freebsd-skq/sys/dev/safe/safe.c

2248 lines
60 KiB
C

/*-
* Copyright (c) 2003 Sam Leffler, Errno Consulting
* Copyright (c) 2003 Global Technology Associates, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* SafeNet SafeXcel-1141 hardware crypto accelerator
*/
#include "opt_safe.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/clock.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <crypto/sha1.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/cryptosoft.h>
#include <sys/md5.h>
#include <sys/random.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#ifdef SAFE_RNDTEST
#include <dev/rndtest/rndtest.h>
#endif
#include <dev/safe/safereg.h>
#include <dev/safe/safevar.h>
#ifndef bswap32
#define bswap32 NTOHL
#endif
/*
* Prototypes and count for the pci_device structure
*/
static int safe_probe(device_t);
static int safe_attach(device_t);
static int safe_detach(device_t);
static int safe_suspend(device_t);
static int safe_resume(device_t);
static void safe_shutdown(device_t);
static device_method_t safe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, safe_probe),
DEVMETHOD(device_attach, safe_attach),
DEVMETHOD(device_detach, safe_detach),
DEVMETHOD(device_suspend, safe_suspend),
DEVMETHOD(device_resume, safe_resume),
DEVMETHOD(device_shutdown, safe_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
{ 0, 0 }
};
static driver_t safe_driver = {
"safe",
safe_methods,
sizeof (struct safe_softc)
};
static devclass_t safe_devclass;
DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
MODULE_DEPEND(safe, crypto, 1, 1, 1);
#ifdef SAFE_RNDTEST
MODULE_DEPEND(safe, rndtest, 1, 1, 1);
#endif
static void safe_intr(void *);
static int safe_newsession(void *, u_int32_t *, struct cryptoini *);
static int safe_freesession(void *, u_int64_t);
static int safe_process(void *, struct cryptop *, int);
static void safe_callback(struct safe_softc *, struct safe_ringentry *);
static void safe_feed(struct safe_softc *, struct safe_ringentry *);
static void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
#ifndef SAFE_NO_RNG
static void safe_rng_init(struct safe_softc *);
static void safe_rng(void *);
#endif /* SAFE_NO_RNG */
static int safe_dma_malloc(struct safe_softc *, bus_size_t,
struct safe_dma_alloc *, int);
#define safe_dma_sync(_dma, _flags) \
bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
static void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
static int safe_dmamap_aligned(const struct safe_operand *);
static int safe_dmamap_uniform(const struct safe_operand *);
static void safe_reset_board(struct safe_softc *);
static void safe_init_board(struct safe_softc *);
static void safe_init_pciregs(device_t dev);
static void safe_cleanchip(struct safe_softc *);
static void safe_totalreset(struct safe_softc *);
static int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
#ifdef SAFE_DEBUG
static void safe_dump_dmastatus(struct safe_softc *, const char *);
static void safe_dump_ringstate(struct safe_softc *, const char *);
static void safe_dump_intrstate(struct safe_softc *, const char *);
static void safe_dump_request(struct safe_softc *, const char *,
struct safe_ringentry *);
static struct safe_softc *safec; /* for use by hw.safe.dump */
static int safe_debug = 0;
SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
0, "control debugging msgs");
#define DPRINTF(_x) if (safe_debug) printf _x
#else
#define DPRINTF(_x)
#endif
#define READ_REG(sc,r) \
bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
#define WRITE_REG(sc,reg,val) \
bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
struct safe_stats safestats;
SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
safe_stats, "driver statistics");
#ifndef SAFE_NO_RNG
static int safe_rnginterval = 1; /* poll once a second */
SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
0, "RNG polling interval (secs)");
static int safe_rngbufsize = 16; /* 64 bytes each poll */
SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
0, "RNG polling buffer size (32-bit words)");
static int safe_rngmaxalarm = 8; /* max alarms before reset */
SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
0, "RNG max alarms before reset");
#endif /* SAFE_NO_RNG */
static int
safe_probe(device_t dev)
{
if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
return (0);
return (ENXIO);
}
static const char*
safe_partname(struct safe_softc *sc)
{
/* XXX sprintf numbers when not decoded */
switch (pci_get_vendor(sc->sc_dev)) {
case PCI_VENDOR_SAFENET:
switch (pci_get_device(sc->sc_dev)) {
case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
}
return "SafeNet unknown-part";
}
return "Unknown-vendor unknown-part";
}
#ifndef SAFE_NO_RNG
static void
default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
{
random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
}
#endif /* SAFE_NO_RNG */
static int
safe_attach(device_t dev)
{
struct safe_softc *sc = device_get_softc(dev);
u_int32_t raddr;
u_int32_t cmd, i, devinfo;
int rid;
bzero(sc, sizeof (*sc));
sc->sc_dev = dev;
/* XXX handle power management */
cmd = pci_read_config(dev, PCIR_COMMAND, 4);
cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
pci_write_config(dev, PCIR_COMMAND, cmd, 4);
cmd = pci_read_config(dev, PCIR_COMMAND, 4);
if (!(cmd & PCIM_CMD_MEMEN)) {
device_printf(dev, "failed to enable memory mapping\n");
goto bad;
}
if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
device_printf(dev, "failed to enable bus mastering\n");
goto bad;
}
/*
* Setup memory-mapping of PCI registers.
*/
rid = BS_BAR;
sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->sc_sr == NULL) {
device_printf(dev, "cannot map register space\n");
goto bad;
}
sc->sc_st = rman_get_bustag(sc->sc_sr);
sc->sc_sh = rman_get_bushandle(sc->sc_sr);
/*
* Arrange interrupt line.
*/
rid = 0;
sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
if (sc->sc_irq == NULL) {
device_printf(dev, "could not map interrupt\n");
goto bad1;
}
/*
* NB: Network code assumes we are blocked with splimp()
* so make sure the IRQ is mapped appropriately.
*/
if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
safe_intr, sc, &sc->sc_ih)) {
device_printf(dev, "could not establish interrupt\n");
goto bad2;
}
sc->sc_cid = crypto_get_driverid(0);
if (sc->sc_cid < 0) {
device_printf(dev, "could not get crypto driver id\n");
goto bad3;
}
sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
/*
* Setup DMA descriptor area.
