freebsd-skq/sys/net/if.c
Robert Watson 8f293a63ce Introduce support for Mandatory Access Control and extensible
kernel access control.

Introduce two ioctls, SIOCGIFMAC, SIOCSIFMAC, which permit user
processes to manage the MAC labels on network interfaces.  Note
that this is part of the user process API/ABI that will be revised
prior to 5.0-RELEASE.

Obtained from:	TrustedBSD Project
Sponsored by:	DARPA, NAI Labs
2002-08-01 21:15:53 +00:00

1958 lines
44 KiB
C

/*
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if.c 8.5 (Berkeley) 1/9/95
* $FreeBSD$
*/
#include "opt_compat.h"
#include "opt_inet6.h"
#include "opt_inet.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <sys/jail.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/radix.h>
#include <net/route.h>
#if defined(INET) || defined(INET6)
/*XXX*/
#include <netinet/in.h>
#include <netinet/in_var.h>
#ifdef INET6
#include <netinet6/in6_var.h>
#include <netinet6/in6_ifattach.h>
#endif
#endif
#ifdef INET
#include <netinet/if_ether.h>
#endif
static int ifconf(u_long, caddr_t);
static void if_grow(void);
static void if_init(void *);
static void if_check(void *);
static int if_findindex(struct ifnet *);
static void if_qflush(struct ifqueue *);
static void if_slowtimo(void *);
static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
static int if_rtdel(struct radix_node *, void *);
static struct if_clone *if_clone_lookup(const char *, int *);
static int if_clone_list(struct if_clonereq *);
static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *);
#ifdef INET6
/*
* XXX: declare here to avoid to include many inet6 related files..
* should be more generalized?
*/
extern void nd6_setmtu(struct ifnet *);
#endif
int if_index = 0;
struct ifindex_entry *ifindex_table = NULL;
int ifqmaxlen = IFQ_MAXLEN;
struct ifnethead ifnet; /* depend on static init XXX */
int if_cloners_count;
LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
static int if_indexlim = 8;
static struct klist ifklist;
static void filt_netdetach(struct knote *kn);
static int filt_netdev(struct knote *kn, long hint);
static struct filterops netdev_filtops =
{ 1, NULL, filt_netdetach, filt_netdev };
/*
* System initialization
*/
SYSINIT(interfaces, SI_SUB_INIT_IF, SI_ORDER_FIRST, if_init, NULL)
SYSINIT(interface_check, SI_SUB_PROTO_IF, SI_ORDER_FIRST, if_check, NULL)
MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
MALLOC_DEFINE(M_CLONE, "clone", "interface cloning framework");
#define CDEV_MAJOR 165
static d_open_t netopen;
static d_close_t netclose;
static d_ioctl_t netioctl;
static d_kqfilter_t netkqfilter;
static struct cdevsw net_cdevsw = {
/* open */ netopen,
/* close */ netclose,
/* read */ noread,
/* write */ nowrite,
/* ioctl */ netioctl,
/* poll */ nopoll,
/* mmap */ nommap,
/* strategy */ nostrategy,
/* name */ "net",
/* maj */ CDEV_MAJOR,
/* dump */ nodump,
/* psize */ nopsize,
/* flags */ D_KQFILTER,
/* kqfilter */ netkqfilter,
};
static int
netopen(dev_t dev, int flag, int mode, struct thread *td)
{
return (0);
}
static int
netclose(dev_t dev, int flags, int fmt, struct thread *td)
{
return (0);
}
static int
netioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct thread *td)
{
struct ifnet *ifp;
int error, idx;
/* only support interface specific ioctls */
if (IOCGROUP(cmd) != 'i')
return (EOPNOTSUPP);
idx = minor(dev);
if (idx == 0) {
/*
* special network device, not interface.
*/
if (cmd == SIOCGIFCONF)
return (ifconf(cmd, data)); /* XXX remove cmd */
return (EOPNOTSUPP);
}
ifp = ifnet_byindex(idx);
if (ifp == NULL)
return (ENXIO);
error = ifhwioctl(cmd, ifp, data, td);
if (error == ENOIOCTL)
error = EOPNOTSUPP;
return (error);
}
static int
netkqfilter(dev_t dev, struct knote *kn)
{
struct klist *klist;
struct ifnet *ifp;
int idx;
idx = minor(dev);
if (idx == 0) {
klist = &ifklist;
} else {
ifp = ifnet_byindex(idx);
if (ifp == NULL)
return (1);
klist = &ifp->if_klist;
}
switch (kn->kn_filter) {
case EVFILT_NETDEV:
kn->kn_fop = &netdev_filtops;
break;
default:
return (1);
}
kn->kn_hook = (caddr_t)klist;
/* XXX locking? */
SLIST_INSERT_HEAD(klist, kn, kn_selnext);
return (0);
}
static void
filt_netdetach(struct knote *kn)
{
struct klist *klist = (struct klist *)kn->kn_hook;
if (kn->kn_status & KN_DETACHED)
return;
SLIST_REMOVE(klist, kn, knote, kn_selnext);
}
static int
filt_netdev(struct knote *kn, long hint)
{
/*
* Currently NOTE_EXIT is abused to indicate device detach.
*/
if (hint == NOTE_EXIT) {
kn->kn_data = NOTE_LINKINV;
kn->kn_status |= KN_DETACHED;
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
return (1);
}
kn->kn_data = hint; /* current status */
if (kn->kn_sfflags & hint)
kn->kn_fflags |= hint;
return (kn->kn_fflags != 0);
}
/*
* Network interface utility routines.
*
* Routines with ifa_ifwith* names take sockaddr *'s as
* parameters.
