freebsd-skq/sys/dev/ioat/ioat.c
Conrad Meyer 1502e36346 ioat(4): Add ioat_acquire_reserve() KPI
ioat_acquire_reserve() is an extended version of ioat_acquire().  It
allows users to reserve space in the channel for some number of
descriptors.  If this succeeds, it guarantees that at least submission
of N valid descriptors will succeed.

Sponsored by:	EMC / Isilon Storage Division
2016-01-07 23:02:15 +00:00

1872 lines
46 KiB
C

/*-
* Copyright (C) 2012 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#include "ioat.h"
#include "ioat_hw.h"
#include "ioat_internal.h"
#define IOAT_INTR_TIMO (hz / 10)
#define IOAT_REFLK (&ioat->submit_lock)
static int ioat_probe(device_t device);
static int ioat_attach(device_t device);
static int ioat_detach(device_t device);
static int ioat_setup_intr(struct ioat_softc *ioat);
static int ioat_teardown_intr(struct ioat_softc *ioat);
static int ioat3_attach(device_t device);
static int ioat_start_channel(struct ioat_softc *ioat);
static int ioat_map_pci_bar(struct ioat_softc *ioat);
static void ioat_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg,
int error);
static void ioat_interrupt_handler(void *arg);
static boolean_t ioat_model_resets_msix(struct ioat_softc *ioat);
static int chanerr_to_errno(uint32_t);
static void ioat_process_events(struct ioat_softc *ioat);
static inline uint32_t ioat_get_active(struct ioat_softc *ioat);
static inline uint32_t ioat_get_ring_space(struct ioat_softc *ioat);
static void ioat_free_ring(struct ioat_softc *, uint32_t size,
struct ioat_descriptor **);
static void ioat_free_ring_entry(struct ioat_softc *ioat,
struct ioat_descriptor *desc);
static struct ioat_descriptor *ioat_alloc_ring_entry(struct ioat_softc *,
int mflags);
static int ioat_reserve_space(struct ioat_softc *, uint32_t, int mflags);
static struct ioat_descriptor *ioat_get_ring_entry(struct ioat_softc *ioat,
uint32_t index);
static struct ioat_descriptor **ioat_prealloc_ring(struct ioat_softc *,
uint32_t size, boolean_t need_dscr, int mflags);
static int ring_grow(struct ioat_softc *, uint32_t oldorder,
struct ioat_descriptor **);
static int ring_shrink(struct ioat_softc *, uint32_t oldorder,
struct ioat_descriptor **);
static void ioat_halted_debug(struct ioat_softc *, uint32_t);
static void ioat_timer_callback(void *arg);
static void dump_descriptor(void *hw_desc);
static void ioat_submit_single(struct ioat_softc *ioat);
static void ioat_comp_update_map(void *arg, bus_dma_segment_t *seg, int nseg,
int error);
static int ioat_reset_hw(struct ioat_softc *ioat);
static void ioat_setup_sysctl(device_t device);
static int sysctl_handle_reset(SYSCTL_HANDLER_ARGS);
static inline struct ioat_softc *ioat_get(struct ioat_softc *,
enum ioat_ref_kind);
static inline void ioat_put(struct ioat_softc *, enum ioat_ref_kind);
static inline void _ioat_putn(struct ioat_softc *, uint32_t,
enum ioat_ref_kind, boolean_t);
static inline void ioat_putn(struct ioat_softc *, uint32_t,
enum ioat_ref_kind);
static inline void ioat_putn_locked(struct ioat_softc *, uint32_t,
enum ioat_ref_kind);
static void ioat_drain_locked(struct ioat_softc *);
#define ioat_log_message(v, ...) do { \
if ((v) <= g_ioat_debug_level) { \
device_printf(ioat->device, __VA_ARGS__); \
} \
} while (0)
MALLOC_DEFINE(M_IOAT, "ioat", "ioat driver memory allocations");
SYSCTL_NODE(_hw, OID_AUTO, ioat, CTLFLAG_RD, 0, "ioat node");
static int g_force_legacy_interrupts;
SYSCTL_INT(_hw_ioat, OID_AUTO, force_legacy_interrupts, CTLFLAG_RDTUN,
&g_force_legacy_interrupts, 0, "Set to non-zero to force MSI-X disabled");
int g_ioat_debug_level = 0;
SYSCTL_INT(_hw_ioat, OID_AUTO, debug_level, CTLFLAG_RWTUN, &g_ioat_debug_level,
0, "Set log level (0-3) for ioat(4). Higher is more verbose.");
/*
* OS <-> Driver interface structures
*/
static device_method_t ioat_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ioat_probe),
DEVMETHOD(device_attach, ioat_attach),
DEVMETHOD(device_detach, ioat_detach),
{ 0, 0 }
};
static driver_t ioat_pci_driver = {
"ioat",
ioat_pci_methods,
sizeof(struct ioat_softc),
};
static devclass_t ioat_devclass;
DRIVER_MODULE(ioat, pci, ioat_pci_driver, ioat_devclass, 0, 0);
MODULE_VERSION(ioat, 1);
/*
* Private data structures
*/
static struct ioat_softc *ioat_channel[IOAT_MAX_CHANNELS];
static int ioat_channel_index = 0;
SYSCTL_INT(_hw_ioat, OID_AUTO, channels, CTLFLAG_RD, &ioat_channel_index, 0,
"Number of IOAT channels attached");
static struct _pcsid
{
u_int32_t type;
const char *desc;
} pci_ids[] = {
{ 0x34308086, "TBG IOAT Ch0" },
{ 0x34318086, "TBG IOAT Ch1" },
{ 0x34328086, "TBG IOAT Ch2" },
{ 0x34338086, "TBG IOAT Ch3" },
{ 0x34298086, "TBG IOAT Ch4" },
{ 0x342a8086, "TBG IOAT Ch5" },
{ 0x342b8086, "TBG IOAT Ch6" },
{ 0x342c8086, "TBG IOAT Ch7" },
{ 0x37108086, "JSF IOAT Ch0" },
{ 0x37118086, "JSF IOAT Ch1" },
{ 0x37128086, "JSF IOAT Ch2" },
{ 0x37138086, "JSF IOAT Ch3" },
{ 0x37148086, "JSF IOAT Ch4" },
{ 0x37158086, "JSF IOAT Ch5" },
{ 0x37168086, "JSF IOAT Ch6" },
{ 0x37178086, "JSF IOAT Ch7" },
{ 0x37188086, "JSF IOAT Ch0 (RAID)" },
{ 0x37198086, "JSF IOAT Ch1 (RAID)" },
{ 0x3c208086, "SNB IOAT Ch0" },
{ 0x3c218086, "SNB IOAT Ch1" },
{ 0x3c228086, "SNB IOAT Ch2" },
{ 0x3c238086, "SNB IOAT Ch3" },
{ 0x3c248086, "SNB IOAT Ch4" },
{ 0x3c258086, "SNB IOAT Ch5" },
{ 0x3c268086, "SNB IOAT Ch6" },