*/
if (bus_dma_tag_create(NULL, /* parent */
1, /* alignment */
SAFE_DMA_BOUNDARY, /* boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SAFE_MAX_DMA, /* maxsize */
SAFE_MAX_PART, /* nsegments */
SAFE_MAX_SSIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* locking */
&sc->sc_srcdmat)) {
device_printf(dev, "cannot allocate DMA tag\n");
goto bad4;
}
if (bus_dma_tag_create(NULL, /* parent */
sizeof(u_int32_t), /* alignment */
SAFE_MAX_DSIZE, /* boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SAFE_MAX_DMA, /* maxsize */
SAFE_MAX_PART, /* nsegments */
SAFE_MAX_DSIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* locking */
&sc->sc_dstdmat)) {
device_printf(dev, "cannot allocate DMA tag\n");
goto bad4;
}
/*
* Allocate packet engine descriptors.
*/
if (safe_dma_malloc(sc,
SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
&sc->sc_ringalloc, 0)) {
device_printf(dev, "cannot allocate PE descriptor ring\n");
bus_dma_tag_destroy(sc->sc_srcdmat);
goto bad4;
}
/*
* Hookup the static portion of all our data structures.
*/
sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
sc->sc_front = sc->sc_ring;
sc->sc_back = sc->sc_ring;
raddr = sc->sc_ringalloc.dma_paddr;
bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
struct safe_ringentry *re = &sc->sc_ring[i];
re->re_desc.d_sa = raddr +
offsetof(struct safe_ringentry, re_sa);
re->re_sa.sa_staterec = raddr +
offsetof(struct safe_ringentry, re_sastate);
raddr += sizeof (struct safe_ringentry);
}
mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
"packet engine ring", MTX_DEF);
/*
* Allocate scatter and gather particle descriptors.
*/
if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
&sc->sc_spalloc, 0)) {
device_printf(dev, "cannot allocate source particle "
"descriptor ring\n");
mtx_destroy(&sc->sc_ringmtx);
safe_dma_free(sc, &sc->sc_ringalloc);
bus_dma_tag_destroy(sc->sc_srcdmat);
goto bad4;
}
sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
sc->sc_spfree = sc->sc_spring;
bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
&sc->sc_dpalloc, 0)) {
device_printf(dev, "cannot allocate destination particle "
"descriptor ring\n");
mtx_destroy(&sc->sc_ringmtx);
safe_dma_free(sc, &sc->sc_spalloc);
safe_dma_free(sc, &sc->sc_ringalloc);
bus_dma_tag_destroy(sc->sc_dstdmat);
goto bad4;
}
sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
sc->sc_dpfree = sc->sc_dpring;
bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
device_printf(sc->sc_dev, "%s", safe_partname(sc));
devinfo = READ_REG(sc, SAFE_DEVINFO);
if (devinfo & SAFE_DEVINFO_RNG) {
sc->sc_flags |= SAFE_FLAGS_RNG;
printf(" rng");
}
if (devinfo & SAFE_DEVINFO_PKEY) {
#if 0
printf(" key");
sc->sc_flags |= SAFE_FLAGS_KEY;
crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
safe_kprocess, sc);
crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
safe_kprocess, sc);
#endif
}
if (devinfo & SAFE_DEVINFO_DES) {
printf(" des/3des");
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
safe_newsession, safe_freesession, safe_process, sc);
crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
safe_newsession, safe_freesession, safe_process, sc);
}
if (devinfo & SAFE_DEVINFO_AES) {
printf(" aes");
crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
safe_newsession, safe_freesession, safe_process, sc);
}
if (devinfo & SAFE_DEVINFO_MD5) {
printf(" md5");
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
safe_newsession, safe_freesession, safe_process, sc);
}
if (devinfo & SAFE_DEVINFO_SHA1) {
printf(" sha1");
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
safe_newsession, safe_freesession, safe_process, sc);
}
printf(" null");
crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0,
safe_newsession, safe_freesession, safe_process, sc);
crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0,
safe_newsession, safe_freesession, safe_process, sc);
/* XXX other supported algorithms */
printf("\n");
safe_reset_board(sc); /* reset h/w */
safe_init_pciregs(dev); /* init pci settings */
safe_init_board(sc); /* init h/w */
#ifndef SAFE_NO_RNG
if (sc->sc_flags & SAFE_FLAGS_RNG) {
#ifdef SAFE_RNDTEST
sc->sc_rndtest = rndtest_attach(dev);
if (sc->sc_rndtest)
sc->sc_harvest = rndtest_harvest;
else
sc->sc_harvest = default_harvest;
#else
sc->sc_harvest = default_harvest;
#endif
safe_rng_init(sc);
callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
}
#endif /* SAFE_NO_RNG */
#ifdef SAFE_DEBUG
safec = sc; /* for use by hw.safe.dump */
#endif
return (0);
bad4:
crypto_unregister_all(sc->sc_cid);
bad3:
bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
bad2:
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
bad1:
bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
bad:
return (ENXIO);
}
/*
* Detach a device that successfully probed.
*/
static int
safe_detach(device_t dev)
{
struct safe_softc *sc = device_get_softc(dev);
/* XXX wait/abort active ops */
WRITE_REG(sc, SAFE_HI_MASK, 0); /* disable interrupts */
callout_stop(&sc->sc_rngto);
crypto_unregister_all(sc->sc_cid);
#ifdef SAFE_RNDTEST
if (sc->sc_rndtest)
rndtest_detach(sc->sc_rndtest);
#endif
safe_cleanchip(sc);
safe_dma_free(sc, &sc->sc_dpalloc);
safe_dma_free(sc, &sc->sc_spalloc);
mtx_destroy(&sc->sc_ringmtx);
safe_dma_free(sc, &sc->sc_ringalloc);
bus_generic_detach(dev);
bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
bus_dma_tag_destroy(sc->sc_srcdmat);
bus_dma_tag_destroy(sc->sc_dstdmat);
bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
return (0);
}
/*
* Stop all chip i/o so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
safe_shutdown(device_t dev)
{
#ifdef notyet
safe_stop(device_get_softc(dev));
#endif
}
/*
* Device suspend routine.
*/
static int
safe_suspend(device_t dev)
{
struct safe_softc *sc = device_get_softc(dev);
#ifdef notyet
/* XXX stop the device and save PCI settings */
#endif
sc->sc_suspended = 1;
return (0);
}
static int
safe_resume(device_t dev)
{
struct safe_softc *sc = device_get_softc(dev);
#ifdef notyet
/* XXX retore PCI settings and start the device */
#endif
sc->sc_suspended = 0;
return (0);
}
/*
* SafeXcel Interrupt routine
*/
static void
safe_intr(void *arg)
{
struct safe_softc *sc = arg;
volatile u_int32_t stat;
stat = READ_REG(sc, SAFE_HM_STAT);
if (stat == 0) /* shared irq, not for us */
return;
WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */
if ((stat & SAFE_INT_PE_DDONE)) {
/*
* Descriptor(s) done; scan the ring and
* process completed operations.