*/
/* ARGSUSED*/
static void
if_init(dummy)
void *dummy;
{
TAILQ_INIT(&ifnet);
SLIST_INIT(&ifklist);
if_grow(); /* create initial table */
ifdev_byindex(0) = make_dev(&net_cdevsw, 0,
UID_ROOT, GID_WHEEL, 0600, "network");
}
static void
if_grow(void)
{
u_int n;
struct ifindex_entry *e;
if_indexlim <<= 1;
n = if_indexlim * sizeof(*e);
e = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
if (ifindex_table != NULL) {
memcpy((caddr_t)e, (caddr_t)ifindex_table, n/2);
free((caddr_t)ifindex_table, M_IFADDR);
}
ifindex_table = e;
}
/* ARGSUSED*/
static void
if_check(dummy)
void *dummy;
{
struct ifnet *ifp;
int s;
s = splimp();
TAILQ_FOREACH(ifp, &ifnet, if_link) {
if (ifp->if_snd.ifq_maxlen == 0) {
printf("%s%d XXX: driver didn't set ifq_maxlen\n",
ifp->if_name, ifp->if_unit);
ifp->if_snd.ifq_maxlen = ifqmaxlen;
}
if (!mtx_initialized(&ifp->if_snd.ifq_mtx)) {
printf("%s%d XXX: driver didn't initialize queue mtx\n",
ifp->if_name, ifp->if_unit);
mtx_init(&ifp->if_snd.ifq_mtx, "unknown",
MTX_NETWORK_LOCK, MTX_DEF);
}
}
splx(s);
if_slowtimo(0);
}
static int
if_findindex(struct ifnet *ifp)
{
int i, unit;
char eaddr[18], devname[32];
const char *name, *p;
switch (ifp->if_type) {
case IFT_ETHER: /* these types use struct arpcom */
case IFT_FDDI:
case IFT_XETHER:
case IFT_ISO88025:
case IFT_L2VLAN:
snprintf(eaddr, 18, "%6D",
((struct arpcom *)ifp->if_softc)->ac_enaddr, ":");
break;
default:
eaddr[0] = '\0';
break;
}
snprintf(devname, 32, "%s%d", ifp->if_name, ifp->if_unit);
name = net_cdevsw.d_name;
i = 0;
while ((resource_find_dev(&i, name, &unit, NULL, NULL)) == 0) {
if (resource_string_value(name, unit, "ether", &p) == 0)
if (strcmp(p, eaddr) == 0)
goto found;
if (resource_string_value(name, unit, "dev", &p) == 0)
if (strcmp(p, devname) == 0)
goto found;
}
unit = 0;
found:
if (unit != 0) {
if (ifaddr_byindex(unit) == NULL)
return (unit);
printf("%s%d in use, cannot hardwire it to %s.\n",
name, unit, devname);
}
for (unit = 1; ; unit++) {
if (unit <= if_index && ifaddr_byindex(unit) != NULL)
continue;
if (resource_string_value(name, unit, "ether", &p) == 0 ||
resource_string_value(name, unit, "dev", &p) == 0)
continue;
break;
}
return (unit);
}
/*
* Attach an interface to the
* list of "active" interfaces.
*/
void
if_attach(ifp)
struct ifnet *ifp;
{
unsigned socksize, ifasize;
int namelen, masklen;
char workbuf[64];
register struct sockaddr_dl *sdl;
register struct ifaddr *ifa;
TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
/*
* XXX -
* The old code would work if the interface passed a pre-existing
* chain of ifaddrs to this code. We don't trust our callers to
* properly initialize the tailq, however, so we no longer allow
* this unlikely case.
*/
TAILQ_INIT(&ifp->if_addrhead);
TAILQ_INIT(&ifp->if_prefixhead);
TAILQ_INIT(&ifp->if_multiaddrs);
SLIST_INIT(&ifp->if_klist);
getmicrotime(&ifp->if_lastchange);
#ifdef MAC
mac_init_ifnet(ifp);
mac_create_ifnet(ifp);
#endif
ifp->if_index = if_findindex(ifp);
if (ifp->if_index > if_index)
if_index = ifp->if_index;
if (if_index >= if_indexlim)
if_grow();
ifnet_byindex(ifp->if_index) = ifp;
ifdev_byindex(ifp->if_index) = make_dev(&net_cdevsw, ifp->if_index,
UID_ROOT, GID_WHEEL, 0600, "%s/%s%d",
net_cdevsw.d_name, ifp->if_name, ifp->if_unit);
make_dev_alias(ifdev_byindex(ifp->if_index), "%s%d",
net_cdevsw.d_name, ifp->if_index);
mtx_init(&ifp->if_snd.ifq_mtx, ifp->if_name, "if send queue", MTX_DEF);
/*
* create a Link Level name for this device
*/
namelen = snprintf(workbuf, sizeof(workbuf),
"%s%d", ifp->if_name, ifp->if_unit);
#define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
socksize = masklen + ifp->if_addrlen;
#define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
if (socksize < sizeof(*sdl))
socksize = sizeof(*sdl);
socksize = ROUNDUP(socksize);
ifasize = sizeof(*ifa) + 2 * socksize;
ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
if (ifa) {
sdl = (struct sockaddr_dl *)(ifa + 1);
sdl->sdl_len = socksize;
sdl->sdl_family = AF_LINK;
bcopy(workbuf, sdl->sdl_data, namelen);
sdl->sdl_nlen = namelen;
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = ifp->if_type;
ifaddr_byindex(ifp->if_index) = ifa;
ifa->ifa_ifp = ifp;
ifa->ifa_rtrequest = link_rtrequest;
ifa->ifa_addr = (struct sockaddr *)sdl;
sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
ifa->ifa_netmask = (struct sockaddr *)sdl;
sdl->sdl_len = masklen;
while (namelen != 0)
sdl->sdl_data[--namelen] = 0xff;
TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
}
ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
/* Announce the interface. */
rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
}
/*
* Detach an interface, removing it from the
* list of "active" interfaces.
