4f00c8c645
Reland "Fix miscompile of MS inline assembly with stack realignment" This re-lands commit r196876, which was reverted in r196879. The tests have been fixed to pass on platforms with a stack alignment larger than 4. Update to clang side tests will land shortly. Pull in r196986 from upstream llvm trunk (by Reid Kleckner): Revert the backend fatal error from r196939 The combination of inline asm, stack realignment, and dynamic allocas turns out to be too common to reject out of hand. ASan inserts empy inline asm fragments and uses aligned allocas. Compiling any trivial function containing a dynamic alloca with ASan is enough to trigger the check. XFAIL the test cases that would be miscompiled and add one that uses the relevant functionality. Pull in r202930 from upstream llvm trunk (by Hans Wennborg): Check for dynamic allocas and inline asm that clobbers sp before building selection dag (PR19012) In X86SelectionDagInfo::EmitTargetCodeForMemcpy we check with MachineFrameInfo to make sure that ESI isn't used as a base pointer register before we choose to emit rep movs (which clobbers esi). The problem is that MachineFrameInfo wouldn't know about dynamic allocas or inline asm that clobbers the stack pointer until SelectionDAGBuilder has encountered them. This patch fixes the problem by checking for such things when building the FunctionLoweringInfo. Differential Revision: http://llvm-reviews.chandlerc.com/D2954 Together, these commits fix the problem encountered in the devel/emacs port on the i386 architecture, where a combination of stack realignment, alloca() and memcpy() could incidentally clobber the %esi register, leading to segfaults in the temacs build-time utility. See also: http://llvm.org/PR18171 and http://llvm.org/PR19012 Reported by: ashish PR: ports/183064 MFC after: 1 week
1561 lines
57 KiB
C++
1561 lines
57 KiB
C++
//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the X86 implementation of TargetFrameLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86FrameLowering.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// FIXME: completely move here.
|
|
extern cl::opt<bool> ForceStackAlign;
|
|
|
|
bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
|
|
return !MF.getFrameInfo()->hasVarSizedObjects();
|
|
}
|
|
|
|
/// hasFP - Return true if the specified function should have a dedicated frame
|
|
/// pointer register. This is true if the function has variable sized allocas
|
|
/// or if frame pointer elimination is disabled.
|
|
bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const MachineModuleInfo &MMI = MF.getMMI();
|
|
const TargetRegisterInfo *RegInfo = TM.getRegisterInfo();
|
|
|
|
return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
|
|
RegInfo->needsStackRealignment(MF) ||
|
|
MFI->hasVarSizedObjects() ||
|
|
MFI->isFrameAddressTaken() || MFI->hasInlineAsmWithSPAdjust() ||
|
|
MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
|
|
MMI.callsUnwindInit() || MMI.callsEHReturn());
|
|
}
|
|
|
|
static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
|
|
if (IsLP64) {
|
|
if (isInt<8>(Imm))
|
|
return X86::SUB64ri8;
|
|
return X86::SUB64ri32;
|
|
} else {
|
|
if (isInt<8>(Imm))
|
|
return X86::SUB32ri8;
|
|
return X86::SUB32ri;
|
|
}
|
|
}
|
|
|
|
static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
|
|
if (IsLP64) {
|
|
if (isInt<8>(Imm))
|
|
return X86::ADD64ri8;
|
|
return X86::ADD64ri32;
|
|
} else {
|
|
if (isInt<8>(Imm))
|
|
return X86::ADD32ri8;
|
|
return X86::ADD32ri;
|
|
}
|
|
}
|
|
|
|
static unsigned getLEArOpcode(unsigned IsLP64) {
|
|
return IsLP64 ? X86::LEA64r : X86::LEA32r;
|
|
}
|
|
|
|
/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
|
|
/// when it reaches the "return" instruction. We can then pop a stack object
|
|
/// to this register without worry about clobbering it.
|
|
static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
const TargetRegisterInfo &TRI,
|
|
bool Is64Bit) {
|
|
const MachineFunction *MF = MBB.getParent();
|
|
const Function *F = MF->getFunction();
|
|
if (!F || MF->getMMI().callsEHReturn())
|
|
return 0;
|
|
|
|
static const uint16_t CallerSavedRegs32Bit[] = {
|
|
X86::EAX, X86::EDX, X86::ECX, 0
|
|
};
|
|
|
|
static const uint16_t CallerSavedRegs64Bit[] = {
|
|
X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
|
|
X86::R8, X86::R9, X86::R10, X86::R11, 0
|
|
};
|
|
|
|
unsigned Opc = MBBI->getOpcode();
|
|
switch (Opc) {
|
|
default: return 0;
|
|
case X86::RET:
|
|
case X86::RETI:
|
|
case X86::TCRETURNdi:
|
|
case X86::TCRETURNri:
|
|
case X86::TCRETURNmi:
|
|
case X86::TCRETURNdi64:
|
|
case X86::TCRETURNri64:
|
|
case X86::TCRETURNmi64:
|
|
case X86::EH_RETURN:
|
|
case X86::EH_RETURN64: {
|
|
SmallSet<uint16_t, 8> Uses;
|
|
for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MBBI->getOperand(i);
|
|
if (!MO.isReg() || MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
|
|
Uses.insert(*AI);
|
|
}
|
|
|
|
const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
|
|
for (; *CS; ++CS)
|
|
if (!Uses.count(*CS))
|
|
return *CS;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// emitSPUpdate - Emit a series of instructions to increment / decrement the
|
|
/// stack pointer by a constant value.
|
|
static
|
|
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
|
|
unsigned StackPtr, int64_t NumBytes,
|
|
bool Is64Bit, bool IsLP64, bool UseLEA,
|
|
const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
|
|
bool isSub = NumBytes < 0;
|
|
uint64_t Offset = isSub ? -NumBytes : NumBytes;
|
|
unsigned Opc;
|
|
if (UseLEA)
|
|
Opc = getLEArOpcode(IsLP64);
|
|
else
|
|
Opc = isSub
|
|
? getSUBriOpcode(IsLP64, Offset)
|
|
: getADDriOpcode(IsLP64, Offset);
|
|
|
|
uint64_t Chunk = (1LL << 31) - 1;
|
|
DebugLoc DL = MBB.findDebugLoc(MBBI);
|
|
|
|
while (Offset) {
|
|
uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
|
|
if (ThisVal == (Is64Bit ? 8 : 4)) {
|
|
// Use push / pop instead.