*/
mtx_lock(&sc->sc_ringmtx);
while (sc->sc_back != sc->sc_front) {
struct safe_ringentry *re = sc->sc_back;
#ifdef SAFE_DEBUG
if (safe_debug) {
safe_dump_ringstate(sc, __func__);
safe_dump_request(sc, __func__, re);
}
#endif
/*
* safe_process marks ring entries that were allocated
* but not used with a csr of zero. This insures the
* ring front pointer never needs to be set backwards
* in the event that an entry is allocated but not used
* because of a setup error.
*/
if (re->re_desc.d_csr != 0) {
if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
break;
if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
break;
sc->sc_nqchip--;
safe_callback(sc, re);
}
if (++(sc->sc_back) == sc->sc_ringtop)
sc->sc_back = sc->sc_ring;
}
mtx_unlock(&sc->sc_ringmtx);
}
/*
* Check to see if we got any DMA Error
*/
if (stat & SAFE_INT_PE_ERROR) {
DPRINTF(("dmaerr dmastat %08x\n",
READ_REG(sc, SAFE_PE_DMASTAT)));
safestats.st_dmaerr++;
safe_totalreset(sc);
#if 0
safe_feed(sc);
#endif
}
if (sc->sc_needwakeup) { /* XXX check high watermark */
int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
DPRINTF(("%s: wakeup crypto %x\n", __func__,
sc->sc_needwakeup));
sc->sc_needwakeup &= ~wakeup;
crypto_unblock(sc->sc_cid, wakeup);
}
}
/*
* safe_feed() - post a request to chip
*/
static void
safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
{
bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
if (re->re_dst_map != NULL)
bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
BUS_DMASYNC_PREREAD);
/* XXX have no smaller granularity */
safe_dma_sync(&sc->sc_ringalloc,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
#ifdef SAFE_DEBUG
if (safe_debug) {
safe_dump_ringstate(sc, __func__);
safe_dump_request(sc, __func__, re);
}
#endif
sc->sc_nqchip++;
if (sc->sc_nqchip > safestats.st_maxqchip)
safestats.st_maxqchip = sc->sc_nqchip;
/* poke h/w to check descriptor ring, any value can be written */
WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
}
/*
* Allocate a new 'session' and return an encoded session id. 'sidp'
* contains our registration id, and should contain an encoded session
* id on successful allocation.
*/
static int
safe_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
{
#define N(a) (sizeof(a) / sizeof (a[0]))
struct cryptoini *c, *encini = NULL, *macini = NULL;
struct safe_softc *sc = arg;
struct safe_session *ses = NULL;
MD5_CTX md5ctx;
SHA1_CTX sha1ctx;
int i, sesn;
if (sidp == NULL || cri == NULL || sc == NULL)
return (EINVAL);
for (c = cri; c != NULL; c = c->cri_next) {
if (c->cri_alg == CRYPTO_MD5_HMAC ||
c->cri_alg == CRYPTO_SHA1_HMAC ||
c->cri_alg == CRYPTO_NULL_HMAC) {
if (macini)
return (EINVAL);
macini = c;
} else if (c->cri_alg == CRYPTO_DES_CBC ||
c->cri_alg == CRYPTO_3DES_CBC ||
c->cri_alg == CRYPTO_AES_CBC ||
c->cri_alg == CRYPTO_NULL_CBC) {
if (encini)
return (EINVAL);
encini = c;
} else
return (EINVAL);
}
if (encini == NULL && macini == NULL)
return (EINVAL);
if (encini) { /* validate key length */
switch (encini->cri_alg) {
case CRYPTO_DES_CBC:
if (encini->cri_klen != 64)
return (EINVAL);
break;
case CRYPTO_3DES_CBC:
if (encini->cri_klen != 192)
return (EINVAL);
break;
case CRYPTO_AES_CBC:
if (encini->cri_klen != 128 &&
encini->cri_klen != 192 &&
encini->cri_klen != 256)
return (EINVAL);
break;
}
}
if (sc->sc_sessions == NULL) {
ses = sc->sc_sessions = (struct safe_session *)malloc(
sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
sesn = 0;
sc->sc_nsessions = 1;
} else {
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
if (sc->sc_sessions[sesn].ses_used == 0) {
ses = &sc->sc_sessions[sesn];
break;
}
}
if (ses == NULL) {
sesn = sc->sc_nsessions;
ses = (struct safe_session *)malloc((sesn + 1) *
sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
bcopy(sc->sc_sessions, ses, sesn *
sizeof(struct safe_session));
bzero(sc->sc_sessions, sesn *
sizeof(struct safe_session));
free(sc->sc_sessions, M_DEVBUF);
sc->sc_sessions = ses;
ses = &sc->sc_sessions[sesn];
sc->sc_nsessions++;
}
}
bzero(ses, sizeof(struct safe_session));
ses->ses_used = 1;
if (encini) {
/* get an IV */
/* XXX may read fewer than requested */
read_random(ses->ses_iv, sizeof(ses->ses_iv));
ses->ses_klen = encini->cri_klen;
bcopy(encini->cri_key, ses->ses_key, ses->ses_klen / 8);
/* PE is little-endian, insure proper byte order */
for (i = 0; i < N(ses->ses_key); i++)
ses->ses_key[i] = htole32(ses->ses_key[i]);
}
if (macini) {
for (i = 0; i < macini->cri_klen / 8; i++)
macini->cri_key[i] ^= HMAC_IPAD_VAL;
if (macini->cri_alg == CRYPTO_MD5_HMAC) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, macini->cri_key,
macini->cri_klen / 8);
MD5Update(&md5ctx, hmac_ipad_buffer,
HMAC_BLOCK_LEN - (macini->cri_klen / 8));
bcopy(md5ctx.state, ses->ses_hminner,
sizeof(md5ctx.state));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, macini->cri_key,
macini->cri_klen / 8);
SHA1Update(&sha1ctx, hmac_ipad_buffer,
HMAC_BLOCK_LEN - (macini->cri_klen / 8));
bcopy(sha1ctx.h.b32, ses->ses_hminner,
sizeof(sha1ctx.h.b32));
}
for (i = 0; i < macini->cri_klen / 8; i++)
macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
if (macini->cri_alg == CRYPTO_MD5_HMAC) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, macini->cri_key,
macini->cri_klen / 8);
MD5Update(&md5ctx, hmac_opad_buffer,
HMAC_BLOCK_LEN - (macini->cri_klen / 8));
bcopy(md5ctx.state, ses->ses_hmouter,
sizeof(md5ctx.state));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, macini->cri_key,
macini->cri_klen / 8);
SHA1Update(&sha1ctx, hmac_opad_buffer,
HMAC_BLOCK_LEN - (macini->cri_klen / 8));
bcopy(sha1ctx.h.b32, ses->ses_hmouter,
sizeof(sha1ctx.h.b32));
}
for (i = 0; i < macini->cri_klen / 8; i++)
macini->cri_key[i] ^= HMAC_OPAD_VAL;
/* PE is little-endian, insure proper byte order */
for (i = 0; i < N(ses->ses_hminner); i++) {
ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
}
}
*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
return (0);
#undef N
}
/*
* Deallocate a session.
