6062a8438f
NFSv4 server more readable. Mostly changes to comments, but a case of >= is changed to >, since == can never happen. Also, I've added a couple of KASSERT()s and a slight optimization, since once the "else if" case happens, subsequent locks in the list can't have any effect. None of these changes fixes any known bug. MFC after: 2 weeks
5152 lines
147 KiB
C
5152 lines
147 KiB
C
/*-
|
|
* Copyright (c) 2009 Rick Macklem, University of Guelph
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#ifndef APPLEKEXT
|
|
#include <fs/nfs/nfsport.h>
|
|
|
|
struct nfsrv_stablefirst nfsrv_stablefirst;
|
|
int nfsrv_issuedelegs = 0;
|
|
int nfsrv_dolocallocks = 0;
|
|
struct nfsv4lock nfsv4rootfs_lock;
|
|
|
|
extern int newnfs_numnfsd;
|
|
extern struct nfsstats newnfsstats;
|
|
extern int nfsrv_lease;
|
|
extern struct timeval nfsboottime;
|
|
extern u_int32_t newnfs_true, newnfs_false;
|
|
NFSV4ROOTLOCKMUTEX;
|
|
NFSSTATESPINLOCK;
|
|
|
|
/*
|
|
* Hash lists for nfs V4.
|
|
* (Some would put them in the .h file, but I don't like declaring storage
|
|
* in a .h)
|
|
*/
|
|
struct nfsclienthashhead nfsclienthash[NFSCLIENTHASHSIZE];
|
|
struct nfslockhashhead nfslockhash[NFSLOCKHASHSIZE];
|
|
#endif /* !APPLEKEXT */
|
|
|
|
static u_int32_t nfsrv_openpluslock = 0, nfsrv_delegatecnt = 0;
|
|
static time_t nfsrvboottime;
|
|
static int nfsrv_writedelegifpos = 1;
|
|
static int nfsrv_returnoldstateid = 0, nfsrv_clients = 0;
|
|
static int nfsrv_clienthighwater = NFSRV_CLIENTHIGHWATER;
|
|
static int nfsrv_nogsscallback = 0;
|
|
|
|
/* local functions */
|
|
static void nfsrv_dumpaclient(struct nfsclient *clp,
|
|
struct nfsd_dumpclients *dumpp);
|
|
static void nfsrv_freeopenowner(struct nfsstate *stp, int cansleep,
|
|
NFSPROC_T *p);
|
|
static int nfsrv_freeopen(struct nfsstate *stp, vnode_t vp, int cansleep,
|
|
NFSPROC_T *p);
|
|
static void nfsrv_freelockowner(struct nfsstate *stp, vnode_t vp, int cansleep,
|
|
NFSPROC_T *p);
|
|
static void nfsrv_freeallnfslocks(struct nfsstate *stp, vnode_t vp,
|
|
int cansleep, NFSPROC_T *p);
|
|
static void nfsrv_freenfslock(struct nfslock *lop);
|
|
static void nfsrv_freenfslockfile(struct nfslockfile *lfp);
|
|
static void nfsrv_freedeleg(struct nfsstate *);
|
|
static int nfsrv_getstate(struct nfsclient *clp, nfsv4stateid_t *stateidp,
|
|
u_int32_t flags, struct nfsstate **stpp);
|
|
static void nfsrv_getowner(struct nfsstatehead *hp, struct nfsstate *new_stp,
|
|
struct nfsstate **stpp);
|
|
static int nfsrv_getlockfh(vnode_t vp, u_short flags,
|
|
struct nfslockfile **new_lfpp, fhandle_t *nfhp, NFSPROC_T *p);
|
|
static int nfsrv_getlockfile(u_short flags, struct nfslockfile **new_lfpp,
|
|
struct nfslockfile **lfpp, fhandle_t *nfhp, int lockit);
|
|
static void nfsrv_insertlock(struct nfslock *new_lop,
|
|
struct nfslock *insert_lop, struct nfsstate *stp, struct nfslockfile *lfp);
|
|
static void nfsrv_updatelock(struct nfsstate *stp, struct nfslock **new_lopp,
|
|
struct nfslock **other_lopp, struct nfslockfile *lfp);
|
|
static int nfsrv_getipnumber(u_char *cp);
|
|
static int nfsrv_checkrestart(nfsquad_t clientid, u_int32_t flags,
|
|
nfsv4stateid_t *stateidp, int specialid);
|
|
static int nfsrv_checkgrace(u_int32_t flags);
|
|
static int nfsrv_docallback(struct nfsclient *clp, int procnum,
|
|
nfsv4stateid_t *stateidp, int trunc, fhandle_t *fhp,
|
|
struct nfsvattr *nap, nfsattrbit_t *attrbitp, NFSPROC_T *p);
|
|
static u_int32_t nfsrv_nextclientindex(void);
|
|
static u_int32_t nfsrv_nextstateindex(struct nfsclient *clp);
|
|
static void nfsrv_markstable(struct nfsclient *clp);
|
|
static int nfsrv_checkstable(struct nfsclient *clp);
|
|
static int nfsrv_clientconflict(struct nfsclient *clp, int *haslockp, struct
|
|
vnode *vp, NFSPROC_T *p);
|
|
static int nfsrv_delegconflict(struct nfsstate *stp, int *haslockp,
|
|
NFSPROC_T *p, vnode_t vp);
|
|
static int nfsrv_cleandeleg(vnode_t vp, struct nfslockfile *lfp,
|
|
struct nfsclient *clp, int *haslockp, NFSPROC_T *p);
|
|
static int nfsrv_notsamecredname(struct nfsrv_descript *nd,
|
|
struct nfsclient *clp);
|
|
static time_t nfsrv_leaseexpiry(void);
|
|
static void nfsrv_delaydelegtimeout(struct nfsstate *stp);
|
|
static int nfsrv_checkseqid(struct nfsrv_descript *nd, u_int32_t seqid,
|
|
struct nfsstate *stp, struct nfsrvcache *op);
|
|
static int nfsrv_nootherstate(struct nfsstate *stp);
|
|
static int nfsrv_locallock(vnode_t vp, struct nfslockfile *lfp, int flags,
|
|
uint64_t first, uint64_t end, struct nfslockconflict *cfp, NFSPROC_T *p);
|
|
static void nfsrv_localunlock(vnode_t vp, struct nfslockfile *lfp,
|
|
uint64_t init_first, uint64_t init_end, NFSPROC_T *p);
|
|
static int nfsrv_dolocal(vnode_t vp, struct nfslockfile *lfp, int flags,
|
|
int oldflags, uint64_t first, uint64_t end, struct nfslockconflict *cfp,
|
|
NFSPROC_T *p);
|
|
static void nfsrv_locallock_rollback(vnode_t vp, struct nfslockfile *lfp,
|
|
NFSPROC_T *p);
|
|
static void nfsrv_locallock_commit(struct nfslockfile *lfp, int flags,
|
|
uint64_t first, uint64_t end);
|
|
static void nfsrv_locklf(struct nfslockfile *lfp);
|
|
static void nfsrv_unlocklf(struct nfslockfile *lfp);
|
|
|
|
/*
|
|
* Scan the client list for a match and either return the current one,
|
|
* create a new entry or return an error.
|
|
* If returning a non-error, the clp structure must either be linked into
|
|
* the client list or free'd.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_setclient(struct nfsrv_descript *nd, struct nfsclient **new_clpp,
|
|
nfsquad_t *clientidp, nfsquad_t *confirmp, NFSPROC_T *p)
|
|
{
|
|
struct nfsclient *clp = NULL, *new_clp = *new_clpp;
|
|
int i;
|
|
struct nfsstate *stp, *tstp;
|
|
struct sockaddr_in *sad, *rad;
|
|
int zapit = 0, gotit, hasstate = 0, igotlock;
|
|
static u_int64_t confirm_index = 0;
|
|
|
|
/*
|
|
* Check for state resource limit exceeded.
|
|
*/
|
|
if (nfsrv_openpluslock > NFSRV_V4STATELIMIT)
|
|
return (NFSERR_RESOURCE);
|
|
|
|
if ((nd->nd_flag & ND_GSS) && nfsrv_nogsscallback)
|
|
/*
|
|
* Don't do callbacks for AUTH_GSS.
|
|
* (Since these aren't yet debugged, they might cause the
|
|
* server to crap out, if they get past the Init call to
|
|
* the client.)
|
|
*/
|
|
new_clp->lc_program = 0;
|
|
|
|
/* Lock out other nfsd threads */
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_relref(&nfsv4rootfs_lock);
|
|
do {
|
|
igotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
|
|
NFSV4ROOTLOCKMUTEXPTR);
|
|
} while (!igotlock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
|
|
/*
|
|
* Search for a match in the client list.
|
|
*/
|
|
gotit = i = 0;
|
|
while (i < NFSCLIENTHASHSIZE && !gotit) {
|
|
LIST_FOREACH(clp, &nfsclienthash[i], lc_hash) {
|
|
if (new_clp->lc_idlen == clp->lc_idlen &&
|
|
!NFSBCMP(new_clp->lc_id, clp->lc_id, clp->lc_idlen)) {
|
|
gotit = 1;
|
|
break;
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
if (!gotit ||
|
|
(clp->lc_flags & (LCL_NEEDSCONFIRM | LCL_ADMINREVOKED))) {
|
|
/*
|
|
* Get rid of the old one.
|
|
*/
|
|
if (i != NFSCLIENTHASHSIZE) {
|
|
LIST_REMOVE(clp, lc_hash);
|
|
nfsrv_cleanclient(clp, p);
|
|
nfsrv_freedeleglist(&clp->lc_deleg);
|
|
nfsrv_freedeleglist(&clp->lc_olddeleg);
|
|
zapit = 1;
|
|
}
|
|
/*
|
|
* Add it after assigning a client id to it.
|
|
*/
|
|
new_clp->lc_flags |= LCL_NEEDSCONFIRM;
|
|
confirmp->qval = new_clp->lc_confirm.qval = ++confirm_index;
|
|
clientidp->lval[0] = new_clp->lc_clientid.lval[0] =
|
|
(u_int32_t)nfsrvboottime;
|
|
clientidp->lval[1] = new_clp->lc_clientid.lval[1] =
|
|
nfsrv_nextclientindex();
|
|
new_clp->lc_stateindex = 0;
|
|
new_clp->lc_statemaxindex = 0;
|
|
new_clp->lc_cbref = 0;
|
|
new_clp->lc_expiry = nfsrv_leaseexpiry();
|
|
LIST_INIT(&new_clp->lc_open);
|
|
LIST_INIT(&new_clp->lc_deleg);
|
|
LIST_INIT(&new_clp->lc_olddeleg);
|
|
for (i = 0; i < NFSSTATEHASHSIZE; i++)
|
|
LIST_INIT(&new_clp->lc_stateid[i]);
|
|
LIST_INSERT_HEAD(NFSCLIENTHASH(new_clp->lc_clientid), new_clp,
|
|
lc_hash);
|
|
newnfsstats.srvclients++;
|
|
nfsrv_openpluslock++;
|
|
nfsrv_clients++;
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
if (zapit)
|
|
nfsrv_zapclient(clp, p);
|
|
*new_clpp = NULL;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Now, handle the cases where the id is already issued.
|
|
*/
|
|
if (nfsrv_notsamecredname(nd, clp)) {
|
|
/*
|
|
* Check to see if there is expired state that should go away.
|
|
*/
|
|
if (clp->lc_expiry < NFSD_MONOSEC &&
|
|
(!LIST_EMPTY(&clp->lc_open) || !LIST_EMPTY(&clp->lc_deleg))) {
|
|
nfsrv_cleanclient(clp, p);
|
|
nfsrv_freedeleglist(&clp->lc_deleg);
|
|
}
|
|
|
|
/*
|
|
* If there is outstanding state, then reply NFSERR_CLIDINUSE per
|
|
* RFC3530 Sec. 8.1.2 last para.
|
|
*/
|
|
if (!LIST_EMPTY(&clp->lc_deleg)) {
|
|
hasstate = 1;
|
|
} else if (LIST_EMPTY(&clp->lc_open)) {
|
|
hasstate = 0;
|
|
} else {
|
|
hasstate = 0;
|
|
/* Look for an Open on the OpenOwner */
|
|
LIST_FOREACH(stp, &clp->lc_open, ls_list) {
|
|
if (!LIST_EMPTY(&stp->ls_open)) {
|
|
hasstate = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (hasstate) {
|
|
/*
|
|
* If the uid doesn't match, return NFSERR_CLIDINUSE after
|
|
* filling out the correct ipaddr and portnum.
|
|
*/
|
|
sad = NFSSOCKADDR(new_clp->lc_req.nr_nam, struct sockaddr_in *);
|
|
rad = NFSSOCKADDR(clp->lc_req.nr_nam, struct sockaddr_in *);
|
|
sad->sin_addr.s_addr = rad->sin_addr.s_addr;
|
|
sad->sin_port = rad->sin_port;
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
return (NFSERR_CLIDINUSE);
|
|
}
|
|
}
|
|
|
|
if (NFSBCMP(new_clp->lc_verf, clp->lc_verf, NFSX_VERF)) {
|
|
/*
|
|
* If the verifier has changed, the client has rebooted
|
|
* and a new client id is issued. The old state info
|
|
* can be thrown away once the SETCLIENTID_CONFIRM occurs.
|
|
*/
|
|
LIST_REMOVE(clp, lc_hash);
|
|
new_clp->lc_flags |= LCL_NEEDSCONFIRM;
|
|
confirmp->qval = new_clp->lc_confirm.qval = ++confirm_index;
|
|
clientidp->lval[0] = new_clp->lc_clientid.lval[0] =
|
|
nfsrvboottime;
|
|
clientidp->lval[1] = new_clp->lc_clientid.lval[1] =
|
|
nfsrv_nextclientindex();
|
|
new_clp->lc_stateindex = 0;
|
|
new_clp->lc_statemaxindex = 0;
|
|
new_clp->lc_cbref = 0;
|
|
new_clp->lc_expiry = nfsrv_leaseexpiry();
|
|
|
|
/*
|
|
* Save the state until confirmed.
|
|
*/
|
|
LIST_NEWHEAD(&new_clp->lc_open, &clp->lc_open, ls_list);
|
|
LIST_FOREACH(tstp, &new_clp->lc_open, ls_list)
|
|
tstp->ls_clp = new_clp;
|
|
LIST_NEWHEAD(&new_clp->lc_deleg, &clp->lc_deleg, ls_list);
|
|
LIST_FOREACH(tstp, &new_clp->lc_deleg, ls_list)
|
|
tstp->ls_clp = new_clp;
|
|
LIST_NEWHEAD(&new_clp->lc_olddeleg, &clp->lc_olddeleg,
|
|
ls_list);
|
|
LIST_FOREACH(tstp, &new_clp->lc_olddeleg, ls_list)
|
|
tstp->ls_clp = new_clp;
|
|
for (i = 0; i < NFSSTATEHASHSIZE; i++) {
|
|
LIST_NEWHEAD(&new_clp->lc_stateid[i],
|
|
&clp->lc_stateid[i], ls_hash);
|
|
LIST_FOREACH(tstp, &new_clp->lc_stateid[i], ls_list)
|
|
tstp->ls_clp = new_clp;
|
|
}
|
|
LIST_INSERT_HEAD(NFSCLIENTHASH(new_clp->lc_clientid), new_clp,
|
|
lc_hash);
|
|
newnfsstats.srvclients++;
|
|
nfsrv_openpluslock++;
|
|
nfsrv_clients++;
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
|
|
/*
|
|
* Must wait until any outstanding callback on the old clp
|
|
* completes.
|
|
*/
|
|
while (clp->lc_cbref) {
|
|
clp->lc_flags |= LCL_WAKEUPWANTED;
|
|
(void) tsleep((caddr_t)clp, PZERO - 1,
|
|
"nfsd clp", 10 * hz);
|
|
}
|
|
nfsrv_zapclient(clp, p);
|
|
*new_clpp = NULL;
|
|
return (0);
|
|
}
|
|
/*
|
|
* id and verifier match, so update the net address info
|
|
* and get rid of any existing callback authentication
|
|
* handle, so a new one will be acquired.
|
|
*/
|
|
LIST_REMOVE(clp, lc_hash);
|
|
new_clp->lc_flags |= (LCL_NEEDSCONFIRM | LCL_DONTCLEAN);
|
|
new_clp->lc_expiry = nfsrv_leaseexpiry();
|
|
confirmp->qval = new_clp->lc_confirm.qval = ++confirm_index;
|
|
clientidp->lval[0] = new_clp->lc_clientid.lval[0] =
|
|
clp->lc_clientid.lval[0];
|
|
clientidp->lval[1] = new_clp->lc_clientid.lval[1] =
|
|
clp->lc_clientid.lval[1];
|
|
new_clp->lc_delegtime = clp->lc_delegtime;
|
|
new_clp->lc_stateindex = clp->lc_stateindex;
|
|
new_clp->lc_statemaxindex = clp->lc_statemaxindex;
|
|
new_clp->lc_cbref = 0;
|
|
LIST_NEWHEAD(&new_clp->lc_open, &clp->lc_open, ls_list);
|
|
LIST_FOREACH(tstp, &new_clp->lc_open, ls_list)
|
|
tstp->ls_clp = new_clp;
|
|
LIST_NEWHEAD(&new_clp->lc_deleg, &clp->lc_deleg, ls_list);
|
|
LIST_FOREACH(tstp, &new_clp->lc_deleg, ls_list)
|
|
tstp->ls_clp = new_clp;
|
|
LIST_NEWHEAD(&new_clp->lc_olddeleg, &clp->lc_olddeleg, ls_list);
|
|
LIST_FOREACH(tstp, &new_clp->lc_olddeleg, ls_list)
|
|
tstp->ls_clp = new_clp;
|
|
for (i = 0; i < NFSSTATEHASHSIZE; i++) {
|
|
LIST_NEWHEAD(&new_clp->lc_stateid[i], &clp->lc_stateid[i],
|
|
ls_hash);
|
|
LIST_FOREACH(tstp, &new_clp->lc_stateid[i], ls_list)
|
|
tstp->ls_clp = new_clp;
|
|
}
|
|
LIST_INSERT_HEAD(NFSCLIENTHASH(new_clp->lc_clientid), new_clp,
|
|
lc_hash);
|
|
newnfsstats.srvclients++;
|
|
nfsrv_openpluslock++;
|
|
nfsrv_clients++;
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
|
|
/*
|
|
* Must wait until any outstanding callback on the old clp
|
|
* completes.
|
|
*/
|
|
while (clp->lc_cbref) {
|
|
clp->lc_flags |= LCL_WAKEUPWANTED;
|
|
(void) tsleep((caddr_t)clp, PZERO - 1, "nfsd clp", 10 * hz);
|
|
}
|
|
nfsrv_zapclient(clp, p);
|
|
*new_clpp = NULL;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check to see if the client id exists and optionally confirm it.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_getclient(nfsquad_t clientid, int opflags, struct nfsclient **clpp,
|
|
nfsquad_t confirm, struct nfsrv_descript *nd, NFSPROC_T *p)
|
|
{
|
|
struct nfsclient *clp;
|
|
struct nfsstate *stp;
|
|
int i;
|
|
struct nfsclienthashhead *hp;
|
|
int error = 0, igotlock, doneok;
|
|
|
|
if (clpp)
|
|
*clpp = NULL;
|
|
if (nfsrvboottime != clientid.lval[0])
|
|
return (NFSERR_STALECLIENTID);
|
|
|
|
/*
|
|
* If called with opflags == CLOPS_RENEW, the State Lock is
|
|
* already held. Otherwise, we need to get either that or,
|
|
* for the case of Confirm, lock out the nfsd threads.
|
|
*/
|
|
if (opflags & CLOPS_CONFIRM) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_relref(&nfsv4rootfs_lock);
|
|
do {
|
|
igotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
|
|
NFSV4ROOTLOCKMUTEXPTR);
|
|
} while (!igotlock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
} else if (opflags != CLOPS_RENEW) {
|
|
NFSLOCKSTATE();
|
|
}
|
|
|
|
hp = NFSCLIENTHASH(clientid);
|
|
LIST_FOREACH(clp, hp, lc_hash) {
|
|
if (clp->lc_clientid.lval[1] == clientid.lval[1])
|
|
break;
|
|
}
|
|
if (clp == LIST_END(hp)) {
|
|
if (opflags & CLOPS_CONFIRM)
|
|
error = NFSERR_STALECLIENTID;
|
|
else
|
|
error = NFSERR_EXPIRED;
|
|
} else if (clp->lc_flags & LCL_ADMINREVOKED) {
|
|
/*
|
|
* If marked admin revoked, just return the error.
|
|
*/
|
|
error = NFSERR_ADMINREVOKED;
|
|
}
|
|
if (error) {
|
|
if (opflags & CLOPS_CONFIRM) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
} else if (opflags != CLOPS_RENEW) {
|
|
NFSUNLOCKSTATE();
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Perform any operations specified by the opflags.
|
|
*/
|
|
if (opflags & CLOPS_CONFIRM) {
|
|
if (clp->lc_confirm.qval != confirm.qval)
|
|
error = NFSERR_STALECLIENTID;
|
|
else if (nfsrv_notsamecredname(nd, clp))
|
|
error = NFSERR_CLIDINUSE;
|
|
|
|
if (!error) {
|
|
if ((clp->lc_flags & (LCL_NEEDSCONFIRM | LCL_DONTCLEAN)) ==
|
|
LCL_NEEDSCONFIRM) {
|
|
/*
|
|
* Hang onto the delegations (as old delegations)
|
|
* for an Open with CLAIM_DELEGATE_PREV unless in
|
|
* grace, but get rid of the rest of the state.
|
|
*/
|
|
nfsrv_cleanclient(clp, p);
|
|
nfsrv_freedeleglist(&clp->lc_olddeleg);
|
|
if (nfsrv_checkgrace(0)) {
|
|
/* In grace, so just delete delegations */
|
|
nfsrv_freedeleglist(&clp->lc_deleg);
|
|
} else {
|
|
LIST_FOREACH(stp, &clp->lc_deleg, ls_list)
|
|
stp->ls_flags |= NFSLCK_OLDDELEG;
|
|
clp->lc_delegtime = NFSD_MONOSEC +
|
|
nfsrv_lease + NFSRV_LEASEDELTA;
|
|
LIST_NEWHEAD(&clp->lc_olddeleg, &clp->lc_deleg,
|
|
ls_list);
|
|
}
|
|
}
|
|
clp->lc_flags &= ~(LCL_NEEDSCONFIRM | LCL_DONTCLEAN);
|
|
if (clp->lc_program)
|
|
clp->lc_flags |= LCL_NEEDSCBNULL;
|
|
}
|
|
} else if (clp->lc_flags & LCL_NEEDSCONFIRM) {
|
|
error = NFSERR_EXPIRED;
|
|
}
|
|
|
|
/*
|
|
* If called by the Renew Op, we must check the principal.
|
|
*/
|
|
if (!error && (opflags & CLOPS_RENEWOP)) {
|
|
if (nfsrv_notsamecredname(nd, clp)) {
|
|
doneok = 0;
|
|
for (i = 0; i < NFSSTATEHASHSIZE && doneok == 0; i++) {
|
|
LIST_FOREACH(stp, &clp->lc_stateid[i], ls_hash) {
|
|
if ((stp->ls_flags & NFSLCK_OPEN) &&
|
|
stp->ls_uid == nd->nd_cred->cr_uid) {
|
|
doneok = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!doneok)
|
|
error = NFSERR_ACCES;
|
|
}
|
|
if (!error && (clp->lc_flags & LCL_CBDOWN))
|
|
error = NFSERR_CBPATHDOWN;
|
|
}
|
|
if ((!error || error == NFSERR_CBPATHDOWN) &&
|
|
(opflags & CLOPS_RENEW)) {
|
|
clp->lc_expiry = nfsrv_leaseexpiry();
|
|
}
|
|
if (opflags & CLOPS_CONFIRM) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
} else if (opflags != CLOPS_RENEW) {
|
|
NFSUNLOCKSTATE();
|
|
}
|
|
if (clpp)
|
|
*clpp = clp;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Called from the new nfssvc syscall to admin revoke a clientid.
|
|
* Returns 0 for success, error otherwise.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_adminrevoke(struct nfsd_clid *revokep, NFSPROC_T *p)
|
|
{
|
|
struct nfsclient *clp = NULL;
|
|
int i;
|
|
int gotit, igotlock;
|
|
|
|
/*
|
|
* First, lock out the nfsd so that state won't change while the
|
|
* revocation record is being written to the stable storage restart
|
|
* file.
|
|
*/
|
|
NFSLOCKV4ROOTMUTEX();
|
|
do {
|
|
igotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
|
|
NFSV4ROOTLOCKMUTEXPTR);
|
|
} while (!igotlock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
|
|
/*
|
|
* Search for a match in the client list.
|
|
*/
|
|
gotit = i = 0;
|
|
while (i < NFSCLIENTHASHSIZE && !gotit) {
|
|
LIST_FOREACH(clp, &nfsclienthash[i], lc_hash) {
|
|
if (revokep->nclid_idlen == clp->lc_idlen &&
|
|
!NFSBCMP(revokep->nclid_id, clp->lc_id, clp->lc_idlen)) {
|
|
gotit = 1;
|
|
break;
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
if (!gotit) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 0);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
return (EPERM);
|
|
}
|
|
|
|
/*
|
|
* Now, write out the revocation record
|
|
*/
|
|
nfsrv_writestable(clp->lc_id, clp->lc_idlen, NFSNST_REVOKE, p);
|
|
|
|
/*
|
|
* and clear out the state, marking the clientid revoked.
|
|
*/
|
|
clp->lc_flags &= ~LCL_CALLBACKSON;
|
|
clp->lc_flags |= LCL_ADMINREVOKED;
|
|
nfsrv_cleanclient(clp, p);
|
|
nfsrv_freedeleglist(&clp->lc_deleg);
|
|
nfsrv_freedeleglist(&clp->lc_olddeleg);
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 0);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Dump out stats for all clients. Called from nfssvc(2), that is used
|
|
* newnfsstats.
|
|
*/
|
|
APPLESTATIC void
|
|
nfsrv_dumpclients(struct nfsd_dumpclients *dumpp, int maxcnt)
|
|
{
|
|
struct nfsclient *clp;
|
|
int i = 0, cnt = 0;
|
|
|
|
/*
|
|
* First, get a reference on the nfsv4rootfs_lock so that an
|
|
* exclusive lock cannot be acquired while dumping the clients.
|
|
*/
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_getref(&nfsv4rootfs_lock, NULL, NFSV4ROOTLOCKMUTEXPTR);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
NFSLOCKSTATE();
|
|
/*
|
|
* Rattle through the client lists until done.
|
|
*/
|
|
while (i < NFSCLIENTHASHSIZE && cnt < maxcnt) {
|
|
clp = LIST_FIRST(&nfsclienthash[i]);
|
|
while (clp != LIST_END(&nfsclienthash[i]) && cnt < maxcnt) {
|
|
nfsrv_dumpaclient(clp, &dumpp[cnt]);
|
|
cnt++;
|
|
clp = LIST_NEXT(clp, lc_hash);
|
|
}
|
|
i++;
|
|
}
|
|
if (cnt < maxcnt)
|
|
dumpp[cnt].ndcl_clid.nclid_idlen = 0;
|
|
NFSUNLOCKSTATE();
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_relref(&nfsv4rootfs_lock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
|
|
/*
|
|
* Dump stats for a client. Must be called with the NFSSTATELOCK and spl'd.