|
|
unsigned Reg = isSub
|
|
? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
|
|
: findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
|
|
if (Reg) {
|
|
Opc = isSub
|
|
? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
|
|
: (Is64Bit ? X86::POP64r : X86::POP32r);
|
|
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
|
|
.addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
|
|
if (isSub)
|
|
MI->setFlag(MachineInstr::FrameSetup);
|
|
Offset -= ThisVal;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
MachineInstr *MI = NULL;
|
|
|
|
if (UseLEA) {
|
|
MI = addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
|
|
StackPtr, false, isSub ? -ThisVal : ThisVal);
|
|
} else {
|
|
MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
|
|
.addReg(StackPtr)
|
|
.addImm(ThisVal);
|
|
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
|
|
}
|
|
|
|
if (isSub)
|
|
MI->setFlag(MachineInstr::FrameSetup);
|
|
|
|
Offset -= ThisVal;
|
|
}
|
|
}
|
|
|
|
/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
|
|
static
|
|
void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
|
|
unsigned StackPtr, uint64_t *NumBytes = NULL) {
|
|
if (MBBI == MBB.begin()) return;
|
|
|
|
MachineBasicBlock::iterator PI = prior(MBBI);
|
|
unsigned Opc = PI->getOpcode();
|
|
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
|
|
Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
|
|
Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
|
|
PI->getOperand(0).getReg() == StackPtr) {
|
|
if (NumBytes)
|
|
*NumBytes += PI->getOperand(2).getImm();
|
|
MBB.erase(PI);
|
|
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
|
|
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
|
|
PI->getOperand(0).getReg() == StackPtr) {
|
|
if (NumBytes)
|
|
*NumBytes -= PI->getOperand(2).getImm();
|
|
MBB.erase(PI);
|
|
}
|
|
}
|
|
|
|
/// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
|
|
static
|
|
void mergeSPUpdatesDown(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
unsigned StackPtr, uint64_t *NumBytes = NULL) {
|
|
// FIXME: THIS ISN'T RUN!!!
|
|
return;
|
|
|
|
if (MBBI == MBB.end()) return;
|
|
|
|
MachineBasicBlock::iterator NI = llvm::next(MBBI);
|
|
if (NI == MBB.end()) return;
|
|
|
|
unsigned Opc = NI->getOpcode();
|
|
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
|
|
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
|
|
NI->getOperand(0).getReg() == StackPtr) {
|
|
if (NumBytes)
|
|
*NumBytes -= NI->getOperand(2).getImm();
|
|
MBB.erase(NI);
|
|
MBBI = NI;
|
|
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
|
|
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
|
|
NI->getOperand(0).getReg() == StackPtr) {
|
|
if (NumBytes)
|
|
*NumBytes += NI->getOperand(2).getImm();
|
|
MBB.erase(NI);
|
|
MBBI = NI;
|
|
}
|
|
}
|
|
|
|
/// mergeSPUpdates - Checks the instruction before/after the passed
|
|
/// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and the
|
|
/// stack adjustment is returned as a positive value for ADD/LEA and a negative for
|
|
/// SUB.
|
|
static int mergeSPUpdates(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
unsigned StackPtr,
|
|
bool doMergeWithPrevious) {
|
|
if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
|
|
(!doMergeWithPrevious && MBBI == MBB.end()))
|
|
return 0;
|
|
|
|
MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
|
|
MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
|
|
unsigned Opc = PI->getOpcode();
|
|
int Offset = 0;
|
|
|
|
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
|
|
Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
|
|
Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
|
|
PI->getOperand(0).getReg() == StackPtr){
|
|
Offset += PI->getOperand(2).getImm();
|
|
MBB.erase(PI);
|
|
if (!doMergeWithPrevious) MBBI = NI;
|
|
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
|
|
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
|
|
PI->getOperand(0).getReg() == StackPtr) {
|
|
Offset -= PI->getOperand(2).getImm();
|
|
MBB.erase(PI);
|
|
if (!doMergeWithPrevious) MBBI = NI;
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
static bool isEAXLiveIn(MachineFunction &MF) {
|
|
for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
|
|
EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
|
|
unsigned Reg = II->first;
|
|
|
|
if (Reg == X86::EAX || Reg == X86::AX ||
|
|
Reg == X86::AH || Reg == X86::AL)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
|
|
MCSymbol *Label,
|
|
unsigned FramePtr) const {
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
|
|
|
|
// Add callee saved registers to move list.
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
|
|
if (CSI.empty()) return;
|
|
|
|
const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
|
|
bool HasFP = hasFP(MF);
|
|
|
|
// Calculate amount of bytes used for return address storing.
|
|
int stackGrowth = -RegInfo->getSlotSize();
|
|
|
|
// FIXME: This is dirty hack. The code itself is pretty mess right now.
|
|
// It should be rewritten from scratch and generalized sometimes.
|
|
|
|
// Determine maximum offset (minimum due to stack growth).
|
|
int64_t MaxOffset = 0;
|
|
for (std::vector<CalleeSavedInfo>::const_iterator
|
|
I = CSI.begin(), E = CSI.end(); I != E; ++I)
|
|
MaxOffset = std::min(MaxOffset,
|
|
MFI->getObjectOffset(I->getFrameIdx()));
|
|
|
|
// Calculate offsets.
|
|
int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
|
|
for (std::vector<CalleeSavedInfo>::const_iterator
|
|
I = CSI.begin(), E = CSI.end(); I != E; ++I) {
|
|
int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
|
|
unsigned Reg = I->getReg();
|
|
Offset = MaxOffset - Offset + saveAreaOffset;
|
|
|
|
// Don't output a new machine move if we're re-saving the frame
|
|
// pointer. This happens when the PrologEpilogInserter has inserted an extra
|
|
// "PUSH" of the frame pointer -- the "emitPrologue" method automatically
|
|
// generates one when frame pointers are used. If we generate a "machine
|
|
// move" for this extra "PUSH", the linker will lose track of the fact that
|
|
// the frame pointer should have the value of the first "PUSH" when it's
|
|
// trying to unwind.
|
|
//
|
|
// FIXME: This looks inelegant. It's possibly correct, but it's covering up
|
|
// another bug. I.e., one where we generate a prolog like this:
|
|
//
|
|
// pushl %ebp
|
|
// movl %esp, %ebp
|
|
// pushl %ebp
|
|
// pushl %esi
|
|
// ...
|
|
//
|
|
// The immediate re-push of EBP is unnecessary. At the least, it's an
|
|
// optimization bug. EBP can be used as a scratch register in certain
|
|
// cases, but probably not when we have a frame pointer.
|
|
if (HasFP && FramePtr == Reg)
|
|
continue;
|
|
|
|
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
|
|
MMI.addFrameInst(MCCFIInstruction::createOffset(Label, DwarfReg, Offset));
|
|
}
|
|
}
|
|
|
|
/// usesTheStack - This function checks if any of the users of EFLAGS
|
|
/// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
|
|
/// to use the stack, and if we don't adjust the stack we clobber the first
|
|
/// frame index.
|
|
/// See X86InstrInfo::copyPhysReg.
|
|
static bool usesTheStack(const MachineFunction &MF) {
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
for (MachineRegisterInfo::reg_iterator ri = MRI.reg_begin(X86::EFLAGS),
|
|
re = MRI.reg_end(); ri != re; ++ri)
|
|
if (ri->isCopy())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// emitPrologue - Push callee-saved registers onto the stack, which
|
|
/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
|
|
/// space for local variables. Also emit labels used by the exception handler to
|
|
/// generate the exception handling frames.
|
|
void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
|
|
MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
|
|
MachineBasicBlock::iterator MBBI = MBB.begin();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const Function *Fn = MF.getFunction();
|
|
const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
|
|
const X86InstrInfo &TII = *TM.getInstrInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
bool needsFrameMoves = MMI.hasDebugInfo() ||
|
|
Fn->needsUnwindTableEntry();
|
|
uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
|
|
uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate.