*/
static int
safe_freesession(void *arg, u_int64_t tid)
{
struct safe_softc *sc = arg;
int session, ret;
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
if (sc == NULL)
return (EINVAL);
session = SAFE_SESSION(sid);
if (session < sc->sc_nsessions) {
bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
ret = 0;
} else
ret = EINVAL;
return (ret);
}
static void
safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
{
struct safe_operand *op = arg;
DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
(u_int) mapsize, nsegs, error));
if (error != 0)
return;
op->mapsize = mapsize;
op->nsegs = nsegs;
bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
}
static int
safe_process(void *arg, struct cryptop *crp, int hint)
{
int err = 0, i, nicealign, uniform;
struct safe_softc *sc = arg;
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
int bypass, oplen, ivsize;
caddr_t iv;
int16_t coffset;
struct safe_session *ses;
struct safe_ringentry *re;
struct safe_sarec *sa;
struct safe_pdesc *pd;
u_int32_t cmd0, cmd1, staterec;
if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
safestats.st_invalid++;
return (EINVAL);
}
if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
safestats.st_badsession++;
return (EINVAL);
}
mtx_lock(&sc->sc_ringmtx);
if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
safestats.st_ringfull++;
sc->sc_needwakeup |= CRYPTO_SYMQ;
mtx_unlock(&sc->sc_ringmtx);
return (ERESTART);
}
re = sc->sc_front;
staterec = re->re_sa.sa_staterec; /* save */
/* NB: zero everything but the PE descriptor */
bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
re->re_sa.sa_staterec = staterec; /* restore */
re->re_crp = crp;
re->re_sesn = SAFE_SESSION(crp->crp_sid);
if (crp->crp_flags & CRYPTO_F_IMBUF) {
re->re_src_m = (struct mbuf *)crp->crp_buf;
re->re_dst_m = (struct mbuf *)crp->crp_buf;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
re->re_src_io = (struct uio *)crp->crp_buf;
re->re_dst_io = (struct uio *)crp->crp_buf;
} else {
safestats.st_badflags++;
err = EINVAL;
goto errout; /* XXX we don't handle contiguous blocks! */
}
sa = &re->re_sa;
ses = &sc->sc_sessions[re->re_sesn];
crd1 = crp->crp_desc;
if (crd1 == NULL) {
safestats.st_nodesc++;
err = EINVAL;
goto errout;
}
crd2 = crd1->crd_next;
cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */
cmd1 = 0;
if (crd2 == NULL) {
if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC ||
crd1->crd_alg == CRYPTO_NULL_HMAC) {
maccrd = crd1;
enccrd = NULL;
cmd0 |= SAFE_SA_CMD0_OP_HASH;
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC ||
crd1->crd_alg == CRYPTO_NULL_CBC) {
maccrd = NULL;
enccrd = crd1;
cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
} else {
safestats.st_badalg++;
err = EINVAL;
goto errout;
}
} else {
if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC ||
crd1->crd_alg == CRYPTO_NULL_HMAC) &&
(crd2->crd_alg == CRYPTO_DES_CBC ||
crd2->crd_alg == CRYPTO_3DES_CBC ||
crd2->crd_alg == CRYPTO_AES_CBC ||
crd2->crd_alg == CRYPTO_NULL_CBC) &&
((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
maccrd = crd1;
enccrd = crd2;
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC ||
crd1->crd_alg == CRYPTO_NULL_CBC) &&
(crd2->crd_alg == CRYPTO_MD5_HMAC ||
crd2->crd_alg == CRYPTO_SHA1_HMAC ||
crd2->crd_alg == CRYPTO_NULL_HMAC) &&
(crd1->crd_flags & CRD_F_ENCRYPT)) {
enccrd = crd1;
maccrd = crd2;
} else {
safestats.st_badalg++;
err = EINVAL;
goto errout;
}
cmd0 |= SAFE_SA_CMD0_OP_BOTH;
}
if (enccrd) {
if (enccrd->crd_alg == CRYPTO_DES_CBC) {
cmd0 |= SAFE_SA_CMD0_DES;
cmd1 |= SAFE_SA_CMD1_CBC;
ivsize = 2*sizeof(u_int32_t);
} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
cmd0 |= SAFE_SA_CMD0_3DES;
cmd1 |= SAFE_SA_CMD1_CBC;
ivsize = 2*sizeof(u_int32_t);
} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
cmd0 |= SAFE_SA_CMD0_AES;
cmd1 |= SAFE_SA_CMD1_CBC;
if (ses->ses_klen == 128)
cmd1 |= SAFE_SA_CMD1_AES128;
else if (ses->ses_klen == 192)
cmd1 |= SAFE_SA_CMD1_AES192;
else
cmd1 |= SAFE_SA_CMD1_AES256;
ivsize = 4*sizeof(u_int32_t);
} else {
cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
ivsize = 0;
}
/*
* Setup encrypt/decrypt state. When using basic ops
* we can't use an inline IV because hash/crypt offset
* must be from the end of the IV to the start of the
* crypt data and this leaves out the preceding header
* from the hash calculation. Instead we place the IV
* in the state record and set the hash/crypt offset to
* copy both the header+IV.