{ 0x3c278086, "SNB IOAT Ch7" },
{ 0x3c2e8086, "SNB IOAT Ch0 (RAID)" },
{ 0x3c2f8086, "SNB IOAT Ch1 (RAID)" },
{ 0x0e208086, "IVB IOAT Ch0" },
{ 0x0e218086, "IVB IOAT Ch1" },
{ 0x0e228086, "IVB IOAT Ch2" },
{ 0x0e238086, "IVB IOAT Ch3" },
{ 0x0e248086, "IVB IOAT Ch4" },
{ 0x0e258086, "IVB IOAT Ch5" },
{ 0x0e268086, "IVB IOAT Ch6" },
{ 0x0e278086, "IVB IOAT Ch7" },
{ 0x0e2e8086, "IVB IOAT Ch0 (RAID)" },
{ 0x0e2f8086, "IVB IOAT Ch1 (RAID)" },
{ 0x2f208086, "HSW IOAT Ch0" },
{ 0x2f218086, "HSW IOAT Ch1" },
{ 0x2f228086, "HSW IOAT Ch2" },
{ 0x2f238086, "HSW IOAT Ch3" },
{ 0x2f248086, "HSW IOAT Ch4" },
{ 0x2f258086, "HSW IOAT Ch5" },
{ 0x2f268086, "HSW IOAT Ch6" },
{ 0x2f278086, "HSW IOAT Ch7" },
{ 0x2f2e8086, "HSW IOAT Ch0 (RAID)" },
{ 0x2f2f8086, "HSW IOAT Ch1 (RAID)" },
{ 0x0c508086, "BWD IOAT Ch0" },
{ 0x0c518086, "BWD IOAT Ch1" },
{ 0x0c528086, "BWD IOAT Ch2" },
{ 0x0c538086, "BWD IOAT Ch3" },
{ 0x6f508086, "BDXDE IOAT Ch0" },
{ 0x6f518086, "BDXDE IOAT Ch1" },
{ 0x6f528086, "BDXDE IOAT Ch2" },
{ 0x6f538086, "BDXDE IOAT Ch3" },
{ 0x6f208086, "BDX IOAT Ch0" },
{ 0x6f218086, "BDX IOAT Ch1" },
{ 0x6f228086, "BDX IOAT Ch2" },
{ 0x6f238086, "BDX IOAT Ch3" },
{ 0x6f248086, "BDX IOAT Ch4" },
{ 0x6f258086, "BDX IOAT Ch5" },
{ 0x6f268086, "BDX IOAT Ch6" },
{ 0x6f278086, "BDX IOAT Ch7" },
{ 0x6f2e8086, "BDX IOAT Ch0 (RAID)" },
{ 0x6f2f8086, "BDX IOAT Ch1 (RAID)" },
{ 0x00000000, NULL }
};
/*
* OS <-> Driver linkage functions
*/
static int
ioat_probe(device_t device)
{
struct _pcsid *ep;
u_int32_t type;
type = pci_get_devid(device);
for (ep = pci_ids; ep->type; ep++) {
if (ep->type == type) {
device_set_desc(device, ep->desc);
return (0);
}
}
return (ENXIO);
}
static int
ioat_attach(device_t device)
{
struct ioat_softc *ioat;
int error;
ioat = DEVICE2SOFTC(device);
ioat->device = device;
error = ioat_map_pci_bar(ioat);
if (error != 0)
goto err;
ioat->version = ioat_read_cbver(ioat);
if (ioat->version < IOAT_VER_3_0) {
error = ENODEV;
goto err;
}
error = ioat3_attach(device);
if (error != 0)
goto err;
error = pci_enable_busmaster(device);
if (error != 0)
goto err;
error = ioat_setup_intr(ioat);
if (error != 0)
goto err;
error = ioat_reset_hw(ioat);
if (error != 0)
goto err;
ioat_process_events(ioat);
ioat_setup_sysctl(device);
ioat->chan_idx = ioat_channel_index;
ioat_channel[ioat_channel_index++] = ioat;
ioat_test_attach();
err:
if (error != 0)
ioat_detach(device);
return (error);
}
static int
ioat_detach(device_t device)
{
struct ioat_softc *ioat;
ioat = DEVICE2SOFTC(device);
ioat_test_detach();
mtx_lock(IOAT_REFLK);
ioat->quiescing = TRUE;
ioat_channel[ioat->chan_idx] = NULL;
ioat_drain_locked(ioat);
mtx_unlock(IOAT_REFLK);
ioat_teardown_intr(ioat);
callout_drain(&ioat->timer);
pci_disable_busmaster(device);
if (ioat->pci_resource != NULL)
bus_release_resource(device, SYS_RES_MEMORY,
ioat->pci_resource_id, ioat->pci_resource);
if (ioat->ring != NULL)
ioat_free_ring(ioat, 1 << ioat->ring_size_order, ioat->ring);
if (ioat->comp_update != NULL) {
bus_dmamap_unload(ioat->comp_update_tag, ioat->comp_update_map);
bus_dmamem_free(ioat->comp_update_tag, ioat->comp_update,
ioat->comp_update_map);
bus_dma_tag_destroy(ioat->comp_update_tag);
}
bus_dma_tag_destroy(ioat->hw_desc_tag);
return (0);
}
static int
ioat_teardown_intr(struct ioat_softc *ioat)
{
if (ioat->tag != NULL)
bus_teardown_intr(ioat->device, ioat->res, ioat->tag);
if (ioat->res != NULL)
bus_release_resource(ioat->device, SYS_RES_IRQ,
rman_get_rid(ioat->res), ioat->res);
pci_release_msi(ioat->device);
return (0);
}
static int
ioat_start_channel(struct ioat_softc *ioat)
{
uint64_t status;
uint32_t chanerr;
int i;
ioat_acquire(&ioat->dmaengine);
ioat_null(&ioat->dmaengine, NULL, NULL, 0);
ioat_release(&ioat->dmaengine);
for (i = 0; i < 100; i++) {
DELAY(1);
status = ioat_get_chansts(ioat);
if (is_ioat_idle(status))
return (0);
}
chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET);
ioat_log_message(0, "could not start channel: "
"status = %#jx error = %b\n", (uintmax_t)status, (int)chanerr,
IOAT_CHANERR_STR);
return (ENXIO);
}
/*
* Initialize Hardware
*/
static int
ioat3_attach(device_t device)
{
struct ioat_softc *ioat;
struct ioat_descriptor **ring;
struct ioat_descriptor *next;
struct ioat_dma_hw_descriptor *dma_hw_desc;
int i, num_descriptors;
int error;
uint8_t xfercap;
error = 0;
ioat = DEVICE2SOFTC(device);
ioat->capabilities = ioat_read_dmacapability(ioat);
ioat_log_message(1, "Capabilities: %b\n", (int)ioat->capabilities,
IOAT_DMACAP_STR);
xfercap = ioat_read_xfercap(ioat);
ioat->max_xfer_size = 1 << xfercap;
ioat->intrdelay_supported = (ioat_read_2(ioat, IOAT_INTRDELAY_OFFSET) &
IOAT_INTRDELAY_SUPPORTED) != 0;
if (ioat->intrdelay_supported)
ioat->intrdelay_max = IOAT_INTRDELAY_US_MASK;
/* TODO: need to check DCA here if we ever do XOR/PQ */
mtx_init(&ioat->submit_lock, "ioat_submit", NULL, MTX_DEF);
mtx_init(&ioat->cleanup_lock, "ioat_cleanup", NULL, MTX_DEF);
callout_init(&ioat->timer, 1);
/* Establish lock order for Witness */
mtx_lock(&ioat->submit_lock);
mtx_lock(&ioat->cleanup_lock);
mtx_unlock(&ioat->cleanup_lock);
mtx_unlock(&ioat->submit_lock);
ioat->is_resize_pending = FALSE;
ioat->is_completion_pending = FALSE;
ioat->is_reset_pending = FALSE;
ioat->is_channel_running = FALSE;