*/
void
if_detach(ifp)
struct ifnet *ifp;
{
struct ifaddr *ifa;
struct radix_node_head *rnh;
int s;
int i;
/*
* Remove routes and flush queues.
*/
s = splnet();
if_down(ifp);
/*
* Remove address from ifindex_table[] and maybe decrement if_index.
* Clean up all addresses.
*/
ifaddr_byindex(ifp->if_index) = NULL;
revoke_and_destroy_dev(ifdev_byindex(ifp->if_index));
ifdev_byindex(ifp->if_index) = NULL;
while (if_index > 0 && ifaddr_byindex(if_index) == NULL)
if_index--;
for (ifa = TAILQ_FIRST(&ifp->if_addrhead); ifa;
ifa = TAILQ_FIRST(&ifp->if_addrhead)) {
#ifdef INET
/* XXX: Ugly!! ad hoc just for INET */
if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
struct ifaliasreq ifr;
bzero(&ifr, sizeof(ifr));
ifr.ifra_addr = *ifa->ifa_addr;
if (ifa->ifa_dstaddr)
ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
NULL) == 0)
continue;
}
#endif /* INET */
#ifdef INET6
if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
in6_purgeaddr(ifa);
/* ifp_addrhead is already updated */
continue;
}
#endif /* INET6 */
TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
IFAFREE(ifa);
}
#ifdef INET6
/*
* Remove all IPv6 kernel structs related to ifp. This should be done
* before removing routing entries below, since IPv6 interface direct
* routes are expected to be removed by the IPv6-specific kernel API.
* Otherwise, the kernel will detect some inconsistency and bark it.
*/
in6_ifdetach(ifp);
#endif
/*
* Delete all remaining routes using this interface
* Unfortuneatly the only way to do this is to slog through
* the entire routing table looking for routes which point
* to this interface...oh well...
*/
for (i = 1; i <= AF_MAX; i++) {
if ((rnh = rt_tables[i]) == NULL)
continue;
(void) rnh->rnh_walktree(rnh, if_rtdel, ifp);
}
/* Announce that the interface is gone. */
rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
#ifdef MAC
mac_destroy_ifnet(ifp);
#endif /* MAC */
KNOTE(&ifp->if_klist, NOTE_EXIT);
TAILQ_REMOVE(&ifnet, ifp, if_link);
mtx_destroy(&ifp->if_snd.ifq_mtx);
splx(s);
}
/*
* Delete Routes for a Network Interface
*
* Called for each routing entry via the rnh->rnh_walktree() call above
* to delete all route entries referencing a detaching network interface.
*
* Arguments:
* rn pointer to node in the routing table
* arg argument passed to rnh->rnh_walktree() - detaching interface
*
* Returns:
* 0 successful
* errno failed - reason indicated
*
*/
static int
if_rtdel(rn, arg)
struct radix_node *rn;
void *arg;
{
struct rtentry *rt = (struct rtentry *)rn;
struct ifnet *ifp = arg;
int err;
if (rt->rt_ifp == ifp) {
/*
* Protect (sorta) against walktree recursion problems
* with cloned routes
*/
if ((rt->rt_flags & RTF_UP) == 0)
return (0);
err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
rt_mask(rt), rt->rt_flags,
(struct rtentry **) NULL);
if (err) {
log(LOG_WARNING, "if_rtdel: error %d\n", err);
}
}
return (0);
}
/*
* Create a clone network interface.
*/
int
if_clone_create(name, len)
char *name;
int len;
{
struct if_clone *ifc;
char *dp;
int wildcard, bytoff, bitoff;
int unit;
int err;
ifc = if_clone_lookup(name, &unit);
if (ifc == NULL)
return (EINVAL);
if (ifunit(name) != NULL)
return (EEXIST);
bytoff = bitoff = 0;
wildcard = (unit < 0);
/*
* Find a free unit if none was given.
*/
if (wildcard) {
while ((bytoff < ifc->ifc_bmlen)
&& (ifc->ifc_units[bytoff] == 0xff))
bytoff++;
if (bytoff >= ifc->ifc_bmlen)
return (ENOSPC);
while ((ifc->ifc_units[bytoff] & (1 << bitoff)) != 0)
bitoff++;
unit = (bytoff << 3) + bitoff;
}
if (unit > ifc->ifc_maxunit)
return (ENXIO);
err = (*ifc->ifc_create)(ifc, unit);
if (err != 0)
return (err);
if (!wildcard) {
bytoff = unit >> 3;
bitoff = unit - (bytoff << 3);
}
/*
* Allocate the unit in the bitmap.
*/
KASSERT((ifc->ifc_units[bytoff] & (1 << bitoff)) == 0,
("%s: bit is already set", __func__));
ifc->ifc_units[bytoff] |= (1 << bitoff);
/* In the wildcard case, we need to update the name. */
if (wildcard) {
for (dp = name; *dp != '\0'; dp++);
if (snprintf(dp, len - (dp-name), "%d", unit) >
len - (dp-name) - 1) {
/*
* This can only be a programmer error and
* there's no straightforward way to recover if
* it happens.
*/
panic("if_clone_create(): interface name too long");
}
}
return (0);
}
/*
* Destroy a clone network interface.
*/
int
if_clone_destroy(name)
const char *name;
{
struct if_clone *ifc;
struct ifnet *ifp;
int bytoff, bitoff;
int unit;
ifc = if_clone_lookup(name, &unit);
if (ifc == NULL)
return (EINVAL);
if (unit < ifc->ifc_minifs)
return (EINVAL);
ifp = ifunit(name);
if (ifp == NULL)
return (ENXIO);
if (ifc->ifc_destroy == NULL)
return (EOPNOTSUPP);
(*ifc->ifc_destroy)(ifp);
/*
* Compute offset in the bitmap and deallocate the unit.
