
|
case IP_MULTICAST_TTL:
|
|
case IP_MULTICAST_LOOP:
|
|
case IP_ADD_MEMBERSHIP:
|
|
case IP_DROP_MEMBERSHIP:
|
|
error = ip_setmoptions(sopt, &inp->inp_moptions);
|
|
break;
|
|
|
|
case IP_PORTRANGE:
|
|
error = sooptcopyin(sopt, &optval, sizeof optval,
|
|
sizeof optval);
|
|
if (error)
|
|
break;
|
|
|
|
switch (optval) {
|
|
case IP_PORTRANGE_DEFAULT:
|
|
inp->inp_flags &= ~(INP_LOWPORT);
|
|
inp->inp_flags &= ~(INP_HIGHPORT);
|
|
break;
|
|
|
|
case IP_PORTRANGE_HIGH:
|
|
inp->inp_flags &= ~(INP_LOWPORT);
|
|
inp->inp_flags |= INP_HIGHPORT;
|
|
break;
|
|
|
|
case IP_PORTRANGE_LOW:
|
|
inp->inp_flags &= ~(INP_HIGHPORT);
|
|
inp->inp_flags |= INP_LOWPORT;
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
#if defined(IPSEC) || defined(FAST_IPSEC)
|
|
case IP_IPSEC_POLICY:
|
|
{
|
|
caddr_t req;
|
|
size_t len = 0;
|
|
int priv;
|
|
struct mbuf *m;
|
|
int optname;
|
|
|
|
if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
|
|
break;
|
|
if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
|
|
break;
|
|
priv = (sopt->sopt_td != NULL &&
|
|
suser(sopt->sopt_td) != 0) ? 0 : 1;
|
|
req = mtod(m, caddr_t);
|
|
len = m->m_len;
|
|
optname = sopt->sopt_name;
|
|
error = ipsec4_set_policy(inp, optname, req, len, priv);
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
#endif /*IPSEC*/
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SOPT_GET:
|
|
switch (sopt->sopt_name) {
|
|
case IP_OPTIONS:
|
|
case IP_RETOPTS:
|
|
if (inp->inp_options)
|
|
error = sooptcopyout(sopt,
|
|
mtod(inp->inp_options,
|
|
char *),
|
|
inp->inp_options->m_len);
|
|
else
|
|
sopt->sopt_valsize = 0;
|
|
break;
|
|
|
|
case IP_TOS:
|
|
case IP_TTL:
|
|
case IP_RECVOPTS:
|
|
case IP_RECVRETOPTS:
|
|
case IP_RECVDSTADDR:
|
|
case IP_RECVTTL:
|
|
case IP_RECVIF:
|
|
case IP_PORTRANGE:
|
|
case IP_FAITH:
|
|
case IP_ONESBCAST:
|
|
switch (sopt->sopt_name) {
|
|
|
|
case IP_TOS:
|
|
optval = inp->inp_ip_tos;
|
|
break;
|
|
|
|
case IP_TTL:
|
|
optval = inp->inp_ip_ttl;
|
|
break;
|
|
|
|
#define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
|
|
|
|
case IP_RECVOPTS:
|
|
optval = OPTBIT(INP_RECVOPTS);
|
|
break;
|
|
|
|
case IP_RECVRETOPTS:
|
|
optval = OPTBIT(INP_RECVRETOPTS);
|
|
break;
|
|
|
|
case IP_RECVDSTADDR:
|
|
optval = OPTBIT(INP_RECVDSTADDR);
|
|
break;
|
|
|
|
case IP_RECVTTL:
|
|
optval = OPTBIT(INP_RECVTTL);
|
|
break;
|
|
|
|
case IP_RECVIF:
|
|
optval = OPTBIT(INP_RECVIF);
|
|
break;
|
|
|
|
case IP_PORTRANGE:
|
|
if (inp->inp_flags & INP_HIGHPORT)
|
|
optval = IP_PORTRANGE_HIGH;
|
|
else if (inp->inp_flags & INP_LOWPORT)
|
|
optval = IP_PORTRANGE_LOW;
|
|
else
|
|
optval = 0;
|
|
break;
|
|
|
|
case IP_FAITH:
|
|
optval = OPTBIT(INP_FAITH);
|
|
break;
|
|
|
|
case IP_ONESBCAST:
|
|
optval = OPTBIT(INP_ONESBCAST);
|
|
break;
|
|
}
|
|
error = sooptcopyout(sopt, &optval, sizeof optval);
|
|
break;
|
|
|
|