bus_dma_tag_create(bus_get_dma_tag(ioat->device), sizeof(uint64_t), 0x0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(uint64_t), 1, sizeof(uint64_t), 0, NULL, NULL,
&ioat->comp_update_tag);
error = bus_dmamem_alloc(ioat->comp_update_tag,
(void **)&ioat->comp_update, BUS_DMA_ZERO, &ioat->comp_update_map);
if (ioat->comp_update == NULL)
return (ENOMEM);
error = bus_dmamap_load(ioat->comp_update_tag, ioat->comp_update_map,
ioat->comp_update, sizeof(uint64_t), ioat_comp_update_map, ioat,
0);
if (error != 0)
return (error);
ioat->ring_size_order = IOAT_MIN_ORDER;
num_descriptors = 1 << ioat->ring_size_order;
bus_dma_tag_create(bus_get_dma_tag(ioat->device), 0x40, 0x0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct ioat_dma_hw_descriptor), 1,
sizeof(struct ioat_dma_hw_descriptor), 0, NULL, NULL,
&ioat->hw_desc_tag);
ioat->ring = malloc(num_descriptors * sizeof(*ring), M_IOAT,
M_ZERO | M_WAITOK);
if (ioat->ring == NULL)
return (ENOMEM);
ring = ioat->ring;
for (i = 0; i < num_descriptors; i++) {
ring[i] = ioat_alloc_ring_entry(ioat, M_WAITOK);
if (ring[i] == NULL)
return (ENOMEM);
ring[i]->id = i;
}
for (i = 0; i < num_descriptors - 1; i++) {
next = ring[i + 1];
dma_hw_desc = ring[i]->u.dma;
dma_hw_desc->next = next->hw_desc_bus_addr;
}
ring[i]->u.dma->next = ring[0]->hw_desc_bus_addr;
ioat->head = ioat->hw_head = 0;
ioat->tail = 0;
ioat->last_seen = 0;
return (0);
}
static int
ioat_map_pci_bar(struct ioat_softc *ioat)
{
ioat->pci_resource_id = PCIR_BAR(0);
ioat->pci_resource = bus_alloc_resource_any(ioat->device,
SYS_RES_MEMORY, &ioat->pci_resource_id, RF_ACTIVE);
if (ioat->pci_resource == NULL) {
ioat_log_message(0, "unable to allocate pci resource\n");
return (ENODEV);
}
ioat->pci_bus_tag = rman_get_bustag(ioat->pci_resource);
ioat->pci_bus_handle = rman_get_bushandle(ioat->pci_resource);
return (0);
}
static void
ioat_comp_update_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
struct ioat_softc *ioat = arg;
KASSERT(error == 0, ("%s: error:%d", __func__, error));
ioat->comp_update_bus_addr = seg[0].ds_addr;
}
static void
ioat_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *baddr;
KASSERT(error == 0, ("%s: error:%d", __func__, error));
baddr = arg;
*baddr = segs->ds_addr;
}
/*
* Interrupt setup and handlers
*/
static int
ioat_setup_intr(struct ioat_softc *ioat)
{
uint32_t num_vectors;
int error;
boolean_t use_msix;
boolean_t force_legacy_interrupts;
use_msix = FALSE;
force_legacy_interrupts = FALSE;
if (!g_force_legacy_interrupts && pci_msix_count(ioat->device) >= 1) {
num_vectors = 1;
pci_alloc_msix(ioat->device, &num_vectors);
if (num_vectors == 1)
use_msix = TRUE;
}
if (use_msix) {
ioat->rid = 1;
ioat->res = bus_alloc_resource_any(ioat->device, SYS_RES_IRQ,
&ioat->rid, RF_ACTIVE);
} else {
ioat->rid = 0;
ioat->res = bus_alloc_resource_any(ioat->device, SYS_RES_IRQ,
&ioat->rid, RF_SHAREABLE | RF_ACTIVE);
}
if (ioat->res == NULL) {
ioat_log_message(0, "bus_alloc_resource failed\n");
return (ENOMEM);
}
ioat->tag = NULL;
error = bus_setup_intr(ioat->device, ioat->res, INTR_MPSAFE |
INTR_TYPE_MISC, NULL, ioat_interrupt_handler, ioat, &ioat->tag);
if (error != 0) {
ioat_log_message(0, "bus_setup_intr failed\n");
return (error);
}
ioat_write_intrctrl(ioat, IOAT_INTRCTRL_MASTER_INT_EN);
return (0);
}
static boolean_t
ioat_model_resets_msix(struct ioat_softc *ioat)
{
u_int32_t pciid;
pciid = pci_get_devid(ioat->device);
switch (pciid) {
/* BWD: */
case 0x0c508086:
case 0x0c518086:
case 0x0c528086:
case 0x0c538086:
/* BDXDE: */
case 0x6f508086:
case 0x6f518086:
case 0x6f528086:
case 0x6f538086:
return (TRUE);
}
return (FALSE);
}
static void
ioat_interrupt_handler(void *arg)
{
struct ioat_softc *ioat = arg;
ioat->stats.interrupts++;
ioat_process_events(ioat);
}
static int
chanerr_to_errno(uint32_t chanerr)
{
if (chanerr == 0)
return (0);
if ((chanerr & (IOAT_CHANERR_XSADDERR | IOAT_CHANERR_XDADDERR)) != 0)
return (EFAULT);
if ((chanerr & (IOAT_CHANERR_RDERR | IOAT_CHANERR_WDERR)) != 0)
return (EIO);
/* This one is probably our fault: */
if ((chanerr & IOAT_CHANERR_NDADDERR) != 0)
return (EIO);
return (EIO);
}
static void
ioat_process_events(struct ioat_softc *ioat)
{
struct ioat_descriptor *desc;
struct bus_dmadesc *dmadesc;
uint64_t comp_update, status;
uint32_t completed, chanerr;
int error;
mtx_lock(&ioat->cleanup_lock);
completed = 0;
comp_update = *ioat->comp_update;
status = comp_update & IOAT_CHANSTS_COMPLETED_DESCRIPTOR_MASK;
CTR0(KTR_IOAT, __func__);
if (status == ioat->last_seen)
goto out;
while (1) {
desc = ioat_get_ring_entry(ioat, ioat->tail);
dmadesc = &desc->bus_dmadesc;
CTR1(KTR_IOAT, "completing desc %d", ioat->tail);
if (dmadesc->callback_fn != NULL)
dmadesc->callback_fn(dmadesc->callback_arg, 0);
completed++;
ioat->tail++;
if (desc->hw_desc_bus_addr == status)
break;
}
ioat->last_seen = desc->hw_desc_bus_addr;
if (ioat->head == ioat->tail) {
ioat->is_completion_pending = FALSE;
callout_reset(&ioat->timer, IOAT_INTR_TIMO,
ioat_timer_callback, ioat);
}
ioat->stats.descriptors_processed += completed;
out:
ioat_write_chanctrl(ioat, IOAT_CHANCTRL_RUN);
mtx_unlock(&ioat->cleanup_lock);
ioat_putn(ioat, completed, IOAT_ACTIVE_DESCR_REF);
wakeup(&ioat->tail);
if (!is_ioat_halted(comp_update))
return;
ioat->stats.channel_halts++;
/*
* Fatal programming error on this DMA channel. Flush any outstanding
* work with error status and restart the engine.