*/
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
cmd0 |= SAFE_SA_CMD0_OUTBOUND;
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
iv = enccrd->crd_iv;
else
iv = (caddr_t) ses->ses_iv;
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copyback(re->re_src_m,
enccrd->crd_inject, ivsize, iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copyback(re->re_src_io,
enccrd->crd_inject, ivsize, iv);
}
bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
} else {
cmd0 |= SAFE_SA_CMD0_INBOUND;
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(enccrd->crd_iv,
re->re_sastate.sa_saved_iv, ivsize);
else if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copydata(re->re_src_m, enccrd->crd_inject,
ivsize,
(caddr_t)re->re_sastate.sa_saved_iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copydata(re->re_src_io, enccrd->crd_inject,
ivsize,
(caddr_t)re->re_sastate.sa_saved_iv);
cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
}
/*
* For basic encryption use the zero pad algorithm.
* This pads results to an 8-byte boundary and
* suppresses padding verification for inbound (i.e.
* decrypt) operations.
*
* NB: Not sure if the 8-byte pad boundary is a problem.
*/
cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
/* XXX assert key bufs have the same size */
bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
}
if (maccrd) {
if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
cmd0 |= SAFE_SA_CMD0_MD5;
cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
cmd0 |= SAFE_SA_CMD0_SHA1;
cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
} else {
cmd0 |= SAFE_SA_CMD0_HASH_NULL;
}
/*
* Digest data is loaded from the SA and the hash
* result is saved to the state block where we
* retrieve it for return to the caller.
*/
/* XXX assert digest bufs have the same size */
bcopy(ses->ses_hminner, sa->sa_indigest,
sizeof(sa->sa_indigest));
bcopy(ses->ses_hmouter, sa->sa_outdigest,
sizeof(sa->sa_outdigest));
cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
}
if (enccrd && maccrd) {
/*
* The offset from hash data to the start of
* crypt data is the difference in the skips.
*/
bypass = maccrd->crd_skip;
coffset = enccrd->crd_skip - maccrd->crd_skip;
if (coffset < 0) {
DPRINTF(("%s: hash does not precede crypt; "
"mac skip %u enc skip %u\n",
__func__, maccrd->crd_skip, enccrd->crd_skip));
safestats.st_skipmismatch++;
err = EINVAL;
goto errout;
}
oplen = enccrd->crd_skip + enccrd->crd_len;
if (maccrd->crd_skip + maccrd->crd_len != oplen) {
DPRINTF(("%s: hash amount %u != crypt amount %u\n",
__func__, maccrd->crd_skip + maccrd->crd_len,
oplen));
safestats.st_lenmismatch++;
err = EINVAL;
goto errout;
}
#ifdef SAFE_DEBUG
if (safe_debug) {
printf("mac: skip %d, len %d, inject %d\n",
maccrd->crd_skip, maccrd->crd_len,
maccrd->crd_inject);
printf("enc: skip %d, len %d, inject %d\n",
enccrd->crd_skip, enccrd->crd_len,
enccrd->crd_inject);
printf("bypass %d coffset %d oplen %d\n",
bypass, coffset, oplen);
}
#endif
if (coffset & 3) { /* offset must be 32-bit aligned */
DPRINTF(("%s: coffset %u misaligned\n",
__func__, coffset));
safestats.st_coffmisaligned++;
err = EINVAL;
goto errout;
}
coffset >>= 2;
if (coffset > 255) { /* offset must be <256 dwords */
DPRINTF(("%s: coffset %u too big\n",
__func__, coffset));
safestats.st_cofftoobig++;
err = EINVAL;
goto errout;
}
/*
* Tell the hardware to copy the header to the output.
* The header is defined as the data from the end of
* the bypass to the start of data to be encrypted.
* Typically this is the inline IV. Note that you need
* to do this even if src+dst are the same; it appears
* that w/o this bit the crypted data is written
* immediately after the bypass data.
*/
cmd1 |= SAFE_SA_CMD1_HDRCOPY;
/*
* Disable IP header mutable bit handling. This is
* needed to get correct HMAC calculations.
*/
cmd1 |= SAFE_SA_CMD1_MUTABLE;
} else {
if (enccrd) {
bypass = enccrd->crd_skip;
oplen = bypass + enccrd->crd_len;
} else {
bypass = maccrd->crd_skip;
oplen = bypass + maccrd->crd_len;
}
coffset = 0;
}
/* XXX verify multiple of 4 when using s/g */
if (bypass > 96) { /* bypass offset must be <= 96 bytes */
DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
safestats.st_bypasstoobig++;
err = EINVAL;
goto errout;
}
if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
safestats.st_nomap++;
err = ENOMEM;
goto errout;
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
re->re_src_m, safe_op_cb,
&re->re_src, BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
re->re_src_map = NULL;
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
re->re_src_io, safe_op_cb,
&re->re_src, BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
re->re_src_map = NULL;
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
}
nicealign = safe_dmamap_aligned(&re->re_src);
uniform = safe_dmamap_uniform(&re->re_src);
DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
nicealign, uniform, re->re_src.nsegs));
if (re->re_src.nsegs > 1) {
re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
for (i = 0; i < re->re_src_nsegs; i++) {
/* NB: no need to check if there's space */
pd = sc->sc_spfree;
if (++(sc->sc_spfree) == sc->sc_springtop)
sc->sc_spfree = sc->sc_spring;
KASSERT((pd->pd_flags&3) == 0 ||
(pd->pd_flags&3) == SAFE_PD_DONE,
("bogus source particle descriptor; flags %x",
pd->pd_flags));
pd->pd_addr = re->re_src_segs[i].ds_addr;
pd->pd_size = re->re_src_segs[i].ds_len;
pd->pd_flags = SAFE_PD_READY;
}
cmd0 |= SAFE_SA_CMD0_IGATHER;
} else {
/*
* No need for gather, reference the operand directly.
*/
re->re_desc.d_src = re->re_src_segs[0].ds_addr;
}
if (enccrd == NULL && maccrd != NULL) {
/*
* Hash op; no destination needed.
*/
} else {
if (crp->crp_flags & CRYPTO_F_IOV) {
if (!nicealign) {
safestats.st_iovmisaligned++;
err = EINVAL;
goto errout;
}
if (uniform != 1) {
/*
* Source is not suitable for direct use as
* the destination. Create a new scatter/gather
* list based on the destination requirements
* and check if that's ok.