|
|
*/
|
|
static void
|
|
nfsrv_dumpaclient(struct nfsclient *clp, struct nfsd_dumpclients *dumpp)
|
|
{
|
|
struct nfsstate *stp, *openstp, *lckownstp;
|
|
struct nfslock *lop;
|
|
struct sockaddr *sad;
|
|
struct sockaddr_in *rad;
|
|
struct sockaddr_in6 *rad6;
|
|
|
|
dumpp->ndcl_nopenowners = dumpp->ndcl_nlockowners = 0;
|
|
dumpp->ndcl_nopens = dumpp->ndcl_nlocks = 0;
|
|
dumpp->ndcl_ndelegs = dumpp->ndcl_nolddelegs = 0;
|
|
dumpp->ndcl_flags = clp->lc_flags;
|
|
dumpp->ndcl_clid.nclid_idlen = clp->lc_idlen;
|
|
NFSBCOPY(clp->lc_id, dumpp->ndcl_clid.nclid_id, clp->lc_idlen);
|
|
sad = NFSSOCKADDR(clp->lc_req.nr_nam, struct sockaddr *);
|
|
dumpp->ndcl_addrfam = sad->sa_family;
|
|
if (sad->sa_family == AF_INET) {
|
|
rad = (struct sockaddr_in *)sad;
|
|
dumpp->ndcl_cbaddr.sin_addr = rad->sin_addr;
|
|
} else {
|
|
rad6 = (struct sockaddr_in6 *)sad;
|
|
dumpp->ndcl_cbaddr.sin6_addr = rad6->sin6_addr;
|
|
}
|
|
|
|
/*
|
|
* Now, scan the state lists and total up the opens and locks.
|
|
*/
|
|
LIST_FOREACH(stp, &clp->lc_open, ls_list) {
|
|
dumpp->ndcl_nopenowners++;
|
|
LIST_FOREACH(openstp, &stp->ls_open, ls_list) {
|
|
dumpp->ndcl_nopens++;
|
|
LIST_FOREACH(lckownstp, &openstp->ls_open, ls_list) {
|
|
dumpp->ndcl_nlockowners++;
|
|
LIST_FOREACH(lop, &lckownstp->ls_lock, lo_lckowner) {
|
|
dumpp->ndcl_nlocks++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* and the delegation lists.
|
|
*/
|
|
LIST_FOREACH(stp, &clp->lc_deleg, ls_list) {
|
|
dumpp->ndcl_ndelegs++;
|
|
}
|
|
LIST_FOREACH(stp, &clp->lc_olddeleg, ls_list) {
|
|
dumpp->ndcl_nolddelegs++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Dump out lock stats for a file.
|
|
*/
|
|
APPLESTATIC void
|
|
nfsrv_dumplocks(vnode_t vp, struct nfsd_dumplocks *ldumpp, int maxcnt,
|
|
NFSPROC_T *p)
|
|
{
|
|
struct nfsstate *stp;
|
|
struct nfslock *lop;
|
|
int cnt = 0;
|
|
struct nfslockfile *lfp;
|
|
struct sockaddr *sad;
|
|
struct sockaddr_in *rad;
|
|
struct sockaddr_in6 *rad6;
|
|
int ret;
|
|
fhandle_t nfh;
|
|
|
|
ret = nfsrv_getlockfh(vp, 0, NULL, &nfh, p);
|
|
/*
|
|
* First, get a reference on the nfsv4rootfs_lock so that an
|
|
* exclusive lock on it cannot be acquired while dumping the locks.
|
|
*/
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_getref(&nfsv4rootfs_lock, NULL, NFSV4ROOTLOCKMUTEXPTR);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
NFSLOCKSTATE();
|
|
if (!ret)
|
|
ret = nfsrv_getlockfile(0, NULL, &lfp, &nfh, 0);
|
|
if (ret) {
|
|
ldumpp[0].ndlck_clid.nclid_idlen = 0;
|
|
NFSUNLOCKSTATE();
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_relref(&nfsv4rootfs_lock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* For each open share on file, dump it out.
|
|
*/
|
|
stp = LIST_FIRST(&lfp->lf_open);
|
|
while (stp != LIST_END(&lfp->lf_open) && cnt < maxcnt) {
|
|
ldumpp[cnt].ndlck_flags = stp->ls_flags;
|
|
ldumpp[cnt].ndlck_stateid.seqid = stp->ls_stateid.seqid;
|
|
ldumpp[cnt].ndlck_stateid.other[0] = stp->ls_stateid.other[0];
|
|
ldumpp[cnt].ndlck_stateid.other[1] = stp->ls_stateid.other[1];
|
|
ldumpp[cnt].ndlck_stateid.other[2] = stp->ls_stateid.other[2];
|
|
ldumpp[cnt].ndlck_owner.nclid_idlen =
|
|
stp->ls_openowner->ls_ownerlen;
|
|
NFSBCOPY(stp->ls_openowner->ls_owner,
|
|
ldumpp[cnt].ndlck_owner.nclid_id,
|
|
stp->ls_openowner->ls_ownerlen);
|
|
ldumpp[cnt].ndlck_clid.nclid_idlen = stp->ls_clp->lc_idlen;
|
|
NFSBCOPY(stp->ls_clp->lc_id, ldumpp[cnt].ndlck_clid.nclid_id,
|
|
stp->ls_clp->lc_idlen);
|
|
sad=NFSSOCKADDR(stp->ls_clp->lc_req.nr_nam, struct sockaddr *);
|
|
ldumpp[cnt].ndlck_addrfam = sad->sa_family;
|
|
if (sad->sa_family == AF_INET) {
|
|
rad = (struct sockaddr_in *)sad;
|
|
ldumpp[cnt].ndlck_cbaddr.sin_addr = rad->sin_addr;
|
|
} else {
|
|
rad6 = (struct sockaddr_in6 *)sad;
|
|
ldumpp[cnt].ndlck_cbaddr.sin6_addr = rad6->sin6_addr;
|
|
}
|
|
stp = LIST_NEXT(stp, ls_file);
|
|
cnt++;
|
|
}
|
|
|
|
/*
|
|
* and all locks.
|
|
*/
|
|
lop = LIST_FIRST(&lfp->lf_lock);
|
|
while (lop != LIST_END(&lfp->lf_lock) && cnt < maxcnt) {
|
|
stp = lop->lo_stp;
|
|
ldumpp[cnt].ndlck_flags = lop->lo_flags;
|
|
ldumpp[cnt].ndlck_first = lop->lo_first;
|
|
ldumpp[cnt].ndlck_end = lop->lo_end;
|
|
ldumpp[cnt].ndlck_stateid.seqid = stp->ls_stateid.seqid;
|
|
ldumpp[cnt].ndlck_stateid.other[0] = stp->ls_stateid.other[0];
|
|
ldumpp[cnt].ndlck_stateid.other[1] = stp->ls_stateid.other[1];
|
|
ldumpp[cnt].ndlck_stateid.other[2] = stp->ls_stateid.other[2];
|
|
ldumpp[cnt].ndlck_owner.nclid_idlen = stp->ls_ownerlen;
|
|
NFSBCOPY(stp->ls_owner, ldumpp[cnt].ndlck_owner.nclid_id,
|
|
stp->ls_ownerlen);
|
|
ldumpp[cnt].ndlck_clid.nclid_idlen = stp->ls_clp->lc_idlen;
|
|
NFSBCOPY(stp->ls_clp->lc_id, ldumpp[cnt].ndlck_clid.nclid_id,
|
|
stp->ls_clp->lc_idlen);
|
|
sad=NFSSOCKADDR(stp->ls_clp->lc_req.nr_nam, struct sockaddr *);
|
|
ldumpp[cnt].ndlck_addrfam = sad->sa_family;
|
|
if (sad->sa_family == AF_INET) {
|
|
rad = (struct sockaddr_in *)sad;
|
|
ldumpp[cnt].ndlck_cbaddr.sin_addr = rad->sin_addr;
|
|
} else {
|
|
rad6 = (struct sockaddr_in6 *)sad;
|
|
ldumpp[cnt].ndlck_cbaddr.sin6_addr = rad6->sin6_addr;
|
|
}
|
|
lop = LIST_NEXT(lop, lo_lckfile);
|
|
cnt++;
|
|
}
|
|
|
|
/*
|
|
* and the delegations.
|
|
*/
|
|
stp = LIST_FIRST(&lfp->lf_deleg);
|
|
while (stp != LIST_END(&lfp->lf_deleg) && cnt < maxcnt) {
|
|
ldumpp[cnt].ndlck_flags = stp->ls_flags;
|
|
ldumpp[cnt].ndlck_stateid.seqid = stp->ls_stateid.seqid;
|
|
ldumpp[cnt].ndlck_stateid.other[0] = stp->ls_stateid.other[0];
|
|
ldumpp[cnt].ndlck_stateid.other[1] = stp->ls_stateid.other[1];
|
|
ldumpp[cnt].ndlck_stateid.other[2] = stp->ls_stateid.other[2];
|
|
ldumpp[cnt].ndlck_owner.nclid_idlen = 0;
|
|
ldumpp[cnt].ndlck_clid.nclid_idlen = stp->ls_clp->lc_idlen;
|
|
NFSBCOPY(stp->ls_clp->lc_id, ldumpp[cnt].ndlck_clid.nclid_id,
|
|
stp->ls_clp->lc_idlen);
|
|
sad=NFSSOCKADDR(stp->ls_clp->lc_req.nr_nam, struct sockaddr *);
|
|
ldumpp[cnt].ndlck_addrfam = sad->sa_family;
|
|
if (sad->sa_family == AF_INET) {
|
|
rad = (struct sockaddr_in *)sad;
|
|
ldumpp[cnt].ndlck_cbaddr.sin_addr = rad->sin_addr;
|
|
} else {
|
|
rad6 = (struct sockaddr_in6 *)sad;
|
|
ldumpp[cnt].ndlck_cbaddr.sin6_addr = rad6->sin6_addr;
|
|
}
|
|
stp = LIST_NEXT(stp, ls_file);
|
|
cnt++;
|
|
}
|
|
|
|
/*
|
|
* If list isn't full, mark end of list by setting the client name
|
|
* to zero length.
|
|
*/
|
|
if (cnt < maxcnt)
|
|
ldumpp[cnt].ndlck_clid.nclid_idlen = 0;
|
|
NFSUNLOCKSTATE();
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_relref(&nfsv4rootfs_lock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
|
|
/*
|
|
* Server timer routine. It can scan any linked list, so long
|
|
* as it holds the spin/mutex lock and there is no exclusive lock on
|
|
* nfsv4rootfs_lock.
|
|
* (For OpenBSD, a kthread is ok. For FreeBSD, I think it is ok
|
|
* to do this from a callout, since the spin locks work. For
|
|
* Darwin, I'm not sure what will work correctly yet.)
|
|
* Should be called once per second.
|
|
*/
|
|
APPLESTATIC void
|
|
nfsrv_servertimer(void)
|
|
{
|
|
struct nfsclient *clp, *nclp;
|
|
struct nfsstate *stp, *nstp;
|
|
int got_ref, i;
|
|
|
|
/*
|
|
* Make sure nfsboottime is set. This is used by V3 as well
|
|
* as V4. Note that nfsboottime is not nfsrvboottime, which is
|
|
* only used by the V4 server for leases.
|
|
*/
|
|
if (nfsboottime.tv_sec == 0)
|
|
NFSSETBOOTTIME(nfsboottime);
|
|
|
|
/*
|
|
* If server hasn't started yet, just return.
|
|
*/
|
|
NFSLOCKSTATE();
|
|
if (nfsrv_stablefirst.nsf_eograce == 0) {
|
|
NFSUNLOCKSTATE();
|
|
return;
|
|
}
|
|
if (!(nfsrv_stablefirst.nsf_flags & NFSNSF_UPDATEDONE)) {
|
|
if (!(nfsrv_stablefirst.nsf_flags & NFSNSF_GRACEOVER) &&
|
|
NFSD_MONOSEC > nfsrv_stablefirst.nsf_eograce)
|
|
nfsrv_stablefirst.nsf_flags |=
|
|
(NFSNSF_GRACEOVER | NFSNSF_NEEDLOCK);
|
|
NFSUNLOCKSTATE();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Try and get a reference count on the nfsv4rootfs_lock so that
|
|
* no nfsd thread can acquire an exclusive lock on it before this
|
|
* call is done. If it is already exclusively locked, just return.
|
|
*/
|
|
NFSLOCKV4ROOTMUTEX();
|
|
got_ref = nfsv4_getref_nonblock(&nfsv4rootfs_lock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
if (got_ref == 0) {
|
|
NFSUNLOCKSTATE();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* For each client...
|
|
*/
|
|
for (i = 0; i < NFSCLIENTHASHSIZE; i++) {
|
|
clp = LIST_FIRST(&nfsclienthash[i]);
|
|
while (clp != LIST_END(&nfsclienthash[i])) {
|
|
nclp = LIST_NEXT(clp, lc_hash);
|
|
if (!(clp->lc_flags & LCL_EXPIREIT)) {
|
|
if (((clp->lc_expiry + NFSRV_STALELEASE) < NFSD_MONOSEC
|
|
&& ((LIST_EMPTY(&clp->lc_deleg)
|
|
&& LIST_EMPTY(&clp->lc_open)) ||
|
|
nfsrv_clients > nfsrv_clienthighwater)) ||
|
|
(clp->lc_expiry + NFSRV_MOULDYLEASE) < NFSD_MONOSEC ||
|
|
(clp->lc_expiry < NFSD_MONOSEC &&
|
|
(nfsrv_openpluslock * 10 / 9) > NFSRV_V4STATELIMIT)) {
|
|
/*
|
|
* Lease has expired several nfsrv_lease times ago:
|
|
* PLUS
|
|
* - no state is associated with it
|
|
* OR
|
|
* - above high water mark for number of clients
|
|
* (nfsrv_clienthighwater should be large enough
|
|
* that this only occurs when clients fail to
|
|
* use the same nfs_client_id4.id. Maybe somewhat
|
|
* higher that the maximum number of clients that
|
|
* will mount this server?)
|
|
* OR
|
|
* Lease has expired a very long time ago
|
|
* OR
|
|
* Lease has expired PLUS the number of opens + locks
|
|
* has exceeded 90% of capacity
|
|
*
|
|
* --> Mark for expiry. The actual expiry will be done
|
|
* by an nfsd sometime soon.
|
|
*/
|
|
clp->lc_flags |= LCL_EXPIREIT;
|
|
nfsrv_stablefirst.nsf_flags |=
|
|
(NFSNSF_NEEDLOCK | NFSNSF_EXPIREDCLIENT);
|
|
} else {
|
|
/*
|
|
* If there are no opens, increment no open tick cnt
|
|
* If time exceeds NFSNOOPEN, mark it to be thrown away
|
|
* otherwise, if there is an open, reset no open time
|
|
* Hopefully, this will avoid excessive re-creation
|
|
* of open owners and subsequent open confirms.
|
|
*/
|
|
stp = LIST_FIRST(&clp->lc_open);
|
|
while (stp != LIST_END(&clp->lc_open)) {
|
|
nstp = LIST_NEXT(stp, ls_list);
|
|
if (LIST_EMPTY(&stp->ls_open)) {
|
|
stp->ls_noopens++;
|
|
if (stp->ls_noopens > NFSNOOPEN ||
|
|
(nfsrv_openpluslock * 2) >
|
|
NFSRV_V4STATELIMIT)
|
|
nfsrv_stablefirst.nsf_flags |=
|
|
NFSNSF_NOOPENS;
|
|
} else {
|
|
stp->ls_noopens = 0;
|
|
}
|
|
stp = nstp;
|
|
}
|
|
}
|
|
}
|
|
clp = nclp;
|
|
}
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_relref(&nfsv4rootfs_lock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
|
|
/*
|
|
* The following set of functions free up the various data structures.
|
|
*/
|
|
/*
|
|
* Clear out all open/lock state related to this nfsclient.
|
|
* Caller must hold an exclusive lock on nfsv4rootfs_lock, so that
|
|
* there are no other active nfsd threads.
|
|
*/
|
|
APPLESTATIC void
|
|
nfsrv_cleanclient(struct nfsclient *clp, NFSPROC_T *p)
|
|
{
|
|
struct nfsstate *stp, *nstp;
|
|
|
|
LIST_FOREACH_SAFE(stp, &clp->lc_open, ls_list, nstp)
|
|
nfsrv_freeopenowner(stp, 1, p);
|
|
}
|
|
|
|
/*
|
|
* Free a client that has been cleaned. It should also already have been
|
|
* removed from the lists.
|
|
* (Just to be safe w.r.t. newnfs_disconnect(), call this function when
|
|
* softclock interrupts are enabled.)
|
|
*/
|
|
APPLESTATIC void
|
|
nfsrv_zapclient(struct nfsclient *clp, NFSPROC_T *p)
|
|
{
|
|
|
|
#ifdef notyet
|
|
if ((clp->lc_flags & (LCL_GSS | LCL_CALLBACKSON)) ==
|
|
(LCL_GSS | LCL_CALLBACKSON) &&
|
|
(clp->lc_hand.nfsh_flag & NFSG_COMPLETE) &&
|
|
clp->lc_handlelen > 0) {
|
|
clp->lc_hand.nfsh_flag &= ~NFSG_COMPLETE;
|
|
clp->lc_hand.nfsh_flag |= NFSG_DESTROYED;
|
|
(void) nfsrv_docallback(clp, NFSV4PROC_CBNULL,
|
|
NULL, 0, NULL, NULL, NULL, p);
|
|
}
|
|
#endif
|
|
newnfs_disconnect(&clp->lc_req);
|
|
NFSSOCKADDRFREE(clp->lc_req.nr_nam);
|
|
NFSFREEMUTEX(&clp->lc_req.nr_mtx);
|
|
free((caddr_t)clp, M_NFSDCLIENT);
|
|
NFSLOCKSTATE();
|
|
newnfsstats.srvclients--;
|
|
nfsrv_openpluslock--;
|
|
nfsrv_clients--;
|
|
NFSUNLOCKSTATE();
|
|
}
|
|
|
|
/*
|
|
* Free a list of delegation state structures.
|
|
* (This function will also free all nfslockfile structures that no
|
|
* longer have associated state.)
|
|
*/
|
|
APPLESTATIC void
|
|
nfsrv_freedeleglist(struct nfsstatehead *sthp)
|
|
{
|
|
struct nfsstate *stp, *nstp;
|
|
|
|
LIST_FOREACH_SAFE(stp, sthp, ls_list, nstp) {
|
|
nfsrv_freedeleg(stp);
|
|
}
|
|
LIST_INIT(sthp);
|
|
}
|
|
|
|
/*
|
|
* Free up a delegation.
|
|
*/
|
|
static void
|
|
nfsrv_freedeleg(struct nfsstate *stp)
|
|
{
|
|
struct nfslockfile *lfp;
|
|
|
|
LIST_REMOVE(stp, ls_hash);
|
|
LIST_REMOVE(stp, ls_list);
|
|
LIST_REMOVE(stp, ls_file);
|
|
lfp = stp->ls_lfp;
|
|
if (LIST_EMPTY(&lfp->lf_open) &&
|
|
LIST_EMPTY(&lfp->lf_lock) && LIST_EMPTY(&lfp->lf_deleg) &&
|
|
LIST_EMPTY(&lfp->lf_locallock) && LIST_EMPTY(&lfp->lf_rollback) &&
|
|
lfp->lf_usecount == 0 &&
|
|
nfsv4_testlock(&lfp->lf_locallock_lck) == 0)
|
|
nfsrv_freenfslockfile(lfp);
|
|
FREE((caddr_t)stp, M_NFSDSTATE);
|
|
newnfsstats.srvdelegates--;
|
|
nfsrv_openpluslock--;
|
|
nfsrv_delegatecnt--;
|
|
}
|
|
|
|
/*
|
|
* This function frees an open owner and all associated opens.
|
|
*/
|
|
static void
|
|
nfsrv_freeopenowner(struct nfsstate *stp, int cansleep, NFSPROC_T *p)
|
|
{
|
|
struct nfsstate *nstp, *tstp;
|
|
|
|
LIST_REMOVE(stp, ls_list);
|
|
/*
|
|
* Now, free all associated opens.
|
|
*/
|
|
nstp = LIST_FIRST(&stp->ls_open);
|
|
while (nstp != LIST_END(&stp->ls_open)) {
|
|
tstp = nstp;
|
|
nstp = LIST_NEXT(nstp, ls_list);
|
|
(void) nfsrv_freeopen(tstp, NULL, cansleep, p);
|
|
}
|
|
if (stp->ls_op)
|
|
nfsrvd_derefcache(stp->ls_op);
|
|
FREE((caddr_t)stp, M_NFSDSTATE);
|
|
newnfsstats.srvopenowners--;
|
|
nfsrv_openpluslock--;
|
|
}
|
|
|
|
/*
|
|
* This function frees an open (nfsstate open structure) with all associated
|
|
* lock_owners and locks. It also frees the nfslockfile structure iff there
|
|
* are no other opens on the file.
|
|
* Returns 1 if it free'd the nfslockfile, 0 otherwise.
|
|
*/
|
|
static int
|
|
nfsrv_freeopen(struct nfsstate *stp, vnode_t vp, int cansleep, NFSPROC_T *p)
|
|
{
|
|
struct nfsstate *nstp, *tstp;
|
|
struct nfslockfile *lfp;
|
|
int ret;
|
|
|
|
LIST_REMOVE(stp, ls_hash);
|
|
LIST_REMOVE(stp, ls_list);
|
|
LIST_REMOVE(stp, ls_file);
|
|
|
|
lfp = stp->ls_lfp;
|
|
/*
|
|
* Now, free all lockowners associated with this open.
|
|
*/
|
|
LIST_FOREACH_SAFE(tstp, &stp->ls_open, ls_list, nstp)
|
|
nfsrv_freelockowner(tstp, vp, cansleep, p);
|
|
|
|
/*
|
|
* The nfslockfile is freed here if there are no locks
|
|
* associated with the open.
|
|
* If there are locks associated with the open, the
|
|
* nfslockfile structure can be freed via nfsrv_freelockowner().
|
|
* Acquire the state mutex to avoid races with calls to
|
|
* nfsrv_getlockfile().
|
|
*/
|
|
if (cansleep != 0)
|
|
NFSLOCKSTATE();
|
|
if (lfp != NULL && LIST_EMPTY(&lfp->lf_open) &&
|
|
LIST_EMPTY(&lfp->lf_deleg) && LIST_EMPTY(&lfp->lf_lock) &&
|
|
LIST_EMPTY(&lfp->lf_locallock) && LIST_EMPTY(&lfp->lf_rollback) &&
|
|
lfp->lf_usecount == 0 &&
|
|
(cansleep != 0 || nfsv4_testlock(&lfp->lf_locallock_lck) == 0)) {
|
|
nfsrv_freenfslockfile(lfp);
|
|
ret = 1;
|
|
} else
|
|
ret = 0;
|
|
if (cansleep != 0)
|
|
NFSUNLOCKSTATE();
|
|
FREE((caddr_t)stp, M_NFSDSTATE);
|
|
newnfsstats.srvopens--;
|
|
nfsrv_openpluslock--;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Frees a lockowner and all associated locks.
|
|
*/
|
|
static void
|
|
nfsrv_freelockowner(struct nfsstate *stp, vnode_t vp, int cansleep,
|
|
NFSPROC_T *p)
|
|
{
|
|
|
|
LIST_REMOVE(stp, ls_hash);
|
|
LIST_REMOVE(stp, ls_list);
|
|
nfsrv_freeallnfslocks(stp, vp, cansleep, p);
|
|
if (stp->ls_op)
|
|
nfsrvd_derefcache(stp->ls_op);
|
|
FREE((caddr_t)stp, M_NFSDSTATE);
|
|
newnfsstats.srvlockowners--;
|
|
nfsrv_openpluslock--;
|
|
}
|
|
|
|
/*
|
|
* Free all the nfs locks on a lockowner.
|
|
*/
|
|
static void
|
|
nfsrv_freeallnfslocks(struct nfsstate *stp, vnode_t vp, int cansleep,
|
|
NFSPROC_T *p)
|
|
{
|
|
struct nfslock *lop, *nlop;
|
|
struct nfsrollback *rlp, *nrlp;
|
|
struct nfslockfile *lfp = NULL;
|
|
int gottvp = 0;
|
|
vnode_t tvp = NULL;
|
|
uint64_t first, end;
|
|
|
|
lop = LIST_FIRST(&stp->ls_lock);
|
|
while (lop != LIST_END(&stp->ls_lock)) {
|
|
nlop = LIST_NEXT(lop, lo_lckowner);
|
|
/*
|
|
* Since all locks should be for the same file, lfp should
|
|
* not change.
|
|
*/
|
|
if (lfp == NULL)
|
|
lfp = lop->lo_lfp;
|
|
else if (lfp != lop->lo_lfp)
|
|
panic("allnfslocks");
|
|
/*
|
|
* If vp is NULL and cansleep != 0, a vnode must be acquired
|
|
* from the file handle. This only occurs when called from
|
|
* nfsrv_cleanclient().
|
|
*/
|
|
if (gottvp == 0) {
|
|
if (nfsrv_dolocallocks == 0)
|
|
tvp = NULL;
|
|
else if (vp == NULL && cansleep != 0)
|
|
tvp = nfsvno_getvp(&lfp->lf_fh);
|
|
else
|
|
tvp = vp;
|
|
gottvp = 1;
|
|
}
|
|
|
|
if (tvp != NULL) {
|
|
if (cansleep == 0)
|
|
panic("allnfs2");
|
|
first = lop->lo_first;
|
|
end = lop->lo_end;
|
|
nfsrv_freenfslock(lop);
|
|
nfsrv_localunlock(tvp, lfp, first, end, p);
|
|
LIST_FOREACH_SAFE(rlp, &lfp->lf_rollback, rlck_list,
|
|
nrlp)
|
|
free(rlp, M_NFSDROLLBACK);
|
|
LIST_INIT(&lfp->lf_rollback);
|
|
} else
|
|
nfsrv_freenfslock(lop);
|
|
lop = nlop;
|
|
}
|
|
if (vp == NULL && tvp != NULL)
|
|
vput(tvp);
|
|
}
|
|
|
|
/*
|
|
* Free an nfslock structure.
|
|
*/
|
|
static void
|
|
nfsrv_freenfslock(struct nfslock *lop)
|
|
{
|
|
|
|
if (lop->lo_lckfile.le_prev != NULL) {
|
|
LIST_REMOVE(lop, lo_lckfile);
|
|
newnfsstats.srvlocks--;
|
|
nfsrv_openpluslock--;
|
|
}
|
|
LIST_REMOVE(lop, lo_lckowner);
|
|
FREE((caddr_t)lop, M_NFSDLOCK);
|
|
}
|
|
|
|
/*
|
|
* This function frees an nfslockfile structure.
|
|
*/
|
|
static void
|
|
nfsrv_freenfslockfile(struct nfslockfile *lfp)
|
|
{
|
|
|
|
LIST_REMOVE(lfp, lf_hash);
|
|
FREE((caddr_t)lfp, M_NFSDLOCKFILE);
|
|
}
|
|
|
|
/*
|
|
* This function looks up an nfsstate structure via stateid.
