freebsd-skq/sys/geom/eli/g_eli.h
Pawel Jakub Dawidek 0c879bd990 Before this change when GELI detected hardware crypto acceleration it will
start only one worker thread. For software crypto it will start by default
N worker threads where N is the number of available CPUs.

This is not optimal if hardware crypto is AES-NI, which uses CPU for AES
calculations.

Change that to always start one worker thread for every available CPU.
Number of worker threads per GELI provider can be easly reduced with
kern.geom.eli.threads sysctl/tunable and even for software crypto it
should be reduced when using more providers.

While here, when number of threads exceeds number of CPUs avilable don't
reduce this number, assume the user knows what he is doing.

Reported by:	Yuri Karaban <dev@dev97.com>
MFC after:	3 days
2011-10-27 16:12:25 +00:00

620 lines
18 KiB
C

/*-
* Copyright (c) 2005-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _G_ELI_H_
#define _G_ELI_H_
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <crypto/sha2/sha2.h>
#include <opencrypto/cryptodev.h>
#ifdef _KERNEL
#include <sys/bio.h>
#include <sys/libkern.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/tree.h>
#include <geom/geom.h>
#else
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#endif
#ifndef _OpenSSL_
#include <sys/md5.h>
#endif
#define G_ELI_CLASS_NAME "ELI"
#define G_ELI_MAGIC "GEOM::ELI"
#define G_ELI_SUFFIX ".eli"
/*
* Version history:
* 0 - Initial version number.
* 1 - Added data authentication support (md_aalgo field and
* G_ELI_FLAG_AUTH flag).
* 2 - Added G_ELI_FLAG_READONLY.
* 3 - Added 'configure' subcommand.
* 4 - IV is generated from offset converted to little-endian
* (the G_ELI_FLAG_NATIVE_BYTE_ORDER flag will be set for older versions).
* 5 - Added multiple encrypton keys and AES-XTS support.
* 6 - Fixed usage of multiple keys for authenticated providers (the
* G_ELI_FLAG_FIRST_KEY flag will be set for older versions).
*/
#define G_ELI_VERSION_00 0
#define G_ELI_VERSION_01 1
#define G_ELI_VERSION_02 2
#define G_ELI_VERSION_03 3
#define G_ELI_VERSION_04 4
#define G_ELI_VERSION_05 5
#define G_ELI_VERSION_06 6
#define G_ELI_VERSION G_ELI_VERSION_06
/* ON DISK FLAGS. */
/* Use random, onetime keys. */
#define G_ELI_FLAG_ONETIME 0x00000001
/* Ask for the passphrase from the kernel, before mounting root. */
#define G_ELI_FLAG_BOOT 0x00000002
/* Detach on last close, if we were open for writing. */
#define G_ELI_FLAG_WO_DETACH 0x00000004
/* Detach on last close. */
#define G_ELI_FLAG_RW_DETACH 0x00000008
/* Provide data authentication. */
#define G_ELI_FLAG_AUTH 0x00000010
/* Provider is read-only, we should deny all write attempts. */
#define G_ELI_FLAG_RO 0x00000020
/* RUNTIME FLAGS. */
/* Provider was open for writing. */
#define G_ELI_FLAG_WOPEN 0x00010000
/* Destroy device. */
#define G_ELI_FLAG_DESTROY 0x00020000
/* Provider uses native byte-order for IV generation. */