*/
ioat_log_message(0, "Channel halted due to fatal programming error\n");
mtx_lock(&ioat->submit_lock);
mtx_lock(&ioat->cleanup_lock);
ioat->quiescing = TRUE;
chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET);
ioat_halted_debug(ioat, chanerr);
ioat->stats.last_halt_chanerr = chanerr;
while (ioat_get_active(ioat) > 0) {
desc = ioat_get_ring_entry(ioat, ioat->tail);
dmadesc = &desc->bus_dmadesc;
CTR1(KTR_IOAT, "completing err desc %d", ioat->tail);
if (dmadesc->callback_fn != NULL)
dmadesc->callback_fn(dmadesc->callback_arg,
chanerr_to_errno(chanerr));
ioat_putn_locked(ioat, 1, IOAT_ACTIVE_DESCR_REF);
ioat->tail++;
ioat->stats.descriptors_processed++;
ioat->stats.descriptors_error++;
}
/* Clear error status */
ioat_write_4(ioat, IOAT_CHANERR_OFFSET, chanerr);
mtx_unlock(&ioat->cleanup_lock);
mtx_unlock(&ioat->submit_lock);
ioat_log_message(0, "Resetting channel to recover from error\n");
error = ioat_reset_hw(ioat);
KASSERT(error == 0, ("%s: reset failed: %d", __func__, error));
}
/*
* User API functions
*/
bus_dmaengine_t
ioat_get_dmaengine(uint32_t index)
{
struct ioat_softc *sc;
if (index >= ioat_channel_index)
return (NULL);
sc = ioat_channel[index];
if (sc == NULL || sc->quiescing)
return (NULL);
return (&ioat_get(sc, IOAT_DMAENGINE_REF)->dmaengine);
}
void
ioat_put_dmaengine(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
ioat_put(ioat, IOAT_DMAENGINE_REF);
}
int
ioat_get_hwversion(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
return (ioat->version);
}
size_t
ioat_get_max_io_size(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
return (ioat->max_xfer_size);
}
int
ioat_set_interrupt_coalesce(bus_dmaengine_t dmaengine, uint16_t delay)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
if (!ioat->intrdelay_supported)
return (ENODEV);
if (delay > ioat->intrdelay_max)
return (ERANGE);
ioat_write_2(ioat, IOAT_INTRDELAY_OFFSET, delay);
ioat->cached_intrdelay =
ioat_read_2(ioat, IOAT_INTRDELAY_OFFSET) & IOAT_INTRDELAY_US_MASK;
return (0);
}
uint16_t
ioat_get_max_coalesce_period(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
return (ioat->intrdelay_max);
}
void
ioat_acquire(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
mtx_lock(&ioat->submit_lock);
CTR0(KTR_IOAT, __func__);
}
int
ioat_acquire_reserve(bus_dmaengine_t dmaengine, unsigned n, int mflags)
{
struct ioat_softc *ioat;
int error;
ioat = to_ioat_softc(dmaengine);
ioat_acquire(dmaengine);
error = ioat_reserve_space(ioat, n, mflags);
if (error != 0)
ioat_release(dmaengine);
return (error);
}
void
ioat_release(bus_dmaengine_t dmaengine)
{
struct ioat_softc *ioat;
ioat = to_ioat_softc(dmaengine);
CTR0(KTR_IOAT, __func__);
ioat_write_2(ioat, IOAT_DMACOUNT_OFFSET, (uint16_t)ioat->hw_head);
mtx_unlock(&ioat->submit_lock);
}
static struct ioat_descriptor *
ioat_op_generic(struct ioat_softc *ioat, uint8_t op,
uint32_t size, uint64_t src, uint64_t dst,
bus_dmaengine_callback_t callback_fn, void *callback_arg,
uint32_t flags)
{
struct ioat_generic_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
int mflags;
mtx_assert(&ioat->submit_lock, MA_OWNED);
KASSERT((flags & ~DMA_ALL_FLAGS) == 0, ("Unrecognized flag(s): %#x",
flags & ~DMA_ALL_FLAGS));
if ((flags & DMA_NO_WAIT) != 0)
mflags = M_NOWAIT;
else
mflags = M_WAITOK;
if (size > ioat->max_xfer_size) {
ioat_log_message(0, "%s: max_xfer_size = %d, requested = %u\n",
__func__, ioat->max_xfer_size, (unsigned)size);
return (NULL);
}
if (ioat_reserve_space(ioat, 1, mflags) != 0)
return (NULL);
desc = ioat_get_ring_entry(ioat, ioat->head);
hw_desc = desc->u.generic;
hw_desc->u.control_raw = 0;
hw_desc->u.control_generic.op = op;
hw_desc->u.control_generic.completion_update = 1;
if ((flags & DMA_INT_EN) != 0)
hw_desc->u.control_generic.int_enable = 1;
hw_desc->size = size;
hw_desc->src_addr = src;
hw_desc->dest_addr = dst;
desc->bus_dmadesc.callback_fn = callback_fn;
desc->bus_dmadesc.callback_arg = callback_arg;
return (desc);
}
struct bus_dmadesc *
ioat_null(bus_dmaengine_t dmaengine, bus_dmaengine_callback_t callback_fn,
void *callback_arg, uint32_t flags)
{
struct ioat_dma_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
CTR0(KTR_IOAT, __func__);
ioat = to_ioat_softc(dmaengine);
desc = ioat_op_generic(ioat, IOAT_OP_COPY, 8, 0, 0, callback_fn,
callback_arg, flags);
if (desc == NULL)
return (NULL);
hw_desc = desc->u.dma;
hw_desc->u.control.null = 1;
ioat_submit_single(ioat);
return (&desc->bus_dmadesc);
}
struct bus_dmadesc *
ioat_copy(bus_dmaengine_t dmaengine, bus_addr_t dst,
bus_addr_t src, bus_size_t len, bus_dmaengine_callback_t callback_fn,
void *callback_arg, uint32_t flags)
{
struct ioat_dma_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
CTR0(KTR_IOAT, __func__);
ioat = to_ioat_softc(dmaengine);
if (((src | dst) & (0xffffull << 48)) != 0) {
ioat_log_message(0, "%s: High 16 bits of src/dst invalid\n",
__func__);
return (NULL);
}
desc = ioat_op_generic(ioat, IOAT_OP_COPY, len, src, dst, callback_fn,
callback_arg, flags);
if (desc == NULL)
return (NULL);
hw_desc = desc->u.dma;
if (g_ioat_debug_level >= 3)
dump_descriptor(hw_desc);
ioat_submit_single(ioat);
return (&desc->bus_dmadesc);
}
struct bus_dmadesc *
ioat_copy_8k_aligned(bus_dmaengine_t dmaengine, bus_addr_t dst1,
bus_addr_t dst2, bus_addr_t src1, bus_addr_t src2,
bus_dmaengine_callback_t callback_fn, void *callback_arg, uint32_t flags)
{
struct ioat_dma_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
CTR0(KTR_IOAT, __func__);
ioat = to_ioat_softc(dmaengine);
if (((src1 | src2 | dst1 | dst2) & (0xffffull << 48)) != 0) {
ioat_log_message(0, "%s: High 16 bits of src/dst invalid\n",
__func__);
return (NULL);
}
if (((src1 | src2 | dst1 | dst2) & PAGE_MASK) != 0) {
ioat_log_message(0, "%s: Addresses must be page-aligned\n",
__func__);
return (NULL);
}
desc = ioat_op_generic(ioat, IOAT_OP_COPY, 2 * PAGE_SIZE, src1, dst1,
callback_fn, callback_arg, flags);
if (desc == NULL)
return (NULL);
hw_desc = desc->u.dma;
if (src2 != src1 + PAGE_SIZE) {
hw_desc->u.control.src_page_break = 1;
hw_desc->next_src_addr = src2;
}