|
|
*/
|
|
static int
|
|
nfsrv_getstate(struct nfsclient *clp, nfsv4stateid_t *stateidp, __unused u_int32_t flags,
|
|
struct nfsstate **stpp)
|
|
{
|
|
struct nfsstate *stp;
|
|
struct nfsstatehead *hp;
|
|
|
|
*stpp = NULL;
|
|
hp = NFSSTATEHASH(clp, *stateidp);
|
|
LIST_FOREACH(stp, hp, ls_hash) {
|
|
if (!NFSBCMP(stp->ls_stateid.other, stateidp->other,
|
|
NFSX_STATEIDOTHER))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If no state id in list, return NFSERR_BADSTATEID.
|
|
*/
|
|
if (stp == LIST_END(hp))
|
|
return (NFSERR_BADSTATEID);
|
|
*stpp = stp;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function gets an nfsstate structure via owner string.
|
|
*/
|
|
static void
|
|
nfsrv_getowner(struct nfsstatehead *hp, struct nfsstate *new_stp,
|
|
struct nfsstate **stpp)
|
|
{
|
|
struct nfsstate *stp;
|
|
|
|
*stpp = NULL;
|
|
LIST_FOREACH(stp, hp, ls_list) {
|
|
if (new_stp->ls_ownerlen == stp->ls_ownerlen &&
|
|
!NFSBCMP(new_stp->ls_owner,stp->ls_owner,stp->ls_ownerlen)) {
|
|
*stpp = stp;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Lock control function called to update lock status.
|
|
* Returns 0 upon success, -1 if there is no lock and the flags indicate
|
|
* that one isn't to be created and an NFSERR_xxx for other errors.
|
|
* The structures new_stp and new_lop are passed in as pointers that should
|
|
* be set to NULL if the structure is used and shouldn't be free'd.
|
|
* For the NFSLCK_TEST and NFSLCK_CHECK cases, the structures are
|
|
* never used and can safely be allocated on the stack. For all other
|
|
* cases, *new_stpp and *new_lopp should be malloc'd before the call,
|
|
* in case they are used.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_lockctrl(vnode_t vp, struct nfsstate **new_stpp,
|
|
struct nfslock **new_lopp, struct nfslockconflict *cfp,
|
|
nfsquad_t clientid, nfsv4stateid_t *stateidp,
|
|
__unused struct nfsexstuff *exp,
|
|
struct nfsrv_descript *nd, NFSPROC_T *p)
|
|
{
|
|
struct nfslock *lop;
|
|
struct nfsstate *new_stp = *new_stpp;
|
|
struct nfslock *new_lop = *new_lopp;
|
|
struct nfsstate *tstp, *mystp, *nstp;
|
|
int specialid = 0;
|
|
struct nfslockfile *lfp;
|
|
struct nfslock *other_lop = NULL;
|
|
struct nfsstate *stp, *lckstp = NULL;
|
|
struct nfsclient *clp = NULL;
|
|
u_int32_t bits;
|
|
int error = 0, haslock = 0, ret, reterr;
|
|
int getlckret, delegation = 0, filestruct_locked;
|
|
fhandle_t nfh;
|
|
uint64_t first, end;
|
|
uint32_t lock_flags;
|
|
|
|
if (new_stp->ls_flags & (NFSLCK_CHECK | NFSLCK_SETATTR)) {
|
|
/*
|
|
* Note the special cases of "all 1s" or "all 0s" stateids and
|
|
* let reads with all 1s go ahead.
|
|
*/
|
|
if (new_stp->ls_stateid.seqid == 0x0 &&
|
|
new_stp->ls_stateid.other[0] == 0x0 &&
|
|
new_stp->ls_stateid.other[1] == 0x0 &&
|
|
new_stp->ls_stateid.other[2] == 0x0)
|
|
specialid = 1;
|
|
else if (new_stp->ls_stateid.seqid == 0xffffffff &&
|
|
new_stp->ls_stateid.other[0] == 0xffffffff &&
|
|
new_stp->ls_stateid.other[1] == 0xffffffff &&
|
|
new_stp->ls_stateid.other[2] == 0xffffffff)
|
|
specialid = 2;
|
|
}
|
|
|
|
/*
|
|
* Check for restart conditions (client and server).
|
|
*/
|
|
error = nfsrv_checkrestart(clientid, new_stp->ls_flags,
|
|
&new_stp->ls_stateid, specialid);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Check for state resource limit exceeded.
|
|
*/
|
|
if ((new_stp->ls_flags & NFSLCK_LOCK) &&
|
|
nfsrv_openpluslock > NFSRV_V4STATELIMIT)
|
|
return (NFSERR_RESOURCE);
|
|
|
|
/*
|
|
* For the lock case, get another nfslock structure,
|
|
* just in case we need it.
|
|
* Malloc now, before we start sifting through the linked lists,
|
|
* in case we have to wait for memory.
|
|
*/
|
|
tryagain:
|
|
if (new_stp->ls_flags & NFSLCK_LOCK)
|
|
MALLOC(other_lop, struct nfslock *, sizeof (struct nfslock),
|
|
M_NFSDLOCK, M_WAITOK);
|
|
filestruct_locked = 0;
|
|
reterr = 0;
|
|
lfp = NULL;
|
|
|
|
/*
|
|
* Get the lockfile structure for CFH now, so we can do a sanity
|
|
* check against the stateid, before incrementing the seqid#, since
|
|
* we want to return NFSERR_BADSTATEID on failure and the seqid#
|
|
* shouldn't be incremented for this case.
|
|
* If nfsrv_getlockfile() returns -1, it means "not found", which
|
|
* will be handled later.
|
|
* If we are doing Lock/LockU and local locking is enabled, sleep
|
|
* lock the nfslockfile structure.
|
|
*/
|
|
getlckret = nfsrv_getlockfh(vp, new_stp->ls_flags, NULL, &nfh, p);
|
|
NFSLOCKSTATE();
|
|
if (getlckret == 0) {
|
|
if ((new_stp->ls_flags & (NFSLCK_LOCK | NFSLCK_UNLOCK)) != 0 &&
|
|
nfsrv_dolocallocks != 0 && nd->nd_repstat == 0) {
|
|
getlckret = nfsrv_getlockfile(new_stp->ls_flags, NULL,
|
|
&lfp, &nfh, 1);
|
|
if (getlckret == 0)
|
|
filestruct_locked = 1;
|
|
} else
|
|
getlckret = nfsrv_getlockfile(new_stp->ls_flags, NULL,
|
|
&lfp, &nfh, 0);
|
|
}
|
|
if (getlckret != 0 && getlckret != -1)
|
|
reterr = getlckret;
|
|
|
|
if (filestruct_locked != 0) {
|
|
LIST_INIT(&lfp->lf_rollback);
|
|
if ((new_stp->ls_flags & NFSLCK_LOCK)) {
|
|
/*
|
|
* For local locking, do the advisory locking now, so
|
|
* that any conflict can be detected. A failure later
|
|
* can be rolled back locally. If an error is returned,
|
|
* struct nfslockfile has been unlocked and any local
|
|
* locking rolled back.
|
|
*/
|
|
NFSUNLOCKSTATE();
|
|
reterr = nfsrv_locallock(vp, lfp,
|
|
(new_lop->lo_flags & (NFSLCK_READ | NFSLCK_WRITE)),
|
|
new_lop->lo_first, new_lop->lo_end, cfp, p);
|
|
NFSLOCKSTATE();
|
|
}
|
|
}
|
|
|
|
if (specialid == 0) {
|
|
if (new_stp->ls_flags & NFSLCK_TEST) {
|
|
/*
|
|
* RFC 3530 does not list LockT as an op that renews a
|
|
* lease, but the concensus seems to be that it is ok
|
|
* for a server to do so.
|
|
*/
|
|
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp,
|
|
(nfsquad_t)((u_quad_t)0), NULL, p);
|
|
|
|
/*
|
|
* Since NFSERR_EXPIRED, NFSERR_ADMINREVOKED are not valid
|
|
* error returns for LockT, just go ahead and test for a lock,
|
|
* since there are no locks for this client, but other locks
|
|
* can conflict. (ie. same client will always be false)
|
|
*/
|
|
if (error == NFSERR_EXPIRED || error == NFSERR_ADMINREVOKED)
|
|
error = 0;
|
|
lckstp = new_stp;
|
|
} else {
|
|
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp,
|
|
(nfsquad_t)((u_quad_t)0), NULL, p);
|
|
if (error == 0)
|
|
/*
|
|
* Look up the stateid
|
|
*/
|
|
error = nfsrv_getstate(clp, &new_stp->ls_stateid,
|
|
new_stp->ls_flags, &stp);
|
|
/*
|
|
* do some sanity checks for an unconfirmed open or a
|
|
* stateid that refers to the wrong file, for an open stateid
|
|
*/
|
|
if (error == 0 && (stp->ls_flags & NFSLCK_OPEN) &&
|
|
((stp->ls_openowner->ls_flags & NFSLCK_NEEDSCONFIRM) ||
|
|
(getlckret == 0 && stp->ls_lfp != lfp)))
|
|
error = NFSERR_BADSTATEID;
|
|
if (error == 0 &&
|
|
(stp->ls_flags & (NFSLCK_DELEGREAD | NFSLCK_DELEGWRITE)) &&
|
|
getlckret == 0 && stp->ls_lfp != lfp)
|
|
error = NFSERR_BADSTATEID;
|
|
|
|
/*
|
|
* If the lockowner stateid doesn't refer to the same file,
|
|
* I believe that is considered ok, since some clients will
|
|
* only create a single lockowner and use that for all locks
|
|
* on all files.
|
|
* For now, log it as a diagnostic, instead of considering it
|
|
* a BadStateid.
|
|
*/
|
|
if (error == 0 && (stp->ls_flags &
|
|
(NFSLCK_OPEN | NFSLCK_DELEGREAD | NFSLCK_DELEGWRITE)) == 0 &&
|
|
getlckret == 0 && stp->ls_lfp != lfp) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("Got a lock statid for different file open\n");
|
|
#endif
|
|
/*
|
|
error = NFSERR_BADSTATEID;
|
|
*/
|
|
}
|
|
|
|
if (error == 0) {
|
|
if (new_stp->ls_flags & NFSLCK_OPENTOLOCK) {
|
|
/*
|
|
* If haslock set, we've already checked the seqid.
|
|
*/
|
|
if (!haslock) {
|
|
if (stp->ls_flags & NFSLCK_OPEN)
|
|
error = nfsrv_checkseqid(nd, new_stp->ls_seq,
|
|
stp->ls_openowner, new_stp->ls_op);
|
|
else
|
|
error = NFSERR_BADSTATEID;
|
|
}
|
|
if (!error)
|
|
nfsrv_getowner(&stp->ls_open, new_stp, &lckstp);
|
|
if (lckstp)
|
|
/*
|
|
* I believe this should be an error, but it
|
|
* isn't obvious what NFSERR_xxx would be
|
|
* appropriate, so I'll use NFSERR_INVAL for now.
|
|
*/
|
|
error = NFSERR_INVAL;
|
|
else
|
|
lckstp = new_stp;
|
|
} else if (new_stp->ls_flags&(NFSLCK_LOCK|NFSLCK_UNLOCK)) {
|
|
/*
|
|
* If haslock set, ditto above.
|
|
*/
|
|
if (!haslock) {
|
|
if (stp->ls_flags & NFSLCK_OPEN)
|
|
error = NFSERR_BADSTATEID;
|
|
else
|
|
error = nfsrv_checkseqid(nd, new_stp->ls_seq,
|
|
stp, new_stp->ls_op);
|
|
}
|
|
lckstp = stp;
|
|
} else {
|
|
lckstp = stp;
|
|
}
|
|
}
|
|
/*
|
|
* If the seqid part of the stateid isn't the same, return
|
|
* NFSERR_OLDSTATEID for cases other than I/O Ops.
|
|
* For I/O Ops, only return NFSERR_OLDSTATEID if
|
|
* nfsrv_returnoldstateid is set. (The concensus on the email
|
|
* list was that most clients would prefer to not receive
|
|
* NFSERR_OLDSTATEID for I/O Ops, but the RFC suggests that that
|
|
* is what will happen, so I use the nfsrv_returnoldstateid to
|
|
* allow for either server configuration.)
|
|
*/
|
|
if (!error && stp->ls_stateid.seqid!=new_stp->ls_stateid.seqid &&
|
|
(!(new_stp->ls_flags & NFSLCK_CHECK) ||
|
|
nfsrv_returnoldstateid))
|
|
error = NFSERR_OLDSTATEID;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now we can check for grace.
|
|
*/
|
|
if (!error)
|
|
error = nfsrv_checkgrace(new_stp->ls_flags);
|
|
if ((new_stp->ls_flags & NFSLCK_RECLAIM) && !error &&
|
|
nfsrv_checkstable(clp))
|
|
error = NFSERR_NOGRACE;
|
|
/*
|
|
* If we successfully Reclaimed state, note that.
|
|
*/
|
|
if ((new_stp->ls_flags & NFSLCK_RECLAIM) && !error)
|
|
nfsrv_markstable(clp);
|
|
|
|
/*
|
|
* At this point, either error == NFSERR_BADSTATEID or the
|
|
* seqid# has been updated, so we can return any error.
|
|
* If error == 0, there may be an error in:
|
|
* nd_repstat - Set by the calling function.
|
|
* reterr - Set above, if getting the nfslockfile structure
|
|
* or acquiring the local lock failed.
|
|
* (If both of these are set, nd_repstat should probably be
|
|
* returned, since that error was detected before this
|
|
* function call.)
|
|
*/
|
|
if (error != 0 || nd->nd_repstat != 0 || reterr != 0) {
|
|
if (error == 0) {
|
|
if (nd->nd_repstat != 0)
|
|
error = nd->nd_repstat;
|
|
else
|
|
error = reterr;
|
|
}
|
|
if (filestruct_locked != 0) {
|
|
/* Roll back local locks. */
|
|
NFSUNLOCKSTATE();
|
|
nfsrv_locallock_rollback(vp, lfp, p);
|
|
NFSLOCKSTATE();
|
|
nfsrv_unlocklf(lfp);
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
if (other_lop)
|
|
FREE((caddr_t)other_lop, M_NFSDLOCK);
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Check the nfsrv_getlockfile return.
|
|
* Returned -1 if no structure found.
|
|
*/
|
|
if (getlckret == -1) {
|
|
error = NFSERR_EXPIRED;
|
|
/*
|
|
* Called from lockt, so no lock is OK.
|
|
*/
|
|
if (new_stp->ls_flags & NFSLCK_TEST) {
|
|
error = 0;
|
|
} else if (new_stp->ls_flags &
|
|
(NFSLCK_CHECK | NFSLCK_SETATTR)) {
|
|
/*
|
|
* Called to check for a lock, OK if the stateid is all
|
|
* 1s or all 0s, but there should be an nfsstate
|
|
* otherwise.
|
|
* (ie. If there is no open, I'll assume no share
|
|
* deny bits.)
|
|
*/
|
|
if (specialid)
|
|
error = 0;
|
|
else
|
|
error = NFSERR_BADSTATEID;
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
/*
|
|
* Called to lock or unlock, so the lock has gone away.
|
|
*/
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* For NFSLCK_CHECK and NFSLCK_LOCK, test for a share conflict.
|
|
* For NFSLCK_CHECK, allow a read if write access is granted,
|
|
* but check for a deny. For NFSLCK_LOCK, require correct access,
|
|
* which implies a conflicting deny can't exist.
|
|
*/
|
|
if (new_stp->ls_flags & (NFSLCK_CHECK | NFSLCK_LOCK)) {
|
|
/*
|
|
* Four kinds of state id:
|
|
* - specialid (all 0s or all 1s), only for NFSLCK_CHECK
|
|
* - stateid for an open
|
|
* - stateid for a delegation
|
|
* - stateid for a lock owner
|
|
*/
|
|
if (!specialid) {
|
|
if (stp->ls_flags & (NFSLCK_DELEGREAD | NFSLCK_DELEGWRITE)) {
|
|
delegation = 1;
|
|
mystp = stp;
|
|
nfsrv_delaydelegtimeout(stp);
|
|
} else if (stp->ls_flags & NFSLCK_OPEN) {
|
|
mystp = stp;
|
|
} else {
|
|
mystp = stp->ls_openstp;
|
|
}
|
|
/*
|
|
* If locking or checking, require correct access
|
|
* bit set.
|
|
*/
|
|
if (((new_stp->ls_flags & NFSLCK_LOCK) &&
|
|
!((new_lop->lo_flags >> NFSLCK_LOCKSHIFT) &
|
|
mystp->ls_flags & NFSLCK_ACCESSBITS)) ||
|
|
((new_stp->ls_flags & (NFSLCK_CHECK|NFSLCK_READACCESS)) ==
|
|
(NFSLCK_CHECK | NFSLCK_READACCESS) &&
|
|
!(mystp->ls_flags & NFSLCK_READACCESS)) ||
|
|
((new_stp->ls_flags & (NFSLCK_CHECK|NFSLCK_WRITEACCESS)) ==
|
|
(NFSLCK_CHECK | NFSLCK_WRITEACCESS) &&
|
|
!(mystp->ls_flags & NFSLCK_WRITEACCESS))) {
|
|
if (filestruct_locked != 0) {
|
|
/* Roll back local locks. */
|
|
NFSUNLOCKSTATE();
|
|
nfsrv_locallock_rollback(vp, lfp, p);
|
|
NFSLOCKSTATE();
|
|
nfsrv_unlocklf(lfp);
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
if (other_lop)
|
|
FREE((caddr_t)other_lop, M_NFSDLOCK);
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (NFSERR_OPENMODE);
|
|
}
|
|
} else
|
|
mystp = NULL;
|
|
if ((new_stp->ls_flags & NFSLCK_CHECK) && !delegation) {
|
|
/*
|
|
* Check for a conflicting deny bit.
|
|
*/
|
|
LIST_FOREACH(tstp, &lfp->lf_open, ls_file) {
|
|
if (tstp != mystp) {
|
|
bits = tstp->ls_flags;
|
|
bits >>= NFSLCK_SHIFT;
|
|
if (new_stp->ls_flags & bits & NFSLCK_ACCESSBITS) {
|
|
ret = nfsrv_clientconflict(tstp->ls_clp, &haslock,
|
|
vp, p);
|
|
if (ret) {
|
|
/*
|
|
* nfsrv_clientconflict unlocks state
|
|
* when it returns non-zero.
|
|
*/
|
|
lckstp = NULL;
|
|
goto tryagain;
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (NFSERR_OPENMODE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We're outta here */
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For setattr, just get rid of all the Delegations for other clients.
|
|
*/
|
|
if (new_stp->ls_flags & NFSLCK_SETATTR) {
|
|
ret = nfsrv_cleandeleg(vp, lfp, clp, &haslock, p);
|
|
if (ret) {
|
|
/*
|
|
* nfsrv_cleandeleg() unlocks state when it
|
|
* returns non-zero.
|
|
*/
|
|
if (ret == -1) {
|
|
lckstp = NULL;
|
|
goto tryagain;
|
|
}
|
|
return (ret);
|
|
}
|
|
if (!(new_stp->ls_flags & NFSLCK_CHECK) ||
|
|
(LIST_EMPTY(&lfp->lf_open) && LIST_EMPTY(&lfp->lf_lock) &&
|
|
LIST_EMPTY(&lfp->lf_deleg))) {
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for a conflicting delegation. If one is found, call
|
|
* nfsrv_delegconflict() to handle it. If the v4root lock hasn't
|
|
* been set yet, it will get the lock. Otherwise, it will recall
|
|
* the delegation. Then, we try try again...
|
|
* I currently believe the conflict algorithm to be:
|
|
* For Lock Ops (Lock/LockT/LockU)
|
|
* - there is a conflict iff a different client has a write delegation
|
|
* For Reading (Read Op)
|
|
* - there is a conflict iff a different client has a write delegation
|
|
* (the specialids are always a different client)
|
|
* For Writing (Write/Setattr of size)
|
|
* - there is a conflict if a different client has any delegation
|
|
* - there is a conflict if the same client has a read delegation
|
|
* (I don't understand why this isn't allowed, but that seems to be
|
|
* the current concensus?)
|
|
*/
|
|
tstp = LIST_FIRST(&lfp->lf_deleg);
|
|
while (tstp != LIST_END(&lfp->lf_deleg)) {
|
|
nstp = LIST_NEXT(tstp, ls_file);
|
|
if ((((new_stp->ls_flags&(NFSLCK_LOCK|NFSLCK_UNLOCK|NFSLCK_TEST))||
|
|
((new_stp->ls_flags & NFSLCK_CHECK) &&
|
|
(new_lop->lo_flags & NFSLCK_READ))) &&
|
|
clp != tstp->ls_clp &&
|
|
(tstp->ls_flags & NFSLCK_DELEGWRITE)) ||
|
|
((new_stp->ls_flags & NFSLCK_CHECK) &&
|
|
(new_lop->lo_flags & NFSLCK_WRITE) &&
|
|
(clp != tstp->ls_clp ||
|
|
(tstp->ls_flags & NFSLCK_DELEGREAD)))) {
|
|
if (filestruct_locked != 0) {
|
|
/* Roll back local locks. */
|
|
NFSUNLOCKSTATE();
|
|
nfsrv_locallock_rollback(vp, lfp, p);
|
|
NFSLOCKSTATE();
|
|
nfsrv_unlocklf(lfp);
|
|
}
|
|
ret = nfsrv_delegconflict(tstp, &haslock, p, vp);
|
|
if (ret) {
|
|
/*
|
|
* nfsrv_delegconflict unlocks state when it
|
|
* returns non-zero, which it always does.
|
|
*/
|
|
if (other_lop) {
|
|
FREE((caddr_t)other_lop, M_NFSDLOCK);
|
|
other_lop = NULL;
|
|
}
|
|
if (ret == -1) {
|
|
lckstp = NULL;
|
|
goto tryagain;
|
|
}
|
|
return (ret);
|
|
}
|
|
/* Never gets here. */
|
|
}
|
|
tstp = nstp;
|
|
}
|
|
|
|
/*
|
|
* Handle the unlock case by calling nfsrv_updatelock().
|
|
* (Should I have done some access checking above for unlock? For now,
|
|
* just let it happen.)
|
|
*/
|
|
if (new_stp->ls_flags & NFSLCK_UNLOCK) {
|
|
first = new_lop->lo_first;
|
|
end = new_lop->lo_end;
|
|
nfsrv_updatelock(stp, new_lopp, &other_lop, lfp);
|
|
stateidp->seqid = ++(stp->ls_stateid.seqid);
|
|
stateidp->other[0] = stp->ls_stateid.other[0];
|
|
stateidp->other[1] = stp->ls_stateid.other[1];
|
|
stateidp->other[2] = stp->ls_stateid.other[2];
|
|
if (filestruct_locked != 0) {
|
|
NFSUNLOCKSTATE();
|
|
/* Update the local locks. */
|
|
nfsrv_localunlock(vp, lfp, first, end, p);
|
|
NFSLOCKSTATE();
|
|
nfsrv_unlocklf(lfp);
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Search for a conflicting lock. A lock conflicts if:
|
|
* - the lock range overlaps and
|
|
* - at least one lock is a write lock and
|
|
* - it is not owned by the same lock owner
|
|
*/
|
|
if (!delegation) {
|
|
LIST_FOREACH(lop, &lfp->lf_lock, lo_lckfile) {
|
|
if (new_lop->lo_end > lop->lo_first &&
|
|
new_lop->lo_first < lop->lo_end &&
|
|
(new_lop->lo_flags == NFSLCK_WRITE ||
|
|
lop->lo_flags == NFSLCK_WRITE) &&
|
|
lckstp != lop->lo_stp &&
|
|
(clp != lop->lo_stp->ls_clp ||
|
|
lckstp->ls_ownerlen != lop->lo_stp->ls_ownerlen ||
|
|
NFSBCMP(lckstp->ls_owner, lop->lo_stp->ls_owner,
|
|
lckstp->ls_ownerlen))) {
|
|
if (other_lop) {
|
|
FREE((caddr_t)other_lop, M_NFSDLOCK);
|
|
other_lop = NULL;
|
|
}
|
|
ret = nfsrv_clientconflict(lop->lo_stp->ls_clp,&haslock,vp,p);
|
|
if (ret) {
|
|
if (filestruct_locked != 0) {
|
|
/* Roll back local locks. */
|
|
nfsrv_locallock_rollback(vp, lfp, p);
|
|
NFSLOCKSTATE();
|
|
nfsrv_unlocklf(lfp);
|
|
NFSUNLOCKSTATE();
|
|
}
|
|
/*
|
|
* nfsrv_clientconflict() unlocks state when it
|
|
* returns non-zero.
|
|
*/
|
|
lckstp = NULL;
|
|
goto tryagain;
|
|
}
|
|
/*
|
|
* Found a conflicting lock, so record the conflict and
|
|
* return the error.
|
|
*/
|
|
if (cfp) {
|
|
cfp->cl_clientid.lval[0]=lop->lo_stp->ls_stateid.other[0];
|
|
cfp->cl_clientid.lval[1]=lop->lo_stp->ls_stateid.other[1];
|
|
cfp->cl_first = lop->lo_first;
|
|
cfp->cl_end = lop->lo_end;
|
|
cfp->cl_flags = lop->lo_flags;
|
|
cfp->cl_ownerlen = lop->lo_stp->ls_ownerlen;
|
|
NFSBCOPY(lop->lo_stp->ls_owner, cfp->cl_owner,
|
|
cfp->cl_ownerlen);
|
|
}
|
|
if (new_stp->ls_flags & NFSLCK_RECLAIM)
|
|
error = NFSERR_RECLAIMCONFLICT;
|
|
else if (new_stp->ls_flags & NFSLCK_CHECK)
|
|
error = NFSERR_LOCKED;
|
|
else
|
|
error = NFSERR_DENIED;
|
|
if (filestruct_locked != 0) {
|
|
/* Roll back local locks. */
|
|
NFSUNLOCKSTATE();
|
|
nfsrv_locallock_rollback(vp, lfp, p);
|
|
NFSLOCKSTATE();
|
|
nfsrv_unlocklf(lfp);
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We only get here if there was no lock that conflicted.
|
|
*/
|
|
if (new_stp->ls_flags & (NFSLCK_TEST | NFSLCK_CHECK)) {
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* We only get here when we are creating or modifying a lock.
|
|
* There are two variants:
|
|
* - exist_lock_owner where lock_owner exists
|
|
* - open_to_lock_owner with new lock_owner
|
|
*/
|
|
first = new_lop->lo_first;
|
|
end = new_lop->lo_end;
|
|
lock_flags = new_lop->lo_flags;
|
|
if (!(new_stp->ls_flags & NFSLCK_OPENTOLOCK)) {
|
|
nfsrv_updatelock(lckstp, new_lopp, &other_lop, lfp);
|
|
stateidp->seqid = ++(lckstp->ls_stateid.seqid);
|
|
stateidp->other[0] = lckstp->ls_stateid.other[0];
|
|
stateidp->other[1] = lckstp->ls_stateid.other[1];
|
|
stateidp->other[2] = lckstp->ls_stateid.other[2];
|
|
} else {
|
|
/*
|
|
* The new open_to_lock_owner case.
|
|
* Link the new nfsstate into the lists.