|
|
bool HasFP = hasFP(MF);
|
|
bool Is64Bit = STI.is64Bit();
|
|
bool IsLP64 = STI.isTarget64BitLP64();
|
|
bool IsWin64 = STI.isTargetWin64();
|
|
bool UseLEA = STI.useLeaForSP();
|
|
unsigned StackAlign = getStackAlignment();
|
|
unsigned SlotSize = RegInfo->getSlotSize();
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
unsigned StackPtr = RegInfo->getStackRegister();
|
|
unsigned BasePtr = RegInfo->getBaseRegister();
|
|
DebugLoc DL;
|
|
|
|
// If we're forcing a stack realignment we can't rely on just the frame
|
|
// info, we need to know the ABI stack alignment as well in case we
|
|
// have a call out. Otherwise just make sure we have some alignment - we'll
|
|
// go with the minimum SlotSize.
|
|
if (ForceStackAlign) {
|
|
if (MFI->hasCalls())
|
|
MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
|
|
else if (MaxAlign < SlotSize)
|
|
MaxAlign = SlotSize;
|
|
}
|
|
|
|
// Add RETADDR move area to callee saved frame size.
|
|
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
|
|
if (TailCallReturnAddrDelta < 0)
|
|
X86FI->setCalleeSavedFrameSize(
|
|
X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
|
|
|
|
// If this is x86-64 and the Red Zone is not disabled, if we are a leaf
|
|
// function, and use up to 128 bytes of stack space, don't have a frame
|
|
// pointer, calls, or dynamic alloca then we do not need to adjust the
|
|
// stack pointer (we fit in the Red Zone). We also check that we don't
|
|
// push and pop from the stack.
|
|
if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::NoRedZone) &&
|
|
!RegInfo->needsStackRealignment(MF) &&
|
|
!MFI->hasVarSizedObjects() && // No dynamic alloca.
|
|
!MFI->adjustsStack() && // No calls.
|
|
!IsWin64 && // Win64 has no Red Zone
|
|
!usesTheStack(MF) && // Don't push and pop.
|
|
!MF.getTarget().Options.EnableSegmentedStacks) { // Regular stack
|
|
uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
|
|
if (HasFP) MinSize += SlotSize;
|
|
StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
|
|
MFI->setStackSize(StackSize);
|
|
}
|
|
|
|
// Insert stack pointer adjustment for later moving of return addr. Only
|
|
// applies to tail call optimized functions where the callee argument stack
|
|
// size is bigger than the callers.
|
|
if (TailCallReturnAddrDelta < 0) {
|
|
MachineInstr *MI =
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(getSUBriOpcode(IsLP64, -TailCallReturnAddrDelta)),
|
|
StackPtr)
|
|
.addReg(StackPtr)
|
|
.addImm(-TailCallReturnAddrDelta)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
|
|
}
|
|
|
|
// Mapping for machine moves:
|
|
//
|
|
// DST: VirtualFP AND
|
|
// SRC: VirtualFP => DW_CFA_def_cfa_offset
|
|
// ELSE => DW_CFA_def_cfa
|
|
//
|
|
// SRC: VirtualFP AND
|
|
// DST: Register => DW_CFA_def_cfa_register
|
|
//
|
|
// ELSE
|
|
// OFFSET < 0 => DW_CFA_offset_extended_sf
|
|
// REG < 64 => DW_CFA_offset + Reg
|
|
// ELSE => DW_CFA_offset_extended
|
|
|
|
uint64_t NumBytes = 0;
|
|
int stackGrowth = -SlotSize;
|
|
|
|
if (HasFP) {
|
|
// Calculate required stack adjustment.
|
|
uint64_t FrameSize = StackSize - SlotSize;
|
|
if (RegInfo->needsStackRealignment(MF)) {
|
|
// Callee-saved registers are pushed on stack before the stack
|
|
// is realigned.
|
|
FrameSize -= X86FI->getCalleeSavedFrameSize();
|
|
NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
|
|
} else {
|
|
NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
|
|
}
|
|
|
|
// Get the offset of the stack slot for the EBP register, which is
|
|
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
|
|
// Update the frame offset adjustment.
|
|
MFI->setOffsetAdjustment(-NumBytes);
|
|
|
|
// Save EBP/RBP into the appropriate stack slot.
|
|
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
|
|
.addReg(FramePtr, RegState::Kill)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
if (needsFrameMoves) {
|
|
// Mark the place where EBP/RBP was saved.
|
|
MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
|
|
.addSym(FrameLabel);
|
|
|
|
// Define the current CFA rule to use the provided offset.
|
|
assert(StackSize);
|
|
MMI.addFrameInst(
|
|
MCCFIInstruction::createDefCfaOffset(FrameLabel, 2 * stackGrowth));
|
|
|
|
// Change the rule for the FramePtr to be an "offset" rule.
|
|
unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
|
|
MMI.addFrameInst(MCCFIInstruction::createOffset(FrameLabel, DwarfFramePtr,
|
|
2 * stackGrowth));
|
|
}
|
|
|
|
// Update EBP with the new base value.
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
|
|
.addReg(StackPtr)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
if (needsFrameMoves) {
|
|
// Mark effective beginning of when frame pointer becomes valid.
|
|
MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
|
|
.addSym(FrameLabel);
|
|
|
|
// Define the current CFA to use the EBP/RBP register.
|
|
unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
|
|
MMI.addFrameInst(
|
|
MCCFIInstruction::createDefCfaRegister(FrameLabel, DwarfFramePtr));
|
|
}
|
|
|
|
// Mark the FramePtr as live-in in every block except the entry.
|
|
for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
|
|
I != E; ++I)
|
|
I->addLiveIn(FramePtr);
|
|
} else {
|
|
NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
|
|
}
|
|
|
|
// Skip the callee-saved push instructions.
|
|
bool PushedRegs = false;
|
|
int StackOffset = 2 * stackGrowth;
|
|
|
|
while (MBBI != MBB.end() &&
|
|
(MBBI->getOpcode() == X86::PUSH32r ||
|
|
MBBI->getOpcode() == X86::PUSH64r)) {
|
|
PushedRegs = true;
|
|
MBBI->setFlag(MachineInstr::FrameSetup);
|
|
++MBBI;
|
|
|
|
if (!HasFP && needsFrameMoves) {
|
|
// Mark callee-saved push instruction.
|
|
MCSymbol *Label = MMI.getContext().CreateTempSymbol();
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
|
|
|
|
// Define the current CFA rule to use the provided offset.
|
|
assert(StackSize);
|
|
MMI.addFrameInst(
|
|
MCCFIInstruction::createDefCfaOffset(Label, StackOffset));
|
|
StackOffset += stackGrowth;
|
|
}
|
|
}
|
|
|
|
// Realign stack after we pushed callee-saved registers (so that we'll be
|
|
// able to calculate their offsets from the frame pointer).