*/
bytoff = unit >> 3;
bitoff = unit - (bytoff << 3);
KASSERT((ifc->ifc_units[bytoff] & (1 << bitoff)) != 0,
("%s: bit is already cleared", __func__));
ifc->ifc_units[bytoff] &= ~(1 << bitoff);
return (0);
}
/*
* Look up a network interface cloner.
*/
static struct if_clone *
if_clone_lookup(name, unitp)
const char *name;
int *unitp;
{
struct if_clone *ifc;
const char *cp;
int i;
for (ifc = LIST_FIRST(&if_cloners); ifc != NULL;) {
for (cp = name, i = 0; i < ifc->ifc_namelen; i++, cp++) {
if (ifc->ifc_name[i] != *cp)
goto next_ifc;
}
goto found_name;
next_ifc:
ifc = LIST_NEXT(ifc, ifc_list);
}
/* No match. */
return ((struct if_clone *)NULL);
found_name:
if (*cp == '\0') {
i = -1;
} else {
for (i = 0; *cp != '\0'; cp++) {
if (*cp < '0' || *cp > '9') {
/* Bogus unit number. */
return (NULL);
}
i = (i * 10) + (*cp - '0');
}
}
if (unitp != NULL)
*unitp = i;
return (ifc);
}
/*
* Register a network interface cloner.
*/
void
if_clone_attach(ifc)
struct if_clone *ifc;
{
int bytoff, bitoff;
int err;
int len, maxclone;
int unit;
KASSERT(ifc->ifc_minifs - 1 <= ifc->ifc_maxunit,
("%s: %s requested more units then allowed (%d > %d)",
__func__, ifc->ifc_name, ifc->ifc_minifs,
ifc->ifc_maxunit + 1));
/*
* Compute bitmap size and allocate it.
*/
maxclone = ifc->ifc_maxunit + 1;
len = maxclone >> 3;
if ((len << 3) < maxclone)
len++;
ifc->ifc_units = malloc(len, M_CLONE, M_WAITOK | M_ZERO);
ifc->ifc_bmlen = len;
LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
if_cloners_count++;
for (unit = 0; unit < ifc->ifc_minifs; unit++) {
err = (*ifc->ifc_create)(ifc, unit);
KASSERT(err == 0,
("%s: failed to create required interface %s%d",
__func__, ifc->ifc_name, unit));
/* Allocate the unit in the bitmap. */
bytoff = unit >> 3;
bitoff = unit - (bytoff << 3);
ifc->ifc_units[bytoff] |= (1 << bitoff);
}
}
/*
* Unregister a network interface cloner.
*/
void
if_clone_detach(ifc)
struct if_clone *ifc;
{
LIST_REMOVE(ifc, ifc_list);
free(ifc->ifc_units, M_CLONE);
if_cloners_count--;
}
/*
* Provide list of interface cloners to userspace.
*/
static int
if_clone_list(ifcr)
struct if_clonereq *ifcr;
{
char outbuf[IFNAMSIZ], *dst;
struct if_clone *ifc;
int count, error = 0;
ifcr->ifcr_total = if_cloners_count;
if ((dst = ifcr->ifcr_buffer) == NULL) {
/* Just asking how many there are. */
return (0);
}
if (ifcr->ifcr_count < 0)
return (EINVAL);
count = (if_cloners_count < ifcr->ifcr_count) ?
if_cloners_count : ifcr->ifcr_count;
for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
strncpy(outbuf, ifc->ifc_name, IFNAMSIZ);
outbuf[IFNAMSIZ - 1] = '\0'; /* sanity */
error = copyout(outbuf, dst, IFNAMSIZ);
if (error)
break;
}
return (error);
}
/*
* Locate an interface based on a complete address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithaddr(addr)
struct sockaddr *addr;
{
struct ifnet *ifp;
struct ifaddr *ifa;
#define equal(a1, a2) \
(bcmp((caddr_t)(a1), (caddr_t)(a2), ((struct sockaddr *)(a1))->sa_len) == 0)
TAILQ_FOREACH(ifp, &ifnet, if_link)
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (equal(addr, ifa->ifa_addr))
goto done;
/* IP6 doesn't have broadcast */
if ((ifp->if_flags & IFF_BROADCAST) &&
ifa->ifa_broadaddr &&
ifa->ifa_broadaddr->sa_len != 0 &&
equal(ifa->ifa_broadaddr, addr))
goto done;
}
ifa = NULL;
done:
return (ifa);
}
/*
* Locate the point to point interface with a given destination address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithdstaddr(addr)
struct sockaddr *addr;
{
struct ifnet *ifp;
struct ifaddr *ifa;
TAILQ_FOREACH(ifp, &ifnet, if_link) {
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
continue;
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr))
goto done;
}
}
ifa = NULL;
done:
return (ifa);
}
/*
* Find an interface on a specific network. If many, choice
* is most specific found.
*/
struct ifaddr *
ifa_ifwithnet(addr)
struct sockaddr *addr;
{
register struct ifnet *ifp;
register struct ifaddr *ifa;
struct ifaddr *ifa_maybe = (struct ifaddr *) 0;
u_int af = addr->sa_family;
char *addr_data = addr->sa_data, *cplim;
/*
* AF_LINK addresses can be looked up directly by their index number,
* so do that if we can.
*/
if (af == AF_LINK) {
register struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
if (sdl->sdl_index && sdl->sdl_index <= if_index)
return (ifaddr_byindex(sdl->sdl_index));
}
/*
* Scan though each interface, looking for ones that have
* addresses in this address family.
*/
TAILQ_FOREACH(ifp, &ifnet, if_link) {
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
register char *cp, *cp2, *cp3;
if (ifa->ifa_addr->sa_family != af)
next: continue;
if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
/*
* This is a bit broken as it doesn't
* take into account that the remote end may
* be a single node in the network we are
* looking for.
* The trouble is that we don't know the
* netmask for the remote end.