|
|
*/
|
|
new_stp->ls_seq = new_stp->ls_opentolockseq;
|
|
nfsrvd_refcache(new_stp->ls_op);
|
|
stateidp->seqid = new_stp->ls_stateid.seqid = 0;
|
|
stateidp->other[0] = new_stp->ls_stateid.other[0] =
|
|
clp->lc_clientid.lval[0];
|
|
stateidp->other[1] = new_stp->ls_stateid.other[1] =
|
|
clp->lc_clientid.lval[1];
|
|
stateidp->other[2] = new_stp->ls_stateid.other[2] =
|
|
nfsrv_nextstateindex(clp);
|
|
new_stp->ls_clp = clp;
|
|
LIST_INIT(&new_stp->ls_lock);
|
|
new_stp->ls_openstp = stp;
|
|
new_stp->ls_lfp = lfp;
|
|
nfsrv_insertlock(new_lop, (struct nfslock *)new_stp, new_stp,
|
|
lfp);
|
|
LIST_INSERT_HEAD(NFSSTATEHASH(clp, new_stp->ls_stateid),
|
|
new_stp, ls_hash);
|
|
LIST_INSERT_HEAD(&stp->ls_open, new_stp, ls_list);
|
|
*new_lopp = NULL;
|
|
*new_stpp = NULL;
|
|
newnfsstats.srvlockowners++;
|
|
nfsrv_openpluslock++;
|
|
}
|
|
if (filestruct_locked != 0) {
|
|
NFSUNLOCKSTATE();
|
|
nfsrv_locallock_commit(lfp, lock_flags, first, end);
|
|
NFSLOCKSTATE();
|
|
nfsrv_unlocklf(lfp);
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
if (other_lop)
|
|
FREE((caddr_t)other_lop, M_NFSDLOCK);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check for state errors for Open.
|
|
* repstat is passed back out as an error if more critical errors
|
|
* are not detected.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_opencheck(nfsquad_t clientid, nfsv4stateid_t *stateidp,
|
|
struct nfsstate *new_stp, vnode_t vp, struct nfsrv_descript *nd,
|
|
NFSPROC_T *p, int repstat)
|
|
{
|
|
struct nfsstate *stp, *nstp;
|
|
struct nfsclient *clp;
|
|
struct nfsstate *ownerstp;
|
|
struct nfslockfile *lfp, *new_lfp;
|
|
int error, haslock = 0, ret, readonly = 0, getfhret = 0;
|
|
|
|
if ((new_stp->ls_flags & NFSLCK_SHAREBITS) == NFSLCK_READACCESS)
|
|
readonly = 1;
|
|
/*
|
|
* Check for restart conditions (client and server).
|
|
*/
|
|
error = nfsrv_checkrestart(clientid, new_stp->ls_flags,
|
|
&new_stp->ls_stateid, 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Check for state resource limit exceeded.
|
|
* Technically this should be SMP protected, but the worst
|
|
* case error is "out by one or two" on the count when it
|
|
* returns NFSERR_RESOURCE and the limit is just a rather
|
|
* arbitrary high water mark, so no harm is done.
|
|
*/
|
|
if (nfsrv_openpluslock > NFSRV_V4STATELIMIT)
|
|
return (NFSERR_RESOURCE);
|
|
|
|
tryagain:
|
|
MALLOC(new_lfp, struct nfslockfile *, sizeof (struct nfslockfile),
|
|
M_NFSDLOCKFILE, M_WAITOK);
|
|
if (vp)
|
|
getfhret = nfsrv_getlockfh(vp, new_stp->ls_flags, &new_lfp,
|
|
NULL, p);
|
|
NFSLOCKSTATE();
|
|
/*
|
|
* Get the nfsclient structure.
|
|
*/
|
|
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp,
|
|
(nfsquad_t)((u_quad_t)0), NULL, p);
|
|
|
|
/*
|
|
* Look up the open owner. See if it needs confirmation and
|
|
* check the seq#, as required.
|
|
*/
|
|
if (!error)
|
|
nfsrv_getowner(&clp->lc_open, new_stp, &ownerstp);
|
|
|
|
if (!error && ownerstp) {
|
|
error = nfsrv_checkseqid(nd, new_stp->ls_seq, ownerstp,
|
|
new_stp->ls_op);
|
|
/*
|
|
* If the OpenOwner hasn't been confirmed, assume the
|
|
* old one was a replay and this one is ok.
|
|
* See: RFC3530 Sec. 14.2.18.
|
|
*/
|
|
if (error == NFSERR_BADSEQID &&
|
|
(ownerstp->ls_flags & NFSLCK_NEEDSCONFIRM))
|
|
error = 0;
|
|
}
|
|
|
|
/*
|
|
* Check for grace.
|
|
*/
|
|
if (!error)
|
|
error = nfsrv_checkgrace(new_stp->ls_flags);
|
|
if ((new_stp->ls_flags & NFSLCK_RECLAIM) && !error &&
|
|
nfsrv_checkstable(clp))
|
|
error = NFSERR_NOGRACE;
|
|
|
|
/*
|
|
* If none of the above errors occurred, let repstat be
|
|
* returned.
|
|
*/
|
|
if (repstat && !error)
|
|
error = repstat;
|
|
if (error) {
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
free((caddr_t)new_lfp, M_NFSDLOCKFILE);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* If vp == NULL, the file doesn't exist yet, so return ok.
|
|
* (This always happens on the first pass, so haslock must be 0.)
|
|
*/
|
|
if (vp == NULL) {
|
|
NFSUNLOCKSTATE();
|
|
FREE((caddr_t)new_lfp, M_NFSDLOCKFILE);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get the structure for the underlying file.
|
|
*/
|
|
if (getfhret)
|
|
error = getfhret;
|
|
else
|
|
error = nfsrv_getlockfile(new_stp->ls_flags, &new_lfp, &lfp,
|
|
NULL, 0);
|
|
if (new_lfp)
|
|
FREE((caddr_t)new_lfp, M_NFSDLOCKFILE);
|
|
if (error) {
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Search for a conflicting open/share.
|
|
*/
|
|
if (new_stp->ls_flags & NFSLCK_DELEGCUR) {
|
|
/*
|
|
* For Delegate_Cur, search for the matching Delegation,
|
|
* which indicates no conflict.
|
|
* An old delegation should have been recovered by the
|
|
* client doing a Claim_DELEGATE_Prev, so I won't let
|
|
* it match and return NFSERR_EXPIRED. Should I let it
|
|
* match?
|
|
*/
|
|
LIST_FOREACH(stp, &lfp->lf_deleg, ls_file) {
|
|
if (!(stp->ls_flags & NFSLCK_OLDDELEG) &&
|
|
stateidp->seqid == stp->ls_stateid.seqid &&
|
|
!NFSBCMP(stateidp->other, stp->ls_stateid.other,
|
|
NFSX_STATEIDOTHER))
|
|
break;
|
|
}
|
|
if (stp == LIST_END(&lfp->lf_deleg) ||
|
|
((new_stp->ls_flags & NFSLCK_WRITEACCESS) &&
|
|
(stp->ls_flags & NFSLCK_DELEGREAD))) {
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (NFSERR_EXPIRED);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for access/deny bit conflicts. I check for the same
|
|
* owner as well, in case the client didn't bother.
|
|
*/
|
|
LIST_FOREACH(stp, &lfp->lf_open, ls_file) {
|
|
if (!(new_stp->ls_flags & NFSLCK_DELEGCUR) &&
|
|
(((new_stp->ls_flags & NFSLCK_ACCESSBITS) &
|
|
((stp->ls_flags>>NFSLCK_SHIFT) & NFSLCK_ACCESSBITS))||
|
|
((stp->ls_flags & NFSLCK_ACCESSBITS) &
|
|
((new_stp->ls_flags>>NFSLCK_SHIFT)&NFSLCK_ACCESSBITS)))){
|
|
ret = nfsrv_clientconflict(stp->ls_clp,&haslock,vp,p);
|
|
if (ret) {
|
|
/*
|
|
* nfsrv_clientconflict() unlocks
|
|
* state when it returns non-zero.
|
|
*/
|
|
goto tryagain;
|
|
}
|
|
if (new_stp->ls_flags & NFSLCK_RECLAIM)
|
|
error = NFSERR_RECLAIMCONFLICT;
|
|
else
|
|
error = NFSERR_SHAREDENIED;
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for a conflicting delegation. If one is found, call
|
|
* nfsrv_delegconflict() to handle it. If the v4root lock hasn't
|
|
* been set yet, it will get the lock. Otherwise, it will recall
|
|
* the delegation. Then, we try try again...
|
|
* (If NFSLCK_DELEGCUR is set, it has a delegation, so there
|
|
* isn't a conflict.)
|
|
* I currently believe the conflict algorithm to be:
|
|
* For Open with Read Access and Deny None
|
|
* - there is a conflict iff a different client has a write delegation
|
|
* For Open with other Write Access or any Deny except None
|
|
* - there is a conflict if a different client has any delegation
|
|
* - there is a conflict if the same client has a read delegation
|
|
* (The current concensus is that this last case should be
|
|
* considered a conflict since the client with a read delegation
|
|
* could have done an Open with ReadAccess and WriteDeny
|
|
* locally and then not have checked for the WriteDeny.)
|
|
* Don't check for a Reclaim, since that will be dealt with
|
|
* by nfsrv_openctrl().
|
|
*/
|
|
if (!(new_stp->ls_flags &
|
|
(NFSLCK_DELEGPREV | NFSLCK_DELEGCUR | NFSLCK_RECLAIM))) {
|
|
stp = LIST_FIRST(&lfp->lf_deleg);
|
|
while (stp != LIST_END(&lfp->lf_deleg)) {
|
|
nstp = LIST_NEXT(stp, ls_file);
|
|
if ((readonly && stp->ls_clp != clp &&
|
|
(stp->ls_flags & NFSLCK_DELEGWRITE)) ||
|
|
(!readonly && (stp->ls_clp != clp ||
|
|
(stp->ls_flags & NFSLCK_DELEGREAD)))) {
|
|
ret = nfsrv_delegconflict(stp, &haslock, p, vp);
|
|
if (ret) {
|
|
/*
|
|
* nfsrv_delegconflict() unlocks state
|
|
* when it returns non-zero.
|
|
*/
|
|
if (ret == -1)
|
|
goto tryagain;
|
|
return (ret);
|
|
}
|
|
}
|
|
stp = nstp;
|
|
}
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Open control function to create/update open state for an open.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_openctrl(struct nfsrv_descript *nd, vnode_t vp,
|
|
struct nfsstate **new_stpp, nfsquad_t clientid, nfsv4stateid_t *stateidp,
|
|
nfsv4stateid_t *delegstateidp, u_int32_t *rflagsp, struct nfsexstuff *exp,
|
|
NFSPROC_T *p, u_quad_t filerev)
|
|
{
|
|
struct nfsstate *new_stp = *new_stpp;
|
|
struct nfsstate *stp, *nstp;
|
|
struct nfsstate *openstp = NULL, *new_open, *ownerstp, *new_deleg;
|
|
struct nfslockfile *lfp, *new_lfp;
|
|
struct nfsclient *clp;
|
|
int error, haslock = 0, ret, delegate = 1, writedeleg = 1;
|
|
int readonly = 0, cbret = 1, getfhret = 0;
|
|
|
|
if ((new_stp->ls_flags & NFSLCK_SHAREBITS) == NFSLCK_READACCESS)
|
|
readonly = 1;
|
|
/*
|
|
* Check for restart conditions (client and server).
|
|
* (Paranoia, should have been detected by nfsrv_opencheck().)
|
|
* If an error does show up, return NFSERR_EXPIRED, since the
|
|
* the seqid# has already been incremented.
|
|
*/
|
|
error = nfsrv_checkrestart(clientid, new_stp->ls_flags,
|
|
&new_stp->ls_stateid, 0);
|
|
if (error) {
|
|
printf("Nfsd: openctrl unexpected restart err=%d\n",
|
|
error);
|
|
return (NFSERR_EXPIRED);
|
|
}
|
|
|
|
tryagain:
|
|
MALLOC(new_lfp, struct nfslockfile *, sizeof (struct nfslockfile),
|
|
M_NFSDLOCKFILE, M_WAITOK);
|
|
MALLOC(new_open, struct nfsstate *, sizeof (struct nfsstate),
|
|
M_NFSDSTATE, M_WAITOK);
|
|
MALLOC(new_deleg, struct nfsstate *, sizeof (struct nfsstate),
|
|
M_NFSDSTATE, M_WAITOK);
|
|
getfhret = nfsrv_getlockfh(vp, new_stp->ls_flags, &new_lfp,
|
|
NULL, p);
|
|
NFSLOCKSTATE();
|
|
/*
|
|
* Get the client structure. Since the linked lists could be changed
|
|
* by other nfsd processes if this process does a tsleep(), one of
|
|
* two things must be done.
|
|
* 1 - don't tsleep()
|
|
* or
|
|
* 2 - get the nfsv4_lock() { indicated by haslock == 1 }
|
|
* before using the lists, since this lock stops the other
|
|
* nfsd. This should only be used for rare cases, since it
|
|
* essentially single threads the nfsd.
|
|
* At this time, it is only done for cases where the stable
|
|
* storage file must be written prior to completion of state
|
|
* expiration.
|
|
*/
|
|
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp,
|
|
(nfsquad_t)((u_quad_t)0), NULL, p);
|
|
if (!error && (clp->lc_flags & LCL_NEEDSCBNULL) &&
|
|
clp->lc_program) {
|
|
/*
|
|
* This happens on the first open for a client
|
|
* that supports callbacks.
|
|
*/
|
|
NFSUNLOCKSTATE();
|
|
/*
|
|
* Although nfsrv_docallback() will sleep, clp won't
|
|
* go away, since they are only removed when the
|
|
* nfsv4_lock() has blocked the nfsd threads. The
|
|
* fields in clp can change, but having multiple
|
|
* threads do this Null callback RPC should be
|
|
* harmless.
|
|
*/
|
|
cbret = nfsrv_docallback(clp, NFSV4PROC_CBNULL,
|
|
NULL, 0, NULL, NULL, NULL, p);
|
|
NFSLOCKSTATE();
|
|
clp->lc_flags &= ~LCL_NEEDSCBNULL;
|
|
if (!cbret)
|
|
clp->lc_flags |= LCL_CALLBACKSON;
|
|
}
|
|
|
|
/*
|
|
* Look up the open owner. See if it needs confirmation and
|
|
* check the seq#, as required.
|
|
*/
|
|
if (!error)
|
|
nfsrv_getowner(&clp->lc_open, new_stp, &ownerstp);
|
|
|
|
if (error) {
|
|
NFSUNLOCKSTATE();
|
|
printf("Nfsd: openctrl unexpected state err=%d\n",
|
|
error);
|
|
free((caddr_t)new_lfp, M_NFSDLOCKFILE);
|
|
free((caddr_t)new_open, M_NFSDSTATE);
|
|
free((caddr_t)new_deleg, M_NFSDSTATE);
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (NFSERR_EXPIRED);
|
|
}
|
|
|
|
if (new_stp->ls_flags & NFSLCK_RECLAIM)
|
|
nfsrv_markstable(clp);
|
|
|
|
/*
|
|
* Get the structure for the underlying file.
|
|
*/
|
|
if (getfhret)
|
|
error = getfhret;
|
|
else
|
|
error = nfsrv_getlockfile(new_stp->ls_flags, &new_lfp, &lfp,
|
|
NULL, 0);
|
|
if (new_lfp)
|
|
FREE((caddr_t)new_lfp, M_NFSDLOCKFILE);
|
|
if (error) {
|
|
NFSUNLOCKSTATE();
|
|
printf("Nfsd openctrl unexpected getlockfile err=%d\n",
|
|
error);
|
|
free((caddr_t)new_open, M_NFSDSTATE);
|
|
free((caddr_t)new_deleg, M_NFSDSTATE);
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Search for a conflicting open/share.
|
|
*/
|
|
if (new_stp->ls_flags & NFSLCK_DELEGCUR) {
|
|
/*
|
|
* For Delegate_Cur, search for the matching Delegation,
|
|
* which indicates no conflict.
|
|
* An old delegation should have been recovered by the
|
|
* client doing a Claim_DELEGATE_Prev, so I won't let
|
|
* it match and return NFSERR_EXPIRED. Should I let it
|
|
* match?
|
|
*/
|
|
LIST_FOREACH(stp, &lfp->lf_deleg, ls_file) {
|
|
if (!(stp->ls_flags & NFSLCK_OLDDELEG) &&
|
|
stateidp->seqid == stp->ls_stateid.seqid &&
|
|
!NFSBCMP(stateidp->other, stp->ls_stateid.other,
|
|
NFSX_STATEIDOTHER))
|
|
break;
|
|
}
|
|
if (stp == LIST_END(&lfp->lf_deleg) ||
|
|
((new_stp->ls_flags & NFSLCK_WRITEACCESS) &&
|
|
(stp->ls_flags & NFSLCK_DELEGREAD))) {
|
|
NFSUNLOCKSTATE();
|
|
printf("Nfsd openctrl unexpected expiry\n");
|
|
free((caddr_t)new_open, M_NFSDSTATE);
|
|
free((caddr_t)new_deleg, M_NFSDSTATE);
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (NFSERR_EXPIRED);
|
|
}
|
|
|
|
/*
|
|
* Don't issue a Delegation, since one already exists and
|
|
* delay delegation timeout, as required.
|
|
*/
|
|
delegate = 0;
|
|
nfsrv_delaydelegtimeout(stp);
|
|
}
|
|
|
|
/*
|
|
* Check for access/deny bit conflicts. I also check for the
|
|
* same owner, since the client might not have bothered to check.
|
|
* Also, note an open for the same file and owner, if found,
|
|
* which is all we do here for Delegate_Cur, since conflict
|
|
* checking is already done.
|
|
*/
|
|
LIST_FOREACH(stp, &lfp->lf_open, ls_file) {
|
|
if (ownerstp && stp->ls_openowner == ownerstp)
|
|
openstp = stp;
|
|
if (!(new_stp->ls_flags & NFSLCK_DELEGCUR)) {
|
|
/*
|
|
* If another client has the file open, the only
|
|
* delegation that can be issued is a Read delegation
|
|
* and only if it is a Read open with Deny none.
|
|
*/
|
|
if (clp != stp->ls_clp) {
|
|
if ((stp->ls_flags & NFSLCK_SHAREBITS) ==
|
|
NFSLCK_READACCESS)
|
|
writedeleg = 0;
|
|
else
|
|
delegate = 0;
|
|
}
|
|
if(((new_stp->ls_flags & NFSLCK_ACCESSBITS) &
|
|
((stp->ls_flags>>NFSLCK_SHIFT) & NFSLCK_ACCESSBITS))||
|
|
((stp->ls_flags & NFSLCK_ACCESSBITS) &
|
|
((new_stp->ls_flags>>NFSLCK_SHIFT)&NFSLCK_ACCESSBITS))){
|
|
ret = nfsrv_clientconflict(stp->ls_clp,&haslock,vp,p);
|
|
if (ret) {
|
|
/*
|
|
* nfsrv_clientconflict() unlocks state
|
|
* when it returns non-zero.
|
|
*/
|
|
free((caddr_t)new_open, M_NFSDSTATE);
|
|
free((caddr_t)new_deleg, M_NFSDSTATE);
|
|
openstp = NULL;
|
|
goto tryagain;
|
|
}
|
|
if (new_stp->ls_flags & NFSLCK_RECLAIM)
|
|
error = NFSERR_RECLAIMCONFLICT;
|
|
else
|
|
error = NFSERR_SHAREDENIED;
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
free((caddr_t)new_open, M_NFSDSTATE);
|
|
free((caddr_t)new_deleg, M_NFSDSTATE);
|
|
printf("nfsd openctrl unexpected client cnfl\n");
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for a conflicting delegation. If one is found, call
|
|
* nfsrv_delegconflict() to handle it. If the v4root lock hasn't
|
|
* been set yet, it will get the lock. Otherwise, it will recall
|
|
* the delegation. Then, we try try again...
|
|
* (If NFSLCK_DELEGCUR is set, it has a delegation, so there
|
|
* isn't a conflict.)
|
|
* I currently believe the conflict algorithm to be:
|
|
* For Open with Read Access and Deny None
|
|
* - there is a conflict iff a different client has a write delegation
|
|
* For Open with other Write Access or any Deny except None
|
|
* - there is a conflict if a different client has any delegation
|
|
* - there is a conflict if the same client has a read delegation
|
|
* (The current concensus is that this last case should be
|
|
* considered a conflict since the client with a read delegation
|
|
* could have done an Open with ReadAccess and WriteDeny
|
|
* locally and then not have checked for the WriteDeny.)
|
|
*/
|
|
if (!(new_stp->ls_flags & (NFSLCK_DELEGPREV | NFSLCK_DELEGCUR))) {
|
|
stp = LIST_FIRST(&lfp->lf_deleg);
|
|
while (stp != LIST_END(&lfp->lf_deleg)) {
|
|
nstp = LIST_NEXT(stp, ls_file);
|
|
if (stp->ls_clp != clp && (stp->ls_flags & NFSLCK_DELEGREAD))
|
|
writedeleg = 0;
|
|
else
|
|
delegate = 0;
|
|
if ((readonly && stp->ls_clp != clp &&
|
|
(stp->ls_flags & NFSLCK_DELEGWRITE)) ||
|
|
(!readonly && (stp->ls_clp != clp ||
|
|
(stp->ls_flags & NFSLCK_DELEGREAD)))) {
|
|
if (new_stp->ls_flags & NFSLCK_RECLAIM) {
|
|
delegate = 2;
|
|
} else {
|
|
ret = nfsrv_delegconflict(stp, &haslock, p, vp);
|
|
if (ret) {
|
|
/*
|
|
* nfsrv_delegconflict() unlocks state
|
|
* when it returns non-zero.
|
|
*/
|
|
printf("Nfsd openctrl unexpected deleg cnfl\n");
|
|
free((caddr_t)new_open, M_NFSDSTATE);
|
|
free((caddr_t)new_deleg, M_NFSDSTATE);
|
|
if (ret == -1) {
|
|
openstp = NULL;
|
|
goto tryagain;
|
|
}
|
|
return (ret);
|
|
}
|
|
}
|
|
}
|
|
stp = nstp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We only get here if there was no open that conflicted.
|
|
* If an open for the owner exists, or in the access/deny bits.
|
|
* Otherwise it is a new open. If the open_owner hasn't been
|
|
* confirmed, replace the open with the new one needing confirmation,
|
|
* otherwise add the open.
|
|
*/
|
|
if (new_stp->ls_flags & NFSLCK_DELEGPREV) {
|
|
/*
|
|
* Handle NFSLCK_DELEGPREV by searching the old delegations for
|
|
* a match. If found, just move the old delegation to the current
|
|
* delegation list and issue open. If not found, return
|
|
* NFSERR_EXPIRED.
|
|
*/
|
|
LIST_FOREACH(stp, &clp->lc_olddeleg, ls_list) {
|
|
if (stp->ls_lfp == lfp) {
|
|
/* Found it */
|
|
if (stp->ls_clp != clp)
|
|
panic("olddeleg clp");
|
|
LIST_REMOVE(stp, ls_list);
|
|
LIST_REMOVE(stp, ls_hash);
|
|
stp->ls_flags &= ~NFSLCK_OLDDELEG;
|
|
stp->ls_stateid.seqid = delegstateidp->seqid = 0;
|
|
stp->ls_stateid.other[0] = delegstateidp->other[0] =
|
|
clp->lc_clientid.lval[0];
|
|
stp->ls_stateid.other[1] = delegstateidp->other[1] =
|
|
clp->lc_clientid.lval[1];
|
|
stp->ls_stateid.other[2] = delegstateidp->other[2] =
|
|
nfsrv_nextstateindex(clp);
|
|
stp->ls_compref = nd->nd_compref;
|
|
LIST_INSERT_HEAD(&clp->lc_deleg, stp, ls_list);
|
|
LIST_INSERT_HEAD(NFSSTATEHASH(clp,
|
|
stp->ls_stateid), stp, ls_hash);
|
|
if (stp->ls_flags & NFSLCK_DELEGWRITE)
|
|
*rflagsp |= NFSV4OPEN_WRITEDELEGATE;
|
|
else
|
|
*rflagsp |= NFSV4OPEN_READDELEGATE;
|
|
clp->lc_delegtime = NFSD_MONOSEC +
|
|
nfsrv_lease + NFSRV_LEASEDELTA;
|
|
|
|
/*
|
|
* Now, do the associated open.
|
|
*/
|
|
new_open->ls_stateid.seqid = 0;
|
|
new_open->ls_stateid.other[0] = clp->lc_clientid.lval[0];
|
|
new_open->ls_stateid.other[1] = clp->lc_clientid.lval[1];
|
|
new_open->ls_stateid.other[2] = nfsrv_nextstateindex(clp);
|
|
new_open->ls_flags = (new_stp->ls_flags&NFSLCK_DENYBITS)|
|
|
NFSLCK_OPEN;
|
|
if (stp->ls_flags & NFSLCK_DELEGWRITE)
|
|
new_open->ls_flags |= (NFSLCK_READACCESS |
|
|
NFSLCK_WRITEACCESS);
|
|
else
|
|
new_open->ls_flags |= NFSLCK_READACCESS;
|
|
new_open->ls_uid = new_stp->ls_uid;
|
|
new_open->ls_lfp = lfp;
|
|
new_open->ls_clp = clp;
|
|
LIST_INIT(&new_open->ls_open);
|
|
LIST_INSERT_HEAD(&lfp->lf_open, new_open, ls_file);
|
|
LIST_INSERT_HEAD(NFSSTATEHASH(clp, new_open->ls_stateid),
|
|
new_open, ls_hash);
|
|
/*
|
|
* and handle the open owner
|
|
*/
|
|
if (ownerstp) {
|
|
new_open->ls_openowner = ownerstp;
|
|
LIST_INSERT_HEAD(&ownerstp->ls_open,new_open,ls_list);
|
|
} else {
|
|
new_open->ls_openowner = new_stp;
|
|
new_stp->ls_flags = 0;
|
|
nfsrvd_refcache(new_stp->ls_op);
|
|
new_stp->ls_noopens = 0;
|
|
LIST_INIT(&new_stp->ls_open);
|
|
LIST_INSERT_HEAD(&new_stp->ls_open, new_open, ls_list);
|
|
LIST_INSERT_HEAD(&clp->lc_open, new_stp, ls_list);
|
|
*new_stpp = NULL;
|
|
newnfsstats.srvopenowners++;
|
|
nfsrv_openpluslock++;
|
|
}
|
|
openstp = new_open;
|
|
new_open = NULL;
|
|
newnfsstats.srvopens++;
|
|
nfsrv_openpluslock++;
|
|
break;
|
|
}
|
|
}
|
|
if (stp == LIST_END(&clp->lc_olddeleg))
|
|
error = NFSERR_EXPIRED;
|
|
} else if (new_stp->ls_flags & (NFSLCK_DELEGREAD | NFSLCK_DELEGWRITE)) {
|
|
/*
|
|
* Scan to see that no delegation for this client and file
|
|
* doesn't already exist.
|
|
* There also shouldn't yet be an Open for this file and
|
|
* openowner.
|
|
*/
|
|
LIST_FOREACH(stp, &lfp->lf_deleg, ls_file) {
|
|
if (stp->ls_clp == clp)
|
|
break;
|
|
}
|
|
if (stp == LIST_END(&lfp->lf_deleg) && openstp == NULL) {
|
|
/*
|
|
* This is the Claim_Previous case with a delegation
|
|
* type != Delegate_None.