|
|
|
|
// NOTE: We push the registers before realigning the stack, so
|
|
// vector callee-saved (xmm) registers may be saved w/o proper
|
|
// alignment in this way. However, currently these regs are saved in
|
|
// stack slots (see X86FrameLowering::spillCalleeSavedRegisters()), so
|
|
// this shouldn't be a problem.
|
|
if (RegInfo->needsStackRealignment(MF)) {
|
|
assert(HasFP && "There should be a frame pointer if stack is realigned.");
|
|
MachineInstr *MI =
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
|
|
.addReg(StackPtr)
|
|
.addImm(-MaxAlign)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
// The EFLAGS implicit def is dead.
|
|
MI->getOperand(3).setIsDead();
|
|
}
|
|
|
|
// If there is an SUB32ri of ESP immediately before this instruction, merge
|
|
// the two. This can be the case when tail call elimination is enabled and
|
|
// the callee has more arguments then the caller.
|
|
NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
|
|
|
|
// If there is an ADD32ri or SUB32ri of ESP immediately after this
|
|
// instruction, merge the two instructions.
|
|
mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
|
|
|
|
// Adjust stack pointer: ESP -= numbytes.
|
|
|
|
// Windows and cygwin/mingw require a prologue helper routine when allocating
|
|
// more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
|
|
// uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
|
|
// stack and adjust the stack pointer in one go. The 64-bit version of
|
|
// __chkstk is only responsible for probing the stack. The 64-bit prologue is
|
|
// responsible for adjusting the stack pointer. Touching the stack at 4K
|
|
// increments is necessary to ensure that the guard pages used by the OS
|
|
// virtual memory manager are allocated in correct sequence.
|
|
if (NumBytes >= 4096 && STI.isOSWindows() && !STI.isTargetEnvMacho()) {
|
|
const char *StackProbeSymbol;
|
|
bool isSPUpdateNeeded = false;
|
|
|
|
if (Is64Bit) {
|
|
if (STI.isTargetCygMing())
|
|
StackProbeSymbol = "___chkstk";
|
|
else {
|
|
StackProbeSymbol = "__chkstk";
|
|
isSPUpdateNeeded = true;
|
|
}
|
|
} else if (STI.isTargetCygMing())
|
|
StackProbeSymbol = "_alloca";
|
|
else
|
|
StackProbeSymbol = "_chkstk";
|
|
|
|
// Check whether EAX is livein for this function.
|
|
bool isEAXAlive = isEAXLiveIn(MF);
|
|
|
|
if (isEAXAlive) {
|
|
// Sanity check that EAX is not livein for this function.
|
|
// It should not be, so throw an assert.
|
|
assert(!Is64Bit && "EAX is livein in x64 case!");
|
|
|
|
// Save EAX
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
|
|
.addReg(X86::EAX, RegState::Kill)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
if (Is64Bit) {
|
|
// Handle the 64-bit Windows ABI case where we need to call __chkstk.
|
|
// Function prologue is responsible for adjusting the stack pointer.
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
|
|
.addImm(NumBytes)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
} else {
|
|
// Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
|
|
// We'll also use 4 already allocated bytes for EAX.
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
|
|
.addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
|
|
.addExternalSymbol(StackProbeSymbol)
|
|
.addReg(StackPtr, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
// MSVC x64's __chkstk does not adjust %rsp itself.
|
|
// It also does not clobber %rax so we can reuse it when adjusting %rsp.
|
|
if (isSPUpdateNeeded) {
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), StackPtr)
|
|
.addReg(StackPtr)
|
|
.addReg(X86::RAX)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
if (isEAXAlive) {
|
|
// Restore EAX
|
|
MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
|
|
X86::EAX),
|
|
StackPtr, false, NumBytes - 4);
|
|
MI->setFlag(MachineInstr::FrameSetup);
|
|
MBB.insert(MBBI, MI);
|
|
}
|
|
} else if (NumBytes)
|
|
emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64,
|
|
UseLEA, TII, *RegInfo);
|
|
|
|
// If we need a base pointer, set it up here. It's whatever the value
|
|
// of the stack pointer is at this point. Any variable size objects
|
|
// will be allocated after this, so we can still use the base pointer
|
|
// to reference locals.
|
|
if (RegInfo->hasBasePointer(MF)) {
|
|
// Update the frame pointer with the current stack pointer.
|
|
unsigned Opc = Is64Bit ? X86::MOV64rr : X86::MOV32rr;
|
|
BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
|
|
.addReg(StackPtr)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
|
|
// Mark end of stack pointer adjustment.
|
|
MCSymbol *Label = MMI.getContext().CreateTempSymbol();
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
|
|
.addSym(Label);
|
|
|
|
if (!HasFP && NumBytes) {
|
|
// Define the current CFA rule to use the provided offset.
|
|
assert(StackSize);
|
|
MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(
|
|
Label, -StackSize + stackGrowth));
|
|
}
|
|
|
|
// Emit DWARF info specifying the offsets of the callee-saved registers.
|
|
if (PushedRegs)
|
|
emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
|
|
}
|
|
}
|
|
|
|
void X86FrameLowering::emitEpilogue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
|
|
const X86InstrInfo &TII = *TM.getInstrInfo();
|
|
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
|
|
assert(MBBI != MBB.end() && "Returning block has no instructions");
|
|
unsigned RetOpcode = MBBI->getOpcode();
|
|
DebugLoc DL = MBBI->getDebugLoc();
|
|
bool Is64Bit = STI.is64Bit();
|
|
bool IsLP64 = STI.isTarget64BitLP64();
|
|
bool UseLEA = STI.useLeaForSP();
|
|
unsigned StackAlign = getStackAlignment();
|
|
unsigned SlotSize = RegInfo->getSlotSize();
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
unsigned StackPtr = RegInfo->getStackRegister();
|
|
|
|
switch (RetOpcode) {
|
|
default:
|
|
llvm_unreachable("Can only insert epilog into returning blocks");
|
|
case X86::RET:
|
|
case X86::RETI:
|
|
case X86::TCRETURNdi:
|
|
case X86::TCRETURNri:
|
|
case X86::TCRETURNmi:
|
|
case X86::TCRETURNdi64:
|
|
case X86::TCRETURNri64:
|
|
case X86::TCRETURNmi64:
|
|
case X86::EH_RETURN:
|
|
case X86::EH_RETURN64:
|
|
break; // These are ok
|
|
}
|
|
|
|
// Get the number of bytes to allocate from the FrameInfo.
|
|
uint64_t StackSize = MFI->getStackSize();
|
|
uint64_t MaxAlign = MFI->getMaxAlignment();
|
|
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
|
|
uint64_t NumBytes = 0;
|
|
|
|
// If we're forcing a stack realignment we can't rely on just the frame
|
|
// info, we need to know the ABI stack alignment as well in case we
|
|
// have a call out. Otherwise just make sure we have some alignment - we'll
|
|
// go with the minimum.
|
|
if (ForceStackAlign) {
|
|
if (MFI->hasCalls())
|
|
MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
|
|
else
|
|
MaxAlign = MaxAlign ? MaxAlign : 4;
|
|
}
|
|
|
|
if (hasFP(MF)) {
|
|
// Calculate required stack adjustment.
|
|
uint64_t FrameSize = StackSize - SlotSize;
|
|
if (RegInfo->needsStackRealignment(MF)) {
|
|
// Callee-saved registers were pushed on stack before the stack
|
|
// was realigned.
|
|
FrameSize -= CSSize;
|
|
NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
|
|
} else {
|
|
NumBytes = FrameSize - CSSize;
|
|
}
|
|
|
|
// Pop EBP.