case IP_MULTICAST_IF:
|
|
case IP_MULTICAST_VIF:
|
|
case IP_MULTICAST_TTL:
|
|
case IP_MULTICAST_LOOP:
|
|
case IP_ADD_MEMBERSHIP:
|
|
case IP_DROP_MEMBERSHIP:
|
|
error = ip_getmoptions(sopt, inp->inp_moptions);
|
|
break;
|
|
|
|
#if defined(IPSEC) || defined(FAST_IPSEC)
|
|
case IP_IPSEC_POLICY:
|
|
{
|
|
struct mbuf *m = NULL;
|
|
caddr_t req = NULL;
|
|
size_t len = 0;
|
|
|
|
if (m != 0) {
|
|
req = mtod(m, caddr_t);
|
|
len = m->m_len;
|
|
}
|
|
error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
|
|
if (error == 0)
|
|
error = soopt_mcopyout(sopt, m); /* XXX */
|
|
if (error == 0)
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
#endif /*IPSEC*/
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set up IP options in pcb for insertion in output packets.
|
|
* Store in mbuf with pointer in pcbopt, adding pseudo-option
|
|
* with destination address if source routed.
|
|
*/
|
|
static int
|
|
ip_pcbopts(optname, pcbopt, m)
|
|
int optname;
|
|
struct mbuf **pcbopt;
|
|
register struct mbuf *m;
|
|
{
|
|
register int cnt, optlen;
|
|
register u_char *cp;
|
|
u_char opt;
|
|
|
|
/* turn off any old options */
|
|
if (*pcbopt)
|
|
(void)m_free(*pcbopt);
|
|
*pcbopt = 0;
|
|
if (m == (struct mbuf *)0 || m->m_len == 0) {
|
|
/*
|
|
* Only turning off any previous options.
|
|
*/
|
|
if (m)
|
|
(void)m_free(m);
|
|
return (0);
|
|
}
|
|
|
|
if (m->m_len % sizeof(int32_t))
|
|
goto bad;
|
|
/*
|
|
* IP first-hop destination address will be stored before
|
|
* actual options; move other options back
|
|
* and clear it when none present.
|
|
*/
|
|
if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
|
|
goto bad;
|
|
cnt = m->m_len;
|
|
m->m_len += sizeof(struct in_addr);
|
|
cp = mtod(m, u_char *) + sizeof(struct in_addr);
|
|
bcopy(mtod(m, void *), cp, (unsigned)cnt);
|
|
bzero(mtod(m, void *), sizeof(struct in_addr));
|
|
|
|
for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
|
opt = cp[IPOPT_OPTVAL];
|
|
if (opt == IPOPT_EOL)
|
|
break;
|
|
if (opt == IPOPT_NOP)
|
|
optlen = 1;
|
|
else {
|
|
if (cnt < IPOPT_OLEN + sizeof(*cp))
|
|
goto bad;
|
|
optlen = cp[IPOPT_OLEN];
|
|
if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
|
|
goto bad;
|
|
}
|
|
switch (opt) {
|
|
|
|
default:
|
|
break;
|
|
|
|
case IPOPT_LSRR:
|
|
case IPOPT_SSRR:
|
|
/*
|
|
* user process specifies route as:
|
|
* ->A->B->C->D
|
|
* D must be our final destination (but we can't
|
|
* check that since we may not have connected yet).
|
|
* A is first hop destination, which doesn't appear in
|
|
* actual IP option, but is stored before the options.
|
|
*/
|
|
if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
|
|
goto bad;
|
|
m->m_len -= sizeof(struct in_addr);
|
|
cnt -= sizeof(struct in_addr);
|
|
optlen -= sizeof(struct in_addr);
|
|
cp[IPOPT_OLEN] = optlen;
|
|
/*
|
|
* Move first hop before start of options.