if (dst2 != dst1 + PAGE_SIZE) {
hw_desc->u.control.dest_page_break = 1;
hw_desc->next_dest_addr = dst2;
}
if (g_ioat_debug_level >= 3)
dump_descriptor(hw_desc);
ioat_submit_single(ioat);
return (&desc->bus_dmadesc);
}
struct bus_dmadesc *
ioat_blockfill(bus_dmaengine_t dmaengine, bus_addr_t dst, uint64_t fillpattern,
bus_size_t len, bus_dmaengine_callback_t callback_fn, void *callback_arg,
uint32_t flags)
{
struct ioat_fill_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
CTR0(KTR_IOAT, __func__);
ioat = to_ioat_softc(dmaengine);
if ((ioat->capabilities & IOAT_DMACAP_BFILL) == 0) {
ioat_log_message(0, "%s: Device lacks BFILL capability\n",
__func__);
return (NULL);
}
if ((dst & (0xffffull << 48)) != 0) {
ioat_log_message(0, "%s: High 16 bits of dst invalid\n",
__func__);
return (NULL);
}
desc = ioat_op_generic(ioat, IOAT_OP_FILL, len, fillpattern, dst,
callback_fn, callback_arg, flags);
if (desc == NULL)
return (NULL);
hw_desc = desc->u.fill;
if (g_ioat_debug_level >= 3)
dump_descriptor(hw_desc);
ioat_submit_single(ioat);
return (&desc->bus_dmadesc);
}
/*
* Ring Management
*/
static inline uint32_t
ioat_get_active(struct ioat_softc *ioat)
{
return ((ioat->head - ioat->tail) & ((1 << ioat->ring_size_order) - 1));
}
static inline uint32_t
ioat_get_ring_space(struct ioat_softc *ioat)
{
return ((1 << ioat->ring_size_order) - ioat_get_active(ioat) - 1);
}
static struct ioat_descriptor *
ioat_alloc_ring_entry(struct ioat_softc *ioat, int mflags)
{
struct ioat_generic_hw_descriptor *hw_desc;
struct ioat_descriptor *desc;
int error, busdmaflag;
error = ENOMEM;
hw_desc = NULL;
if ((mflags & M_WAITOK) != 0)
busdmaflag = BUS_DMA_WAITOK;
else
busdmaflag = BUS_DMA_NOWAIT;
desc = malloc(sizeof(*desc), M_IOAT, mflags);
if (desc == NULL)
goto out;
bus_dmamem_alloc(ioat->hw_desc_tag, (void **)&hw_desc,
BUS_DMA_ZERO | busdmaflag, &ioat->hw_desc_map);
if (hw_desc == NULL)
goto out;
memset(&desc->bus_dmadesc, 0, sizeof(desc->bus_dmadesc));
desc->u.generic = hw_desc;
error = bus_dmamap_load(ioat->hw_desc_tag, ioat->hw_desc_map, hw_desc,
sizeof(*hw_desc), ioat_dmamap_cb, &desc->hw_desc_bus_addr,
busdmaflag);
if (error)
goto out;
out:
if (error) {
ioat_free_ring_entry(ioat, desc);
return (NULL);
}
return (desc);
}
static void
ioat_free_ring_entry(struct ioat_softc *ioat, struct ioat_descriptor *desc)
{
if (desc == NULL)
return;
if (desc->u.generic)
bus_dmamem_free(ioat->hw_desc_tag, desc->u.generic,
ioat->hw_desc_map);
free(desc, M_IOAT);
}
/*
* Reserves space in this IOAT descriptor ring by ensuring enough slots remain
* for 'num_descs'.
*
* If mflags contains M_WAITOK, blocks until enough space is available.
*
* Returns zero on success, or an errno on error. If num_descs is beyond the
* maximum ring size, returns EINVAl; if allocation would block and mflags
* contains M_NOWAIT, returns EAGAIN.
*
* Must be called with the submit_lock held; returns with the lock held. The
* lock may be dropped to allocate the ring.
*
* (The submit_lock is needed to add any entries to the ring, so callers are
* assured enough room is available.)
*/
static int
ioat_reserve_space(struct ioat_softc *ioat, uint32_t num_descs, int mflags)
{
struct ioat_descriptor **new_ring;
uint32_t order;
int error;
mtx_assert(&ioat->submit_lock, MA_OWNED);
error = 0;
if (num_descs < 1 || num_descs > (1 << IOAT_MAX_ORDER)) {
error = EINVAL;
goto out;
}
if (ioat->quiescing) {
error = ENXIO;
goto out;
}
for (;;) {
if (ioat_get_ring_space(ioat) >= num_descs)
goto out;
order = ioat->ring_size_order;
if (ioat->is_resize_pending || order == IOAT_MAX_ORDER) {
if ((mflags & M_WAITOK) != 0) {
msleep(&ioat->tail, &ioat->submit_lock, 0,
"ioat_rsz", 0);
continue;
}
error = EAGAIN;
break;
}
ioat->is_resize_pending = TRUE;
for (;;) {
mtx_unlock(&ioat->submit_lock);
new_ring = ioat_prealloc_ring(ioat, 1 << (order + 1),
TRUE, mflags);
mtx_lock(&ioat->submit_lock);
KASSERT(ioat->ring_size_order == order,
("is_resize_pending should protect order"));
if (new_ring == NULL) {
KASSERT((mflags & M_WAITOK) == 0,
("allocation failed"));
error = EAGAIN;
break;
}
error = ring_grow(ioat, order, new_ring);
if (error == 0)
break;
}
ioat->is_resize_pending = FALSE;
wakeup(&ioat->tail);
if (error)
break;
}
out:
mtx_assert(&ioat->submit_lock, MA_OWNED);
return (error);
}
static struct ioat_descriptor **
ioat_prealloc_ring(struct ioat_softc *ioat, uint32_t size, boolean_t need_dscr,
int mflags)
{
struct ioat_descriptor **ring;
uint32_t i;
int error;
KASSERT(size > 0 && powerof2(size), ("bogus size"));
ring = malloc(size * sizeof(*ring), M_IOAT, M_ZERO | mflags);
if (ring == NULL)
return (NULL);
if (need_dscr) {
error = ENOMEM;
for (i = size / 2; i < size; i++) {
ring[i] = ioat_alloc_ring_entry(ioat, mflags);
if (ring[i] == NULL)
goto out;
ring[i]->id = i;
}
}
error = 0;
out:
if (error != 0 && ring != NULL) {
ioat_free_ring(ioat, size, ring);
ring = NULL;
}
return (ring);
}
static void
ioat_free_ring(struct ioat_softc *ioat, uint32_t size,
struct ioat_descriptor **ring)
{
uint32_t i;
for (i = 0; i < size; i++) {
if (ring[i] != NULL)
ioat_free_ring_entry(ioat, ring[i]);
}
free(ring, M_IOAT);
}
static struct ioat_descriptor *
ioat_get_ring_entry(struct ioat_softc *ioat, uint32_t index)
{
return (ioat->ring[index % (1 << ioat->ring_size_order)]);
}
static int
ring_grow(struct ioat_softc *ioat, uint32_t oldorder,
struct ioat_descriptor **newring)
{
struct ioat_descriptor *tmp, *next;
struct ioat_dma_hw_descriptor *hw;
uint32_t oldsize, newsize, head, tail, i, end;
int error;
CTR0(KTR_IOAT, __func__);
mtx_assert(&ioat->submit_lock, MA_OWNED);
if (oldorder != ioat->ring_size_order || oldorder >= IOAT_MAX_ORDER) {
error = EINVAL;
goto out;
}
oldsize = (1 << oldorder);
newsize = (1 << (oldorder + 1));
mtx_lock(&ioat->cleanup_lock);
head = ioat->head & (oldsize - 1);
tail = ioat->tail & (oldsize - 1);
/* Copy old descriptors to new ring */
for (i = 0; i < oldsize; i++)
newring[i] = ioat->ring[i];
/*
* If head has wrapped but tail hasn't, we must swap some descriptors
* around so that tail can increment directly to head.