*/
if (bus_dmamap_create(sc->sc_dstdmat,
BUS_DMA_NOWAIT, &re->re_dst_map)) {
safestats.st_nomap++;
err = ENOMEM;
goto errout;
}
if (bus_dmamap_load_uio(sc->sc_dstdmat,
re->re_dst_map, re->re_dst_io,
safe_op_cb, &re->re_dst,
BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dstdmat,
re->re_dst_map);
re->re_dst_map = NULL;
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
uniform = safe_dmamap_uniform(&re->re_dst);
if (!uniform) {
/*
* There's no way to handle the DMA
* requirements with this uio. We
* could create a separate DMA area for
* the result and then copy it back,
* but for now we just bail and return
* an error. Note that uio requests
* > SAFE_MAX_DSIZE are handled because
* the DMA map and segment list for the
* destination wil result in a
* destination particle list that does
* the necessary scatter DMA.
*/
safestats.st_iovnotuniform++;
err = EINVAL;
goto errout;
}
} else
re->re_dst = re->re_src;
} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (nicealign && uniform == 1) {
/*
* Source layout is suitable for direct
* sharing of the DMA map and segment list.
*/
re->re_dst = re->re_src;
} else if (nicealign && uniform == 2) {
/*
* The source is properly aligned but requires a
* different particle list to handle DMA of the
* result. Create a new map and do the load to
* create the segment list. The particle
* descriptor setup code below will handle the
* rest.
*/
if (bus_dmamap_create(sc->sc_dstdmat,
BUS_DMA_NOWAIT, &re->re_dst_map)) {
safestats.st_nomap++;
err = ENOMEM;
goto errout;
}
if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
re->re_dst_map, re->re_dst_m,
safe_op_cb, &re->re_dst,
BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dstdmat,
re->re_dst_map);
re->re_dst_map = NULL;
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
} else { /* !(aligned and/or uniform) */
int totlen, len;
struct mbuf *m, *top, **mp;
/*
* DMA constraints require that we allocate a
* new mbuf chain for the destination. We
* allocate an entire new set of mbufs of
* optimal/required size and then tell the
* hardware to copy any bits that are not
* created as a byproduct of the operation.
*/
if (!nicealign)
safestats.st_unaligned++;
if (!uniform)
safestats.st_notuniform++;
totlen = re->re_src_mapsize;
if (re->re_src_m->m_flags & M_PKTHDR) {
len = MHLEN;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m && !m_dup_pkthdr(m, re->re_src_m,
M_DONTWAIT)) {
m_free(m);
m = NULL;
}
} else {
len = MLEN;
MGET(m, M_DONTWAIT, MT_DATA);
}
if (m == NULL) {
safestats.st_nombuf++;
err = sc->sc_nqchip ? ERESTART : ENOMEM;
goto errout;
}
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
safestats.st_nomcl++;
err = sc->sc_nqchip ?
ERESTART : ENOMEM;
goto errout;
}
len = MCLBYTES;
}
m->m_len = len;
top = NULL;
mp = &top;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
m_freem(top);
safestats.st_nombuf++;
err = sc->sc_nqchip ?
ERESTART : ENOMEM;
goto errout;
}
len = MLEN;
}
if (top && totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
*mp = m;
m_freem(top);
safestats.st_nomcl++;
err = sc->sc_nqchip ?
ERESTART : ENOMEM;
goto errout;
}
len = MCLBYTES;
}
m->m_len = len = min(totlen, len);
totlen -= len;
*mp = m;
mp = &m->m_next;
}
re->re_dst_m = top;
if (bus_dmamap_create(sc->sc_dstdmat,
BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
safestats.st_nomap++;
err = ENOMEM;
goto errout;
}
if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
re->re_dst_map, re->re_dst_m,
safe_op_cb, &re->re_dst,
BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dstdmat,
re->re_dst_map);
re->re_dst_map = NULL;
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
if (re->re_src.mapsize > oplen) {
/*
* There's data following what the
* hardware will copy for us. If this
* isn't just the ICV (that's going to
* be written on completion), copy it
* to the new mbufs
*/
if (!(maccrd &&
(re->re_src.mapsize-oplen) == 12 &&
maccrd->crd_inject == oplen))
safe_mcopy(re->re_src_m,
re->re_dst_m,
oplen);
else
safestats.st_noicvcopy++;
}
}
} else {
safestats.st_badflags++;
err = EINVAL;
goto errout;
}
if (re->re_dst.nsegs > 1) {
re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
for (i = 0; i < re->re_dst_nsegs; i++) {
pd = sc->sc_dpfree;
KASSERT((pd->pd_flags&3) == 0 ||
(pd->pd_flags&3) == SAFE_PD_DONE,
("bogus dest particle descriptor; flags %x",
pd->pd_flags));
if (++(sc->sc_dpfree) == sc->sc_dpringtop)
sc->sc_dpfree = sc->sc_dpring;
pd->pd_addr = re->re_dst_segs[i].ds_addr;
pd->pd_flags = SAFE_PD_READY;
}
cmd0 |= SAFE_SA_CMD0_OSCATTER;
} else {
/*
* No need for scatter, reference the operand directly.
*/
re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
}
}
/*
* All done with setup; fillin the SA command words
* and the packet engine descriptor. The operation
* is now ready for submission to the hardware.
*/
sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
sa->sa_cmd1 = cmd1
| (coffset << SAFE_SA_CMD1_OFFSET_S)
| SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */
| SAFE_SA_CMD1_SRPCI
;
/*
* NB: the order of writes is important here. In case the
* chip is scanning the ring because of an outstanding request
* it might nab this one too. In that case we need to make
* sure the setup is complete before we write the length
* field of the descriptor as it signals the descriptor is
* ready for processing.
*/
re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
if (maccrd)
re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
re->re_desc.d_len = oplen
| SAFE_PE_LEN_READY
| (bypass << SAFE_PE_LEN_BYPASS_S)
;
safestats.st_ipackets++;
safestats.st_ibytes += oplen;
if (++(sc->sc_front) == sc->sc_ringtop)
sc->sc_front = sc->sc_ring;
/* XXX honor batching */
safe_feed(sc, re);
mtx_unlock(&sc->sc_ringmtx);
return (0);
errout:
if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
m_freem(re->re_dst_m);
if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
}
if (re->re_src_map != NULL) {
bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
}
mtx_unlock(&sc->sc_ringmtx);
if (err != ERESTART) {
crp->crp_etype = err;
crypto_done(crp);
} else {
sc->sc_needwakeup |= CRYPTO_SYMQ;
}
return (err);
}
static void
safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
{
struct cryptop *crp = (struct cryptop *)re->re_crp;
struct cryptodesc *crd;
safestats.st_opackets++;
safestats.st_obytes += re->re_dst.mapsize;
safe_dma_sync(&sc->sc_ringalloc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
re->re_desc.d_csr,
re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
safestats.st_peoperr++;
crp->crp_etype = EIO; /* something more meaningful? */
}
if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
}
bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
/*
* If result was written to a differet mbuf chain, swap
* it in as the return value and reclaim the original.