|
|
*/
|
|
bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
|
|
sizeof(struct in_addr));
|
|
/*
|
|
* Then copy rest of options back
|
|
* to close up the deleted entry.
|
|
*/
|
|
bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
|
|
&cp[IPOPT_OFFSET+1],
|
|
(unsigned)cnt + sizeof(struct in_addr));
|
|
break;
|
|
}
|
|
}
|
|
if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
|
|
goto bad;
|
|
*pcbopt = m;
|
|
return (0);
|
|
|
|
bad:
|
|
(void)m_free(m);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* XXX
|
|
* The whole multicast option thing needs to be re-thought.
|
|
* Several of these options are equally applicable to non-multicast
|
|
* transmission, and one (IP_MULTICAST_TTL) totally duplicates a
|
|
* standard option (IP_TTL).
|
|
*/
|
|
|
|
/*
|
|
* following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
|
|
*/
|
|
static struct ifnet *
|
|
ip_multicast_if(a, ifindexp)
|
|
struct in_addr *a;
|
|
int *ifindexp;
|
|
{
|
|
int ifindex;
|
|
struct ifnet *ifp;
|
|
|
|
if (ifindexp)
|
|
*ifindexp = 0;
|
|
if (ntohl(a->s_addr) >> 24 == 0) {
|
|
ifindex = ntohl(a->s_addr) & 0xffffff;
|
|
if (ifindex < 0 || if_index < ifindex)
|
|
return NULL;
|
|
ifp = ifnet_byindex(ifindex);
|
|
if (ifindexp)
|
|
*ifindexp = ifindex;
|
|
} else {
|
|
INADDR_TO_IFP(*a, ifp);
|
|
}
|
|
return ifp;
|
|
}
|
|
|
|
/*
|
|
* Set the IP multicast options in response to user setsockopt().
|
|
*/
|
|
static int
|
|
ip_setmoptions(sopt, imop)
|
|
struct sockopt *sopt;
|
|
struct ip_moptions **imop;
|
|
{
|
|
int error = 0;
|
|
int i;
|
|
struct in_addr addr;
|
|
struct ip_mreq mreq;
|
|
struct ifnet *ifp;
|
|
struct ip_moptions *imo = *imop;
|
|
struct route ro;
|
|
struct sockaddr_in *dst;
|
|
int ifindex;
|
|
int s;
|
|
|
|
if (imo == NULL) {
|
|
/*
|
|
* No multicast option buffer attached to the pcb;
|
|
* allocate one and initialize to default values.
|
|
*/
|
|
imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
|
|
M_WAITOK);
|
|
|
|
if (imo == NULL)
|
|
return (ENOBUFS);
|
|
*imop = imo;
|
|
imo->imo_multicast_ifp = NULL;
|
|
imo->imo_multicast_addr.s_addr = INADDR_ANY;
|
|
imo->imo_multicast_vif = -1;
|
|
imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
|
|
imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
|
|
imo->imo_num_memberships = 0;
|
|
}
|
|
|
|
switch (sopt->sopt_name) {
|
|
/* store an index number for the vif you wanna use in the send */
|
|
case IP_MULTICAST_VIF:
|
|
if (legal_vif_num == 0) {
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
|
|
if (error)
|
|
break;
|
|
if (!legal_vif_num(i) && (i != -1)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
imo->imo_multicast_vif = i;
|
|
break;
|
|
|
|
case IP_MULTICAST_IF:
|
|
/*
|
|
* Select the interface for outgoing multicast packets.
|
|
*/
|
|
error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
|
|
if (error)
|
|
break;
|
|
/*
|
|
* INADDR_ANY is used to remove a previous selection.
|
|
* When no interface is selected, a default one is
|
|
* chosen every time a multicast packet is sent.
|
|
*/
|
|
if (addr.s_addr == INADDR_ANY) {
|
|
imo->imo_multicast_ifp = NULL;
|
|
break;
|
|
}
|
|
/*
|
|
* The selected interface is identified by its local
|
|
* IP address. Find the interface and confirm that
|
|
* it supports multicasting.