*/
if (head < tail) {
for (i = 0; i <= head; i++) {
tmp = newring[oldsize + i];
newring[oldsize + i] = newring[i];
newring[oldsize + i]->id = oldsize + i;
newring[i] = tmp;
newring[i]->id = i;
}
head += oldsize;
}
KASSERT(head >= tail, ("invariants"));
/* Head didn't wrap; we only need to link in oldsize..newsize */
if (head < oldsize) {
i = oldsize - 1;
end = newsize;
} else {
/* Head did wrap; link newhead..newsize and 0..oldhead */
i = head;
end = newsize + (head - oldsize) + 1;
}
/*
* Fix up hardware ring, being careful not to trample the active
* section (tail -> head).
*/
for (; i < end; i++) {
KASSERT((i & (newsize - 1)) < tail ||
(i & (newsize - 1)) >= head, ("trampling snake"));
next = newring[(i + 1) & (newsize - 1)];
hw = newring[i & (newsize - 1)]->u.dma;
hw->next = next->hw_desc_bus_addr;
}
free(ioat->ring, M_IOAT);
ioat->ring = newring;
ioat->ring_size_order = oldorder + 1;
ioat->tail = tail;
ioat->head = head;
error = 0;
mtx_unlock(&ioat->cleanup_lock);
out:
if (error)
ioat_free_ring(ioat, (1 << (oldorder + 1)), newring);
return (error);
}
static int
ring_shrink(struct ioat_softc *ioat, uint32_t oldorder,
struct ioat_descriptor **newring)
{
struct ioat_dma_hw_descriptor *hw;
struct ioat_descriptor *ent, *next;
uint32_t oldsize, newsize, current_idx, new_idx, i;
int error;
CTR0(KTR_IOAT, __func__);
mtx_assert(&ioat->submit_lock, MA_OWNED);
if (oldorder != ioat->ring_size_order || oldorder <= IOAT_MIN_ORDER) {
error = EINVAL;
goto out_unlocked;
}
oldsize = (1 << oldorder);
newsize = (1 << (oldorder - 1));
mtx_lock(&ioat->cleanup_lock);
/* Can't shrink below current active set! */
if (ioat_get_active(ioat) >= newsize) {
error = ENOMEM;
goto out;
}
/*
* Copy current descriptors to the new ring, dropping the removed
* descriptors.
*/
for (i = 0; i < newsize; i++) {
current_idx = (ioat->tail + i) & (oldsize - 1);
new_idx = (ioat->tail + i) & (newsize - 1);
newring[new_idx] = ioat->ring[current_idx];
newring[new_idx]->id = new_idx;
}
/* Free deleted descriptors */
for (i = newsize; i < oldsize; i++) {
ent = ioat_get_ring_entry(ioat, ioat->tail + i);
ioat_free_ring_entry(ioat, ent);
}
/* Fix up hardware ring. */
hw = newring[(ioat->tail + newsize - 1) & (newsize - 1)]->u.dma;
next = newring[(ioat->tail + newsize) & (newsize - 1)];
hw->next = next->hw_desc_bus_addr;
free(ioat->ring, M_IOAT);
ioat->ring = newring;
ioat->ring_size_order = oldorder - 1;
error = 0;
out:
mtx_unlock(&ioat->cleanup_lock);
out_unlocked:
if (error)
ioat_free_ring(ioat, (1 << (oldorder - 1)), newring);
return (error);
}
static void
ioat_halted_debug(struct ioat_softc *ioat, uint32_t chanerr)
{
struct ioat_descriptor *desc;
ioat_log_message(0, "Channel halted (%b)\n", (int)chanerr,
IOAT_CHANERR_STR);
if (chanerr == 0)
return;
mtx_assert(&ioat->cleanup_lock, MA_OWNED);
desc = ioat_get_ring_entry(ioat, ioat->tail + 0);
dump_descriptor(desc->u.raw);
desc = ioat_get_ring_entry(ioat, ioat->tail + 1);
dump_descriptor(desc->u.raw);
}
static void
ioat_timer_callback(void *arg)
{
struct ioat_descriptor **newring;
struct ioat_softc *ioat;
uint32_t order;
ioat = arg;
ioat_log_message(1, "%s\n", __func__);
if (ioat->is_completion_pending) {
ioat_process_events(ioat);
return;
}
/* Slowly scale the ring down if idle. */
mtx_lock(&ioat->submit_lock);
order = ioat->ring_size_order;
if (ioat->is_resize_pending || order == IOAT_MIN_ORDER) {
mtx_unlock(&ioat->submit_lock);
goto out;
}
ioat->is_resize_pending = TRUE;
mtx_unlock(&ioat->submit_lock);
newring = ioat_prealloc_ring(ioat, 1 << (order - 1), FALSE,
M_NOWAIT);
mtx_lock(&ioat->submit_lock);
KASSERT(ioat->ring_size_order == order,
("resize_pending protects order"));
if (newring != NULL)
ring_shrink(ioat, order, newring);
ioat->is_resize_pending = FALSE;
mtx_unlock(&ioat->submit_lock);
out:
if (ioat->ring_size_order > IOAT_MIN_ORDER)
callout_reset(&ioat->timer, 10 * hz,
ioat_timer_callback, ioat);
}
/*
* Support Functions
*/
static void
ioat_submit_single(struct ioat_softc *ioat)
{
ioat_get(ioat, IOAT_ACTIVE_DESCR_REF);
atomic_add_rel_int(&ioat->head, 1);
atomic_add_rel_int(&ioat->hw_head, 1);
if (!ioat->is_completion_pending) {
ioat->is_completion_pending = TRUE;
callout_reset(&ioat->timer, IOAT_INTR_TIMO,
ioat_timer_callback, ioat);
}
ioat->stats.descriptors_submitted++;
}
static int
ioat_reset_hw(struct ioat_softc *ioat)
{
uint64_t status;
uint32_t chanerr;
unsigned timeout;
int error;
mtx_lock(IOAT_REFLK);
ioat->quiescing = TRUE;
ioat_drain_locked(ioat);
mtx_unlock(IOAT_REFLK);
status = ioat_get_chansts(ioat);
if (is_ioat_active(status) || is_ioat_idle(status))
ioat_suspend(ioat);
/* Wait at most 20 ms */
for (timeout = 0; (is_ioat_active(status) || is_ioat_idle(status)) &&
timeout < 20; timeout++) {
DELAY(1000);
status = ioat_get_chansts(ioat);
}
if (timeout == 20) {
error = ETIMEDOUT;
goto out;
}
KASSERT(ioat_get_active(ioat) == 0, ("active after quiesce"));
chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET);
ioat_write_4(ioat, IOAT_CHANERR_OFFSET, chanerr);
/*
* IOAT v3 workaround - CHANERRMSK_INT with 3E07h to masks out errors
* that can cause stability issues for IOAT v3.