|
|
*/
|
|
/*
|
|
* First, add the delegation. (Although we must issue the
|
|
* delegation, we can also ask for an immediate return.)
|
|
*/
|
|
new_deleg->ls_stateid.seqid = delegstateidp->seqid = 0;
|
|
new_deleg->ls_stateid.other[0] = delegstateidp->other[0] =
|
|
clp->lc_clientid.lval[0];
|
|
new_deleg->ls_stateid.other[1] = delegstateidp->other[1] =
|
|
clp->lc_clientid.lval[1];
|
|
new_deleg->ls_stateid.other[2] = delegstateidp->other[2] =
|
|
nfsrv_nextstateindex(clp);
|
|
if (new_stp->ls_flags & NFSLCK_DELEGWRITE) {
|
|
new_deleg->ls_flags = (NFSLCK_DELEGWRITE |
|
|
NFSLCK_READACCESS | NFSLCK_WRITEACCESS);
|
|
*rflagsp |= NFSV4OPEN_WRITEDELEGATE;
|
|
} else {
|
|
new_deleg->ls_flags = (NFSLCK_DELEGREAD |
|
|
NFSLCK_READACCESS);
|
|
*rflagsp |= NFSV4OPEN_READDELEGATE;
|
|
}
|
|
new_deleg->ls_uid = new_stp->ls_uid;
|
|
new_deleg->ls_lfp = lfp;
|
|
new_deleg->ls_clp = clp;
|
|
new_deleg->ls_filerev = filerev;
|
|
new_deleg->ls_compref = nd->nd_compref;
|
|
LIST_INSERT_HEAD(&lfp->lf_deleg, new_deleg, ls_file);
|
|
LIST_INSERT_HEAD(NFSSTATEHASH(clp,
|
|
new_deleg->ls_stateid), new_deleg, ls_hash);
|
|
LIST_INSERT_HEAD(&clp->lc_deleg, new_deleg, ls_list);
|
|
new_deleg = NULL;
|
|
if (delegate == 2 || nfsrv_issuedelegs == 0 ||
|
|
(clp->lc_flags & (LCL_CALLBACKSON | LCL_CBDOWN)) !=
|
|
LCL_CALLBACKSON ||
|
|
NFSRV_V4DELEGLIMIT(nfsrv_delegatecnt) ||
|
|
!NFSVNO_DELEGOK(vp))
|
|
*rflagsp |= NFSV4OPEN_RECALL;
|
|
newnfsstats.srvdelegates++;
|
|
nfsrv_openpluslock++;
|
|
nfsrv_delegatecnt++;
|
|
|
|
/*
|
|
* Now, do the associated open.
|
|
*/
|
|
new_open->ls_stateid.seqid = 0;
|
|
new_open->ls_stateid.other[0] = clp->lc_clientid.lval[0];
|
|
new_open->ls_stateid.other[1] = clp->lc_clientid.lval[1];
|
|
new_open->ls_stateid.other[2] = nfsrv_nextstateindex(clp);
|
|
new_open->ls_flags = (new_stp->ls_flags & NFSLCK_DENYBITS) |
|
|
NFSLCK_OPEN;
|
|
if (new_stp->ls_flags & NFSLCK_DELEGWRITE)
|
|
new_open->ls_flags |= (NFSLCK_READACCESS |
|
|
NFSLCK_WRITEACCESS);
|
|
else
|
|
new_open->ls_flags |= NFSLCK_READACCESS;
|
|
new_open->ls_uid = new_stp->ls_uid;
|
|
new_open->ls_lfp = lfp;
|
|
new_open->ls_clp = clp;
|
|
LIST_INIT(&new_open->ls_open);
|
|
LIST_INSERT_HEAD(&lfp->lf_open, new_open, ls_file);
|
|
LIST_INSERT_HEAD(NFSSTATEHASH(clp, new_open->ls_stateid),
|
|
new_open, ls_hash);
|
|
/*
|
|
* and handle the open owner
|
|
*/
|
|
if (ownerstp) {
|
|
new_open->ls_openowner = ownerstp;
|
|
LIST_INSERT_HEAD(&ownerstp->ls_open, new_open, ls_list);
|
|
} else {
|
|
new_open->ls_openowner = new_stp;
|
|
new_stp->ls_flags = 0;
|
|
nfsrvd_refcache(new_stp->ls_op);
|
|
new_stp->ls_noopens = 0;
|
|
LIST_INIT(&new_stp->ls_open);
|
|
LIST_INSERT_HEAD(&new_stp->ls_open, new_open, ls_list);
|
|
LIST_INSERT_HEAD(&clp->lc_open, new_stp, ls_list);
|
|
*new_stpp = NULL;
|
|
newnfsstats.srvopenowners++;
|
|
nfsrv_openpluslock++;
|
|
}
|
|
openstp = new_open;
|
|
new_open = NULL;
|
|
newnfsstats.srvopens++;
|
|
nfsrv_openpluslock++;
|
|
} else {
|
|
error = NFSERR_RECLAIMCONFLICT;
|
|
}
|
|
} else if (ownerstp) {
|
|
if (ownerstp->ls_flags & NFSLCK_NEEDSCONFIRM) {
|
|
/* Replace the open */
|
|
if (ownerstp->ls_op)
|
|
nfsrvd_derefcache(ownerstp->ls_op);
|
|
ownerstp->ls_op = new_stp->ls_op;
|
|
nfsrvd_refcache(ownerstp->ls_op);
|
|
ownerstp->ls_seq = new_stp->ls_seq;
|
|
*rflagsp |= NFSV4OPEN_RESULTCONFIRM;
|
|
stp = LIST_FIRST(&ownerstp->ls_open);
|
|
stp->ls_flags = (new_stp->ls_flags & NFSLCK_SHAREBITS) |
|
|
NFSLCK_OPEN;
|
|
stp->ls_stateid.seqid = 0;
|
|
stp->ls_uid = new_stp->ls_uid;
|
|
if (lfp != stp->ls_lfp) {
|
|
LIST_REMOVE(stp, ls_file);
|
|
LIST_INSERT_HEAD(&lfp->lf_open, stp, ls_file);
|
|
stp->ls_lfp = lfp;
|
|
}
|
|
openstp = stp;
|
|
} else if (openstp) {
|
|
openstp->ls_flags |= (new_stp->ls_flags & NFSLCK_SHAREBITS);
|
|
openstp->ls_stateid.seqid++;
|
|
|
|
/*
|
|
* This is where we can choose to issue a delegation.
|
|
*/
|
|
if (delegate && nfsrv_issuedelegs &&
|
|
writedeleg && !NFSVNO_EXRDONLY(exp) &&
|
|
(nfsrv_writedelegifpos || !readonly) &&
|
|
(clp->lc_flags & (LCL_CALLBACKSON | LCL_CBDOWN)) ==
|
|
LCL_CALLBACKSON &&
|
|
!NFSRV_V4DELEGLIMIT(nfsrv_delegatecnt) &&
|
|
NFSVNO_DELEGOK(vp)) {
|
|
new_deleg->ls_stateid.seqid = delegstateidp->seqid = 0;
|
|
new_deleg->ls_stateid.other[0] = delegstateidp->other[0]
|
|
= clp->lc_clientid.lval[0];
|
|
new_deleg->ls_stateid.other[1] = delegstateidp->other[1]
|
|
= clp->lc_clientid.lval[1];
|
|
new_deleg->ls_stateid.other[2] = delegstateidp->other[2]
|
|
= nfsrv_nextstateindex(clp);
|
|
new_deleg->ls_flags = (NFSLCK_DELEGWRITE |
|
|
NFSLCK_READACCESS | NFSLCK_WRITEACCESS);
|
|
*rflagsp |= NFSV4OPEN_WRITEDELEGATE;
|
|
new_deleg->ls_uid = new_stp->ls_uid;
|
|
new_deleg->ls_lfp = lfp;
|
|
new_deleg->ls_clp = clp;
|
|
new_deleg->ls_filerev = filerev;
|
|
new_deleg->ls_compref = nd->nd_compref;
|
|
LIST_INSERT_HEAD(&lfp->lf_deleg, new_deleg, ls_file);
|
|
LIST_INSERT_HEAD(NFSSTATEHASH(clp,
|
|
new_deleg->ls_stateid), new_deleg, ls_hash);
|
|
LIST_INSERT_HEAD(&clp->lc_deleg, new_deleg, ls_list);
|
|
new_deleg = NULL;
|
|
newnfsstats.srvdelegates++;
|
|
nfsrv_openpluslock++;
|
|
nfsrv_delegatecnt++;
|
|
}
|
|
} else {
|
|
new_open->ls_stateid.seqid = 0;
|
|
new_open->ls_stateid.other[0] = clp->lc_clientid.lval[0];
|
|
new_open->ls_stateid.other[1] = clp->lc_clientid.lval[1];
|
|
new_open->ls_stateid.other[2] = nfsrv_nextstateindex(clp);
|
|
new_open->ls_flags = (new_stp->ls_flags & NFSLCK_SHAREBITS)|
|
|
NFSLCK_OPEN;
|
|
new_open->ls_uid = new_stp->ls_uid;
|
|
new_open->ls_openowner = ownerstp;
|
|
new_open->ls_lfp = lfp;
|
|
new_open->ls_clp = clp;
|
|
LIST_INIT(&new_open->ls_open);
|
|
LIST_INSERT_HEAD(&lfp->lf_open, new_open, ls_file);
|
|
LIST_INSERT_HEAD(&ownerstp->ls_open, new_open, ls_list);
|
|
LIST_INSERT_HEAD(NFSSTATEHASH(clp, new_open->ls_stateid),
|
|
new_open, ls_hash);
|
|
openstp = new_open;
|
|
new_open = NULL;
|
|
newnfsstats.srvopens++;
|
|
nfsrv_openpluslock++;
|
|
|
|
/*
|
|
* This is where we can choose to issue a delegation.
|
|
*/
|
|
if (delegate && nfsrv_issuedelegs &&
|
|
(writedeleg || readonly) &&
|
|
(clp->lc_flags & (LCL_CALLBACKSON | LCL_CBDOWN)) ==
|
|
LCL_CALLBACKSON &&
|
|
!NFSRV_V4DELEGLIMIT(nfsrv_delegatecnt) &&
|
|
NFSVNO_DELEGOK(vp)) {
|
|
new_deleg->ls_stateid.seqid = delegstateidp->seqid = 0;
|
|
new_deleg->ls_stateid.other[0] = delegstateidp->other[0]
|
|
= clp->lc_clientid.lval[0];
|
|
new_deleg->ls_stateid.other[1] = delegstateidp->other[1]
|
|
= clp->lc_clientid.lval[1];
|
|
new_deleg->ls_stateid.other[2] = delegstateidp->other[2]
|
|
= nfsrv_nextstateindex(clp);
|
|
if (writedeleg && !NFSVNO_EXRDONLY(exp) &&
|
|
(nfsrv_writedelegifpos || !readonly)) {
|
|
new_deleg->ls_flags = (NFSLCK_DELEGWRITE |
|
|
NFSLCK_READACCESS | NFSLCK_WRITEACCESS);
|
|
*rflagsp |= NFSV4OPEN_WRITEDELEGATE;
|
|
} else {
|
|
new_deleg->ls_flags = (NFSLCK_DELEGREAD |
|
|
NFSLCK_READACCESS);
|
|
*rflagsp |= NFSV4OPEN_READDELEGATE;
|
|
}
|
|
new_deleg->ls_uid = new_stp->ls_uid;
|
|
new_deleg->ls_lfp = lfp;
|
|
new_deleg->ls_clp = clp;
|
|
new_deleg->ls_filerev = filerev;
|
|
new_deleg->ls_compref = nd->nd_compref;
|
|
LIST_INSERT_HEAD(&lfp->lf_deleg, new_deleg, ls_file);
|
|
LIST_INSERT_HEAD(NFSSTATEHASH(clp,
|
|
new_deleg->ls_stateid), new_deleg, ls_hash);
|
|
LIST_INSERT_HEAD(&clp->lc_deleg, new_deleg, ls_list);
|
|
new_deleg = NULL;
|
|
newnfsstats.srvdelegates++;
|
|
nfsrv_openpluslock++;
|
|
nfsrv_delegatecnt++;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* New owner case. Start the open_owner sequence with a
|
|
* Needs confirmation (unless a reclaim) and hang the
|
|
* new open off it.
|
|
*/
|
|
new_open->ls_stateid.seqid = 0;
|
|
new_open->ls_stateid.other[0] = clp->lc_clientid.lval[0];
|
|
new_open->ls_stateid.other[1] = clp->lc_clientid.lval[1];
|
|
new_open->ls_stateid.other[2] = nfsrv_nextstateindex(clp);
|
|
new_open->ls_flags = (new_stp->ls_flags & NFSLCK_SHAREBITS) |
|
|
NFSLCK_OPEN;
|
|
new_open->ls_uid = new_stp->ls_uid;
|
|
LIST_INIT(&new_open->ls_open);
|
|
new_open->ls_openowner = new_stp;
|
|
new_open->ls_lfp = lfp;
|
|
new_open->ls_clp = clp;
|
|
LIST_INSERT_HEAD(&lfp->lf_open, new_open, ls_file);
|
|
if (new_stp->ls_flags & NFSLCK_RECLAIM) {
|
|
new_stp->ls_flags = 0;
|
|
} else {
|
|
*rflagsp |= NFSV4OPEN_RESULTCONFIRM;
|
|
new_stp->ls_flags = NFSLCK_NEEDSCONFIRM;
|
|
}
|
|
nfsrvd_refcache(new_stp->ls_op);
|
|
new_stp->ls_noopens = 0;
|
|
LIST_INIT(&new_stp->ls_open);
|
|
LIST_INSERT_HEAD(&new_stp->ls_open, new_open, ls_list);
|
|
LIST_INSERT_HEAD(&clp->lc_open, new_stp, ls_list);
|
|
LIST_INSERT_HEAD(NFSSTATEHASH(clp, new_open->ls_stateid),
|
|
new_open, ls_hash);
|
|
openstp = new_open;
|
|
new_open = NULL;
|
|
*new_stpp = NULL;
|
|
newnfsstats.srvopens++;
|
|
nfsrv_openpluslock++;
|
|
newnfsstats.srvopenowners++;
|
|
nfsrv_openpluslock++;
|
|
}
|
|
if (!error) {
|
|
stateidp->seqid = openstp->ls_stateid.seqid;
|
|
stateidp->other[0] = openstp->ls_stateid.other[0];
|
|
stateidp->other[1] = openstp->ls_stateid.other[1];
|
|
stateidp->other[2] = openstp->ls_stateid.other[2];
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
if (new_open)
|
|
FREE((caddr_t)new_open, M_NFSDSTATE);
|
|
if (new_deleg)
|
|
FREE((caddr_t)new_deleg, M_NFSDSTATE);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Open update. Does the confirm, downgrade and close.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_openupdate(vnode_t vp, struct nfsstate *new_stp, nfsquad_t clientid,
|
|
nfsv4stateid_t *stateidp, struct nfsrv_descript *nd, NFSPROC_T *p)
|
|
{
|
|
struct nfsstate *stp, *ownerstp;
|
|
struct nfsclient *clp;
|
|
struct nfslockfile *lfp;
|
|
u_int32_t bits;
|
|
int error, gotstate = 0, len = 0;
|
|
u_char client[NFSV4_OPAQUELIMIT];
|
|
|
|
/*
|
|
* Check for restart conditions (client and server).
|
|
*/
|
|
error = nfsrv_checkrestart(clientid, new_stp->ls_flags,
|
|
&new_stp->ls_stateid, 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
NFSLOCKSTATE();
|
|
/*
|
|
* Get the open structure via clientid and stateid.
|
|
*/
|
|
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp,
|
|
(nfsquad_t)((u_quad_t)0), NULL, p);
|
|
if (!error)
|
|
error = nfsrv_getstate(clp, &new_stp->ls_stateid,
|
|
new_stp->ls_flags, &stp);
|
|
|
|
/*
|
|
* Sanity check the open.
|
|
*/
|
|
if (!error && (!(stp->ls_flags & NFSLCK_OPEN) ||
|
|
(!(new_stp->ls_flags & NFSLCK_CONFIRM) &&
|
|
(stp->ls_openowner->ls_flags & NFSLCK_NEEDSCONFIRM)) ||
|
|
((new_stp->ls_flags & NFSLCK_CONFIRM) &&
|
|
(!(stp->ls_openowner->ls_flags & NFSLCK_NEEDSCONFIRM)))))
|
|
error = NFSERR_BADSTATEID;
|
|
|
|
if (!error)
|
|
error = nfsrv_checkseqid(nd, new_stp->ls_seq,
|
|
stp->ls_openowner, new_stp->ls_op);
|
|
if (!error && stp->ls_stateid.seqid != new_stp->ls_stateid.seqid &&
|
|
!(new_stp->ls_flags & NFSLCK_CONFIRM))
|
|
error = NFSERR_OLDSTATEID;
|
|
if (!error && vnode_vtype(vp) != VREG) {
|
|
if (vnode_vtype(vp) == VDIR)
|
|
error = NFSERR_ISDIR;
|
|
else
|
|
error = NFSERR_INVAL;
|
|
}
|
|
|
|
if (error) {
|
|
/*
|
|
* If a client tries to confirm an Open with a bad
|
|
* seqid# and there are no byte range locks or other Opens
|
|
* on the openowner, just throw it away, so the next use of the
|
|
* openowner will start a fresh seq#.
|
|
*/
|
|
if (error == NFSERR_BADSEQID &&
|
|
(new_stp->ls_flags & NFSLCK_CONFIRM) &&
|
|
nfsrv_nootherstate(stp))
|
|
nfsrv_freeopenowner(stp->ls_openowner, 0, p);
|
|
NFSUNLOCKSTATE();
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set the return stateid.
|
|
*/
|
|
stateidp->seqid = stp->ls_stateid.seqid + 1;
|
|
stateidp->other[0] = stp->ls_stateid.other[0];
|
|
stateidp->other[1] = stp->ls_stateid.other[1];
|
|
stateidp->other[2] = stp->ls_stateid.other[2];
|
|
/*
|
|
* Now, handle the three cases.
|
|
*/
|
|
if (new_stp->ls_flags & NFSLCK_CONFIRM) {
|
|
/*
|
|
* If the open doesn't need confirmation, it seems to me that
|
|
* there is a client error, but I'll just log it and keep going?
|
|
*/
|
|
if (!(stp->ls_openowner->ls_flags & NFSLCK_NEEDSCONFIRM))
|
|
printf("Nfsv4d: stray open confirm\n");
|
|
stp->ls_openowner->ls_flags = 0;
|
|
stp->ls_stateid.seqid++;
|
|
if (!(clp->lc_flags & LCL_STAMPEDSTABLE)) {
|
|
clp->lc_flags |= LCL_STAMPEDSTABLE;
|
|
len = clp->lc_idlen;
|
|
NFSBCOPY(clp->lc_id, client, len);
|
|
gotstate = 1;
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
} else if (new_stp->ls_flags & NFSLCK_CLOSE) {
|
|
ownerstp = stp->ls_openowner;
|
|
lfp = stp->ls_lfp;
|
|
if (nfsrv_dolocallocks != 0 && !LIST_EMPTY(&stp->ls_open)) {
|
|
/* Get the lf lock */
|
|
nfsrv_locklf(lfp);
|
|
NFSUNLOCKSTATE();
|
|
if (nfsrv_freeopen(stp, vp, 1, p) == 0) {
|
|
NFSLOCKSTATE();
|
|
nfsrv_unlocklf(lfp);
|
|
NFSUNLOCKSTATE();
|
|
}
|
|
} else {
|
|
(void) nfsrv_freeopen(stp, NULL, 0, p);
|
|
NFSUNLOCKSTATE();
|
|
}
|
|
} else {
|
|
/*
|
|
* Update the share bits, making sure that the new set are a
|
|
* subset of the old ones.
|
|
*/
|
|
bits = (new_stp->ls_flags & NFSLCK_SHAREBITS);
|
|
if (~(stp->ls_flags) & bits) {
|
|
NFSUNLOCKSTATE();
|
|
return (NFSERR_INVAL);
|
|
}
|
|
stp->ls_flags = (bits | NFSLCK_OPEN);
|
|
stp->ls_stateid.seqid++;
|
|
NFSUNLOCKSTATE();
|
|
}
|
|
|
|
/*
|
|
* If the client just confirmed its first open, write a timestamp
|
|
* to the stable storage file.
|
|
*/
|
|
if (gotstate)
|
|
nfsrv_writestable(client, len, NFSNST_NEWSTATE, p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Delegation update. Does the purge and return.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_delegupdate(nfsquad_t clientid, nfsv4stateid_t *stateidp,
|
|
vnode_t vp, int op, struct ucred *cred, NFSPROC_T *p)
|
|
{
|
|
struct nfsstate *stp;
|
|
struct nfsclient *clp;
|
|
int error;
|
|
fhandle_t fh;
|
|
|
|
/*
|
|
* Do a sanity check against the file handle for DelegReturn.
|
|
*/
|
|
if (vp) {
|
|
error = nfsvno_getfh(vp, &fh, p);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
/*
|
|
* Check for restart conditions (client and server).
|
|
*/
|
|
if (op == NFSV4OP_DELEGRETURN)
|
|
error = nfsrv_checkrestart(clientid, NFSLCK_DELEGRETURN,
|
|
stateidp, 0);
|
|
else
|
|
error = nfsrv_checkrestart(clientid, NFSLCK_DELEGPURGE,
|
|
stateidp, 0);
|
|
|
|
NFSLOCKSTATE();
|
|
/*
|
|
* Get the open structure via clientid and stateid.
|
|
*/
|
|
if (!error)
|
|
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp,
|
|
(nfsquad_t)((u_quad_t)0), NULL, p);
|
|
if (error) {
|
|
if (error == NFSERR_CBPATHDOWN)
|
|
error = 0;
|
|
if (error == NFSERR_STALECLIENTID && op == NFSV4OP_DELEGRETURN)
|
|
error = NFSERR_STALESTATEID;
|
|
}
|
|
if (!error && op == NFSV4OP_DELEGRETURN) {
|
|
error = nfsrv_getstate(clp, stateidp, NFSLCK_DELEGRETURN, &stp);
|
|
if (!error && stp->ls_stateid.seqid != stateidp->seqid)
|
|
error = NFSERR_OLDSTATEID;
|
|
}
|
|
/*
|
|
* NFSERR_EXPIRED means that the state has gone away,
|
|
* so Delegations have been purged. Just return ok.
|
|
*/
|
|
if (error == NFSERR_EXPIRED && op == NFSV4OP_DELEGPURGE) {
|
|
NFSUNLOCKSTATE();
|
|
return (0);
|
|
}
|
|
if (error) {
|
|
NFSUNLOCKSTATE();
|
|
return (error);
|
|
}
|
|
|
|
if (op == NFSV4OP_DELEGRETURN) {
|
|
if (NFSBCMP((caddr_t)&fh, (caddr_t)&stp->ls_lfp->lf_fh,
|
|
sizeof (fhandle_t))) {
|
|
NFSUNLOCKSTATE();
|
|
return (NFSERR_BADSTATEID);
|
|
}
|
|
nfsrv_freedeleg(stp);
|
|
} else {
|
|
nfsrv_freedeleglist(&clp->lc_olddeleg);
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Release lock owner.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_releaselckown(struct nfsstate *new_stp, nfsquad_t clientid,
|
|
NFSPROC_T *p)
|
|
{
|
|
struct nfsstate *stp, *nstp, *openstp, *ownstp;
|
|
struct nfsclient *clp;
|
|
int error;
|
|
|
|
/*
|
|
* Check for restart conditions (client and server).
|
|
*/
|
|
error = nfsrv_checkrestart(clientid, new_stp->ls_flags,
|
|
&new_stp->ls_stateid, 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
NFSLOCKSTATE();
|
|
/*
|
|
* Get the lock owner by name.
|
|
*/
|
|
error = nfsrv_getclient(clientid, CLOPS_RENEW, &clp,
|
|
(nfsquad_t)((u_quad_t)0), NULL, p);
|
|
if (error) {
|
|
NFSUNLOCKSTATE();
|
|
return (error);
|
|
}
|
|
LIST_FOREACH(ownstp, &clp->lc_open, ls_list) {
|
|
LIST_FOREACH(openstp, &ownstp->ls_open, ls_list) {
|
|
stp = LIST_FIRST(&openstp->ls_open);
|
|
while (stp != LIST_END(&openstp->ls_open)) {
|
|
nstp = LIST_NEXT(stp, ls_list);
|
|
/*
|
|
* If the owner matches, check for locks and
|
|
* then free or return an error.
|
|
*/
|
|
if (stp->ls_ownerlen == new_stp->ls_ownerlen &&
|
|
!NFSBCMP(stp->ls_owner, new_stp->ls_owner,
|
|
stp->ls_ownerlen)){
|
|
if (LIST_EMPTY(&stp->ls_lock)) {
|
|
nfsrv_freelockowner(stp, NULL, 0, p);
|
|
} else {
|
|
NFSUNLOCKSTATE();
|
|
return (NFSERR_LOCKSHELD);
|
|
}
|
|
}
|
|
stp = nstp;
|
|
}
|
|
}
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get the file handle for a lock structure.
|
|
*/
|
|
static int
|
|
nfsrv_getlockfh(vnode_t vp, u_short flags,
|
|
struct nfslockfile **new_lfpp, fhandle_t *nfhp, NFSPROC_T *p)
|
|
{
|
|
fhandle_t *fhp = NULL;
|
|
struct nfslockfile *new_lfp;
|
|
int error;
|
|
|
|
/*
|
|
* For lock, use the new nfslock structure, otherwise just
|
|
* a fhandle_t on the stack.
|
|
*/
|
|
if (flags & NFSLCK_OPEN) {
|
|
new_lfp = *new_lfpp;
|
|
fhp = &new_lfp->lf_fh;
|
|
} else if (nfhp) {
|
|
fhp = nfhp;
|
|
} else {
|
|
panic("nfsrv_getlockfh");
|
|
}
|
|
error = nfsvno_getfh(vp, fhp, p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get an nfs lock structure. Allocate one, as required, and return a
|
|
* pointer to it.
|
|
* Returns an NFSERR_xxx upon failure or -1 to indicate no current lock.
|
|
*/
|
|
static int
|
|
nfsrv_getlockfile(u_short flags, struct nfslockfile **new_lfpp,
|
|
struct nfslockfile **lfpp, fhandle_t *nfhp, int lockit)
|
|
{
|
|
struct nfslockfile *lfp;
|
|
fhandle_t *fhp = NULL, *tfhp;
|
|
struct nfslockhashhead *hp;
|
|
struct nfslockfile *new_lfp = NULL;
|
|
|
|
/*
|
|
* For lock, use the new nfslock structure, otherwise just
|
|
* a fhandle_t on the stack.