#define G_ELI_FLAG_NATIVE_BYTE_ORDER 0x00040000
/* Provider uses single encryption key. */
#define G_ELI_FLAG_SINGLE_KEY 0x00080000
/* Device suspended. */
#define G_ELI_FLAG_SUSPEND 0x00100000
/* Provider uses first encryption key. */
#define G_ELI_FLAG_FIRST_KEY 0x00200000
#define G_ELI_NEW_BIO 255
#define SHA512_MDLEN 64
#define G_ELI_AUTH_SECKEYLEN SHA256_DIGEST_LENGTH
#define G_ELI_MAXMKEYS 2
#define G_ELI_MAXKEYLEN 64
#define G_ELI_USERKEYLEN G_ELI_MAXKEYLEN
#define G_ELI_DATAKEYLEN G_ELI_MAXKEYLEN
#define G_ELI_AUTHKEYLEN G_ELI_MAXKEYLEN
#define G_ELI_IVKEYLEN G_ELI_MAXKEYLEN
#define G_ELI_SALTLEN 64
#define G_ELI_DATAIVKEYLEN (G_ELI_DATAKEYLEN + G_ELI_IVKEYLEN)
/* Data-Key, IV-Key, HMAC_SHA512(Derived-Key, Data-Key+IV-Key) */
#define G_ELI_MKEYLEN (G_ELI_DATAIVKEYLEN + SHA512_MDLEN)
#define G_ELI_OVERWRITES 5
/* Switch data encryption key every 2^20 blocks. */
#define G_ELI_KEY_SHIFT 20
#ifdef _KERNEL
extern int g_eli_debug;
extern u_int g_eli_overwrites;
extern u_int g_eli_batch;
#define G_ELI_CRYPTO_UNKNOWN 0
#define G_ELI_CRYPTO_HW 1
#define G_ELI_CRYPTO_SW 2
#define G_ELI_DEBUG(lvl, ...) do { \
if (g_eli_debug >= (lvl)) { \
printf("GEOM_ELI"); \
if (g_eli_debug > 0) \
printf("[%u]", lvl); \
printf(": "); \
printf(__VA_ARGS__); \
printf("\n"); \
} \
} while (0)
#define G_ELI_LOGREQ(lvl, bp, ...) do { \
if (g_eli_debug >= (lvl)) { \
printf("GEOM_ELI"); \
if (g_eli_debug > 0) \
printf("[%u]", lvl); \
printf(": "); \
printf(__VA_ARGS__); \
printf(" "); \
g_print_bio(bp); \
printf("\n"); \
} \
} while (0)
struct g_eli_worker {
struct g_eli_softc *w_softc;
struct proc *w_proc;
u_int w_number;
uint64_t w_sid;
boolean_t w_active;
LIST_ENTRY(g_eli_worker) w_next;
};
struct g_eli_softc {
struct g_geom *sc_geom;
u_int sc_version;
u_int sc_crypto;
uint8_t sc_mkey[G_ELI_DATAIVKEYLEN];
uint8_t sc_ekey[G_ELI_DATAKEYLEN];
TAILQ_HEAD(, g_eli_key) sc_ekeys_queue;
RB_HEAD(g_eli_key_tree, g_eli_key) sc_ekeys_tree;
struct mtx sc_ekeys_lock;
uint64_t sc_ekeys_total;
uint64_t sc_ekeys_allocated;
u_int sc_ealgo;
u_int sc_ekeylen;
uint8_t sc_akey[G_ELI_AUTHKEYLEN];
u_int sc_aalgo;
u_int sc_akeylen;
u_int sc_alen;
SHA256_CTX sc_akeyctx;
uint8_t sc_ivkey[G_ELI_IVKEYLEN];
SHA256_CTX sc_ivctx;
int sc_nkey;
uint32_t sc_flags;
int sc_inflight;
off_t sc_mediasize;
size_t sc_sectorsize;
u_int sc_bytes_per_sector;
u_int sc_data_per_sector;
boolean_t sc_cpubind;
/* Only for software cryptography. */
struct bio_queue_head sc_queue;
struct mtx sc_queue_mtx;
LIST_HEAD(, g_eli_worker) sc_workers;
};
#define sc_name sc_geom->name
#endif /* _KERNEL */
struct g_eli_metadata {
char md_magic[16]; /* Magic value. */
uint32_t md_version; /* Version number. */
uint32_t md_flags; /* Additional flags. */
uint16_t md_ealgo; /* Encryption algorithm. */
uint16_t md_keylen; /* Key length. */
uint16_t md_aalgo; /* Authentication algorithm. */
uint64_t md_provsize; /* Provider's size. */