|
|
*/
|
|
s = splimp();
|
|
ifp = ip_multicast_if(&addr, &ifindex);
|
|
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
|
|
splx(s);
|
|
error = EADDRNOTAVAIL;
|
|
break;
|
|
}
|
|
imo->imo_multicast_ifp = ifp;
|
|
if (ifindex)
|
|
imo->imo_multicast_addr = addr;
|
|
else
|
|
imo->imo_multicast_addr.s_addr = INADDR_ANY;
|
|
splx(s);
|
|
break;
|
|
|
|
case IP_MULTICAST_TTL:
|
|
/*
|
|
* Set the IP time-to-live for outgoing multicast packets.
|
|
* The original multicast API required a char argument,
|
|
* which is inconsistent with the rest of the socket API.
|
|
* We allow either a char or an int.
|
|
*/
|
|
if (sopt->sopt_valsize == 1) {
|
|
u_char ttl;
|
|
error = sooptcopyin(sopt, &ttl, 1, 1);
|
|
if (error)
|
|
break;
|
|
imo->imo_multicast_ttl = ttl;
|
|
} else {
|
|
u_int ttl;
|
|
error = sooptcopyin(sopt, &ttl, sizeof ttl,
|
|
sizeof ttl);
|
|
if (error)
|
|
break;
|
|
if (ttl > 255)
|
|
error = EINVAL;
|
|
else
|
|
imo->imo_multicast_ttl = ttl;
|
|
}
|
|
break;
|
|
|
|
case IP_MULTICAST_LOOP:
|
|
/*
|
|
* Set the loopback flag for outgoing multicast packets.
|
|
* Must be zero or one. The original multicast API required a
|
|
* char argument, which is inconsistent with the rest
|
|
* of the socket API. We allow either a char or an int.
|
|
*/
|
|
if (sopt->sopt_valsize == 1) {
|
|
u_char loop;
|
|
error = sooptcopyin(sopt, &loop, 1, 1);
|
|
if (error)
|
|
break;
|
|
imo->imo_multicast_loop = !!loop;
|
|
} else {
|
|
u_int loop;
|
|
error = sooptcopyin(sopt, &loop, sizeof loop,
|
|
sizeof loop);
|
|
if (error)
|
|
break;
|
|
imo->imo_multicast_loop = !!loop;
|
|
}
|
|
break;
|
|
|
|
case IP_ADD_MEMBERSHIP:
|
|
/*
|
|
* Add a multicast group membership.
|
|
* Group must be a valid IP multicast address.
|
|
*/
|
|
error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
|
|
if (error)
|
|
break;
|
|
|
|
if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
s = splimp();
|
|
/*
|
|
* If no interface address was provided, use the interface of
|
|
* the route to the given multicast address.
|
|
*/
|
|
if (mreq.imr_interface.s_addr == INADDR_ANY) {
|
|
bzero((caddr_t)&ro, sizeof(ro));
|
|
dst = (struct sockaddr_in *)&ro.ro_dst;
|
|
dst->sin_len = sizeof(*dst);
|
|
dst->sin_family = AF_INET;
|
|
dst->sin_addr = mreq.imr_multiaddr;
|
|
rtalloc_ign(&ro, RTF_CLONING);
|
|
if (ro.ro_rt == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
splx(s);
|
|
break;
|
|
}
|
|
ifp = ro.ro_rt->rt_ifp;
|
|
RTFREE(ro.ro_rt);
|
|
}
|
|
else {
|
|
ifp = ip_multicast_if(&mreq.imr_interface, NULL);
|
|
}
|
|
|
|
/*
|
|
* See if we found an interface, and confirm that it
|
|
* supports multicast.
|
|
*/
|
|
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
|
|
error = EADDRNOTAVAIL;
|
|
splx(s);
|
|
break;
|
|
}
|
|
/*
|
|
* See if the membership already exists or if all the
|
|
* membership slots are full.