|
|
*/
|
|
if (flags & NFSLCK_OPEN) {
|
|
new_lfp = *new_lfpp;
|
|
fhp = &new_lfp->lf_fh;
|
|
} else if (nfhp) {
|
|
fhp = nfhp;
|
|
} else {
|
|
panic("nfsrv_getlockfile");
|
|
}
|
|
|
|
hp = NFSLOCKHASH(fhp);
|
|
LIST_FOREACH(lfp, hp, lf_hash) {
|
|
tfhp = &lfp->lf_fh;
|
|
if (NFSVNO_CMPFH(fhp, tfhp)) {
|
|
if (lockit)
|
|
nfsrv_locklf(lfp);
|
|
*lfpp = lfp;
|
|
return (0);
|
|
}
|
|
}
|
|
if (!(flags & NFSLCK_OPEN))
|
|
return (-1);
|
|
|
|
/*
|
|
* No match, so chain the new one into the list.
|
|
*/
|
|
LIST_INIT(&new_lfp->lf_open);
|
|
LIST_INIT(&new_lfp->lf_lock);
|
|
LIST_INIT(&new_lfp->lf_deleg);
|
|
LIST_INIT(&new_lfp->lf_locallock);
|
|
LIST_INIT(&new_lfp->lf_rollback);
|
|
new_lfp->lf_locallock_lck.nfslock_usecnt = 0;
|
|
new_lfp->lf_locallock_lck.nfslock_lock = 0;
|
|
new_lfp->lf_usecount = 0;
|
|
LIST_INSERT_HEAD(hp, new_lfp, lf_hash);
|
|
*lfpp = new_lfp;
|
|
*new_lfpp = NULL;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function adds a nfslock lock structure to the list for the associated
|
|
* nfsstate and nfslockfile structures. It will be inserted after the
|
|
* entry pointed at by insert_lop.
|
|
*/
|
|
static void
|
|
nfsrv_insertlock(struct nfslock *new_lop, struct nfslock *insert_lop,
|
|
struct nfsstate *stp, struct nfslockfile *lfp)
|
|
{
|
|
struct nfslock *lop, *nlop;
|
|
|
|
new_lop->lo_stp = stp;
|
|
new_lop->lo_lfp = lfp;
|
|
|
|
if (stp != NULL) {
|
|
/* Insert in increasing lo_first order */
|
|
lop = LIST_FIRST(&lfp->lf_lock);
|
|
if (lop == LIST_END(&lfp->lf_lock) ||
|
|
new_lop->lo_first <= lop->lo_first) {
|
|
LIST_INSERT_HEAD(&lfp->lf_lock, new_lop, lo_lckfile);
|
|
} else {
|
|
nlop = LIST_NEXT(lop, lo_lckfile);
|
|
while (nlop != LIST_END(&lfp->lf_lock) &&
|
|
nlop->lo_first < new_lop->lo_first) {
|
|
lop = nlop;
|
|
nlop = LIST_NEXT(lop, lo_lckfile);
|
|
}
|
|
LIST_INSERT_AFTER(lop, new_lop, lo_lckfile);
|
|
}
|
|
} else {
|
|
new_lop->lo_lckfile.le_prev = NULL; /* list not used */
|
|
}
|
|
|
|
/*
|
|
* Insert after insert_lop, which is overloaded as stp or lfp for
|
|
* an empty list.
|
|
*/
|
|
if (stp == NULL && (struct nfslockfile *)insert_lop == lfp)
|
|
LIST_INSERT_HEAD(&lfp->lf_locallock, new_lop, lo_lckowner);
|
|
else if ((struct nfsstate *)insert_lop == stp)
|
|
LIST_INSERT_HEAD(&stp->ls_lock, new_lop, lo_lckowner);
|
|
else
|
|
LIST_INSERT_AFTER(insert_lop, new_lop, lo_lckowner);
|
|
if (stp != NULL) {
|
|
newnfsstats.srvlocks++;
|
|
nfsrv_openpluslock++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function updates the locking for a lock owner and given file. It
|
|
* maintains a list of lock ranges ordered on increasing file offset that
|
|
* are NFSLCK_READ or NFSLCK_WRITE and non-overlapping (aka POSIX style).
|
|
* It always adds new_lop to the list and sometimes uses the one pointed
|
|
* at by other_lopp.
|
|
*/
|
|
static void
|
|
nfsrv_updatelock(struct nfsstate *stp, struct nfslock **new_lopp,
|
|
struct nfslock **other_lopp, struct nfslockfile *lfp)
|
|
{
|
|
struct nfslock *new_lop = *new_lopp;
|
|
struct nfslock *lop, *tlop, *ilop;
|
|
struct nfslock *other_lop = *other_lopp;
|
|
int unlock = 0, myfile = 0;
|
|
u_int64_t tmp;
|
|
|
|
/*
|
|
* Work down the list until the lock is merged.
|
|
*/
|
|
if (new_lop->lo_flags & NFSLCK_UNLOCK)
|
|
unlock = 1;
|
|
if (stp != NULL) {
|
|
ilop = (struct nfslock *)stp;
|
|
lop = LIST_FIRST(&stp->ls_lock);
|
|
} else {
|
|
ilop = (struct nfslock *)lfp;
|
|
lop = LIST_FIRST(&lfp->lf_locallock);
|
|
}
|
|
while (lop != NULL) {
|
|
/*
|
|
* Only check locks for this file that aren't before the start of
|
|
* new lock's range.
|
|
*/
|
|
if (lop->lo_lfp == lfp) {
|
|
myfile = 1;
|
|
if (lop->lo_end >= new_lop->lo_first) {
|
|
if (new_lop->lo_end < lop->lo_first) {
|
|
/*
|
|
* If the new lock ends before the start of the
|
|
* current lock's range, no merge, just insert
|
|
* the new lock.
|
|
*/
|
|
break;
|
|
}
|
|
if (new_lop->lo_flags == lop->lo_flags ||
|
|
(new_lop->lo_first <= lop->lo_first &&
|
|
new_lop->lo_end >= lop->lo_end)) {
|
|
/*
|
|
* This lock can be absorbed by the new lock/unlock.
|
|
* This happens when it covers the entire range
|
|
* of the old lock or is contiguous
|
|
* with the old lock and is of the same type or an
|
|
* unlock.
|
|
*/
|
|
if (lop->lo_first < new_lop->lo_first)
|
|
new_lop->lo_first = lop->lo_first;
|
|
if (lop->lo_end > new_lop->lo_end)
|
|
new_lop->lo_end = lop->lo_end;
|
|
tlop = lop;
|
|
lop = LIST_NEXT(lop, lo_lckowner);
|
|
nfsrv_freenfslock(tlop);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* All these cases are for contiguous locks that are not the
|
|
* same type, so they can't be merged.
|
|
*/
|
|
if (new_lop->lo_first <= lop->lo_first) {
|
|
/*
|
|
* This case is where the new lock overlaps with the
|
|
* first part of the old lock. Move the start of the
|
|
* old lock to just past the end of the new lock. The
|
|
* new lock will be inserted in front of the old, since
|
|
* ilop hasn't been updated. (We are done now.)
|
|
*/
|
|
lop->lo_first = new_lop->lo_end;
|
|
break;
|
|
}
|
|
if (new_lop->lo_end >= lop->lo_end) {
|
|
/*
|
|
* This case is where the new lock overlaps with the
|
|
* end of the old lock's range. Move the old lock's
|
|
* end to just before the new lock's first and insert
|
|
* the new lock after the old lock.
|
|
* Might not be done yet, since the new lock could
|
|
* overlap further locks with higher ranges.
|
|
*/
|
|
lop->lo_end = new_lop->lo_first;
|
|
ilop = lop;
|
|
lop = LIST_NEXT(lop, lo_lckowner);
|
|
continue;
|
|
}
|
|
/*
|
|
* The final case is where the new lock's range is in the
|
|
* middle of the current lock's and splits the current lock
|
|
* up. Use *other_lopp to handle the second part of the
|
|
* split old lock range. (We are done now.)
|
|
* For unlock, we use new_lop as other_lop and tmp, since
|
|
* other_lop and new_lop are the same for this case.
|
|
* We noted the unlock case above, so we don't need
|
|
* new_lop->lo_flags any longer.
|
|
*/
|
|
tmp = new_lop->lo_first;
|
|
if (other_lop == NULL) {
|
|
if (!unlock)
|
|
panic("nfsd srv update unlock");
|
|
other_lop = new_lop;
|
|
*new_lopp = NULL;
|
|
}
|
|
other_lop->lo_first = new_lop->lo_end;
|
|
other_lop->lo_end = lop->lo_end;
|
|
other_lop->lo_flags = lop->lo_flags;
|
|
other_lop->lo_stp = stp;
|
|
other_lop->lo_lfp = lfp;
|
|
lop->lo_end = tmp;
|
|
nfsrv_insertlock(other_lop, lop, stp, lfp);
|
|
*other_lopp = NULL;
|
|
ilop = lop;
|
|
break;
|
|
}
|
|
}
|
|
ilop = lop;
|
|
lop = LIST_NEXT(lop, lo_lckowner);
|
|
if (myfile && (lop == NULL || lop->lo_lfp != lfp))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Insert the new lock in the list at the appropriate place.
|
|
*/
|
|
if (!unlock) {
|
|
nfsrv_insertlock(new_lop, ilop, stp, lfp);
|
|
*new_lopp = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function handles sequencing of locks, etc.
|
|
* It returns an error that indicates what the caller should do.
|
|
*/
|
|
static int
|
|
nfsrv_checkseqid(struct nfsrv_descript *nd, u_int32_t seqid,
|
|
struct nfsstate *stp, struct nfsrvcache *op)
|
|
{
|
|
|
|
if (op != nd->nd_rp)
|
|
panic("nfsrvstate checkseqid");
|
|
if (!(op->rc_flag & RC_INPROG))
|
|
panic("nfsrvstate not inprog");
|
|
if (stp->ls_op && stp->ls_op->rc_refcnt <= 0) {
|
|
printf("refcnt=%d\n", stp->ls_op->rc_refcnt);
|
|
panic("nfsrvstate op refcnt");
|
|
}
|
|
if ((stp->ls_seq + 1) == seqid) {
|
|
if (stp->ls_op)
|
|
nfsrvd_derefcache(stp->ls_op);
|
|
stp->ls_op = op;
|
|
nfsrvd_refcache(op);
|
|
stp->ls_seq = seqid;
|
|
return (0);
|
|
} else if (stp->ls_seq == seqid && stp->ls_op &&
|
|
op->rc_xid == stp->ls_op->rc_xid &&
|
|
op->rc_refcnt == 0 &&
|
|
op->rc_reqlen == stp->ls_op->rc_reqlen &&
|
|
op->rc_cksum == stp->ls_op->rc_cksum) {
|
|
if (stp->ls_op->rc_flag & RC_INPROG)
|
|
return (NFSERR_DONTREPLY);
|
|
nd->nd_rp = stp->ls_op;
|
|
nd->nd_rp->rc_flag |= RC_INPROG;
|
|
nfsrvd_delcache(op);
|
|
return (NFSERR_REPLYFROMCACHE);
|
|
}
|
|
return (NFSERR_BADSEQID);
|
|
}
|
|
|
|
/*
|
|
* Get the client ip address for callbacks. If the strings can't be parsed,
|
|
* just set lc_program to 0 to indicate no callbacks are possible.
|
|
* (For cases where the address can't be parsed or is 0.0.0.0.0.0, set
|
|
* the address to the client's transport address. This won't be used
|
|
* for callbacks, but can be printed out by newnfsstats for info.)
|
|
* Return error if the xdr can't be parsed, 0 otherwise.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_getclientipaddr(struct nfsrv_descript *nd, struct nfsclient *clp)
|
|
{
|
|
u_int32_t *tl;
|
|
u_char *cp, *cp2;
|
|
int i, j;
|
|
struct sockaddr_in *rad, *sad;
|
|
u_char protocol[5], addr[24];
|
|
int error = 0, cantparse = 0;
|
|
union {
|
|
u_long ival;
|
|
u_char cval[4];
|
|
} ip;
|
|
union {
|
|
u_short sval;
|
|
u_char cval[2];
|
|
} port;
|
|
|
|
rad = NFSSOCKADDR(clp->lc_req.nr_nam, struct sockaddr_in *);
|
|
rad->sin_family = AF_INET;
|
|
rad->sin_len = sizeof (struct sockaddr_in);
|
|
rad->sin_addr.s_addr = 0;
|
|
rad->sin_port = 0;
|
|
clp->lc_req.nr_client = NULL;
|
|
clp->lc_req.nr_lock = 0;
|
|
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
i = fxdr_unsigned(int, *tl);
|
|
if (i >= 3 && i <= 4) {
|
|
error = nfsrv_mtostr(nd, protocol, i);
|
|
if (error)
|
|
goto nfsmout;
|
|
if (!strcmp(protocol, "tcp")) {
|
|
clp->lc_flags |= LCL_TCPCALLBACK;
|
|
clp->lc_req.nr_sotype = SOCK_STREAM;
|
|
clp->lc_req.nr_soproto = IPPROTO_TCP;
|
|
} else if (!strcmp(protocol, "udp")) {
|
|
clp->lc_req.nr_sotype = SOCK_DGRAM;
|
|
clp->lc_req.nr_soproto = IPPROTO_UDP;
|
|
} else {
|
|
cantparse = 1;
|
|
}
|
|
} else {
|
|
cantparse = 1;
|
|
if (i > 0) {
|
|
error = nfsm_advance(nd, NFSM_RNDUP(i), -1);
|
|
if (error)
|
|
goto nfsmout;
|
|
}
|
|
}
|
|
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
i = fxdr_unsigned(int, *tl);
|
|
if (i < 0) {
|
|
error = NFSERR_BADXDR;
|
|
goto nfsmout;
|
|
} else if (i == 0) {
|
|
cantparse = 1;
|
|
} else if (!cantparse && i <= 23 && i >= 11) {
|
|
error = nfsrv_mtostr(nd, addr, i);
|
|
if (error)
|
|
goto nfsmout;
|
|
|
|
/*
|
|
* Parse out the address fields. We expect 6 decimal numbers
|
|
* separated by '.'s.
|
|
*/
|
|
cp = addr;
|
|
i = 0;
|
|
while (*cp && i < 6) {
|
|
cp2 = cp;
|
|
while (*cp2 && *cp2 != '.')
|
|
cp2++;
|
|
if (*cp2)
|
|
*cp2++ = '\0';
|
|
else if (i != 5) {
|
|
cantparse = 1;
|
|
break;
|
|
}
|
|
j = nfsrv_getipnumber(cp);
|
|
if (j >= 0) {
|
|
if (i < 4)
|
|
ip.cval[3 - i] = j;
|
|
else
|
|
port.cval[5 - i] = j;
|
|
} else {
|
|
cantparse = 1;
|
|
break;
|
|
}
|
|
cp = cp2;
|
|
i++;
|
|
}
|
|
if (!cantparse) {
|
|
if (ip.ival != 0x0) {
|
|
rad->sin_addr.s_addr = htonl(ip.ival);
|
|
rad->sin_port = htons(port.sval);
|
|
} else {
|
|
cantparse = 1;
|
|
}
|
|
}
|
|
} else {
|
|
cantparse = 1;
|
|
if (i > 0) {
|
|
error = nfsm_advance(nd, NFSM_RNDUP(i), -1);
|
|
if (error)
|
|
goto nfsmout;
|
|
}
|
|
}
|
|
if (cantparse) {
|
|
sad = NFSSOCKADDR(nd->nd_nam, struct sockaddr_in *);
|
|
rad->sin_addr.s_addr = sad->sin_addr.s_addr;
|
|
rad->sin_port = 0x0;
|
|
clp->lc_program = 0;
|
|
}
|
|
nfsmout:
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Turn a string of up to three decimal digits into a number. Return -1 upon
|
|
* error.
|
|
*/
|
|
static int
|
|
nfsrv_getipnumber(u_char *cp)
|
|
{
|
|
int i = 0, j = 0;
|
|
|
|
while (*cp) {
|
|
if (j > 2 || *cp < '0' || *cp > '9')
|
|
return (-1);
|
|
i *= 10;
|
|
i += (*cp - '0');
|
|
cp++;
|
|
j++;
|
|
}
|
|
if (i < 256)
|
|
return (i);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* This function checks for restart conditions.
|
|
*/
|
|
static int
|
|
nfsrv_checkrestart(nfsquad_t clientid, u_int32_t flags,
|
|
nfsv4stateid_t *stateidp, int specialid)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* First check for a server restart. Open, LockT, ReleaseLockOwner
|
|
* and DelegPurge have a clientid, the rest a stateid.
|
|
*/
|
|
if (flags &
|
|
(NFSLCK_OPEN | NFSLCK_TEST | NFSLCK_RELEASE | NFSLCK_DELEGPURGE)) {
|
|
if (clientid.lval[0] != nfsrvboottime)
|
|
return (NFSERR_STALECLIENTID);
|
|
} else if (stateidp->other[0] != nfsrvboottime &&
|
|
specialid == 0)
|
|
return (NFSERR_STALESTATEID);
|
|
|
|
/*
|
|
* Read, Write, Setattr and LockT can return NFSERR_GRACE and do
|
|
* not use a lock/open owner seqid#, so the check can be done now.
|
|
* (The others will be checked, as required, later.)
|
|
*/
|
|
if (!(flags & (NFSLCK_CHECK | NFSLCK_TEST)))
|
|
return (0);
|
|
|
|
NFSLOCKSTATE();
|
|
ret = nfsrv_checkgrace(flags);
|
|
NFSUNLOCKSTATE();
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Check for grace.
|
|
*/
|
|
static int
|
|
nfsrv_checkgrace(u_int32_t flags)
|
|
{
|
|
|
|
if (nfsrv_stablefirst.nsf_flags & NFSNSF_GRACEOVER) {
|
|
if (flags & NFSLCK_RECLAIM)
|
|
return (NFSERR_NOGRACE);
|
|
} else {
|
|
if (!(flags & NFSLCK_RECLAIM))
|
|
return (NFSERR_GRACE);
|
|
|
|
/*
|
|
* If grace is almost over and we are still getting Reclaims,
|
|
* extend grace a bit.
|
|
*/
|
|
if ((NFSD_MONOSEC + NFSRV_LEASEDELTA) >
|
|
nfsrv_stablefirst.nsf_eograce)
|
|
nfsrv_stablefirst.nsf_eograce = NFSD_MONOSEC +
|
|
NFSRV_LEASEDELTA;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Do a server callback.
|
|
*/
|
|
static int
|
|
nfsrv_docallback(struct nfsclient *clp, int procnum,
|
|
nfsv4stateid_t *stateidp, int trunc, fhandle_t *fhp,
|
|
struct nfsvattr *nap, nfsattrbit_t *attrbitp, NFSPROC_T *p)
|
|
{
|
|
mbuf_t m;
|
|
u_int32_t *tl;
|
|
struct nfsrv_descript nfsd, *nd = &nfsd;
|
|
struct ucred *cred;
|
|
int error = 0;
|
|
u_int32_t callback;
|
|
|
|
cred = newnfs_getcred();
|
|
NFSLOCKSTATE(); /* mostly for lc_cbref++ */
|
|
if (clp->lc_flags & LCL_NEEDSCONFIRM) {
|
|
NFSUNLOCKSTATE();
|
|
panic("docallb");
|
|
}
|
|
clp->lc_cbref++;
|
|
|
|
/*
|
|
* Fill the callback program# and version into the request
|
|
* structure for newnfs_connect() to use.
|
|
*/
|
|
clp->lc_req.nr_prog = clp->lc_program;
|
|
clp->lc_req.nr_vers = NFSV4_CBVERS;
|
|
|
|
/*
|
|
* First, fill in some of the fields of nd and cr.
|
|
*/
|
|
nd->nd_flag = ND_NFSV4;
|
|
if (clp->lc_flags & LCL_GSS)
|
|
nd->nd_flag |= ND_KERBV;
|
|
nd->nd_repstat = 0;
|
|
cred->cr_uid = clp->lc_uid;
|
|
cred->cr_gid = clp->lc_gid;
|
|
callback = clp->lc_callback;
|
|
NFSUNLOCKSTATE();
|
|
cred->cr_ngroups = 1;
|
|
|
|
/*
|
|
* Get the first mbuf for the request.
|
|
*/
|
|
MGET(m, M_WAIT, MT_DATA);
|
|
mbuf_setlen(m, 0);
|
|
nd->nd_mreq = nd->nd_mb = m;
|
|
nd->nd_bpos = NFSMTOD(m, caddr_t);
|
|
|
|
/*
|
|
* and build the callback request.
|
|
*/
|
|
if (procnum == NFSV4OP_CBGETATTR) {
|
|
nd->nd_procnum = NFSV4PROC_CBCOMPOUND;
|
|
(void) nfsm_strtom(nd, "CB Getattr", 10);
|
|
NFSM_BUILD(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
|
|
*tl++ = txdr_unsigned(NFSV4_MINORVERSION);
|
|
*tl++ = txdr_unsigned(callback);
|
|
*tl++ = txdr_unsigned(1);
|
|
*tl = txdr_unsigned(NFSV4OP_CBGETATTR);
|
|
(void) nfsm_fhtom(nd, (u_int8_t *)fhp, NFSX_MYFH, 0);
|
|
(void) nfsrv_putattrbit(nd, attrbitp);
|
|
} else if (procnum == NFSV4OP_CBRECALL) {
|
|
nd->nd_procnum = NFSV4PROC_CBCOMPOUND;
|
|
(void) nfsm_strtom(nd, "CB Recall", 9);
|
|
NFSM_BUILD(tl, u_int32_t *, 5 * NFSX_UNSIGNED + NFSX_STATEID);
|
|
*tl++ = txdr_unsigned(NFSV4_MINORVERSION);
|
|
*tl++ = txdr_unsigned(callback);
|
|
*tl++ = txdr_unsigned(1);
|
|
*tl++ = txdr_unsigned(NFSV4OP_CBRECALL);
|
|
*tl++ = txdr_unsigned(stateidp->seqid);
|
|
NFSBCOPY((caddr_t)stateidp->other, (caddr_t)tl,
|
|
NFSX_STATEIDOTHER);
|
|
tl += (NFSX_STATEIDOTHER / NFSX_UNSIGNED);
|
|
if (trunc)
|
|
*tl = newnfs_true;
|
|
else
|
|
*tl = newnfs_false;
|
|
(void) nfsm_fhtom(nd, (u_int8_t *)fhp, NFSX_MYFH, 0);
|
|
} else {
|
|
nd->nd_procnum = NFSV4PROC_CBNULL;
|
|
}
|
|
|
|
/*
|
|
* Call newnfs_connect(), as required, and then newnfs_request().
|
|
*/
|
|
(void) newnfs_sndlock(&clp->lc_req.nr_lock);
|
|
if (clp->lc_req.nr_client == NULL) {
|
|
if (nd->nd_procnum == NFSV4PROC_CBNULL)
|
|
error = newnfs_connect(NULL, &clp->lc_req, cred,
|
|
NULL, 1);
|
|
else
|
|
error = newnfs_connect(NULL, &clp->lc_req, cred,
|
|
NULL, 3);
|
|
}
|
|
newnfs_sndunlock(&clp->lc_req.nr_lock);
|
|
if (!error) {
|
|
error = newnfs_request(nd, NULL, clp, &clp->lc_req, NULL,
|
|
NULL, cred, clp->lc_program, NFSV4_CBVERS, NULL, 1, NULL);
|
|
}
|
|
NFSFREECRED(cred);
|
|
|
|
/*
|
|
* If error is set here, the Callback path isn't working
|
|
* properly, so twiddle the appropriate LCL_ flags.
|
|
* (nd_repstat != 0 indicates the Callback path is working,
|
|
* but the callback failed on the client.)
|
|
*/
|
|
if (error) {
|
|
/*
|
|
* Mark the callback pathway down, which disabled issuing
|
|
* of delegations and gets Renew to return NFSERR_CBPATHDOWN.
|
|
*/
|
|
NFSLOCKSTATE();
|
|
clp->lc_flags |= LCL_CBDOWN;
|
|
NFSUNLOCKSTATE();
|
|
} else {
|
|
/*
|
|
* Callback worked. If the callback path was down, disable
|
|
* callbacks, so no more delegations will be issued. (This
|
|
* is done on the assumption that the callback pathway is
|
|
* flakey.)
|
|
*/
|
|
NFSLOCKSTATE();
|
|
if (clp->lc_flags & LCL_CBDOWN)
|
|
clp->lc_flags &= ~(LCL_CBDOWN | LCL_CALLBACKSON);
|
|
NFSUNLOCKSTATE();
|
|
if (nd->nd_repstat)
|
|
error = nd->nd_repstat;
|
|
else if (procnum == NFSV4OP_CBGETATTR)
|
|
error = nfsv4_loadattr(nd, NULL, nap, NULL, NULL, 0,
|
|
NULL, NULL, NULL, NULL, NULL, 0, NULL, NULL, NULL,
|
|
p, NULL);
|
|
mbuf_freem(nd->nd_mrep);
|
|
}
|
|
NFSLOCKSTATE();
|
|
clp->lc_cbref--;
|
|
if ((clp->lc_flags & LCL_WAKEUPWANTED) && clp->lc_cbref == 0) {
|
|
clp->lc_flags &= ~LCL_WAKEUPWANTED;
|
|
NFSUNLOCKSTATE();
|
|
wakeup((caddr_t)clp);
|
|
} else {
|
|
NFSUNLOCKSTATE();
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return the next index# for a clientid. Mostly just increment and return
|
|
* the next one, but... if the 32bit unsigned does actually wrap around,
|
|
* it should be rebooted.
|
|
* At an average rate of one new client per second, it will wrap around in
|
|
* approximately 136 years. (I think the server will have been shut
|
|
* down or rebooted before then.)
|
|
*/
|
|
static u_int32_t
|
|
nfsrv_nextclientindex(void)
|
|
{
|
|
static u_int32_t client_index = 0;
|
|
|
|
client_index++;
|
|
if (client_index != 0)
|
|
return (client_index);
|
|
|
|
printf("%s: out of clientids\n", __func__);
|
|
return (client_index);
|
|
}
|
|
|
|
/*
|
|
* Return the next index# for a stateid. Mostly just increment and return
|
|
* the next one, but... if the 32bit unsigned does actually wrap around
|
|
* (will a BSD server stay up that long?), find
|
|
* new start and end values.
|
|
*/
|
|
static u_int32_t
|
|
nfsrv_nextstateindex(struct nfsclient *clp)
|
|
{
|
|
struct nfsstate *stp;
|
|
int i;
|
|
u_int32_t canuse, min_index, max_index;
|
|
|
|
if (!(clp->lc_flags & LCL_INDEXNOTOK)) {
|
|
clp->lc_stateindex++;
|
|
if (clp->lc_stateindex != clp->lc_statemaxindex)
|
|
return (clp->lc_stateindex);
|
|
}
|
|
|
|
/*
|
|
* Yuck, we've hit the end.
|
|
* Look for a new min and max.
|
|
*/
|
|
min_index = 0;
|
|
max_index = 0xffffffff;
|
|
for (i = 0; i < NFSSTATEHASHSIZE; i++) {
|
|
LIST_FOREACH(stp, &clp->lc_stateid[i], ls_hash) {
|
|
if (stp->ls_stateid.other[2] > 0x80000000) {
|
|
if (stp->ls_stateid.other[2] < max_index)
|
|
max_index = stp->ls_stateid.other[2];
|
|
} else {
|
|
if (stp->ls_stateid.other[2] > min_index)
|
|
min_index = stp->ls_stateid.other[2];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Yikes, highly unlikely, but I'll handle it anyhow.
|
|
*/
|
|
if (min_index == 0x80000000 && max_index == 0x80000001) {
|
|
canuse = 0;
|
|
/*
|
|
* Loop around until we find an unused entry. Return that
|
|
* and set LCL_INDEXNOTOK, so the search will continue next time.