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
|
|
} else {
|
|
NumBytes = StackSize - CSSize;
|
|
}
|
|
|
|
// Skip the callee-saved pop instructions.
|
|
while (MBBI != MBB.begin()) {
|
|
MachineBasicBlock::iterator PI = prior(MBBI);
|
|
unsigned Opc = PI->getOpcode();
|
|
|
|
if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
|
|
!PI->isTerminator())
|
|
break;
|
|
|
|
--MBBI;
|
|
}
|
|
MachineBasicBlock::iterator FirstCSPop = MBBI;
|
|
|
|
DL = MBBI->getDebugLoc();
|
|
|
|
// If there is an ADD32ri or SUB32ri of ESP immediately before this
|
|
// instruction, merge the two instructions.
|
|
if (NumBytes || MFI->hasVarSizedObjects())
|
|
mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
|
|
|
|
// If dynamic alloca is used, then reset esp to point to the last callee-saved
|
|
// slot before popping them off! Same applies for the case, when stack was
|
|
// realigned.
|
|
if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) {
|
|
if (RegInfo->needsStackRealignment(MF))
|
|
MBBI = FirstCSPop;
|
|
if (CSSize != 0) {
|
|
unsigned Opc = getLEArOpcode(IsLP64);
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
|
|
FramePtr, false, -CSSize);
|
|
} else {
|
|
unsigned Opc = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
|
|
BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
|
|
.addReg(FramePtr);
|
|
}
|
|
} else if (NumBytes) {
|
|
// Adjust stack pointer back: ESP += numbytes.
|
|
emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, IsLP64, UseLEA,
|
|
TII, *RegInfo);
|
|
}
|
|
|
|
// We're returning from function via eh_return.
|
|
if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &DestAddr = MBBI->getOperand(0);
|
|
assert(DestAddr.isReg() && "Offset should be in register!");
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
|
|
StackPtr).addReg(DestAddr.getReg());
|
|
} else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
|
|
RetOpcode == X86::TCRETURNmi ||
|
|
RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
|
|
RetOpcode == X86::TCRETURNmi64) {
|
|
bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
|
|
// Tail call return: adjust the stack pointer and jump to callee.
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
|
MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
|
|
assert(StackAdjust.isImm() && "Expecting immediate value.");
|
|
|
|
// Adjust stack pointer.
|
|
int StackAdj = StackAdjust.getImm();
|
|
int MaxTCDelta = X86FI->getTCReturnAddrDelta();
|
|
int Offset = 0;
|
|
assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
|
|
|
|
// Incoporate the retaddr area.
|
|
Offset = StackAdj-MaxTCDelta;
|
|
assert(Offset >= 0 && "Offset should never be negative");
|
|
|
|
if (Offset) {
|
|
// Check for possible merge with preceding ADD instruction.
|
|
Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
|
|
emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, IsLP64,
|
|
UseLEA, TII, *RegInfo);
|
|
}
|
|
|
|
// Jump to label or value in register.
|
|
if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
|
|
? X86::TAILJMPd : X86::TAILJMPd64));
|
|
if (JumpTarget.isGlobal())
|
|
MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
|
|
JumpTarget.getTargetFlags());
|
|
else {
|
|
assert(JumpTarget.isSymbol());
|
|
MIB.addExternalSymbol(JumpTarget.getSymbolName(),
|
|
JumpTarget.getTargetFlags());
|
|
}
|
|
} else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
|
|
? X86::TAILJMPm : X86::TAILJMPm64));
|
|
for (unsigned i = 0; i != 5; ++i)
|
|
MIB.addOperand(MBBI->getOperand(i));
|
|
} else if (RetOpcode == X86::TCRETURNri64) {
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
|
|
addReg(JumpTarget.getReg(), RegState::Kill);
|
|
} else {
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
|
|
addReg(JumpTarget.getReg(), RegState::Kill);
|
|
}
|
|
|
|
MachineInstr *NewMI = prior(MBBI);
|
|
NewMI->copyImplicitOps(MF, MBBI);
|
|
|
|
// Delete the pseudo instruction TCRETURN.
|
|
MBB.erase(MBBI);
|
|
} else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
|
|
(X86FI->getTCReturnAddrDelta() < 0)) {
|
|
// Add the return addr area delta back since we are not tail calling.
|
|
int delta = -1*X86FI->getTCReturnAddrDelta();
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
|
|
// Check for possible merge with preceding ADD instruction.
|
|
delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
|
|
emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, IsLP64, UseLEA, TII,
|
|
*RegInfo);
|
|
}
|
|
}
|
|
|
|
int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
|
|
const X86RegisterInfo *RegInfo =
|
|
static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
|
|
uint64_t StackSize = MFI->getStackSize();
|
|
|
|
if (RegInfo->hasBasePointer(MF)) {
|
|
assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!");
|
|
if (FI < 0) {
|
|
// Skip the saved EBP.
|
|
return Offset + RegInfo->getSlotSize();
|
|
} else {
|
|
assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
|
|
return Offset + StackSize;
|
|
}
|
|
} else if (RegInfo->needsStackRealignment(MF)) {
|
|
if (FI < 0) {
|
|
// Skip the saved EBP.
|
|
return Offset + RegInfo->getSlotSize();
|
|
} else {
|
|
assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
|
|
return Offset + StackSize;
|
|
}
|
|
// FIXME: Support tail calls
|
|
} else {
|
|
if (!hasFP(MF))
|
|
return Offset + StackSize;
|
|
|
|
// Skip the saved EBP.
|
|
Offset += RegInfo->getSlotSize();
|
|
|
|
// Skip the RETADDR move area
|
|
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
|
|
if (TailCallReturnAddrDelta < 0)
|
|
Offset -= TailCallReturnAddrDelta;
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
|
|
unsigned &FrameReg) const {
|
|
const X86RegisterInfo *RegInfo =
|
|
static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
|
|
// We can't calculate offset from frame pointer if the stack is realigned,
|
|
// so enforce usage of stack/base pointer. The base pointer is used when we
|
|
// have dynamic allocas in addition to dynamic realignment.
|
|
if (RegInfo->hasBasePointer(MF))
|
|
FrameReg = RegInfo->getBaseRegister();
|
|
else if (RegInfo->needsStackRealignment(MF))
|
|
FrameReg = RegInfo->getStackRegister();
|
|
else
|
|
FrameReg = RegInfo->getFrameRegister(MF);
|
|
return getFrameIndexOffset(MF, FI);
|
|
}
|
|
|
|
bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (CSI.empty())
|
|
return false;
|
|
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
|
|
MachineFunction &MF = *MBB.getParent();
|
|
|
|
unsigned SlotSize = STI.is64Bit() ? 8 : 4;
|
|
unsigned FPReg = TRI->getFrameRegister(MF);
|
|
unsigned CalleeFrameSize = 0;
|
|
|
|
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
// Push GPRs. It increases frame size.