*/
pci_write_config(ioat->device, IOAT_CFG_CHANERRMASK_INT_OFFSET, 0x3e07,
4);
chanerr = pci_read_config(ioat->device, IOAT_CFG_CHANERR_INT_OFFSET, 4);
pci_write_config(ioat->device, IOAT_CFG_CHANERR_INT_OFFSET, chanerr, 4);
/*
* BDXDE and BWD models reset MSI-X registers on device reset.
* Save/restore their contents manually.
*/
if (ioat_model_resets_msix(ioat)) {
ioat_log_message(1, "device resets MSI-X registers; saving\n");
pci_save_state(ioat->device);
}
ioat_reset(ioat);
/* Wait at most 20 ms */
for (timeout = 0; ioat_reset_pending(ioat) && timeout < 20; timeout++)
DELAY(1000);
if (timeout == 20) {
error = ETIMEDOUT;
goto out;
}
if (ioat_model_resets_msix(ioat)) {
ioat_log_message(1, "device resets registers; restored\n");
pci_restore_state(ioat->device);
}
/* Reset attempts to return the hardware to "halted." */
status = ioat_get_chansts(ioat);
if (is_ioat_active(status) || is_ioat_idle(status)) {
/* So this really shouldn't happen... */
ioat_log_message(0, "Device is active after a reset?\n");
ioat_write_chanctrl(ioat, IOAT_CHANCTRL_RUN);
error = 0;
goto out;
}
chanerr = ioat_read_4(ioat, IOAT_CHANERR_OFFSET);
if (chanerr != 0) {
mtx_lock(&ioat->cleanup_lock);
ioat_halted_debug(ioat, chanerr);
mtx_unlock(&ioat->cleanup_lock);
error = EIO;
goto out;
}
/*
* Bring device back online after reset. Writing CHAINADDR brings the
* device back to active.
*
* The internal ring counter resets to zero, so we have to start over
* at zero as well.
*/
ioat->tail = ioat->head = ioat->hw_head = 0;
ioat->last_seen = 0;
ioat_write_chanctrl(ioat, IOAT_CHANCTRL_RUN);
ioat_write_chancmp(ioat, ioat->comp_update_bus_addr);
ioat_write_chainaddr(ioat, ioat->ring[0]->hw_desc_bus_addr);
error = 0;
out:
mtx_lock(IOAT_REFLK);
ioat->quiescing = FALSE;
mtx_unlock(IOAT_REFLK);
if (error == 0)
error = ioat_start_channel(ioat);
return (error);
}
static int
sysctl_handle_chansts(SYSCTL_HANDLER_ARGS)
{
struct ioat_softc *ioat;
struct sbuf sb;
uint64_t status;
int error;
ioat = arg1;
status = ioat_get_chansts(ioat) & IOAT_CHANSTS_STATUS;
sbuf_new_for_sysctl(&sb, NULL, 256, req);
switch (status) {
case IOAT_CHANSTS_ACTIVE:
sbuf_printf(&sb, "ACTIVE");
break;
case IOAT_CHANSTS_IDLE:
sbuf_printf(&sb, "IDLE");
break;
case IOAT_CHANSTS_SUSPENDED:
sbuf_printf(&sb, "SUSPENDED");
break;
case IOAT_CHANSTS_HALTED:
sbuf_printf(&sb, "HALTED");
break;
case IOAT_CHANSTS_ARMED:
sbuf_printf(&sb, "ARMED");
break;
default:
sbuf_printf(&sb, "UNKNOWN");
break;
}
error = sbuf_finish(&sb);
sbuf_delete(&sb);
if (error != 0 || req->newptr == NULL)
return (error);
return (EINVAL);
}
static int
sysctl_handle_dpi(SYSCTL_HANDLER_ARGS)
{
struct ioat_softc *ioat;
struct sbuf sb;
#define PRECISION "1"
const uintmax_t factor = 10;
uintmax_t rate;
int error;
ioat = arg1;
sbuf_new_for_sysctl(&sb, NULL, 16, req);
if (ioat->stats.interrupts == 0) {
sbuf_printf(&sb, "NaN");
goto out;
}
rate = ioat->stats.descriptors_processed * factor /
ioat->stats.interrupts;
sbuf_printf(&sb, "%ju.%." PRECISION "ju", rate / factor,
rate % factor);
#undef PRECISION
out:
error = sbuf_finish(&sb);
sbuf_delete(&sb);
if (error != 0 || req->newptr == NULL)
return (error);
return (EINVAL);
}
static int
sysctl_handle_error(SYSCTL_HANDLER_ARGS)
{
struct ioat_descriptor *desc;
struct ioat_softc *ioat;
int error, arg;
ioat = arg1;
arg = 0;
error = SYSCTL_OUT(req, &arg, sizeof(arg));
if (error != 0 || req->newptr == NULL)
return (error);
error = SYSCTL_IN(req, &arg, sizeof(arg));
if (error != 0)
return (error);
if (arg != 0) {
ioat_acquire(&ioat->dmaengine);
desc = ioat_op_generic(ioat, IOAT_OP_COPY, 1,
0xffff000000000000ull, 0xffff000000000000ull, NULL, NULL,
0);
if (desc == NULL)
error = ENOMEM;
else
ioat_submit_single(ioat);
ioat_release(&ioat->dmaengine);
}
return (error);
}
static int
sysctl_handle_reset(SYSCTL_HANDLER_ARGS)
{
struct ioat_softc *ioat;
int error, arg;
ioat = arg1;
arg = 0;
error = SYSCTL_OUT(req, &arg, sizeof(arg));
if (error != 0 || req->newptr == NULL)
return (error);
error = SYSCTL_IN(req, &arg, sizeof(arg));
if (error != 0)
return (error);
if (arg != 0)
error = ioat_reset_hw(ioat);
return (error);
}
static void
dump_descriptor(void *hw_desc)
{
int i, j;
for (i = 0; i < 2; i++) {
for (j = 0; j < 8; j++)
printf("%08x ", ((uint32_t *)hw_desc)[i * 8 + j]);
printf("\n");
}
}
static void
ioat_setup_sysctl(device_t device)
{
struct sysctl_oid_list *par, *statpar, *state, *hammer;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree, *tmp;
struct ioat_softc *ioat;
ioat = DEVICE2SOFTC(device);
ctx = device_get_sysctl_ctx(device);
tree = device_get_sysctl_tree(device);
par = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_INT(ctx, par, OID_AUTO, "version", CTLFLAG_RD,
&ioat->version, 0, "HW version (0xMM form)");
SYSCTL_ADD_UINT(ctx, par, OID_AUTO, "max_xfer_size", CTLFLAG_RD,
&ioat->max_xfer_size, 0, "HW maximum transfer size");
SYSCTL_ADD_INT(ctx, par, OID_AUTO, "intrdelay_supported", CTLFLAG_RD,
&ioat->intrdelay_supported, 0, "Is INTRDELAY supported");
SYSCTL_ADD_U16(ctx, par, OID_AUTO, "intrdelay_max", CTLFLAG_RD,
&ioat->intrdelay_max, 0,