|
|
* (This is one of those rare cases where a goto is the
|
|
* cleanest way to code the loop.)
|
|
*/
|
|
tryagain:
|
|
for (i = 0; i < NFSSTATEHASHSIZE; i++) {
|
|
LIST_FOREACH(stp, &clp->lc_stateid[i], ls_hash) {
|
|
if (stp->ls_stateid.other[2] == canuse) {
|
|
canuse++;
|
|
goto tryagain;
|
|
}
|
|
}
|
|
}
|
|
clp->lc_flags |= LCL_INDEXNOTOK;
|
|
return (canuse);
|
|
}
|
|
|
|
/*
|
|
* Ok to start again from min + 1.
|
|
*/
|
|
clp->lc_stateindex = min_index + 1;
|
|
clp->lc_statemaxindex = max_index;
|
|
clp->lc_flags &= ~LCL_INDEXNOTOK;
|
|
return (clp->lc_stateindex);
|
|
}
|
|
|
|
/*
|
|
* The following functions handle the stable storage file that deals with
|
|
* the edge conditions described in RFC3530 Sec. 8.6.3.
|
|
* The file is as follows:
|
|
* - a single record at the beginning that has the lease time of the
|
|
* previous server instance (before the last reboot) and the nfsrvboottime
|
|
* values for the previous server boots.
|
|
* These previous boot times are used to ensure that the current
|
|
* nfsrvboottime does not, somehow, get set to a previous one.
|
|
* (This is important so that Stale ClientIDs and StateIDs can
|
|
* be recognized.)
|
|
* The number of previous nfsvrboottime values preceeds the list.
|
|
* - followed by some number of appended records with:
|
|
* - client id string
|
|
* - flag that indicates it is a record revoking state via lease
|
|
* expiration or similar
|
|
* OR has successfully acquired state.
|
|
* These structures vary in length, with the client string at the end, up
|
|
* to NFSV4_OPAQUELIMIT in size.
|
|
*
|
|
* At the end of the grace period, the file is truncated, the first
|
|
* record is rewritten with updated information and any acquired state
|
|
* records for successful reclaims of state are written.
|
|
*
|
|
* Subsequent records are appended when the first state is issued to
|
|
* a client and when state is revoked for a client.
|
|
*
|
|
* When reading the file in, state issued records that come later in
|
|
* the file override older ones, since the append log is in cronological order.
|
|
* If, for some reason, the file can't be read, the grace period is
|
|
* immediately terminated and all reclaims get NFSERR_NOGRACE.
|
|
*/
|
|
|
|
/*
|
|
* Read in the stable storage file. Called by nfssvc() before the nfsd
|
|
* processes start servicing requests.
|
|
*/
|
|
APPLESTATIC void
|
|
nfsrv_setupstable(NFSPROC_T *p)
|
|
{
|
|
struct nfsrv_stablefirst *sf = &nfsrv_stablefirst;
|
|
struct nfsrv_stable *sp, *nsp;
|
|
struct nfst_rec *tsp;
|
|
int error, i, tryagain;
|
|
off_t off = 0;
|
|
int aresid, len;
|
|
struct timeval curtime;
|
|
|
|
/*
|
|
* If NFSNSF_UPDATEDONE is set, this is a restart of the nfsds without
|
|
* a reboot, so state has not been lost.
|
|
*/
|
|
if (sf->nsf_flags & NFSNSF_UPDATEDONE)
|
|
return;
|
|
/*
|
|
* Set Grace over just until the file reads successfully.
|
|
*/
|
|
NFSGETTIME(&curtime);
|
|
nfsrvboottime = curtime.tv_sec;
|
|
LIST_INIT(&sf->nsf_head);
|
|
sf->nsf_flags = (NFSNSF_GRACEOVER | NFSNSF_NEEDLOCK);
|
|
sf->nsf_eograce = NFSD_MONOSEC + NFSRV_LEASEDELTA;
|
|
if (sf->nsf_fp == NULL)
|
|
return;
|
|
error = NFSD_RDWR(UIO_READ, NFSFPVNODE(sf->nsf_fp),
|
|
(caddr_t)&sf->nsf_rec, sizeof (struct nfsf_rec), off, UIO_SYSSPACE,
|
|
0, NFSFPCRED(sf->nsf_fp), &aresid, p);
|
|
if (error || aresid || sf->nsf_numboots == 0 ||
|
|
sf->nsf_numboots > NFSNSF_MAXNUMBOOTS)
|
|
return;
|
|
|
|
/*
|
|
* Now, read in the boottimes.
|
|
*/
|
|
sf->nsf_bootvals = (time_t *)malloc((sf->nsf_numboots + 1) *
|
|
sizeof (time_t), M_TEMP, M_WAITOK);
|
|
off = sizeof (struct nfsf_rec);
|
|
error = NFSD_RDWR(UIO_READ, NFSFPVNODE(sf->nsf_fp),
|
|
(caddr_t)sf->nsf_bootvals, sf->nsf_numboots * sizeof (time_t), off,
|
|
UIO_SYSSPACE, 0, NFSFPCRED(sf->nsf_fp), &aresid, p);
|
|
if (error || aresid) {
|
|
free((caddr_t)sf->nsf_bootvals, M_TEMP);
|
|
sf->nsf_bootvals = NULL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Make sure this nfsrvboottime is different from all recorded
|
|
* previous ones.
|
|
*/
|
|
do {
|
|
tryagain = 0;
|
|
for (i = 0; i < sf->nsf_numboots; i++) {
|
|
if (nfsrvboottime == sf->nsf_bootvals[i]) {
|
|
nfsrvboottime++;
|
|
tryagain = 1;
|
|
break;
|
|
}
|
|
}
|
|
} while (tryagain);
|
|
|
|
sf->nsf_flags |= NFSNSF_OK;
|
|
off += (sf->nsf_numboots * sizeof (time_t));
|
|
|
|
/*
|
|
* Read through the file, building a list of records for grace
|
|
* checking.
|
|
* Each record is between sizeof (struct nfst_rec) and
|
|
* sizeof (struct nfst_rec) + NFSV4_OPAQUELIMIT - 1
|
|
* and is actually sizeof (struct nfst_rec) + nst_len - 1.
|
|
*/
|
|
tsp = (struct nfst_rec *)malloc(sizeof (struct nfst_rec) +
|
|
NFSV4_OPAQUELIMIT - 1, M_TEMP, M_WAITOK);
|
|
do {
|
|
error = NFSD_RDWR(UIO_READ, NFSFPVNODE(sf->nsf_fp),
|
|
(caddr_t)tsp, sizeof (struct nfst_rec) + NFSV4_OPAQUELIMIT - 1,
|
|
off, UIO_SYSSPACE, 0, NFSFPCRED(sf->nsf_fp), &aresid, p);
|
|
len = (sizeof (struct nfst_rec) + NFSV4_OPAQUELIMIT - 1) - aresid;
|
|
if (error || (len > 0 && (len < sizeof (struct nfst_rec) ||
|
|
len < (sizeof (struct nfst_rec) + tsp->len - 1)))) {
|
|
/*
|
|
* Yuck, the file has been corrupted, so just return
|
|
* after clearing out any restart state, so the grace period
|
|
* is over.
|
|
*/
|
|
LIST_FOREACH_SAFE(sp, &sf->nsf_head, nst_list, nsp) {
|
|
LIST_REMOVE(sp, nst_list);
|
|
free((caddr_t)sp, M_TEMP);
|
|
}
|
|
free((caddr_t)tsp, M_TEMP);
|
|
sf->nsf_flags &= ~NFSNSF_OK;
|
|
free((caddr_t)sf->nsf_bootvals, M_TEMP);
|
|
sf->nsf_bootvals = NULL;
|
|
return;
|
|
}
|
|
if (len > 0) {
|
|
off += sizeof (struct nfst_rec) + tsp->len - 1;
|
|
/*
|
|
* Search the list for a matching client.
|
|
*/
|
|
LIST_FOREACH(sp, &sf->nsf_head, nst_list) {
|
|
if (tsp->len == sp->nst_len &&
|
|
!NFSBCMP(tsp->client, sp->nst_client, tsp->len))
|
|
break;
|
|
}
|
|
if (sp == LIST_END(&sf->nsf_head)) {
|
|
sp = (struct nfsrv_stable *)malloc(tsp->len +
|
|
sizeof (struct nfsrv_stable) - 1, M_TEMP,
|
|
M_WAITOK);
|
|
NFSBCOPY((caddr_t)tsp, (caddr_t)&sp->nst_rec,
|
|
sizeof (struct nfst_rec) + tsp->len - 1);
|
|
LIST_INSERT_HEAD(&sf->nsf_head, sp, nst_list);
|
|
} else {
|
|
if (tsp->flag == NFSNST_REVOKE)
|
|
sp->nst_flag |= NFSNST_REVOKE;
|
|
else
|
|
/*
|
|
* A subsequent timestamp indicates the client
|
|
* did a setclientid/confirm and any previous
|
|
* revoke is no longer relevant.
|
|
*/
|
|
sp->nst_flag &= ~NFSNST_REVOKE;
|
|
}
|
|
}
|
|
} while (len > 0);
|
|
free((caddr_t)tsp, M_TEMP);
|
|
sf->nsf_flags = NFSNSF_OK;
|
|
sf->nsf_eograce = NFSD_MONOSEC + sf->nsf_lease +
|
|
NFSRV_LEASEDELTA;
|
|
}
|
|
|
|
/*
|
|
* Update the stable storage file, now that the grace period is over.
|
|
*/
|
|
APPLESTATIC void
|
|
nfsrv_updatestable(NFSPROC_T *p)
|
|
{
|
|
struct nfsrv_stablefirst *sf = &nfsrv_stablefirst;
|
|
struct nfsrv_stable *sp, *nsp;
|
|
int i;
|
|
struct nfsvattr nva;
|
|
vnode_t vp;
|
|
#if defined(__FreeBSD_version) && (__FreeBSD_version >= 500000)
|
|
mount_t mp = NULL;
|
|
#endif
|
|
int error;
|
|
|
|
if (sf->nsf_fp == NULL || (sf->nsf_flags & NFSNSF_UPDATEDONE))
|
|
return;
|
|
sf->nsf_flags |= NFSNSF_UPDATEDONE;
|
|
/*
|
|
* Ok, we need to rewrite the stable storage file.
|
|
* - truncate to 0 length
|
|
* - write the new first structure
|
|
* - loop through the data structures, writing out any that
|
|
* have timestamps older than the old boot
|
|
*/
|
|
if (sf->nsf_bootvals) {
|
|
sf->nsf_numboots++;
|
|
for (i = sf->nsf_numboots - 2; i >= 0; i--)
|
|
sf->nsf_bootvals[i + 1] = sf->nsf_bootvals[i];
|
|
} else {
|
|
sf->nsf_numboots = 1;
|
|
sf->nsf_bootvals = (time_t *)malloc(sizeof (time_t),
|
|
M_TEMP, M_WAITOK);
|
|
}
|
|
sf->nsf_bootvals[0] = nfsrvboottime;
|
|
sf->nsf_lease = nfsrv_lease;
|
|
NFSVNO_ATTRINIT(&nva);
|
|
NFSVNO_SETATTRVAL(&nva, size, 0);
|
|
vp = NFSFPVNODE(sf->nsf_fp);
|
|
NFS_STARTWRITE(vp, &mp);
|
|
NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY, p);
|
|
error = nfsvno_setattr(vp, &nva, NFSFPCRED(sf->nsf_fp), p, NULL);
|
|
NFS_ENDWRITE(mp);
|
|
NFSVOPUNLOCK(vp, 0, p);
|
|
if (!error)
|
|
error = NFSD_RDWR(UIO_WRITE, vp,
|
|
(caddr_t)&sf->nsf_rec, sizeof (struct nfsf_rec), (off_t)0,
|
|
UIO_SYSSPACE, IO_SYNC, NFSFPCRED(sf->nsf_fp), NULL, p);
|
|
if (!error)
|
|
error = NFSD_RDWR(UIO_WRITE, vp,
|
|
(caddr_t)sf->nsf_bootvals,
|
|
sf->nsf_numboots * sizeof (time_t),
|
|
(off_t)(sizeof (struct nfsf_rec)),
|
|
UIO_SYSSPACE, IO_SYNC, NFSFPCRED(sf->nsf_fp), NULL, p);
|
|
free((caddr_t)sf->nsf_bootvals, M_TEMP);
|
|
sf->nsf_bootvals = NULL;
|
|
if (error) {
|
|
sf->nsf_flags &= ~NFSNSF_OK;
|
|
printf("EEK! Can't write NfsV4 stable storage file\n");
|
|
return;
|
|
}
|
|
sf->nsf_flags |= NFSNSF_OK;
|
|
|
|
/*
|
|
* Loop through the list and write out timestamp records for
|
|
* any clients that successfully reclaimed state.
|
|
*/
|
|
LIST_FOREACH_SAFE(sp, &sf->nsf_head, nst_list, nsp) {
|
|
if (sp->nst_flag & NFSNST_GOTSTATE) {
|
|
nfsrv_writestable(sp->nst_client, sp->nst_len,
|
|
NFSNST_NEWSTATE, p);
|
|
sp->nst_clp->lc_flags |= LCL_STAMPEDSTABLE;
|
|
}
|
|
LIST_REMOVE(sp, nst_list);
|
|
free((caddr_t)sp, M_TEMP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Append a record to the stable storage file.
|
|
*/
|
|
APPLESTATIC void
|
|
nfsrv_writestable(u_char *client, int len, int flag, NFSPROC_T *p)
|
|
{
|
|
struct nfsrv_stablefirst *sf = &nfsrv_stablefirst;
|
|
struct nfst_rec *sp;
|
|
int error;
|
|
|
|
if (!(sf->nsf_flags & NFSNSF_OK) || sf->nsf_fp == NULL)
|
|
return;
|
|
sp = (struct nfst_rec *)malloc(sizeof (struct nfst_rec) +
|
|
len - 1, M_TEMP, M_WAITOK);
|
|
sp->len = len;
|
|
NFSBCOPY(client, sp->client, len);
|
|
sp->flag = flag;
|
|
error = NFSD_RDWR(UIO_WRITE, NFSFPVNODE(sf->nsf_fp),
|
|
(caddr_t)sp, sizeof (struct nfst_rec) + len - 1, (off_t)0,
|
|
UIO_SYSSPACE, (IO_SYNC | IO_APPEND), NFSFPCRED(sf->nsf_fp), NULL, p);
|
|
free((caddr_t)sp, M_TEMP);
|
|
if (error) {
|
|
sf->nsf_flags &= ~NFSNSF_OK;
|
|
printf("EEK! Can't write NfsV4 stable storage file\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function is called during the grace period to mark a client
|
|
* that successfully reclaimed state.
|
|
*/
|
|
static void
|
|
nfsrv_markstable(struct nfsclient *clp)
|
|
{
|
|
struct nfsrv_stable *sp;
|
|
|
|
/*
|
|
* First find the client structure.
|
|
*/
|
|
LIST_FOREACH(sp, &nfsrv_stablefirst.nsf_head, nst_list) {
|
|
if (sp->nst_len == clp->lc_idlen &&
|
|
!NFSBCMP(sp->nst_client, clp->lc_id, sp->nst_len))
|
|
break;
|
|
}
|
|
if (sp == LIST_END(&nfsrv_stablefirst.nsf_head))
|
|
return;
|
|
|
|
/*
|
|
* Now, just mark it and set the nfsclient back pointer.
|
|
*/
|
|
sp->nst_flag |= NFSNST_GOTSTATE;
|
|
sp->nst_clp = clp;
|
|
}
|
|
|
|
/*
|
|
* This function is called for a reclaim, to see if it gets grace.
|
|
* It returns 0 if a reclaim is allowed, 1 otherwise.
|
|
*/
|
|
static int
|
|
nfsrv_checkstable(struct nfsclient *clp)
|
|
{
|
|
struct nfsrv_stable *sp;
|
|
|
|
/*
|
|
* First, find the entry for the client.
|
|
*/
|
|
LIST_FOREACH(sp, &nfsrv_stablefirst.nsf_head, nst_list) {
|
|
if (sp->nst_len == clp->lc_idlen &&
|
|
!NFSBCMP(sp->nst_client, clp->lc_id, sp->nst_len))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If not in the list, state was revoked or no state was issued
|
|
* since the previous reboot, a reclaim is denied.
|
|
*/
|
|
if (sp == LIST_END(&nfsrv_stablefirst.nsf_head) ||
|
|
(sp->nst_flag & NFSNST_REVOKE) ||
|
|
!(nfsrv_stablefirst.nsf_flags & NFSNSF_OK))
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Test for and try to clear out a conflicting client. This is called by
|
|
* nfsrv_lockctrl() and nfsrv_openctrl() when conflicts with other clients
|
|
* a found.
|
|
* The trick here is that it can't revoke a conflicting client with an
|
|
* expired lease unless it holds the v4root lock, so...
|
|
* If no v4root lock, get the lock and return 1 to indicate "try again".
|
|
* Return 0 to indicate the conflict can't be revoked and 1 to indicate
|
|
* the revocation worked and the conflicting client is "bye, bye", so it
|
|
* can be tried again.
|
|
* Unlocks State before a non-zero value is returned.
|
|
*/
|
|
static int
|
|
nfsrv_clientconflict(struct nfsclient *clp, int *haslockp, __unused vnode_t vp,
|
|
NFSPROC_T *p)
|
|
{
|
|
int gotlock;
|
|
|
|
/*
|
|
* If lease hasn't expired, we can't fix it.
|
|
*/
|
|
if (clp->lc_expiry >= NFSD_MONOSEC ||
|
|
!(nfsrv_stablefirst.nsf_flags & NFSNSF_UPDATEDONE))
|
|
return (0);
|
|
if (*haslockp == 0) {
|
|
NFSUNLOCKSTATE();
|
|
NFSVOPUNLOCK(vp, 0, p);
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_relref(&nfsv4rootfs_lock);
|
|
do {
|
|
gotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
|
|
NFSV4ROOTLOCKMUTEXPTR);
|
|
} while (!gotlock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
*haslockp = 1;
|
|
NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY, p);
|
|
return (1);
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
|
|
/*
|
|
* Ok, we can expire the conflicting client.
|
|
*/
|
|
nfsrv_writestable(clp->lc_id, clp->lc_idlen, NFSNST_REVOKE, p);
|
|
nfsrv_cleanclient(clp, p);
|
|
nfsrv_freedeleglist(&clp->lc_deleg);
|
|
nfsrv_freedeleglist(&clp->lc_olddeleg);
|
|
LIST_REMOVE(clp, lc_hash);
|
|
nfsrv_zapclient(clp, p);
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* Resolve a delegation conflict.
|
|
* Returns 0 to indicate the conflict was resolved without sleeping.
|
|
* Return -1 to indicate that the caller should check for conflicts again.
|
|
* Return > 0 for an error that should be returned, normally NFSERR_DELAY.
|
|
*
|
|
* Also, manipulate the nfsv4root_lock, as required. It isn't changed
|
|
* for a return of 0, since there was no sleep and it could be required
|
|
* later. It is released for a return of NFSERR_DELAY, since the caller
|
|
* will return that error. It is released when a sleep was done waiting
|
|
* for the delegation to be returned or expire (so that other nfsds can
|
|
* handle ops). Then, it must be acquired for the write to stable storage.
|
|
* (This function is somewhat similar to nfsrv_clientconflict(), but
|
|
* the semantics differ in a couple of subtle ways. The return of 0
|
|
* indicates the conflict was resolved without sleeping here, not
|
|
* that the conflict can't be resolved and the handling of nfsv4root_lock
|
|
* differs, as noted above.)
|
|
* Unlocks State before returning a non-zero value.
|
|
*/
|
|
static int
|
|
nfsrv_delegconflict(struct nfsstate *stp, int *haslockp, NFSPROC_T *p,
|
|
__unused vnode_t vp)
|
|
{
|
|
struct nfsclient *clp = stp->ls_clp;
|
|
int gotlock, error, retrycnt, zapped_clp;
|
|
nfsv4stateid_t tstateid;
|
|
fhandle_t tfh;
|
|
|
|
/*
|
|
* If the conflict is with an old delegation...
|
|
*/
|
|
if (stp->ls_flags & NFSLCK_OLDDELEG) {
|
|
/*
|
|
* You can delete it, if it has expired.
|
|
*/
|
|
if (clp->lc_delegtime < NFSD_MONOSEC) {
|
|
nfsrv_freedeleg(stp);
|
|
NFSUNLOCKSTATE();
|
|
return (-1);
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
/*
|
|
* During this delay, the old delegation could expire or it
|
|
* could be recovered by the client via an Open with
|
|
* CLAIM_DELEGATE_PREV.
|
|
* Release the nfsv4root_lock, if held.
|
|
*/
|
|
if (*haslockp) {
|
|
*haslockp = 0;
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (NFSERR_DELAY);
|
|
}
|
|
|
|
/*
|
|
* It's a current delegation, so:
|
|
* - check to see if the delegation has expired
|
|
* - if so, get the v4root lock and then expire it
|
|
*/
|
|
if (!(stp->ls_flags & NFSLCK_DELEGRECALL)) {
|
|
/*
|
|
* - do a recall callback, since not yet done
|
|
* For now, never allow truncate to be set. To use
|
|
* truncate safely, it must be guaranteed that the
|
|
* Remove, Rename or Setattr with size of 0 will
|
|
* succeed and that would require major changes to
|
|
* the VFS/Vnode OPs.
|
|
* Set the expiry time large enough so that it won't expire
|
|
* until after the callback, then set it correctly, once
|
|
* the callback is done. (The delegation will now time
|
|
* out whether or not the Recall worked ok. The timeout
|
|
* will be extended when ops are done on the delegation
|
|
* stateid, up to the timelimit.)
|
|
*/
|
|
stp->ls_delegtime = NFSD_MONOSEC + (2 * nfsrv_lease) +
|
|
NFSRV_LEASEDELTA;
|
|
stp->ls_delegtimelimit = NFSD_MONOSEC + (6 * nfsrv_lease) +
|
|
NFSRV_LEASEDELTA;
|
|
stp->ls_flags |= NFSLCK_DELEGRECALL;
|
|
|
|
/*
|
|
* Loop NFSRV_CBRETRYCNT times while the CBRecall replies
|
|
* NFSERR_BADSTATEID or NFSERR_BADHANDLE. This is done
|
|
* in order to try and avoid a race that could happen
|
|
* when a CBRecall request passed the Open reply with
|
|
* the delegation in it when transitting the network.
|
|
* Since nfsrv_docallback will sleep, don't use stp after
|
|
* the call.
|
|
*/
|
|
NFSBCOPY((caddr_t)&stp->ls_stateid, (caddr_t)&tstateid,
|
|
sizeof (tstateid));
|
|
NFSBCOPY((caddr_t)&stp->ls_lfp->lf_fh, (caddr_t)&tfh,
|
|
sizeof (tfh));
|
|
NFSUNLOCKSTATE();
|
|
if (*haslockp) {
|
|
*haslockp = 0;
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
retrycnt = 0;
|
|
do {
|
|
error = nfsrv_docallback(clp, NFSV4OP_CBRECALL,
|
|
&tstateid, 0, &tfh, NULL, NULL, p);
|
|
retrycnt++;
|
|
} while ((error == NFSERR_BADSTATEID ||
|
|
error == NFSERR_BADHANDLE) && retrycnt < NFSV4_CBRETRYCNT);
|
|
return (NFSERR_DELAY);
|
|
}
|
|
|
|
if (clp->lc_expiry >= NFSD_MONOSEC &&
|
|
stp->ls_delegtime >= NFSD_MONOSEC) {
|
|
NFSUNLOCKSTATE();
|
|
/*
|
|
* A recall has been done, but it has not yet expired.
|
|
* So, RETURN_DELAY.
|
|
*/
|
|
if (*haslockp) {
|
|
*haslockp = 0;
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (NFSERR_DELAY);
|
|
}
|
|
|
|
/*
|
|
* If we don't yet have the lock, just get it and then return,
|
|
* since we need that before deleting expired state, such as
|
|
* this delegation.
|
|
* When getting the lock, unlock the vnode, so other nfsds that
|
|
* are in progress, won't get stuck waiting for the vnode lock.
|
|
*/
|
|
if (*haslockp == 0) {
|
|
NFSUNLOCKSTATE();
|
|
NFSVOPUNLOCK(vp, 0, p);
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_relref(&nfsv4rootfs_lock);
|
|
do {
|
|
gotlock = nfsv4_lock(&nfsv4rootfs_lock, 1, NULL,
|
|
NFSV4ROOTLOCKMUTEXPTR);
|
|
} while (!gotlock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
*haslockp = 1;
|
|
NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY, p);
|
|
return (-1);
|
|
}
|
|
|
|
NFSUNLOCKSTATE();
|
|
/*
|
|
* Ok, we can delete the expired delegation.
|
|
* First, write the Revoke record to stable storage and then
|
|
* clear out the conflict.
|
|
* Since all other nfsd threads are now blocked, we can safely
|
|
* sleep without the state changing.
|
|
*/
|
|
nfsrv_writestable(clp->lc_id, clp->lc_idlen, NFSNST_REVOKE, p);
|
|
if (clp->lc_expiry < NFSD_MONOSEC) {
|
|
nfsrv_cleanclient(clp, p);
|
|
nfsrv_freedeleglist(&clp->lc_deleg);
|
|
nfsrv_freedeleglist(&clp->lc_olddeleg);
|
|
LIST_REMOVE(clp, lc_hash);
|
|
zapped_clp = 1;
|
|
} else {
|
|
nfsrv_freedeleg(stp);
|
|
zapped_clp = 0;
|
|
}
|
|
if (zapped_clp)
|
|
nfsrv_zapclient(clp, p);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Check for a remove allowed, if remove is set to 1 and get rid of
|
|
* delegations.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_checkremove(vnode_t vp, int remove, NFSPROC_T *p)
|
|
{
|
|
struct nfsstate *stp;
|
|
struct nfslockfile *lfp;
|
|
int error, haslock = 0;
|
|
fhandle_t nfh;
|
|
|
|
/*
|
|
* First, get the lock file structure.
|
|
* (A return of -1 means no associated state, so remove ok.)
|
|
*/
|
|
error = nfsrv_getlockfh(vp, NFSLCK_CHECK, NULL, &nfh, p);
|
|
tryagain:
|
|
NFSLOCKSTATE();
|
|
if (!error)
|
|
error = nfsrv_getlockfile(NFSLCK_CHECK, NULL, &lfp, &nfh, 0);
|
|
if (error) {
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
if (error == -1)
|
|
return (0);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Now, we must Recall any delegations.
|
|
*/
|
|
error = nfsrv_cleandeleg(vp, lfp, NULL, &haslock, p);
|
|
if (error) {
|
|
/*
|
|
* nfsrv_cleandeleg() unlocks state for non-zero
|
|
* return.
|
|
*/
|
|
if (error == -1)
|
|
goto tryagain;
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Now, look for a conflicting open share.
|
|
*/
|
|
if (remove) {
|
|
LIST_FOREACH(stp, &lfp->lf_open, ls_file) {
|
|
if (stp->ls_flags & NFSLCK_WRITEDENY) {
|
|
error = NFSERR_FILEOPEN;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
NFSUNLOCKSTATE();
|
|
if (haslock) {
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_unlock(&nfsv4rootfs_lock, 1);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Clear out all delegations for the file referred to by lfp.