|
|
unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
|
|
for (unsigned i = CSI.size(); i != 0; --i) {
|
|
unsigned Reg = CSI[i-1].getReg();
|
|
if (!X86::GR64RegClass.contains(Reg) &&
|
|
!X86::GR32RegClass.contains(Reg))
|
|
continue;
|
|
// Add the callee-saved register as live-in. It's killed at the spill.
|
|
MBB.addLiveIn(Reg);
|
|
if (Reg == FPReg)
|
|
// X86RegisterInfo::emitPrologue will handle spilling of frame register.
|
|
continue;
|
|
CalleeFrameSize += SlotSize;
|
|
BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
|
|
|
|
// Make XMM regs spilled. X86 does not have ability of push/pop XMM.
|
|
// It can be done by spilling XMMs to stack frame.
|
|
// Note that only Win64 ABI might spill XMMs.
|
|
for (unsigned i = CSI.size(); i != 0; --i) {
|
|
unsigned Reg = CSI[i-1].getReg();
|
|
if (X86::GR64RegClass.contains(Reg) ||
|
|
X86::GR32RegClass.contains(Reg))
|
|
continue;
|
|
// Add the callee-saved register as live-in. It's killed at the spill.
|
|
MBB.addLiveIn(Reg);
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
|
|
TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
|
|
RC, TRI);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (CSI.empty())
|
|
return false;
|
|
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
|
|
|
|
// Reload XMMs from stack frame.
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
if (X86::GR64RegClass.contains(Reg) ||
|
|
X86::GR32RegClass.contains(Reg))
|
|
continue;
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
|
|
TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
|
|
RC, TRI);
|
|
}
|
|
|
|
// POP GPRs.
|
|
unsigned FPReg = TRI->getFrameRegister(MF);
|
|
unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
if (!X86::GR64RegClass.contains(Reg) &&
|
|
!X86::GR32RegClass.contains(Reg))
|
|
continue;
|
|
if (Reg == FPReg)
|
|
// X86RegisterInfo::emitEpilogue will handle restoring of frame register.
|
|
continue;
|
|
BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void
|
|
X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
|
|
RegScavenger *RS) const {
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
|
|
unsigned SlotSize = RegInfo->getSlotSize();
|
|
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
|
|
|
|
if (TailCallReturnAddrDelta < 0) {
|
|
// create RETURNADDR area
|
|
// arg
|
|
// arg
|
|
// RETADDR
|
|
// { ...
|
|
// RETADDR area
|
|
// ...
|
|
// }
|
|
// [EBP]
|
|
MFI->CreateFixedObject(-TailCallReturnAddrDelta,
|
|
TailCallReturnAddrDelta - SlotSize, true);
|
|
}
|
|
|
|
if (hasFP(MF)) {
|
|
assert((TailCallReturnAddrDelta <= 0) &&
|
|
"The Delta should always be zero or negative");
|
|
const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
|
|
|
|
// Create a frame entry for the EBP register that must be saved.
|
|
int FrameIdx = MFI->CreateFixedObject(SlotSize,
|
|
-(int)SlotSize +
|
|
TFI.getOffsetOfLocalArea() +
|
|
TailCallReturnAddrDelta,
|
|
true);
|
|
assert(FrameIdx == MFI->getObjectIndexBegin() &&
|
|
"Slot for EBP register must be last in order to be found!");
|
|
(void)FrameIdx;
|
|
}
|
|
|
|
// Spill the BasePtr if it's used.
|
|
if (RegInfo->hasBasePointer(MF))
|
|
MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister());
|
|
}
|
|
|
|
static bool
|
|
HasNestArgument(const MachineFunction *MF) {
|
|
const Function *F = MF->getFunction();
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; I++) {
|
|
if (I->hasNestAttr())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// GetScratchRegister - Get a temp register for performing work in the
|
|
/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
|
|
/// and the properties of the function either one or two registers will be
|
|
/// needed. Set primary to true for the first register, false for the second.
|
|
static unsigned
|
|
GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) {
|
|
CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
|
|
|
|
// Erlang stuff.
|
|
if (CallingConvention == CallingConv::HiPE) {
|
|
if (Is64Bit)
|
|
return Primary ? X86::R14 : X86::R13;
|
|
else
|
|
return Primary ? X86::EBX : X86::EDI;
|
|
}
|
|
|
|
if (Is64Bit)
|
|
return Primary ? X86::R11 : X86::R12;
|
|
|
|
bool IsNested = HasNestArgument(&MF);
|
|
|
|
if (CallingConvention == CallingConv::X86_FastCall ||
|
|
CallingConvention == CallingConv::Fast) {
|
|
if (IsNested)
|
|
report_fatal_error("Segmented stacks does not support fastcall with "
|
|
"nested function.");
|
|
return Primary ? X86::EAX : X86::ECX;
|
|
}
|
|
if (IsNested)
|
|
return Primary ? X86::EDX : X86::EAX;
|
|
return Primary ? X86::ECX : X86::EAX;
|
|
}
|
|
|
|
// The stack limit in the TCB is set to this many bytes above the actual stack
|
|
// limit.
|
|
static const uint64_t kSplitStackAvailable = 256;
|
|
|
|
void
|
|
X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
|
|
MachineBasicBlock &prologueMBB = MF.front();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const X86InstrInfo &TII = *TM.getInstrInfo();
|
|
uint64_t StackSize;
|
|
bool Is64Bit = STI.is64Bit();
|
|
unsigned TlsReg, TlsOffset;
|
|
DebugLoc DL;
|
|
|
|
unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true);
|
|
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
|
|
"Scratch register is live-in");
|
|
|
|
if (MF.getFunction()->isVarArg())
|
|
report_fatal_error("Segmented stacks do not support vararg functions.");
|
|
if (!STI.isTargetLinux() && !STI.isTargetDarwin() &&
|
|
!STI.isTargetWin32() && !STI.isTargetFreeBSD())
|
|
report_fatal_error("Segmented stacks not supported on this platform.");
|
|
|
|
MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
|
|
MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
bool IsNested = false;
|
|
|
|
// We need to know if the function has a nest argument only in 64 bit mode.
|
|
if (Is64Bit)
|
|
IsNested = HasNestArgument(&MF);
|
|
|
|
// The MOV R10, RAX needs to be in a different block, since the RET we emit in
|
|
// allocMBB needs to be last (terminating) instruction.
|
|
|
|
for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
|
|
e = prologueMBB.livein_end(); i != e; i++) {
|
|
allocMBB->addLiveIn(*i);
|
|
checkMBB->addLiveIn(*i);
|
|
}
|
|
|
|
if (IsNested)
|
|
allocMBB->addLiveIn(X86::R10);
|
|
|
|
MF.push_front(allocMBB);
|
|
MF.push_front(checkMBB);
|
|
|
|
// Eventually StackSize will be calculated by a link-time pass; which will
|
|
// also decide whether checking code needs to be injected into this particular
|
|
// prologue.