|
|
*/
|
|
for (i = 0; i < imo->imo_num_memberships; ++i) {
|
|
if (imo->imo_membership[i]->inm_ifp == ifp &&
|
|
imo->imo_membership[i]->inm_addr.s_addr
|
|
== mreq.imr_multiaddr.s_addr)
|
|
break;
|
|
}
|
|
if (i < imo->imo_num_memberships) {
|
|
error = EADDRINUSE;
|
|
splx(s);
|
|
break;
|
|
}
|
|
if (i == IP_MAX_MEMBERSHIPS) {
|
|
error = ETOOMANYREFS;
|
|
splx(s);
|
|
break;
|
|
}
|
|
/*
|
|
* Everything looks good; add a new record to the multicast
|
|
* address list for the given interface.
|
|
*/
|
|
if ((imo->imo_membership[i] =
|
|
in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
|
|
error = ENOBUFS;
|
|
splx(s);
|
|
break;
|
|
}
|
|
++imo->imo_num_memberships;
|
|
splx(s);
|
|
break;
|
|
|
|
case IP_DROP_MEMBERSHIP:
|
|
/*
|
|
* Drop a multicast group membership.
|
|
* Group must be a valid IP multicast address.
|
|
*/
|
|
error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
|
|
if (error)
|
|
break;
|
|
|
|
if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
s = splimp();
|
|
/*
|
|
* If an interface address was specified, get a pointer
|
|
* to its ifnet structure.
|
|
*/
|
|
if (mreq.imr_interface.s_addr == INADDR_ANY)
|
|
ifp = NULL;
|
|
else {
|
|
ifp = ip_multicast_if(&mreq.imr_interface, NULL);
|
|
if (ifp == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
splx(s);
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* Find the membership in the membership array.
|
|
*/
|
|
for (i = 0; i < imo->imo_num_memberships; ++i) {
|
|
if ((ifp == NULL ||
|
|
imo->imo_membership[i]->inm_ifp == ifp) &&
|
|
imo->imo_membership[i]->inm_addr.s_addr ==
|
|
mreq.imr_multiaddr.s_addr)
|
|
break;
|
|
}
|
|
if (i == imo->imo_num_memberships) {
|
|
error = EADDRNOTAVAIL;
|
|
splx(s);
|
|
break;
|
|
}
|
|
/*
|
|
* Give up the multicast address record to which the
|
|
* membership points.
|
|
*/
|
|
in_delmulti(imo->imo_membership[i]);
|
|
/*
|
|
* Remove the gap in the membership array.
|
|
*/
|
|
for (++i; i < imo->imo_num_memberships; ++i)
|
|
imo->imo_membership[i-1] = imo->imo_membership[i];
|
|
--imo->imo_num_memberships;
|
|
splx(s);
|
|
break;
|
|
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If all options have default values, no need to keep the mbuf.
|
|
*/
|
|
if (imo->imo_multicast_ifp == NULL &&
|
|
imo->imo_multicast_vif == -1 &&
|
|
imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
|
|
imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
|
|
imo->imo_num_memberships == 0) {
|
|
free(*imop, M_IPMOPTS);
|
|
*imop = NULL;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return the IP multicast options in response to user getsockopt().