|
|
* May return NFSERR_DELAY, if there will be a delay waiting for
|
|
* delegations to expire.
|
|
* Returns -1 to indicate it slept while recalling a delegation.
|
|
* This function has the side effect of deleting the nfslockfile structure,
|
|
* if it no longer has associated state and didn't have to sleep.
|
|
* Unlocks State before a non-zero value is returned.
|
|
*/
|
|
static int
|
|
nfsrv_cleandeleg(vnode_t vp, struct nfslockfile *lfp,
|
|
struct nfsclient *clp, int *haslockp, NFSPROC_T *p)
|
|
{
|
|
struct nfsstate *stp, *nstp;
|
|
int ret;
|
|
|
|
stp = LIST_FIRST(&lfp->lf_deleg);
|
|
while (stp != LIST_END(&lfp->lf_deleg)) {
|
|
nstp = LIST_NEXT(stp, ls_file);
|
|
if (stp->ls_clp != clp) {
|
|
ret = nfsrv_delegconflict(stp, haslockp, p, vp);
|
|
if (ret) {
|
|
/*
|
|
* nfsrv_delegconflict() unlocks state
|
|
* when it returns non-zero.
|
|
*/
|
|
return (ret);
|
|
}
|
|
}
|
|
stp = nstp;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* There are certain operations that, when being done outside of NFSv4,
|
|
* require that any NFSv4 delegation for the file be recalled.
|
|
* This function is to be called for those cases:
|
|
* VOP_RENAME() - When a delegation is being recalled for any reason,
|
|
* the client may have to do Opens against the server, using the file's
|
|
* final component name. If the file has been renamed on the server,
|
|
* that component name will be incorrect and the Open will fail.
|
|
* VOP_REMOVE() - Theoretically, a client could Open a file after it has
|
|
* been removed on the server, if there is a delegation issued to
|
|
* that client for the file. I say "theoretically" since clients
|
|
* normally do an Access Op before the Open and that Access Op will
|
|
* fail with ESTALE. Note that NFSv2 and 3 don't even do Opens, so
|
|
* they will detect the file's removal in the same manner. (There is
|
|
* one case where RFC3530 allows a client to do an Open without first
|
|
* doing an Access Op, which is passage of a check against the ACE
|
|
* returned with a Write delegation, but current practice is to ignore
|
|
* the ACE and always do an Access Op.)
|
|
* Since the functions can only be called with an unlocked vnode, this
|
|
* can't be done at this time.
|
|
* VOP_ADVLOCK() - When a client holds a delegation, it can issue byte range
|
|
* locks locally in the client, which are not visible to the server. To
|
|
* deal with this, issuing of delegations for a vnode must be disabled
|
|
* and all delegations for the vnode recalled. This is done via the
|
|
* second function, using the VV_DISABLEDELEG vflag on the vnode.
|
|
*/
|
|
APPLESTATIC void
|
|
nfsd_recalldelegation(vnode_t vp, NFSPROC_T *p)
|
|
{
|
|
struct timespec mytime;
|
|
int32_t starttime;
|
|
int error;
|
|
|
|
KASSERT(!VOP_ISLOCKED(vp), ("vp %p is locked", vp));
|
|
|
|
/*
|
|
* First, check to see if the server is currently running and it has
|
|
* been called for a regular file when issuing delegations.
|
|
*/
|
|
if (newnfs_numnfsd == 0 || vp->v_type != VREG ||
|
|
nfsrv_issuedelegs == 0)
|
|
return;
|
|
|
|
/*
|
|
* First, get a reference on the nfsv4rootfs_lock so that an
|
|
* exclusive lock cannot be acquired by another thread.
|
|
*/
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_getref(&nfsv4rootfs_lock, NULL, NFSV4ROOTLOCKMUTEXPTR);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
|
|
/*
|
|
* Now, call nfsrv_checkremove() in a loop while it returns
|
|
* NFSERR_DELAY. Return upon any other error or when timed out.
|
|
*/
|
|
NFSGETNANOTIME(&mytime);
|
|
starttime = (u_int32_t)mytime.tv_sec;
|
|
do {
|
|
error = nfsrv_checkremove(vp, 0, p);
|
|
if (error == NFSERR_DELAY) {
|
|
NFSGETNANOTIME(&mytime);
|
|
if (((u_int32_t)mytime.tv_sec - starttime) >
|
|
NFS_REMOVETIMEO &&
|
|
((u_int32_t)mytime.tv_sec - starttime) <
|
|
100000)
|
|
break;
|
|
/* Sleep for a short period of time */
|
|
(void) nfs_catnap(PZERO, 0, "nfsremove");
|
|
}
|
|
} while (error == NFSERR_DELAY);
|
|
NFSLOCKV4ROOTMUTEX();
|
|
nfsv4_relref(&nfsv4rootfs_lock);
|
|
NFSUNLOCKV4ROOTMUTEX();
|
|
}
|
|
|
|
APPLESTATIC void
|
|
nfsd_disabledelegation(vnode_t vp, NFSPROC_T *p)
|
|
{
|
|
|
|
#ifdef VV_DISABLEDELEG
|
|
/*
|
|
* First, flag issuance of delegations disabled.
|
|
*/
|
|
atomic_set_long(&vp->v_vflag, VV_DISABLEDELEG);
|
|
#endif
|
|
|
|
/*
|
|
* Then call nfsd_recalldelegation() to get rid of all extant
|
|
* delegations.
|
|
*/
|
|
nfsd_recalldelegation(vp, p);
|
|
}
|
|
|
|
/*
|
|
* Check for conflicting locks, etc. and then get rid of delegations.
|
|
* (At one point I thought that I should get rid of delegations for any
|
|
* Setattr, since it could potentially disallow the I/O op (read or write)
|
|
* allowed by the delegation. However, Setattr Ops that aren't changing
|
|
* the size get a stateid of all 0s, so you can't tell if it is a delegation
|
|
* for the same client or a different one, so I decided to only get rid
|
|
* of delegations for other clients when the size is being changed.)
|
|
* In general, a Setattr can disable NFS I/O Ops that are outstanding, such
|
|
* as Write backs, even if there is no delegation, so it really isn't any
|
|
* different?)
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_checksetattr(vnode_t vp, struct nfsrv_descript *nd,
|
|
nfsv4stateid_t *stateidp, struct nfsvattr *nvap, nfsattrbit_t *attrbitp,
|
|
struct nfsexstuff *exp, NFSPROC_T *p)
|
|
{
|
|
struct nfsstate st, *stp = &st;
|
|
struct nfslock lo, *lop = &lo;
|
|
int error = 0;
|
|
nfsquad_t clientid;
|
|
|
|
if (NFSISSET_ATTRBIT(attrbitp, NFSATTRBIT_SIZE)) {
|
|
stp->ls_flags = (NFSLCK_CHECK | NFSLCK_WRITEACCESS);
|
|
lop->lo_first = nvap->na_size;
|
|
} else {
|
|
stp->ls_flags = 0;
|
|
lop->lo_first = 0;
|
|
}
|
|
if (NFSISSET_ATTRBIT(attrbitp, NFSATTRBIT_OWNER) ||
|
|
NFSISSET_ATTRBIT(attrbitp, NFSATTRBIT_OWNERGROUP) ||
|
|
NFSISSET_ATTRBIT(attrbitp, NFSATTRBIT_MODE) ||
|
|
NFSISSET_ATTRBIT(attrbitp, NFSATTRBIT_ACL))
|
|
stp->ls_flags |= NFSLCK_SETATTR;
|
|
if (stp->ls_flags == 0)
|
|
return (0);
|
|
lop->lo_end = NFS64BITSSET;
|
|
lop->lo_flags = NFSLCK_WRITE;
|
|
stp->ls_ownerlen = 0;
|
|
stp->ls_op = NULL;
|
|
stp->ls_uid = nd->nd_cred->cr_uid;
|
|
stp->ls_stateid.seqid = stateidp->seqid;
|
|
clientid.lval[0] = stp->ls_stateid.other[0] = stateidp->other[0];
|
|
clientid.lval[1] = stp->ls_stateid.other[1] = stateidp->other[1];
|
|
stp->ls_stateid.other[2] = stateidp->other[2];
|
|
error = nfsrv_lockctrl(vp, &stp, &lop, NULL, clientid,
|
|
stateidp, exp, nd, p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Check for a write delegation and do a CBGETATTR if there is one, updating
|
|
* the attributes, as required.
|
|
* Should I return an error if I can't get the attributes? (For now, I'll
|
|
* just return ok.
|
|
*/
|
|
APPLESTATIC int
|
|
nfsrv_checkgetattr(struct nfsrv_descript *nd, vnode_t vp,
|
|
struct nfsvattr *nvap, nfsattrbit_t *attrbitp, struct ucred *cred,
|
|
NFSPROC_T *p)
|
|
{
|
|
struct nfsstate *stp;
|
|
struct nfslockfile *lfp;
|
|
struct nfsclient *clp;
|
|
struct nfsvattr nva;
|
|
fhandle_t nfh;
|
|
int error;
|
|
nfsattrbit_t cbbits;
|
|
u_quad_t delegfilerev;
|
|
|
|
NFSCBGETATTR_ATTRBIT(attrbitp, &cbbits);
|
|
if (!NFSNONZERO_ATTRBIT(&cbbits))
|
|
return (0);
|
|
|
|
/*
|
|
* Get the lock file structure.
|
|
* (A return of -1 means no associated state, so return ok.)
|
|
*/
|
|
error = nfsrv_getlockfh(vp, NFSLCK_CHECK, NULL, &nfh, p);
|
|
NFSLOCKSTATE();
|
|
if (!error)
|
|
error = nfsrv_getlockfile(NFSLCK_CHECK, NULL, &lfp, &nfh, 0);
|
|
if (error) {
|
|
NFSUNLOCKSTATE();
|
|
if (error == -1)
|
|
return (0);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Now, look for a write delegation.
|
|
*/
|
|
LIST_FOREACH(stp, &lfp->lf_deleg, ls_file) {
|
|
if (stp->ls_flags & NFSLCK_DELEGWRITE)
|
|
break;
|
|
}
|
|
if (stp == LIST_END(&lfp->lf_deleg)) {
|
|
NFSUNLOCKSTATE();
|
|
return (0);
|
|
}
|
|
clp = stp->ls_clp;
|
|
delegfilerev = stp->ls_filerev;
|
|
|
|
/*
|
|
* If the Write delegation was issued as a part of this Compound RPC
|
|
* or if we have an Implied Clientid (used in a previous Op in this
|
|
* compound) and it is the client the delegation was issued to,
|
|
* just return ok.
|
|
* I also assume that it is from the same client iff the network
|
|
* host IP address is the same as the callback address. (Not
|
|
* exactly correct by the RFC, but avoids a lot of Getattr
|
|
* callbacks.)
|
|
*/
|
|
if (nd->nd_compref == stp->ls_compref ||
|
|
((nd->nd_flag & ND_IMPLIEDCLID) &&
|
|
clp->lc_clientid.qval == nd->nd_clientid.qval) ||
|
|
nfsaddr2_match(clp->lc_req.nr_nam, nd->nd_nam)) {
|
|
NFSUNLOCKSTATE();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* We are now done with the delegation state structure,
|
|
* so the statelock can be released and we can now tsleep().
|
|
*/
|
|
|
|
/*
|
|
* Now, we must do the CB Getattr callback, to see if Change or Size
|
|
* has changed.
|
|
*/
|
|
if (clp->lc_expiry >= NFSD_MONOSEC) {
|
|
NFSUNLOCKSTATE();
|
|
NFSVNO_ATTRINIT(&nva);
|
|
nva.na_filerev = NFS64BITSSET;
|
|
error = nfsrv_docallback(clp, NFSV4OP_CBGETATTR, NULL,
|
|
0, &nfh, &nva, &cbbits, p);
|
|
if (!error) {
|
|
if ((nva.na_filerev != NFS64BITSSET &&
|
|
nva.na_filerev > delegfilerev) ||
|
|
(NFSVNO_ISSETSIZE(&nva) &&
|
|
nva.na_size != nvap->na_size)) {
|
|
nfsvno_updfilerev(vp, nvap, cred, p);
|
|
if (NFSVNO_ISSETSIZE(&nva))
|
|
nvap->na_size = nva.na_size;
|
|
}
|
|
}
|
|
} else {
|
|
NFSUNLOCKSTATE();
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function looks for openowners that haven't had any opens for
|
|
* a while and throws them away. Called by an nfsd when NFSNSF_NOOPENS
|
|
* is set.
|
|
*/
|
|
APPLESTATIC void
|
|
nfsrv_throwawayopens(NFSPROC_T *p)
|
|
{
|
|
struct nfsclient *clp, *nclp;
|
|
struct nfsstate *stp, *nstp;
|
|
int i;
|
|
|
|
NFSLOCKSTATE();
|
|
nfsrv_stablefirst.nsf_flags &= ~NFSNSF_NOOPENS;
|
|
/*
|
|
* For each client...
|
|
*/
|
|
for (i = 0; i < NFSCLIENTHASHSIZE; i++) {
|
|
LIST_FOREACH_SAFE(clp, &nfsclienthash[i], lc_hash, nclp) {
|
|
LIST_FOREACH_SAFE(stp, &clp->lc_open, ls_list, nstp) {
|
|
if (LIST_EMPTY(&stp->ls_open) &&
|
|
(stp->ls_noopens > NFSNOOPEN ||
|
|
(nfsrv_openpluslock * 2) >
|
|
NFSRV_V4STATELIMIT))
|
|
nfsrv_freeopenowner(stp, 0, p);
|
|
}
|
|
}
|
|
}
|
|
NFSUNLOCKSTATE();
|
|
}
|
|
|
|
/*
|
|
* This function checks to see if the credentials are the same.
|
|
* Returns 1 for not same, 0 otherwise.
|
|
*/
|
|
static int
|
|
nfsrv_notsamecredname(struct nfsrv_descript *nd, struct nfsclient *clp)
|
|
{
|
|
|
|
if (nd->nd_flag & ND_GSS) {
|
|
if (!(clp->lc_flags & LCL_GSS))
|
|
return (1);
|
|
if (clp->lc_flags & LCL_NAME) {
|
|
if (nd->nd_princlen != clp->lc_namelen ||
|
|
NFSBCMP(nd->nd_principal, clp->lc_name,
|
|
clp->lc_namelen))
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
if (nd->nd_cred->cr_uid == clp->lc_uid)
|
|
return (0);
|
|
else
|
|
return (1);
|
|
} else if (clp->lc_flags & LCL_GSS)
|
|
return (1);
|
|
/*
|
|
* For AUTH_SYS, allow the same uid or root. (This is underspecified
|
|
* in RFC3530, which talks about principals, but doesn't say anything
|
|
* about uids for AUTH_SYS.)
|
|
*/
|
|
if (nd->nd_cred->cr_uid == clp->lc_uid || nd->nd_cred->cr_uid == 0)
|
|
return (0);
|
|
else
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Calculate the lease expiry time.
|
|
*/
|
|
static time_t
|
|
nfsrv_leaseexpiry(void)
|
|
{
|
|
struct timeval curtime;
|
|
|
|
NFSGETTIME(&curtime);
|
|
if (nfsrv_stablefirst.nsf_eograce > NFSD_MONOSEC)
|
|
return (NFSD_MONOSEC + 2 * (nfsrv_lease + NFSRV_LEASEDELTA));
|
|
return (NFSD_MONOSEC + nfsrv_lease + NFSRV_LEASEDELTA);
|
|
}
|
|
|
|
/*
|
|
* Delay the delegation timeout as far as ls_delegtimelimit, as required.
|
|
*/
|
|
static void
|
|
nfsrv_delaydelegtimeout(struct nfsstate *stp)
|
|
{
|
|
|
|
if ((stp->ls_flags & NFSLCK_DELEGRECALL) == 0)
|
|
return;
|
|
|
|
if ((stp->ls_delegtime + 15) > NFSD_MONOSEC &&
|
|
stp->ls_delegtime < stp->ls_delegtimelimit) {
|
|
stp->ls_delegtime += nfsrv_lease;
|
|
if (stp->ls_delegtime > stp->ls_delegtimelimit)
|
|
stp->ls_delegtime = stp->ls_delegtimelimit;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function checks to see if there is any other state associated
|
|
* with the openowner for this Open.
|
|
* It returns 1 if there is no other state, 0 otherwise.
|
|
*/
|
|
static int
|
|
nfsrv_nootherstate(struct nfsstate *stp)
|
|
{
|
|
struct nfsstate *tstp;
|
|
|
|
LIST_FOREACH(tstp, &stp->ls_openowner->ls_open, ls_list) {
|
|
if (tstp != stp || !LIST_EMPTY(&tstp->ls_lock))
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Create a list of lock deltas (changes to local byte range locking
|
|
* that can be rolled back using the list) and apply the changes via
|
|
* nfsvno_advlock(). Optionally, lock the list. It is expected that either
|
|
* the rollback or update function will be called after this.
|
|
* It returns an error (and rolls back, as required), if any nfsvno_advlock()
|
|
* call fails. If it returns an error, it will unlock the list.
|
|
*/
|
|
static int
|
|
nfsrv_locallock(vnode_t vp, struct nfslockfile *lfp, int flags,
|
|
uint64_t first, uint64_t end, struct nfslockconflict *cfp, NFSPROC_T *p)
|
|
{
|
|
struct nfslock *lop, *nlop;
|
|
int error = 0;
|
|
|
|
/* Loop through the list of locks. */
|
|
lop = LIST_FIRST(&lfp->lf_locallock);
|
|
while (first < end && lop != NULL) {
|
|
nlop = LIST_NEXT(lop, lo_lckowner);
|
|
if (first >= lop->lo_end) {
|
|
/* not there yet */
|
|
lop = nlop;
|
|
} else if (first < lop->lo_first) {
|
|
/* new one starts before entry in list */
|
|
if (end <= lop->lo_first) {
|
|
/* no overlap between old and new */
|
|
error = nfsrv_dolocal(vp, lfp, flags,
|
|
NFSLCK_UNLOCK, first, end, cfp, p);
|
|
if (error != 0)
|
|
break;
|
|
first = end;
|
|
} else {
|
|
/* handle fragment overlapped with new one */
|
|
error = nfsrv_dolocal(vp, lfp, flags,
|
|
NFSLCK_UNLOCK, first, lop->lo_first, cfp,
|
|
p);
|
|
if (error != 0)
|
|
break;
|
|
first = lop->lo_first;
|
|
}
|
|
} else {
|
|
/* new one overlaps this entry in list */
|
|
if (end <= lop->lo_end) {
|
|
/* overlaps all of new one */
|
|
error = nfsrv_dolocal(vp, lfp, flags,
|
|
lop->lo_flags, first, end, cfp, p);
|
|
if (error != 0)
|
|
break;
|
|
first = end;
|
|
} else {
|
|
/* handle fragment overlapped with new one */
|
|
error = nfsrv_dolocal(vp, lfp, flags,
|
|
lop->lo_flags, first, lop->lo_end, cfp, p);
|
|
if (error != 0)
|
|
break;
|
|
first = lop->lo_end;
|
|
lop = nlop;
|
|
}
|
|
}
|
|
}
|
|
if (first < end && error == 0)
|
|
/* handle fragment past end of list */
|
|
error = nfsrv_dolocal(vp, lfp, flags, NFSLCK_UNLOCK, first,
|
|
end, cfp, p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Local lock unlock. Unlock all byte ranges that are no longer locked
|
|
* by NFSv4. To do this, unlock any subranges of first-->end that
|
|
* do not overlap with the byte ranges of any lock in the lfp->lf_lock
|
|
* list. This list has all locks for the file held by other
|
|
* <clientid, lockowner> tuples. The list is ordered by increasing
|
|
* lo_first value, but may have entries that overlap each other, for
|
|
* the case of read locks.
|
|
*/
|
|
static void
|
|
nfsrv_localunlock(vnode_t vp, struct nfslockfile *lfp, uint64_t init_first,
|
|
uint64_t init_end, NFSPROC_T *p)
|
|
{
|
|
struct nfslock *lop;
|
|
uint64_t first, end, prevfirst;
|
|
|
|
first = init_first;
|
|
end = init_end;
|
|
while (first < init_end) {
|
|
/* Loop through all nfs locks, adjusting first and end */
|
|
prevfirst = 0;
|
|
LIST_FOREACH(lop, &lfp->lf_lock, lo_lckfile) {
|
|
KASSERT(prevfirst <= lop->lo_first,
|
|
("nfsv4 locks out of order"));
|
|
KASSERT(lop->lo_first < lop->lo_end,
|
|
("nfsv4 bogus lock"));
|
|
prevfirst = lop->lo_first;
|
|
if (first >= lop->lo_first &&
|
|
first < lop->lo_end)
|
|
/*
|
|
* Overlaps with initial part, so trim
|
|
* off that initial part by moving first past
|
|
* it.
|
|
*/
|
|
first = lop->lo_end;
|
|
else if (end > lop->lo_first &&
|
|
lop->lo_first > first) {
|
|
/*
|
|
* This lock defines the end of the
|
|
* segment to unlock, so set end to the
|
|
* start of it and break out of the loop.
|
|
*/
|
|
end = lop->lo_first;
|
|
break;
|
|
}
|
|
if (first >= end)
|
|
/*
|
|
* There is no segment left to do, so
|
|
* break out of this loop and then exit
|
|
* the outer while() since first will be set
|
|
* to end, which must equal init_end here.
|
|
*/
|
|
break;
|
|
}
|
|
if (first < end) {
|
|
/* Unlock this segment */
|
|
(void) nfsrv_dolocal(vp, lfp, NFSLCK_UNLOCK,
|
|
NFSLCK_READ, first, end, NULL, p);
|
|
nfsrv_locallock_commit(lfp, NFSLCK_UNLOCK,
|
|
first, end);
|
|
}
|
|
/*
|
|
* Now move past this segment and look for any further
|
|
* segment in the range, if there is one.
|
|
*/
|
|
first = end;
|
|
end = init_end;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do the local lock operation and update the rollback list, as required.
|
|
* Perform the rollback and return the error if nfsvno_advlock() fails.
|
|
*/
|
|
static int
|
|
nfsrv_dolocal(vnode_t vp, struct nfslockfile *lfp, int flags, int oldflags,
|
|
uint64_t first, uint64_t end, struct nfslockconflict *cfp, NFSPROC_T *p)
|
|
{
|
|
struct nfsrollback *rlp;
|
|
int error, ltype, oldltype;
|
|
|
|
if (flags & NFSLCK_WRITE)
|
|
ltype = F_WRLCK;
|
|
else if (flags & NFSLCK_READ)
|
|
ltype = F_RDLCK;
|
|
else
|
|
ltype = F_UNLCK;
|
|
if (oldflags & NFSLCK_WRITE)
|
|
oldltype = F_WRLCK;
|
|
else if (oldflags & NFSLCK_READ)
|
|
oldltype = F_RDLCK;
|
|
else
|
|
oldltype = F_UNLCK;
|
|
if (ltype == oldltype || (oldltype == F_WRLCK && ltype == F_RDLCK))
|
|
/* nothing to do */
|
|
return (0);
|
|
error = nfsvno_advlock(vp, ltype, first, end, p);
|
|
if (error != 0) {
|
|
if (cfp != NULL) {
|
|
cfp->cl_clientid.lval[0] = 0;
|
|
cfp->cl_clientid.lval[1] = 0;
|
|
cfp->cl_first = 0;
|
|
cfp->cl_end = NFS64BITSSET;
|
|
cfp->cl_flags = NFSLCK_WRITE;
|
|
cfp->cl_ownerlen = 5;
|
|
NFSBCOPY("LOCAL", cfp->cl_owner, 5);
|
|
}
|
|
nfsrv_locallock_rollback(vp, lfp, p);
|
|
} else if (ltype != F_UNLCK) {
|
|
rlp = malloc(sizeof (struct nfsrollback), M_NFSDROLLBACK,
|
|
M_WAITOK);
|
|
rlp->rlck_first = first;
|
|
rlp->rlck_end = end;
|
|
rlp->rlck_type = oldltype;
|
|
LIST_INSERT_HEAD(&lfp->lf_rollback, rlp, rlck_list);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Roll back local lock changes and free up the rollback list.
|
|
*/
|
|
static void
|
|
nfsrv_locallock_rollback(vnode_t vp, struct nfslockfile *lfp, NFSPROC_T *p)
|
|
{
|
|
struct nfsrollback *rlp, *nrlp;
|
|
|
|
LIST_FOREACH_SAFE(rlp, &lfp->lf_rollback, rlck_list, nrlp) {
|
|
(void) nfsvno_advlock(vp, rlp->rlck_type, rlp->rlck_first,
|
|
rlp->rlck_end, p);
|
|
free(rlp, M_NFSDROLLBACK);
|
|
}
|
|
LIST_INIT(&lfp->lf_rollback);
|
|
}
|
|
|
|
/*
|
|
* Update local lock list and delete rollback list (ie now committed to the
|
|
* local locks). Most of the work is done by the internal function.
|
|
*/
|
|
static void
|
|
nfsrv_locallock_commit(struct nfslockfile *lfp, int flags, uint64_t first,
|
|
uint64_t end)
|
|
{
|
|
struct nfsrollback *rlp, *nrlp;
|
|
struct nfslock *new_lop, *other_lop;
|
|
|
|
new_lop = malloc(sizeof (struct nfslock), M_NFSDLOCK, M_WAITOK);
|
|
if (flags & (NFSLCK_READ | NFSLCK_WRITE))
|
|
other_lop = malloc(sizeof (struct nfslock), M_NFSDLOCK,
|
|
M_WAITOK);
|
|
else
|
|
other_lop = NULL;
|
|
new_lop->lo_flags = flags;
|
|
new_lop->lo_first = first;
|
|
new_lop->lo_end = end;
|
|
nfsrv_updatelock(NULL, &new_lop, &other_lop, lfp);
|
|
if (new_lop != NULL)
|
|
free(new_lop, M_NFSDLOCK);
|
|
if (other_lop != NULL)
|
|
free(other_lop, M_NFSDLOCK);
|
|
|
|
/* and get rid of the rollback list */
|
|
LIST_FOREACH_SAFE(rlp, &lfp->lf_rollback, rlck_list, nrlp)
|
|
free(rlp, M_NFSDROLLBACK);
|
|
LIST_INIT(&lfp->lf_rollback);
|
|
}
|
|
|
|
/*
|
|
* Lock the struct nfslockfile for local lock updating.
|
|
*/
|
|
static void
|
|
nfsrv_locklf(struct nfslockfile *lfp)
|
|
{
|
|
int gotlock;
|
|
|
|
/* lf_usecount ensures *lfp won't be free'd */
|
|
lfp->lf_usecount++;
|
|
do {
|
|
gotlock = nfsv4_lock(&lfp->lf_locallock_lck, 1, NULL,
|
|
NFSSTATEMUTEXPTR);
|
|
} while (gotlock == 0);
|
|
lfp->lf_usecount--;
|
|
}
|
|
|
|
/*
|
|
* Unlock the struct nfslockfile after local lock updating.
|
|
*/
|
|
static void
|
|
nfsrv_unlocklf(struct nfslockfile *lfp)
|
|
{
|
|
|
|
nfsv4_unlock(&lfp->lf_locallock_lck, 0);
|
|
}
|
|
|