uint32_t md_sectorsize; /* Sector size. */
uint8_t md_keys; /* Available keys. */
int32_t md_iterations; /* Number of iterations for PKCS#5v2. */
uint8_t md_salt[G_ELI_SALTLEN]; /* Salt. */
/* Encrypted master key (IV-key, Data-key, HMAC). */
uint8_t md_mkeys[G_ELI_MAXMKEYS * G_ELI_MKEYLEN];
u_char md_hash[16]; /* MD5 hash. */
} __packed;
#ifndef _OpenSSL_
static __inline void
eli_metadata_encode_v0(struct g_eli_metadata *md, u_char **datap)
{
u_char *p;
p = *datap;
le32enc(p, md->md_flags); p += sizeof(md->md_flags);
le16enc(p, md->md_ealgo); p += sizeof(md->md_ealgo);
le16enc(p, md->md_keylen); p += sizeof(md->md_keylen);
le64enc(p, md->md_provsize); p += sizeof(md->md_provsize);
le32enc(p, md->md_sectorsize); p += sizeof(md->md_sectorsize);
*p = md->md_keys; p += sizeof(md->md_keys);
le32enc(p, md->md_iterations); p += sizeof(md->md_iterations);
bcopy(md->md_salt, p, sizeof(md->md_salt)); p += sizeof(md->md_salt);
bcopy(md->md_mkeys, p, sizeof(md->md_mkeys)); p += sizeof(md->md_mkeys);
*datap = p;
}
static __inline void
eli_metadata_encode_v1v2v3v4v5v6(struct g_eli_metadata *md, u_char **datap)
{
u_char *p;
p = *datap;
le32enc(p, md->md_flags); p += sizeof(md->md_flags);
le16enc(p, md->md_ealgo); p += sizeof(md->md_ealgo);
le16enc(p, md->md_keylen); p += sizeof(md->md_keylen);
le16enc(p, md->md_aalgo); p += sizeof(md->md_aalgo);
le64enc(p, md->md_provsize); p += sizeof(md->md_provsize);
le32enc(p, md->md_sectorsize); p += sizeof(md->md_sectorsize);
*p = md->md_keys; p += sizeof(md->md_keys);
le32enc(p, md->md_iterations); p += sizeof(md->md_iterations);
bcopy(md->md_salt, p, sizeof(md->md_salt)); p += sizeof(md->md_salt);
bcopy(md->md_mkeys, p, sizeof(md->md_mkeys)); p += sizeof(md->md_mkeys);
*datap = p;
}
static __inline void
eli_metadata_encode(struct g_eli_metadata *md, u_char *data)
{
MD5_CTX ctx;
u_char *p;
p = data;
bcopy(md->md_magic, p, sizeof(md->md_magic));
p += sizeof(md->md_magic);
le32enc(p, md->md_version);
p += sizeof(md->md_version);
switch (md->md_version) {
case G_ELI_VERSION_00:
eli_metadata_encode_v0(md, &p);
break;
case G_ELI_VERSION_01:
case G_ELI_VERSION_02:
case G_ELI_VERSION_03:
case G_ELI_VERSION_04:
case G_ELI_VERSION_05:
case G_ELI_VERSION_06:
eli_metadata_encode_v1v2v3v4v5v6(md, &p);
break;
default:
#ifdef _KERNEL
panic("%s: Unsupported version %u.", __func__,
(u_int)md->md_version);
#else
assert(!"Unsupported metadata version.");
#endif
}
MD5Init(&ctx);
MD5Update(&ctx, data, p - data);
MD5Final(md->md_hash, &ctx);
bcopy(md->md_hash, p, sizeof(md->md_hash));
}
static __inline int
eli_metadata_decode_v0(const u_char *data, struct g_eli_metadata *md)
{
MD5_CTX ctx;
const u_char *p;
p = data + sizeof(md->md_magic) + sizeof(md->md_version);
md->md_flags = le32dec(p); p += sizeof(md->md_flags);
md->md_ealgo = le16dec(p); p += sizeof(md->md_ealgo);
md->md_keylen = le16dec(p); p += sizeof(md->md_keylen);