|
|
StackSize = MFI->getStackSize();
|
|
|
|
// When the frame size is less than 256 we just compare the stack
|
|
// boundary directly to the value of the stack pointer, per gcc.
|
|
bool CompareStackPointer = StackSize < kSplitStackAvailable;
|
|
|
|
// Read the limit off the current stacklet off the stack_guard location.
|
|
if (Is64Bit) {
|
|
if (STI.isTargetLinux()) {
|
|
TlsReg = X86::FS;
|
|
TlsOffset = 0x70;
|
|
} else if (STI.isTargetDarwin()) {
|
|
TlsReg = X86::GS;
|
|
TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
|
|
} else if (STI.isTargetFreeBSD()) {
|
|
TlsReg = X86::FS;
|
|
TlsOffset = 0x18;
|
|
} else {
|
|
report_fatal_error("Segmented stacks not supported on this platform.");
|
|
}
|
|
|
|
if (CompareStackPointer)
|
|
ScratchReg = X86::RSP;
|
|
else
|
|
BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
|
|
.addImm(1).addReg(0).addImm(-StackSize).addReg(0);
|
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
|
|
.addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
|
|
} else {
|
|
if (STI.isTargetLinux()) {
|
|
TlsReg = X86::GS;
|
|
TlsOffset = 0x30;
|
|
} else if (STI.isTargetDarwin()) {
|
|
TlsReg = X86::GS;
|
|
TlsOffset = 0x48 + 90*4;
|
|
} else if (STI.isTargetWin32()) {
|
|
TlsReg = X86::FS;
|
|
TlsOffset = 0x14; // pvArbitrary, reserved for application use
|
|
} else if (STI.isTargetFreeBSD()) {
|
|
report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
|
|
} else {
|
|
report_fatal_error("Segmented stacks not supported on this platform.");
|
|
}
|
|
|
|
if (CompareStackPointer)
|
|
ScratchReg = X86::ESP;
|
|
else
|
|
BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
|
|
.addImm(1).addReg(0).addImm(-StackSize).addReg(0);
|
|
|
|
if (STI.isTargetLinux() || STI.isTargetWin32()) {
|
|
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
|
|
.addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
|
|
} else if (STI.isTargetDarwin()) {
|
|
|
|
// TlsOffset doesn't fit into a mod r/m byte so we need an extra register
|
|
unsigned ScratchReg2;
|
|
bool SaveScratch2;
|
|
if (CompareStackPointer) {
|
|
// The primary scratch register is available for holding the TLS offset
|
|
ScratchReg2 = GetScratchRegister(Is64Bit, MF, true);
|
|
SaveScratch2 = false;
|
|
} else {
|
|
// Need to use a second register to hold the TLS offset
|
|
ScratchReg2 = GetScratchRegister(Is64Bit, MF, false);
|
|
|
|
// Unfortunately, with fastcc the second scratch register may hold an arg
|
|
SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
|
|
}
|
|
|
|
// If Scratch2 is live-in then it needs to be saved
|
|
assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
|
|
"Scratch register is live-in and not saved");
|
|
|
|
if (SaveScratch2)
|
|
BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
|
|
.addReg(ScratchReg2, RegState::Kill);
|
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
|
|
.addImm(TlsOffset);
|
|
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
|
|
.addReg(ScratchReg)
|
|
.addReg(ScratchReg2).addImm(1).addReg(0)
|
|
.addImm(0)
|
|
.addReg(TlsReg);
|
|
|
|
if (SaveScratch2)
|
|
BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
|
|
}
|
|
}
|
|
|
|
// This jump is taken if SP >= (Stacklet Limit + Stack Space required).
|
|
// It jumps to normal execution of the function body.
|
|
BuildMI(checkMBB, DL, TII.get(X86::JA_4)).addMBB(&prologueMBB);
|
|
|
|
// On 32 bit we first push the arguments size and then the frame size. On 64
|
|
// bit, we pass the stack frame size in r10 and the argument size in r11.
|
|
if (Is64Bit) {
|
|
// Functions with nested arguments use R10, so it needs to be saved across
|
|
// the call to _morestack
|
|
|
|
if (IsNested)
|
|
BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
|
|
|
|
BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
|
|
.addImm(StackSize);
|
|
BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
|
|
.addImm(X86FI->getArgumentStackSize());
|
|
MF.getRegInfo().setPhysRegUsed(X86::R10);
|
|
MF.getRegInfo().setPhysRegUsed(X86::R11);
|
|
} else {
|
|
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
|
|
.addImm(X86FI->getArgumentStackSize());
|
|
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
|
|
.addImm(StackSize);
|
|
}
|
|
|
|
// __morestack is in libgcc
|
|
if (Is64Bit)
|
|
BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
|
|
.addExternalSymbol("__morestack");
|
|
else
|
|
BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
|
|
.addExternalSymbol("__morestack");
|
|
|
|
if (IsNested)
|
|
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
|
|
else
|
|
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
|
|
|
|
allocMBB->addSuccessor(&prologueMBB);
|
|
|
|
checkMBB->addSuccessor(allocMBB);
|
|
checkMBB->addSuccessor(&prologueMBB);
|
|
|
|
#ifdef XDEBUG
|
|
MF.verify();
|
|
#endif
|
|
}
|
|
|
|
/// Erlang programs may need a special prologue to handle the stack size they
|
|
/// might need at runtime. That is because Erlang/OTP does not implement a C
|
|
/// stack but uses a custom implementation of hybrid stack/heap architecture.
|
|
/// (for more information see Eric Stenman's Ph.D. thesis:
|
|
/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
|
|
///
|
|
/// CheckStack:
|
|
/// temp0 = sp - MaxStack
|
|
/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
|
|
/// OldStart:
|
|
/// ...
|
|
/// IncStack:
|
|
/// call inc_stack # doubles the stack space
|
|
/// temp0 = sp - MaxStack
|
|
/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
|
|
void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
|
|
const X86InstrInfo &TII = *TM.getInstrInfo();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const unsigned SlotSize = TM.getRegisterInfo()->getSlotSize();
|
|
const bool Is64Bit = STI.is64Bit();
|
|
DebugLoc DL;
|
|
// HiPE-specific values
|
|
const unsigned HipeLeafWords = 24;
|
|
const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
|
|
const unsigned Guaranteed = HipeLeafWords * SlotSize;
|
|
unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
|
|
MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
|
|
unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
|
|
|
|
assert(STI.isTargetLinux() &&
|
|
"HiPE prologue is only supported on Linux operating systems.");
|
|
|
|
// Compute the largest caller's frame that is needed to fit the callees'
|
|
// frames. This 'MaxStack' is computed from:
|
|
//
|
|
// a) the fixed frame size, which is the space needed for all spilled temps,
|
|
// b) outgoing on-stack parameter areas, and
|
|
// c) the minimum stack space this function needs to make available for the
|
|
// functions it calls (a tunable ABI property).
|
|
if (MFI->hasCalls()) {
|
|
unsigned MoreStackForCalls = 0;
|
|
|
|
for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
|
|
MBBI != MBBE; ++MBBI)
|
|
for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
|
|
MI != ME; ++MI) {
|
|
if (!MI->isCall())
|
|
continue;
|
|
|
|
// Get callee operand.