*/
if (ifa->ifa_dstaddr != 0
&& equal(addr, ifa->ifa_dstaddr))
goto done;
} else {
/*
* if we have a special address handler,
* then use it instead of the generic one.
*/
if (ifa->ifa_claim_addr) {
if ((*ifa->ifa_claim_addr)(ifa, addr))
goto done;
continue;
}
/*
* Scan all the bits in the ifa's address.
* If a bit dissagrees with what we are
* looking for, mask it with the netmask
* to see if it really matters.
* (A byte at a time)
*/
if (ifa->ifa_netmask == 0)
continue;
cp = addr_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len
+ (char *)ifa->ifa_netmask;
while (cp3 < cplim)
if ((*cp++ ^ *cp2++) & *cp3++)
goto next; /* next address! */
/*
* If the netmask of what we just found
* is more specific than what we had before
* (if we had one) then remember the new one
* before continuing to search
* for an even better one.
*/
if (ifa_maybe == 0 ||
rn_refines((caddr_t)ifa->ifa_netmask,
(caddr_t)ifa_maybe->ifa_netmask))
ifa_maybe = ifa;
}
}
}
ifa = ifa_maybe;
done:
return (ifa);
}
/*
* Find an interface address specific to an interface best matching
* a given address.
*/
struct ifaddr *
ifaof_ifpforaddr(addr, ifp)
struct sockaddr *addr;
register struct ifnet *ifp;
{
register struct ifaddr *ifa;
register char *cp, *cp2, *cp3;
register char *cplim;
struct ifaddr *ifa_maybe = 0;
u_int af = addr->sa_family;
if (af >= AF_MAX)
return (0);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != af)
continue;
if (ifa_maybe == 0)
ifa_maybe = ifa;
if (ifa->ifa_netmask == 0) {
if (equal(addr, ifa->ifa_addr) ||
(ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr)))
goto done;
continue;
}
if (ifp->if_flags & IFF_POINTOPOINT) {
if (equal(addr, ifa->ifa_dstaddr))
goto done;
} else {
cp = addr->sa_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
for (; cp3 < cplim; cp3++)
if ((*cp++ ^ *cp2++) & *cp3)
break;
if (cp3 == cplim)
goto done;
}
}
ifa = ifa_maybe;
done:
return (ifa);
}
#include <net/route.h>
/*
* Default action when installing a route with a Link Level gateway.
* Lookup an appropriate real ifa to point to.
* This should be moved to /sys/net/link.c eventually.
*/
static void
link_rtrequest(cmd, rt, info)
int cmd;
register struct rtentry *rt;
struct rt_addrinfo *info;
{
register struct ifaddr *ifa;
struct sockaddr *dst;
struct ifnet *ifp;
if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) ||
((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0))
return;
ifa = ifaof_ifpforaddr(dst, ifp);
if (ifa) {
IFAFREE(rt->rt_ifa);
rt->rt_ifa = ifa;
ifa->ifa_refcnt++;
if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
ifa->ifa_rtrequest(cmd, rt, info);
}
}
/*
* Mark an interface down and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_unroute(ifp, flag, fam)
register struct ifnet *ifp;
int flag, fam;
{
register struct ifaddr *ifa;
ifp->if_flags &= ~flag;
getmicrotime(&ifp->if_lastchange);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
if_qflush(&ifp->if_snd);
rt_ifmsg(ifp);
}
/*
* Mark an interface up and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_route(ifp, flag, fam)
register struct ifnet *ifp;
int flag, fam;
{
register struct ifaddr *ifa;
ifp->if_flags |= flag;
getmicrotime(&ifp->if_lastchange);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
pfctlinput(PRC_IFUP, ifa->ifa_addr);
rt_ifmsg(ifp);
#ifdef INET6
in6_if_up(ifp);
#endif
}
/*
* Mark an interface down and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_down(ifp)
register struct ifnet *ifp;
{
if_unroute(ifp, IFF_UP, AF_UNSPEC);
}
/*
* Mark an interface up and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_up(ifp)
register struct ifnet *ifp;
{
if_route(ifp, IFF_UP, AF_UNSPEC);
}
/*
* Flush an interface queue.
*/
static void
if_qflush(ifq)
register struct ifqueue *ifq;
{
register struct mbuf *m, *n;
n = ifq->ifq_head;
while ((m = n) != 0) {
n = m->m_act;
m_freem(m);
}
ifq->ifq_head = 0;
ifq->ifq_tail = 0;
ifq->ifq_len = 0;
}
/*
* Handle interface watchdog timer routines. Called
* from softclock, we decrement timers (if set) and
* call the appropriate interface routine on expiration.
*/
static void
if_slowtimo(arg)
void *arg;
{
register struct ifnet *ifp;
int s = splimp();
TAILQ_FOREACH(ifp, &ifnet, if_link) {
if (ifp->if_timer == 0 || --ifp->if_timer)
continue;
if (ifp->if_watchdog)
(*ifp->if_watchdog)(ifp);
}
splx(s);
timeout(if_slowtimo, (void *)0, hz / IFNET_SLOWHZ);
}
/*
* Map interface name to
* interface structure pointer.
*/
struct ifnet *
ifunit(const char *name)
{
char namebuf[IFNAMSIZ + 1];
struct ifnet *ifp;
dev_t dev;
/*
* Now search all the interfaces for this name/number
*/
/*
* XXX
* Devices should really be known as /dev/fooN, not /dev/net/fooN.
*/
snprintf(namebuf, IFNAMSIZ, "%s/%s", net_cdevsw.d_name, name);
TAILQ_FOREACH(ifp, &ifnet, if_link) {
dev = ifdev_byindex(ifp->if_index);
if (strcmp(devtoname(dev), namebuf) == 0)
break;
if (dev_named(dev, name))
break;
}
return (ifp);
}
/*
* Map interface name in a sockaddr_dl to
* interface structure pointer.