"Maximum configurable INTRDELAY on this channel (microseconds)");
tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "state", CTLFLAG_RD, NULL,
"IOAT channel internal state");
state = SYSCTL_CHILDREN(tmp);
SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "ring_size_order", CTLFLAG_RD,
&ioat->ring_size_order, 0, "SW descriptor ring size order");
SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "head", CTLFLAG_RD, &ioat->head,
0, "SW descriptor head pointer index");
SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "tail", CTLFLAG_RD, &ioat->tail,
0, "SW descriptor tail pointer index");
SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "hw_head", CTLFLAG_RD,
&ioat->hw_head, 0, "HW DMACOUNT");
SYSCTL_ADD_UQUAD(ctx, state, OID_AUTO, "last_completion", CTLFLAG_RD,
ioat->comp_update, "HW addr of last completion");
SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_resize_pending", CTLFLAG_RD,
&ioat->is_resize_pending, 0, "resize pending");
SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_completion_pending",
CTLFLAG_RD, &ioat->is_completion_pending, 0, "completion pending");
SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_reset_pending", CTLFLAG_RD,
&ioat->is_reset_pending, 0, "reset pending");
SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_channel_running", CTLFLAG_RD,
&ioat->is_channel_running, 0, "channel running");
SYSCTL_ADD_PROC(ctx, state, OID_AUTO, "chansts",
CTLTYPE_STRING | CTLFLAG_RD, ioat, 0, sysctl_handle_chansts, "A",
"String of the channel status");
SYSCTL_ADD_U16(ctx, state, OID_AUTO, "intrdelay", CTLFLAG_RD,
&ioat->cached_intrdelay, 0,
"Current INTRDELAY on this channel (cached, microseconds)");
tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "hammer", CTLFLAG_RD, NULL,
"Big hammers (mostly for testing)");
hammer = SYSCTL_CHILDREN(tmp);
SYSCTL_ADD_PROC(ctx, hammer, OID_AUTO, "force_hw_reset",
CTLTYPE_INT | CTLFLAG_RW, ioat, 0, sysctl_handle_reset, "I",
"Set to non-zero to reset the hardware");
SYSCTL_ADD_PROC(ctx, hammer, OID_AUTO, "force_hw_error",
CTLTYPE_INT | CTLFLAG_RW, ioat, 0, sysctl_handle_error, "I",
"Set to non-zero to inject a recoverable hardware error");
tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "stats", CTLFLAG_RD, NULL,
"IOAT channel statistics");
statpar = SYSCTL_CHILDREN(tmp);
SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "interrupts", CTLFLAG_RW,
&ioat->stats.interrupts,
"Number of interrupts processed on this channel");
SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "descriptors", CTLFLAG_RW,
&ioat->stats.descriptors_processed,
"Number of descriptors processed on this channel");
SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "submitted", CTLFLAG_RW,
&ioat->stats.descriptors_submitted,
"Number of descriptors submitted to this channel");
SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "errored", CTLFLAG_RW,
&ioat->stats.descriptors_error,
"Number of descriptors failed by channel errors");
SYSCTL_ADD_U32(ctx, statpar, OID_AUTO, "halts", CTLFLAG_RW,
&ioat->stats.channel_halts, 0,
"Number of times the channel has halted");
SYSCTL_ADD_U32(ctx, statpar, OID_AUTO, "last_halt_chanerr", CTLFLAG_RW,
&ioat->stats.last_halt_chanerr, 0,
"The raw CHANERR when the channel was last halted");
SYSCTL_ADD_PROC(ctx, statpar, OID_AUTO, "desc_per_interrupt",
CTLTYPE_STRING | CTLFLAG_RD, ioat, 0, sysctl_handle_dpi, "A",
"Descriptors per interrupt");
}
static inline struct ioat_softc *
ioat_get(struct ioat_softc *ioat, enum ioat_ref_kind kind)
{
uint32_t old;
KASSERT(kind < IOAT_NUM_REF_KINDS, ("bogus"));
old = atomic_fetchadd_32(&ioat->refcnt, 1);
KASSERT(old < UINT32_MAX, ("refcnt overflow"));
#ifdef INVARIANTS
old = atomic_fetchadd_32(&ioat->refkinds[kind], 1);
KASSERT(old < UINT32_MAX, ("refcnt kind overflow"));
#endif
return (ioat);
}
static inline void
ioat_putn(struct ioat_softc *ioat, uint32_t n, enum ioat_ref_kind kind)
{
_ioat_putn(ioat, n, kind, FALSE);
}
static inline void
ioat_putn_locked(struct ioat_softc *ioat, uint32_t n, enum ioat_ref_kind kind)
{
_ioat_putn(ioat, n, kind, TRUE);
}
static inline void
_ioat_putn(struct ioat_softc *ioat, uint32_t n, enum ioat_ref_kind kind,
boolean_t locked)
{
uint32_t old;
KASSERT(kind < IOAT_NUM_REF_KINDS, ("bogus"));
if (n == 0)
return;
#ifdef INVARIANTS
old = atomic_fetchadd_32(&ioat->refkinds[kind], -n);
KASSERT(old >= n, ("refcnt kind underflow"));
#endif
/* Skip acquiring the lock if resulting refcnt > 0. */
for (;;) {
old = ioat->refcnt;
if (old <= n)
break;
if (atomic_cmpset_32(&ioat->refcnt, old, old - n))
return;
}
if (locked)
mtx_assert(IOAT_REFLK, MA_OWNED);
else
mtx_lock(IOAT_REFLK);
old = atomic_fetchadd_32(&ioat->refcnt, -n);
KASSERT(old >= n, ("refcnt error"));
if (old == n)
wakeup(IOAT_REFLK);
if (!locked)
mtx_unlock(IOAT_REFLK);
}
static inline void
ioat_put(struct ioat_softc *ioat, enum ioat_ref_kind kind)
{
ioat_putn(ioat, 1, kind);
}
static void
ioat_drain_locked(struct ioat_softc *ioat)
{
mtx_assert(IOAT_REFLK, MA_OWNED);
while (ioat->refcnt > 0)
msleep(IOAT_REFLK, IOAT_REFLK, 0, "ioat_drain", 0);
}