|
|
const MachineOperand &MO = MI->getOperand(0);
|
|
|
|
// Only take account of global function calls (no closures etc.).
|
|
if (!MO.isGlobal())
|
|
continue;
|
|
|
|
const Function *F = dyn_cast<Function>(MO.getGlobal());
|
|
if (!F)
|
|
continue;
|
|
|
|
// Do not update 'MaxStack' for primitive and built-in functions
|
|
// (encoded with names either starting with "erlang."/"bif_" or not
|
|
// having a ".", such as a simple <Module>.<Function>.<Arity>, or an
|
|
// "_", such as the BIF "suspend_0") as they are executed on another
|
|
// stack.
|
|
if (F->getName().find("erlang.") != StringRef::npos ||
|
|
F->getName().find("bif_") != StringRef::npos ||
|
|
F->getName().find_first_of("._") == StringRef::npos)
|
|
continue;
|
|
|
|
unsigned CalleeStkArity =
|
|
F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
|
|
if (HipeLeafWords - 1 > CalleeStkArity)
|
|
MoreStackForCalls = std::max(MoreStackForCalls,
|
|
(HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
|
|
}
|
|
MaxStack += MoreStackForCalls;
|
|
}
|
|
|
|
// If the stack frame needed is larger than the guaranteed then runtime checks
|
|
// and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
|
|
if (MaxStack > Guaranteed) {
|
|
MachineBasicBlock &prologueMBB = MF.front();
|
|
MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
|
|
MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
|
|
|
|
for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(),
|
|
E = prologueMBB.livein_end(); I != E; I++) {
|
|
stackCheckMBB->addLiveIn(*I);
|
|
incStackMBB->addLiveIn(*I);
|
|
}
|
|
|
|
MF.push_front(incStackMBB);
|
|
MF.push_front(stackCheckMBB);
|
|
|
|
unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
|
|
unsigned LEAop, CMPop, CALLop;
|
|
if (Is64Bit) {
|
|
SPReg = X86::RSP;
|
|
PReg = X86::RBP;
|
|
LEAop = X86::LEA64r;
|
|
CMPop = X86::CMP64rm;
|
|
CALLop = X86::CALL64pcrel32;
|
|
SPLimitOffset = 0x90;
|
|
} else {
|
|
SPReg = X86::ESP;
|
|
PReg = X86::EBP;
|
|
LEAop = X86::LEA32r;
|
|
CMPop = X86::CMP32rm;
|
|
CALLop = X86::CALLpcrel32;
|
|
SPLimitOffset = 0x4c;
|
|
}
|
|
|
|
ScratchReg = GetScratchRegister(Is64Bit, MF, true);
|
|
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
|
|
"HiPE prologue scratch register is live-in");
|
|
|
|
// Create new MBB for StackCheck:
|
|
addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
|
|
SPReg, false, -MaxStack);
|
|
// SPLimitOffset is in a fixed heap location (pointed by BP).
|
|
addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
|
|
.addReg(ScratchReg), PReg, false, SPLimitOffset);
|
|
BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_4)).addMBB(&prologueMBB);
|
|
|
|
// Create new MBB for IncStack:
|
|
BuildMI(incStackMBB, DL, TII.get(CALLop)).
|
|
addExternalSymbol("inc_stack_0");
|
|
addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
|
|
SPReg, false, -MaxStack);
|
|
addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
|
|
.addReg(ScratchReg), PReg, false, SPLimitOffset);
|
|
BuildMI(incStackMBB, DL, TII.get(X86::JLE_4)).addMBB(incStackMBB);
|
|
|
|
stackCheckMBB->addSuccessor(&prologueMBB, 99);
|
|
stackCheckMBB->addSuccessor(incStackMBB, 1);
|
|
incStackMBB->addSuccessor(&prologueMBB, 99);
|
|
incStackMBB->addSuccessor(incStackMBB, 1);
|
|
}
|
|
#ifdef XDEBUG
|
|
MF.verify();
|
|
#endif
|
|
}
|
|
|
|
void X86FrameLowering::
|
|
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) const {
|
|
const X86InstrInfo &TII = *TM.getInstrInfo();
|
|
const X86RegisterInfo &RegInfo = *TM.getRegisterInfo();
|
|
unsigned StackPtr = RegInfo.getStackRegister();
|
|
bool reseveCallFrame = hasReservedCallFrame(MF);
|
|
int Opcode = I->getOpcode();
|
|
bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
|
|
bool IsLP64 = STI.isTarget64BitLP64();
|
|
DebugLoc DL = I->getDebugLoc();
|
|
uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
|
|
uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
|
|
I = MBB.erase(I);
|
|
|
|
if (!reseveCallFrame) {
|
|
// If the stack pointer can be changed after prologue, turn the
|
|
// adjcallstackup instruction into a 'sub ESP, <amt>' and the
|
|
// adjcallstackdown instruction into 'add ESP, <amt>'
|
|
// TODO: consider using push / pop instead of sub + store / add
|
|
if (Amount == 0)
|
|
return;
|
|
|
|
// We need to keep the stack aligned properly. To do this, we round the
|
|
// amount of space needed for the outgoing arguments up to the next
|
|
// alignment boundary.
|
|
unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
|
|
Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
|
|
|
|
MachineInstr *New = 0;
|
|
if (Opcode == TII.getCallFrameSetupOpcode()) {
|
|
New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)),
|
|
StackPtr)
|
|
.addReg(StackPtr)
|
|
.addImm(Amount);
|
|
} else {
|
|
assert(Opcode == TII.getCallFrameDestroyOpcode());
|
|
|
|
// Factor out the amount the callee already popped.
|
|
Amount -= CalleeAmt;
|
|
|
|
if (Amount) {
|
|
unsigned Opc = getADDriOpcode(IsLP64, Amount);
|
|
New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
|
|
.addReg(StackPtr).addImm(Amount);
|
|
}
|
|
}
|
|
|
|
if (New) {
|
|
// The EFLAGS implicit def is dead.
|
|
New->getOperand(3).setIsDead();
|
|
|
|
// Replace the pseudo instruction with a new instruction.
|
|
MBB.insert(I, New);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) {
|
|
// If we are performing frame pointer elimination and if the callee pops
|
|
// something off the stack pointer, add it back. We do this until we have
|
|
// more advanced stack pointer tracking ability.
|
|
unsigned Opc = getSUBriOpcode(IsLP64, CalleeAmt);
|
|
MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
|
|
.addReg(StackPtr).addImm(CalleeAmt);
|
|
|
|
// The EFLAGS implicit def is dead.
|
|
New->getOperand(3).setIsDead();
|
|
|
|
// We are not tracking the stack pointer adjustment by the callee, so make
|
|
// sure we restore the stack pointer immediately after the call, there may
|
|
// be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
|
|
MachineBasicBlock::iterator B = MBB.begin();
|
|
while (I != B && !llvm::prior(I)->isCall())
|
|
--I;
|
|
MBB.insert(I, New);
|
|
}
|
|
}
|
|
|