*/
struct ifnet *
if_withname(sa)
struct sockaddr *sa;
{
char ifname[IFNAMSIZ+1];
struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
(sdl->sdl_nlen > IFNAMSIZ) )
return NULL;
/*
* ifunit wants a null-terminated name. It may not be null-terminated
* in the sockaddr. We don't want to change the caller's sockaddr,
* and there might not be room to put the trailing null anyway, so we
* make a local copy that we know we can null terminate safely.
*/
bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
ifname[sdl->sdl_nlen] = '\0';
return ifunit(ifname);
}
/*
* Hardware specific interface ioctls.
*/
static int
ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
{
struct ifreq *ifr;
struct ifstat *ifs;
int error = 0;
ifr = (struct ifreq *)data;
switch (cmd) {
case SIOCGIFINDEX:
ifr->ifr_index = ifp->if_index;
break;
case SIOCGIFFLAGS:
ifr->ifr_flags = ifp->if_flags;
break;
case SIOCGIFCAP:
ifr->ifr_reqcap = ifp->if_capabilities;
ifr->ifr_curcap = ifp->if_capenable;
break;
#ifdef MAC
case SIOCGIFMAC:
error = mac_ioctl_ifnet_get(td->td_proc->p_ucred, ifr, ifp);
break;
#endif
case SIOCGIFMETRIC:
ifr->ifr_metric = ifp->if_metric;
break;
case SIOCGIFMTU:
ifr->ifr_mtu = ifp->if_mtu;
break;
case SIOCGIFPHYS:
ifr->ifr_phys = ifp->if_physical;
break;
case SIOCSIFFLAGS:
error = suser(td);
if (error)
return (error);
ifr->ifr_prevflags = ifp->if_flags;
if (ifp->if_flags & IFF_SMART) {
/* Smart drivers twiddle their own routes */
} else if (ifp->if_flags & IFF_UP &&
(ifr->ifr_flags & IFF_UP) == 0) {
int s = splimp();
if_down(ifp);
splx(s);
} else if (ifr->ifr_flags & IFF_UP &&
(ifp->if_flags & IFF_UP) == 0) {
int s = splimp();
if_up(ifp);
splx(s);
}
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
(ifr->ifr_flags &~ IFF_CANTCHANGE);
if (ifp->if_ioctl)
(void) (*ifp->if_ioctl)(ifp, cmd, data);
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFCAP:
error = suser(td);
if (error)
return (error);
if (ifr->ifr_reqcap & ~ifp->if_capabilities)
return (EINVAL);
(void) (*ifp->if_ioctl)(ifp, cmd, data);
break;
#ifdef MAC
case SIOCSIFMAC:
error = mac_ioctl_ifnet_set(td->td_proc->p_ucred, ifr, ifp);
break;
#endif
case SIOCSIFMETRIC:
error = suser(td);
if (error)
return (error);
ifp->if_metric = ifr->ifr_metric;
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFPHYS:
error = suser(td);
if (error)
return error;
if (!ifp->if_ioctl)
return EOPNOTSUPP;
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
return(error);
case SIOCSIFMTU:
{
u_long oldmtu = ifp->if_mtu;
error = suser(td);
if (error)
return (error);
if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
return (EINVAL);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0) {
getmicrotime(&ifp->if_lastchange);
rt_ifmsg(ifp);
}
/*
* If the link MTU changed, do network layer specific procedure.
*/
if (ifp->if_mtu != oldmtu) {
#ifdef INET6
nd6_setmtu(ifp);
#endif
}
break;
}
case SIOCADDMULTI:
case SIOCDELMULTI:
error = suser(td);
if (error)
return (error);
/* Don't allow group membership on non-multicast interfaces. */
if ((ifp->if_flags & IFF_MULTICAST) == 0)
return (EOPNOTSUPP);
/* Don't let users screw up protocols' entries. */
if (ifr->ifr_addr.sa_family != AF_LINK)
return (EINVAL);
if (cmd == SIOCADDMULTI) {
struct ifmultiaddr *ifma;
error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
} else {
error = if_delmulti(ifp, &ifr->ifr_addr);
}
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFPHYADDR:
case SIOCDIFPHYADDR:
#ifdef INET6
case SIOCSIFPHYADDR_IN6:
#endif
case SIOCSLIFPHYADDR:
case SIOCSIFMEDIA:
case SIOCSIFGENERIC:
error = suser(td);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCGIFSTATUS:
ifs = (struct ifstat *)data;
ifs->ascii[0] = '\0';
case SIOCGIFPSRCADDR:
case SIOCGIFPDSTADDR:
case SIOCGLIFPHYADDR:
case SIOCGIFMEDIA:
case SIOCGIFGENERIC:
if (ifp->if_ioctl == 0)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
break;
case SIOCSIFLLADDR:
error = suser(td);
if (error)
return (error);
error = if_setlladdr(ifp,
ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
break;
default:
error = ENOIOCTL;
break;
}
return (error);
}
/*
* Interface ioctls.