|
|
*/
|
|
static int
|
|
ip_getmoptions(sopt, imo)
|
|
struct sockopt *sopt;
|
|
register struct ip_moptions *imo;
|
|
{
|
|
struct in_addr addr;
|
|
struct in_ifaddr *ia;
|
|
int error, optval;
|
|
u_char coptval;
|
|
|
|
error = 0;
|
|
switch (sopt->sopt_name) {
|
|
case IP_MULTICAST_VIF:
|
|
if (imo != NULL)
|
|
optval = imo->imo_multicast_vif;
|
|
else
|
|
optval = -1;
|
|
error = sooptcopyout(sopt, &optval, sizeof optval);
|
|
break;
|
|
|
|
case IP_MULTICAST_IF:
|
|
if (imo == NULL || imo->imo_multicast_ifp == NULL)
|
|
addr.s_addr = INADDR_ANY;
|
|
else if (imo->imo_multicast_addr.s_addr) {
|
|
/* return the value user has set */
|
|
addr = imo->imo_multicast_addr;
|
|
} else {
|
|
IFP_TO_IA(imo->imo_multicast_ifp, ia);
|
|
addr.s_addr = (ia == NULL) ? INADDR_ANY
|
|
: IA_SIN(ia)->sin_addr.s_addr;
|
|
}
|
|
error = sooptcopyout(sopt, &addr, sizeof addr);
|
|
break;
|
|
|
|
case IP_MULTICAST_TTL:
|
|
if (imo == 0)
|
|
optval = coptval = IP_DEFAULT_MULTICAST_TTL;
|
|
else
|
|
optval = coptval = imo->imo_multicast_ttl;
|
|
if (sopt->sopt_valsize == 1)
|
|
error = sooptcopyout(sopt, &coptval, 1);
|
|
else
|
|
error = sooptcopyout(sopt, &optval, sizeof optval);
|
|
break;
|
|
|
|
case IP_MULTICAST_LOOP:
|
|
if (imo == 0)
|
|
optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
|
|
else
|
|
optval = coptval = imo->imo_multicast_loop;
|
|
if (sopt->sopt_valsize == 1)
|
|
error = sooptcopyout(sopt, &coptval, 1);
|
|
else
|
|
error = sooptcopyout(sopt, &optval, sizeof optval);
|
|
break;
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Discard the IP multicast options.
|
|
*/
|
|
void
|
|
ip_freemoptions(imo)
|
|
register struct ip_moptions *imo;
|
|
{
|
|
register int i;
|
|
|
|
if (imo != NULL) {
|
|
for (i = 0; i < imo->imo_num_memberships; ++i)
|
|
in_delmulti(imo->imo_membership[i]);
|
|
free(imo, M_IPMOPTS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Routine called from ip_output() to loop back a copy of an IP multicast
|
|
* packet to the input queue of a specified interface. Note that this
|
|
* calls the output routine of the loopback "driver", but with an interface
|
|
* pointer that might NOT be a loopback interface -- evil, but easier than
|
|
* replicating that code here.
|
|
*/
|
|
static void
|
|
ip_mloopback(ifp, m, dst, hlen)
|
|
struct ifnet *ifp;
|
|
register struct mbuf *m;
|
|
register struct sockaddr_in *dst;
|
|
int hlen;
|
|
{
|
|
register struct ip *ip;
|
|
struct mbuf *copym;
|
|
|
|
copym = m_copy(m, 0, M_COPYALL);
|
|
if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
|
|
copym = m_pullup(copym, hlen);
|
|
if (copym != NULL) {
|
|
/*
|
|
* We don't bother to fragment if the IP length is greater
|
|
* than the interface's MTU. Can this possibly matter?
|
|
*/
|
|
ip = mtod(copym, struct ip *);
|
|
ip->ip_len = htons(ip->ip_len);
|
|
ip->ip_off = htons(ip->ip_off);
|
|
ip->ip_sum = 0;
|
|
ip->ip_sum = in_cksum(copym, hlen);
|
|
/*
|
|
* NB:
|
|
* It's not clear whether there are any lingering
|
|
* reentrancy problems in other areas which might
|
|
* be exposed by using ip_input directly (in
|
|
* particular, everything which modifies the packet
|
|
* in-place). Yet another option is using the
|
|
* protosw directly to deliver the looped back
|
|
* packet. For the moment, we'll err on the side
|
|
* of safety by using if_simloop().
|
|
*/
|
|
#if 1 /* XXX */
|
|
if (dst->sin_family != AF_INET) {
|
|
printf("ip_mloopback: bad address family %d\n",
|
|
dst->sin_family);
|
|
dst->sin_family = AF_INET;
|
|
}
|
|
#endif
|
|
|
|
#ifdef notdef
|
|
copym->m_pkthdr.rcvif = ifp;
|
|
ip_input(copym);
|
|
#else
|
|
/* if the checksum hasn't been computed, mark it as valid */
|
|
if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
|
|
copym->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
copym->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
if_simloop(ifp, copym, dst->sin_family, 0);
|
|
#endif
|
|
}
|
|
}
|