md->md_provsize = le64dec(p); p += sizeof(md->md_provsize);
md->md_sectorsize = le32dec(p); p += sizeof(md->md_sectorsize);
md->md_keys = *p; p += sizeof(md->md_keys);
md->md_iterations = le32dec(p); p += sizeof(md->md_iterations);
bcopy(p, md->md_salt, sizeof(md->md_salt)); p += sizeof(md->md_salt);
bcopy(p, md->md_mkeys, sizeof(md->md_mkeys)); p += sizeof(md->md_mkeys);
MD5Init(&ctx);
MD5Update(&ctx, data, p - data);
MD5Final(md->md_hash, &ctx);
if (bcmp(md->md_hash, p, 16) != 0)
return (EINVAL);
return (0);
}
static __inline int
eli_metadata_decode_v1v2v3v4v5v6(const u_char *data, struct g_eli_metadata *md)
{
MD5_CTX ctx;
const u_char *p;
p = data + sizeof(md->md_magic) + sizeof(md->md_version);
md->md_flags = le32dec(p); p += sizeof(md->md_flags);
md->md_ealgo = le16dec(p); p += sizeof(md->md_ealgo);
md->md_keylen = le16dec(p); p += sizeof(md->md_keylen);
md->md_aalgo = le16dec(p); p += sizeof(md->md_aalgo);
md->md_provsize = le64dec(p); p += sizeof(md->md_provsize);
md->md_sectorsize = le32dec(p); p += sizeof(md->md_sectorsize);
md->md_keys = *p; p += sizeof(md->md_keys);
md->md_iterations = le32dec(p); p += sizeof(md->md_iterations);
bcopy(p, md->md_salt, sizeof(md->md_salt)); p += sizeof(md->md_salt);
bcopy(p, md->md_mkeys, sizeof(md->md_mkeys)); p += sizeof(md->md_mkeys);
MD5Init(&ctx);
MD5Update(&ctx, data, p - data);
MD5Final(md->md_hash, &ctx);
if (bcmp(md->md_hash, p, 16) != 0)
return (EINVAL);
return (0);
}
static __inline int
eli_metadata_decode(const u_char *data, struct g_eli_metadata *md)
{
int error;
bcopy(data, md->md_magic, sizeof(md->md_magic));
if (strcmp(md->md_magic, G_ELI_MAGIC) != 0)
return (EINVAL);
md->md_version = le32dec(data + sizeof(md->md_magic));
switch (md->md_version) {
case G_ELI_VERSION_00:
error = eli_metadata_decode_v0(data, md);
break;
case G_ELI_VERSION_01:
case G_ELI_VERSION_02:
case G_ELI_VERSION_03:
case G_ELI_VERSION_04:
case G_ELI_VERSION_05:
case G_ELI_VERSION_06:
error = eli_metadata_decode_v1v2v3v4v5v6(data, md);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
#endif /* !_OpenSSL */
static __inline u_int
g_eli_str2ealgo(const char *name)
{
if (strcasecmp("null", name) == 0)
return (CRYPTO_NULL_CBC);
else if (strcasecmp("null-cbc", name) == 0)
return (CRYPTO_NULL_CBC);
else if (strcasecmp("aes", name) == 0)
return (CRYPTO_AES_XTS);
else if (strcasecmp("aes-cbc", name) == 0)
return (CRYPTO_AES_CBC);
else if (strcasecmp("aes-xts", name) == 0)
return (CRYPTO_AES_XTS);
else if (strcasecmp("blowfish", name) == 0)
return (CRYPTO_BLF_CBC);
else if (strcasecmp("blowfish-cbc", name) == 0)
return (CRYPTO_BLF_CBC);
else if (strcasecmp("camellia", name) == 0)
return (CRYPTO_CAMELLIA_CBC);
else if (strcasecmp("camellia-cbc", name) == 0)
return (CRYPTO_CAMELLIA_CBC);
else if (strcasecmp("3des", name) == 0)
return (CRYPTO_3DES_CBC);
else if (strcasecmp("3des-cbc", name) == 0)
return (CRYPTO_3DES_CBC);
return (CRYPTO_ALGORITHM_MIN - 1);