*/
int
ifioctl(so, cmd, data, td)
struct socket *so;
u_long cmd;
caddr_t data;
struct thread *td;
{
struct ifnet *ifp;
struct ifreq *ifr;
int error;
short oif_flags;
switch (cmd) {
case SIOCGIFCONF:
case OSIOCGIFCONF:
return (ifconf(cmd, data));
}
ifr = (struct ifreq *)data;
switch (cmd) {
case SIOCIFCREATE:
case SIOCIFDESTROY:
if ((error = suser(td)) != 0)
return (error);
return ((cmd == SIOCIFCREATE) ?
if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name)) :
if_clone_destroy(ifr->ifr_name));
case SIOCIFGCLONERS:
return (if_clone_list((struct if_clonereq *)data));
}
ifp = ifunit(ifr->ifr_name);
if (ifp == 0)
return (ENXIO);
error = ifhwioctl(cmd, ifp, data, td);
if (error != ENOIOCTL)
return (error);
oif_flags = ifp->if_flags;
if (so->so_proto == 0)
return (EOPNOTSUPP);
#ifndef COMPAT_43
error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd,
data,
ifp, td));
#else
{
int ocmd = cmd;
switch (cmd) {
case SIOCSIFDSTADDR:
case SIOCSIFADDR:
case SIOCSIFBRDADDR:
case SIOCSIFNETMASK:
#if BYTE_ORDER != BIG_ENDIAN
if (ifr->ifr_addr.sa_family == 0 &&
ifr->ifr_addr.sa_len < 16) {
ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
ifr->ifr_addr.sa_len = 16;
}
#else
if (ifr->ifr_addr.sa_len == 0)
ifr->ifr_addr.sa_len = 16;
#endif
break;
case OSIOCGIFADDR:
cmd = SIOCGIFADDR;
break;
case OSIOCGIFDSTADDR:
cmd = SIOCGIFDSTADDR;
break;
case OSIOCGIFBRDADDR:
cmd = SIOCGIFBRDADDR;
break;
case OSIOCGIFNETMASK:
cmd = SIOCGIFNETMASK;
}
error = ((*so->so_proto->pr_usrreqs->pru_control)(so,
cmd,
data,
ifp, td));
switch (ocmd) {
case OSIOCGIFADDR:
case OSIOCGIFDSTADDR:
case OSIOCGIFBRDADDR:
case OSIOCGIFNETMASK:
*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
}
}
#endif /* COMPAT_43 */
if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
#ifdef INET6
DELAY(100);/* XXX: temporary workaround for fxp issue*/
if (ifp->if_flags & IFF_UP) {
int s = splimp();
in6_if_up(ifp);
splx(s);
}
#endif
}
return (error);
}
/*
* Set/clear promiscuous mode on interface ifp based on the truth value
* of pswitch. The calls are reference counted so that only the first
* "on" request actually has an effect, as does the final "off" request.
* Results are undefined if the "off" and "on" requests are not matched.
*/
int
ifpromisc(ifp, pswitch)
struct ifnet *ifp;
int pswitch;
{
struct ifreq ifr;
int error;
int oldflags, oldpcount;
oldpcount = ifp->if_pcount;
oldflags = ifp->if_flags;
if (pswitch) {
/*
* If the device is not configured up, we cannot put it in
* promiscuous mode.
*/
if ((ifp->if_flags & IFF_UP) == 0)
return (ENETDOWN);
if (ifp->if_pcount++ != 0)
return (0);
ifp->if_flags |= IFF_PROMISC;
} else {
if (--ifp->if_pcount > 0)
return (0);
ifp->if_flags &= ~IFF_PROMISC;
}
ifr.ifr_flags = ifp->if_flags;
error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
if (error == 0) {
log(LOG_INFO, "%s%d: promiscuous mode %s\n",
ifp->if_name, ifp->if_unit,
(ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
rt_ifmsg(ifp);
} else {
ifp->if_pcount = oldpcount;
ifp->if_flags = oldflags;
}
return error;
}
/*
* Return interface configuration
* of system. List may be used
* in later ioctl's (above) to get
* other information.
*/
/*ARGSUSED*/
static int
ifconf(cmd, data)
u_long cmd;
caddr_t data;
{
struct ifconf *ifc = (struct ifconf *)data;
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifreq ifr, *ifrp;
int space = ifc->ifc_len, error = 0;
ifrp = ifc->ifc_req;
TAILQ_FOREACH(ifp, &ifnet, if_link) {
char workbuf[64];
int ifnlen, addrs;
if (space < sizeof(ifr))
break;
ifnlen = snprintf(workbuf, sizeof(workbuf),
"%s%d", ifp->if_name, ifp->if_unit);
if(ifnlen + 1 > sizeof ifr.ifr_name) {
error = ENAMETOOLONG;
break;
} else {
strcpy(ifr.ifr_name, workbuf);
}
addrs = 0;
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
struct sockaddr *sa = ifa->ifa_addr;
if (space < sizeof(ifr))
break;
if (jailed(curthread->td_ucred) &&
prison_if(curthread->td_ucred, sa))
continue;
addrs++;
#ifdef COMPAT_43
if (cmd == OSIOCGIFCONF) {
struct osockaddr *osa =
(struct osockaddr *)&ifr.ifr_addr;
ifr.ifr_addr = *sa;
osa->sa_family = sa->sa_family;
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr));
ifrp++;
} else
#endif
if (sa->sa_len <= sizeof(*sa)) {
ifr.ifr_addr = *sa;
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr));
ifrp++;
} else {
if (space < sizeof (ifr) + sa->sa_len -
sizeof(*sa))
break;
space -= sa->sa_len - sizeof(*sa);
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr.ifr_name));
if (error == 0)
error = copyout((caddr_t)sa,
(caddr_t)&ifrp->ifr_addr, sa->sa_len);
ifrp = (struct ifreq *)
(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
}
if (error)
break;
space -= sizeof (ifr);
}
if (error)
break;
if (!addrs) {
bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr));
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr));
if (error)
break;
space -= sizeof (ifr);
ifrp++;
}
}
ifc->ifc_len -= space;
return (error);
}
/*
* Just like if_promisc(), but for all-multicast-reception mode.
*/
int
if_allmulti(ifp, onswitch)
struct ifnet *ifp;
int onswitch;
{
int error = 0;
int s = splimp();
struct ifreq ifr;
if (onswitch) {
if (ifp->if_amcount++ == 0) {
ifp->if_flags |= IFF_ALLMULTI;
ifr.ifr_flags = ifp->if_flags;
error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
}
} else {
if (ifp->if_amcount > 1) {
ifp->if_amcount--;
} else {
ifp->if_amcount = 0;
ifp->if_flags &= ~IFF_ALLMULTI;
ifr.ifr_flags = ifp->if_flags;
error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
}
}
splx(s);
if (error == 0)
rt_ifmsg(ifp);
return error;
}
/*
* Add a multicast listenership to the interface in question.