*/
if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
m_freem(re->re_src_m);
crp->crp_buf = (caddr_t)re->re_dst_m;
}
if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
/* copy out IV for future use */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
int ivsize;
if (crd->crd_alg == CRYPTO_DES_CBC ||
crd->crd_alg == CRYPTO_3DES_CBC) {
ivsize = 2*sizeof(u_int32_t);
} else if (crd->crd_alg == CRYPTO_AES_CBC) {
ivsize = 4*sizeof(u_int32_t);
} else
continue;
if (crp->crp_flags & CRYPTO_F_IMBUF) {
m_copydata((struct mbuf *)crp->crp_buf,
crd->crd_skip + crd->crd_len - ivsize,
ivsize,
(caddr_t) sc->sc_sessions[re->re_sesn].ses_iv);
} else if (crp->crp_flags & CRYPTO_F_IOV) {
cuio_copydata((struct uio *)crp->crp_buf,
crd->crd_skip + crd->crd_len - ivsize,
ivsize,
(caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
}
break;
}
}
if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
/* copy out ICV result */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
crd->crd_alg == CRYPTO_SHA1_HMAC ||
crd->crd_alg == CRYPTO_NULL_HMAC))
continue;
if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
/*
* SHA-1 ICV's are byte-swapped; fix 'em up
* before copy them to their destination.
*/
bswap32(re->re_sastate.sa_saved_indigest[0]);
bswap32(re->re_sastate.sa_saved_indigest[1]);
bswap32(re->re_sastate.sa_saved_indigest[2]);
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
m_copyback((struct mbuf *)crp->crp_buf,
crd->crd_inject, 12,
(caddr_t)re->re_sastate.sa_saved_indigest);
} else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) {
bcopy((caddr_t)re->re_sastate.sa_saved_indigest,
crp->crp_mac, 12);
}
break;
}
}
crypto_done(crp);
}
/*
* Copy all data past offset from srcm to dstm.
*/
static void
safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
{
u_int j, dlen, slen;
caddr_t dptr, sptr;
/*
* Advance src and dst to offset.
*/
j = offset;
while (j >= 0) {
if (srcm->m_len > j)
break;
j -= srcm->m_len;
srcm = srcm->m_next;
if (srcm == NULL)
return;
}
sptr = mtod(srcm, caddr_t) + j;
slen = srcm->m_len - j;
j = offset;
while (j >= 0) {
if (dstm->m_len > j)
break;
j -= dstm->m_len;
dstm = dstm->m_next;
if (dstm == NULL)
return;
}
dptr = mtod(dstm, caddr_t) + j;
dlen = dstm->m_len - j;
/*
* Copy everything that remains.
*/
for (;;) {
j = min(slen, dlen);
bcopy(sptr, dptr, j);
if (slen == j) {
srcm = srcm->m_next;
if (srcm == NULL)
return;
sptr = srcm->m_data;
slen = srcm->m_len;
} else
sptr += j, slen -= j;
if (dlen == j) {
dstm = dstm->m_next;
if (dstm == NULL)
return;
dptr = dstm->m_data;
dlen = dstm->m_len;
} else
dptr += j, dlen -= j;
}
}
#ifndef SAFE_NO_RNG
#define SAFE_RNG_MAXWAIT 1000
static void
safe_rng_init(struct safe_softc *sc)
{
u_int32_t w, v;
int i;
WRITE_REG(sc, SAFE_RNG_CTRL, 0);
/* use default value according to the manual */
WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
/*
* There is a bug in rev 1.0 of the 1140 that when the RNG
* is brought out of reset the ready status flag does not
* work until the RNG has finished its internal initialization.
*
* So in order to determine the device is through its
* initialization we must read the data register, using the
* status reg in the read in case it is initialized. Then read
* the data register until it changes from the first read.
* Once it changes read the data register until it changes
* again. At this time the RNG is considered initialized.
* This could take between 750ms - 1000ms in time.
*/
i = 0;
w = READ_REG(sc, SAFE_RNG_OUT);
do {
v = READ_REG(sc, SAFE_RNG_OUT);
if (v != w) {
w = v;
break;
}
DELAY(10);
} while (++i < SAFE_RNG_MAXWAIT);
/* Wait Until data changes again */
i = 0;
do {
v = READ_REG(sc, SAFE_RNG_OUT);
if (v != w)
break;
DELAY(10);
} while (++i < SAFE_RNG_MAXWAIT);
}
static __inline void
safe_rng_disable_short_cycle(struct safe_softc *sc)
{
WRITE_REG(sc, SAFE_RNG_CTRL,
READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
}
static __inline void
safe_rng_enable_short_cycle(struct safe_softc *sc)
{
WRITE_REG(sc, SAFE_RNG_CTRL,
READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
}
static __inline u_int32_t
safe_rng_read(struct safe_softc *sc)
{
int i;
i = 0;
while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
;
return READ_REG(sc, SAFE_RNG_OUT);
}
static void
safe_rng(void *arg)
{
struct safe_softc *sc = arg;
u_int32_t buf[SAFE_RNG_MAXBUFSIZ]; /* NB: maybe move to softc */
u_int maxwords;
int i;
safestats.st_rng++;
/*
* Fetch the next block of data.
*/
maxwords = safe_rngbufsize;
if (maxwords > SAFE_RNG_MAXBUFSIZ)
maxwords = SAFE_RNG_MAXBUFSIZ;
retry:
for (i = 0; i < maxwords; i++)
buf[i] = safe_rng_read(sc);
/*
* Check the comparator alarm count and reset the h/w if
* it exceeds our threshold. This guards against the
* hardware oscillators resonating with external signals.