}
static __inline u_int
g_eli_str2aalgo(const char *name)
{
if (strcasecmp("hmac/md5", name) == 0)
return (CRYPTO_MD5_HMAC);
else if (strcasecmp("hmac/sha1", name) == 0)
return (CRYPTO_SHA1_HMAC);
else if (strcasecmp("hmac/ripemd160", name) == 0)
return (CRYPTO_RIPEMD160_HMAC);
else if (strcasecmp("hmac/sha256", name) == 0)
return (CRYPTO_SHA2_256_HMAC);
else if (strcasecmp("hmac/sha384", name) == 0)
return (CRYPTO_SHA2_384_HMAC);
else if (strcasecmp("hmac/sha512", name) == 0)
return (CRYPTO_SHA2_512_HMAC);
return (CRYPTO_ALGORITHM_MIN - 1);
}
static __inline const char *
g_eli_algo2str(u_int algo)
{
switch (algo) {
case CRYPTO_NULL_CBC:
return ("NULL");
case CRYPTO_AES_CBC:
return ("AES-CBC");
case CRYPTO_AES_XTS:
return ("AES-XTS");
case CRYPTO_BLF_CBC:
return ("Blowfish-CBC");
case CRYPTO_CAMELLIA_CBC:
return ("CAMELLIA-CBC");
case CRYPTO_3DES_CBC:
return ("3DES-CBC");
case CRYPTO_MD5_HMAC:
return ("HMAC/MD5");
case CRYPTO_SHA1_HMAC:
return ("HMAC/SHA1");
case CRYPTO_RIPEMD160_HMAC:
return ("HMAC/RIPEMD160");
case CRYPTO_SHA2_256_HMAC:
return ("HMAC/SHA256");
case CRYPTO_SHA2_384_HMAC:
return ("HMAC/SHA384");
case CRYPTO_SHA2_512_HMAC:
return ("HMAC/SHA512");
}
return ("unknown");
}
static __inline void
eli_metadata_dump(const struct g_eli_metadata *md)
{
static const char hex[] = "0123456789abcdef";
char str[sizeof(md->md_mkeys) * 2 + 1];
u_int i;
printf(" magic: %s\n", md->md_magic);
printf(" version: %u\n", (u_int)md->md_version);
printf(" flags: 0x%x\n", (u_int)md->md_flags);
printf(" ealgo: %s\n", g_eli_algo2str(md->md_ealgo));
printf(" keylen: %u\n", (u_int)md->md_keylen);
if (md->md_flags & G_ELI_FLAG_AUTH)
printf(" aalgo: %s\n", g_eli_algo2str(md->md_aalgo));
printf(" provsize: %ju\n", (uintmax_t)md->md_provsize);
printf("sectorsize: %u\n", (u_int)md->md_sectorsize);
printf(" keys: 0x%02x\n", (u_int)md->md_keys);
printf("iterations: %u\n", (u_int)md->md_iterations);
bzero(str, sizeof(str));
for (i = 0; i < sizeof(md->md_salt); i++) {
str[i * 2] = hex[md->md_salt[i] >> 4];
str[i * 2 + 1] = hex[md->md_salt[i] & 0x0f];
}
printf(" Salt: %s\n", str);
bzero(str, sizeof(str));
for (i = 0; i < sizeof(md->md_mkeys); i++) {
str[i * 2] = hex[md->md_mkeys[i] >> 4];
str[i * 2 + 1] = hex[md->md_mkeys[i] & 0x0f];
}
printf("Master Key: %s\n", str);
bzero(str, sizeof(str));
for (i = 0; i < 16; i++) {
str[i * 2] = hex[md->md_hash[i] >> 4];
str[i * 2 + 1] = hex[md->md_hash[i] & 0x0f];
}
printf(" MD5 hash: %s\n", str);
}
static __inline u_int
g_eli_keylen(u_int algo, u_int keylen)
{
switch (algo) {
case CRYPTO_NULL_CBC:
if (keylen == 0)
keylen = 64 * 8;
else {
if (keylen > 64 * 8)
keylen = 0;
}
return (keylen);
case CRYPTO_AES_CBC:
case CRYPTO_CAMELLIA_CBC:
switch (keylen) {
case 0:
return (128);
case 128:
case 192:
case 256:
return (keylen);
default:
return (0);
}
case CRYPTO_AES_XTS:
switch (keylen) {
case 0:
return (128);
case 128:
case 256:
return (keylen);
default:
return (0);
}
case CRYPTO_BLF_CBC:
if (keylen == 0)
return (128);
if (keylen < 128 || keylen > 448)
return (0);
if ((keylen % 32) != 0)
return (0);
return (keylen);
case CRYPTO_3DES_CBC:
if (keylen == 0 || keylen == 192)
return (192);
return (0);
default:
return (0);
}
}
static __inline u_int
g_eli_hashlen(u_int algo)
{
switch (algo) {
case CRYPTO_MD5_HMAC:
return (16);
case CRYPTO_SHA1_HMAC:
return (20);
case CRYPTO_RIPEMD160_HMAC:
return (20);
case CRYPTO_SHA2_256_HMAC:
return (32);
case CRYPTO_SHA2_384_HMAC:
return (48);
case CRYPTO_SHA2_512_HMAC:
return (64);
}
return (0);
}
#ifdef _KERNEL
int g_eli_read_metadata(struct g_class *mp, struct g_provider *pp,
struct g_eli_metadata *md);
struct g_geom *g_eli_create(struct gctl_req *req, struct g_class *mp,
struct g_provider *bpp, const struct g_eli_metadata *md,
const u_char *mkey, int nkey);
int g_eli_destroy(struct g_eli_softc *sc, boolean_t force);
int g_eli_access(struct g_provider *pp, int dr, int dw, int de);
void g_eli_config(struct gctl_req *req, struct g_class *mp, const char *verb);
void g_eli_read_done(struct bio *bp);
void g_eli_write_done(struct bio *bp);
int g_eli_crypto_rerun(struct cryptop *crp);
void g_eli_crypto_ivgen(struct g_eli_softc *sc, off_t offset, u_char *iv,
size_t size);
void g_eli_crypto_read(struct g_eli_softc *sc, struct bio *bp, boolean_t fromworker);
void g_eli_crypto_run(struct g_eli_worker *wr, struct bio *bp);
void g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp);
void g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp);
#endif
void g_eli_mkey_hmac(unsigned char *mkey, const unsigned char *key);
int g_eli_mkey_decrypt(const struct g_eli_metadata *md,
const unsigned char *key, unsigned char *mkey, unsigned *nkeyp);
int g_eli_mkey_encrypt(unsigned algo, const unsigned char *key, unsigned keylen,
unsigned char *mkey);
#ifdef _KERNEL
void g_eli_mkey_propagate(struct g_eli_softc *sc, const unsigned char *mkey);
#endif
int g_eli_crypto_encrypt(u_int algo, u_char *data, size_t datasize,
const u_char *key, size_t keysize);
int g_eli_crypto_decrypt(u_int algo, u_char *data, size_t datasize,
const u_char *key, size_t keysize);
struct hmac_ctx {
SHA512_CTX shactx;
u_char k_opad[128];
};
void g_eli_crypto_hmac_init(struct hmac_ctx *ctx, const uint8_t *hkey,
size_t hkeylen);
void g_eli_crypto_hmac_update(struct hmac_ctx *ctx, const uint8_t *data,
size_t datasize);
void g_eli_crypto_hmac_final(struct hmac_ctx *ctx, uint8_t *md, size_t mdsize);
void g_eli_crypto_hmac(const uint8_t *hkey, size_t hkeysize,
const uint8_t *data, size_t datasize, uint8_t *md, size_t mdsize);
#ifdef _KERNEL
void g_eli_key_init(struct g_eli_softc *sc);
void g_eli_key_destroy(struct g_eli_softc *sc);
uint8_t *g_eli_key_hold(struct g_eli_softc *sc, off_t offset, size_t blocksize);
void g_eli_key_drop(struct g_eli_softc *sc, uint8_t *rawkey);
#endif
#endif /* !_G_ELI_H_ */