* The link layer provides a routine which converts
*/
int
if_addmulti(ifp, sa, retifma)
struct ifnet *ifp; /* interface to manipulate */
struct sockaddr *sa; /* address to add */
struct ifmultiaddr **retifma;
{
struct sockaddr *llsa, *dupsa;
int error, s;
struct ifmultiaddr *ifma;
/*
* If the matching multicast address already exists
* then don't add a new one, just add a reference
*/
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (equal(sa, ifma->ifma_addr)) {
ifma->ifma_refcount++;
if (retifma)
*retifma = ifma;
return 0;
}
}
/*
* Give the link layer a chance to accept/reject it, and also
* find out which AF_LINK address this maps to, if it isn't one
* already.
*/
if (ifp->if_resolvemulti) {
error = ifp->if_resolvemulti(ifp, &llsa, sa);
if (error) return error;
} else {
llsa = 0;
}
MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
bcopy(sa, dupsa, sa->sa_len);
ifma->ifma_addr = dupsa;
ifma->ifma_lladdr = llsa;
ifma->ifma_ifp = ifp;
ifma->ifma_refcount = 1;
ifma->ifma_protospec = 0;
rt_newmaddrmsg(RTM_NEWMADDR, ifma);
/*
* Some network interfaces can scan the address list at
* interrupt time; lock them out.
*/
s = splimp();
TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
splx(s);
if (retifma != NULL)
*retifma = ifma;
if (llsa != 0) {
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (equal(ifma->ifma_addr, llsa))
break;
}
if (ifma) {
ifma->ifma_refcount++;
} else {
MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
M_IFMADDR, M_WAITOK);
MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
M_IFMADDR, M_WAITOK);
bcopy(llsa, dupsa, llsa->sa_len);
ifma->ifma_addr = dupsa;
ifma->ifma_ifp = ifp;
ifma->ifma_refcount = 1;
s = splimp();
TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
splx(s);
}
}
/*
* We are certain we have added something, so call down to the
* interface to let them know about it.
*/
s = splimp();
ifp->if_ioctl(ifp, SIOCADDMULTI, 0);
splx(s);
return 0;
}
/*
* Remove a reference to a multicast address on this interface. Yell
* if the request does not match an existing membership.
*/
int
if_delmulti(ifp, sa)
struct ifnet *ifp;
struct sockaddr *sa;
{
struct ifmultiaddr *ifma;
int s;
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
if (equal(sa, ifma->ifma_addr))
break;
if (ifma == 0)
return ENOENT;
if (ifma->ifma_refcount > 1) {
ifma->ifma_refcount--;
return 0;
}
rt_newmaddrmsg(RTM_DELMADDR, ifma);
sa = ifma->ifma_lladdr;
s = splimp();
TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
/*
* Make sure the interface driver is notified
* in the case of a link layer mcast group being left.
*/
if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0)
ifp->if_ioctl(ifp, SIOCDELMULTI, 0);
splx(s);
free(ifma->ifma_addr, M_IFMADDR);
free(ifma, M_IFMADDR);
if (sa == 0)
return 0;
/*
* Now look for the link-layer address which corresponds to
* this network address. It had been squirreled away in
* ifma->ifma_lladdr for this purpose (so we don't have
* to call ifp->if_resolvemulti() again), and we saved that
* value in sa above. If some nasty deleted the
* link-layer address out from underneath us, we can deal because
* the address we stored was is not the same as the one which was
* in the record for the link-layer address. (So we don't complain
* in that case.)
*/
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
if (equal(sa, ifma->ifma_addr))
break;
if (ifma == 0)
return 0;
if (ifma->ifma_refcount > 1) {
ifma->ifma_refcount--;
return 0;
}
s = splimp();
TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
ifp->if_ioctl(ifp, SIOCDELMULTI, 0);
splx(s);
free(ifma->ifma_addr, M_IFMADDR);
free(sa, M_IFMADDR);
free(ifma, M_IFMADDR);
return 0;
}
/*
* Set the link layer address on an interface.
*
* At this time we only support certain types of interfaces,
* and we don't allow the length of the address to change.
*/
int
if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
{
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
struct ifreq ifr;
ifa = ifaddr_byindex(ifp->if_index);
if (ifa == NULL)
return (EINVAL);
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
if (sdl == NULL)
return (EINVAL);
if (len != sdl->sdl_alen) /* don't allow length to change */
return (EINVAL);
switch (ifp->if_type) {
case IFT_ETHER: /* these types use struct arpcom */
case IFT_FDDI:
case IFT_XETHER:
case IFT_ISO88025:
case IFT_L2VLAN:
bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
bcopy(lladdr, LLADDR(sdl), len);
break;
default:
return (ENODEV);
}
/*
* If the interface is already up, we need
* to re-init it in order to reprogram its
* address filter.
*/
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_flags &= ~IFF_UP;
ifr.ifr_flags = ifp->if_flags;
(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
ifp->if_flags |= IFF_UP;
ifr.ifr_flags = ifp->if_flags;
(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
#ifdef INET
/*
* Also send gratuitous ARPs to notify other nodes about
* the address change.
*/
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr != NULL &&
ifa->ifa_addr->sa_family == AF_INET)
arp_ifinit(ifp, ifa);
}
#endif
}
return (0);
}
struct ifmultiaddr *
ifmaof_ifpforaddr(sa, ifp)
struct sockaddr *sa;
struct ifnet *ifp;
{
struct ifmultiaddr *ifma;
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
if (equal(ifma->ifma_addr, sa))
break;
return ifma;
}
SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");