*/
if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
u_int32_t freq_inc, w;
DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
safestats.st_rngalarm++;
safe_rng_enable_short_cycle(sc);
freq_inc = 18;
for (i = 0; i < 64; i++) {
w = READ_REG(sc, SAFE_RNG_CNFG);
freq_inc = ((w + freq_inc) & 0x3fL);
w = ((w & ~0x3fL) | freq_inc);
WRITE_REG(sc, SAFE_RNG_CNFG, w);
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
(void) safe_rng_read(sc);
DELAY(25);
if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
safe_rng_disable_short_cycle(sc);
goto retry;
}
freq_inc = 1;
}
safe_rng_disable_short_cycle(sc);
} else
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
callout_reset(&sc->sc_rngto,
hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
}
#endif /* SAFE_NO_RNG */
static void
safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
*paddr = segs->ds_addr;
}
static int
safe_dma_malloc(
struct safe_softc *sc,
bus_size_t size,
struct safe_dma_alloc *dma,
int mapflags
)
{
int r;
r = bus_dma_tag_create(NULL, /* parent */
sizeof(u_int32_t), 0, /* alignment, bounds */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* locking */
&dma->dma_tag);
if (r != 0) {
device_printf(sc->sc_dev, "safe_dma_malloc: "
"bus_dma_tag_create failed; error %u\n", r);
goto fail_0;
}
r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
if (r != 0) {
device_printf(sc->sc_dev, "safe_dma_malloc: "
"bus_dmamap_create failed; error %u\n", r);
goto fail_1;
}
r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
BUS_DMA_NOWAIT, &dma->dma_map);
if (r != 0) {
device_printf(sc->sc_dev, "safe_dma_malloc: "
"bus_dmammem_alloc failed; size %zu, error %u\n",
size, r);
goto fail_2;
}
r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
size,
safe_dmamap_cb,
&dma->dma_paddr,
mapflags | BUS_DMA_NOWAIT);
if (r != 0) {
device_printf(sc->sc_dev, "safe_dma_malloc: "
"bus_dmamap_load failed; error %u\n", r);
goto fail_3;
}
dma->dma_size = size;
return (0);
fail_3:
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
fail_2:
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
fail_1:
bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
bus_dma_tag_destroy(dma->dma_tag);
fail_0:
dma->dma_map = NULL;
dma->dma_tag = NULL;
return (r);
}
static void
safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
{
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
bus_dma_tag_destroy(dma->dma_tag);
}
/*
* Resets the board. Values in the regesters are left as is
* from the reset (i.e. initial values are assigned elsewhere).
*/
static void
safe_reset_board(struct safe_softc *sc)
{
u_int32_t v;
/*
* Reset the device. The manual says no delay
* is needed between marking and clearing reset.
*/
v = READ_REG(sc, SAFE_PE_DMACFG) &~
(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
SAFE_PE_DMACFG_SGRESET);
WRITE_REG(sc, SAFE_PE_DMACFG, v
| SAFE_PE_DMACFG_PERESET
| SAFE_PE_DMACFG_PDRRESET
| SAFE_PE_DMACFG_SGRESET);
WRITE_REG(sc, SAFE_PE_DMACFG, v);
}
/*
* Initialize registers we need to touch only once.
*/
static void
safe_init_board(struct safe_softc *sc)
{
u_int32_t v, dwords;
v = READ_REG(sc, SAFE_PE_DMACFG);;
v &=~ SAFE_PE_DMACFG_PEMODE;
v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */
| SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */
| SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */
| SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */
| SAFE_PE_DMACFG_ESSA /* endian-swap SA's */
| SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */
;
WRITE_REG(sc, SAFE_PE_DMACFG, v);
#if 0
/* XXX select byte swap based on host byte order */
WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
#endif
if (sc->sc_chiprev == SAFE_REV(1,0)) {
/*
* Avoid large PCI DMA transfers. Rev 1.0 has a bug where
* "target mode transfers" done while the chip is DMA'ing
* >1020 bytes cause the hardware to lockup. To avoid this
* we reduce the max PCI transfer size and use small source
* particle descriptors (<= 256 bytes).
*/
WRITE_REG(sc, SAFE_DMA_CFG, 256);
device_printf(sc->sc_dev,
"Reduce max DMA size to %u words for rev %u.%u WAR\n",
(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
SAFE_REV_MAJ(sc->sc_chiprev),
SAFE_REV_MIN(sc->sc_chiprev));
}
/* NB: operands+results are overlaid */
WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
/*
* Configure ring entry size and number of items in the ring.
*/
KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
("PE ring entry not 32-bit aligned!"));
dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
WRITE_REG(sc, SAFE_PE_RINGCFG,
(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */
WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
WRITE_REG(sc, SAFE_PE_PARTSIZE,
(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
/*
* NB: destination particles are fixed size. We use
* an mbuf cluster and require all results go to
* clusters or smaller.
*/
WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
/* it's now safe to enable PE mode, do it */
WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
/*
* Configure hardware to use level-triggered interrupts and
* to interrupt after each descriptor is processed.
*/
WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
}
/*
* Init PCI registers
*/
static void
safe_init_pciregs(device_t dev)
{
}
/*
* Clean up after a chip crash.
* It is assumed that the caller in splimp()
*/
static void
safe_cleanchip(struct safe_softc *sc)
{
if (sc->sc_nqchip != 0) {
struct safe_ringentry *re = sc->sc_back;
while (re != sc->sc_front) {
if (re->re_desc.d_csr != 0)
safe_free_entry(sc, re);
if (++re == sc->sc_ringtop)
re = sc->sc_ring;
}
sc->sc_back = re;
sc->sc_nqchip = 0;
}
}
/*
* free a safe_q
* It is assumed that the caller is within splimp().
*/
static int
safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
{
struct cryptop *crp;
/*
* Free header MCR
*/
if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
m_freem(re->re_dst_m);
crp = (struct cryptop *)re->re_crp;
re->re_desc.d_csr = 0;
crp->crp_etype = EFAULT;
crypto_done(crp);
return(0);
}
/*
* Routine to reset the chip and clean up.
* It is assumed that the caller is in splimp()
*/
static void
safe_totalreset(struct safe_softc *sc)
{
safe_reset_board(sc);
safe_init_board(sc);
safe_cleanchip(sc);
}
/*
* Is the operand suitable aligned for direct DMA. Each
* segment must be aligned on a 32-bit boundary and all
* but the last segment must be a multiple of 4 bytes.
*/
static int
safe_dmamap_aligned(const struct safe_operand *op)
{
int i;
for (i = 0; i < op->nsegs; i++) {
if (op->segs[i].ds_addr & 3)
return (0);
if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
return (0);
}
return (1);
}
/*
* Is the operand suitable for direct DMA as the destination
* of an operation. The hardware requires that each ``particle''
* but the last in an operation result have the same size. We
* fix that size at SAFE_MAX_DSIZE bytes. This routine returns
* 0 if some segment is not a multiple of of this size, 1 if all
* segments are exactly this size, or 2 if segments are at worst
* a multple of this size.
*/
static int
safe_dmamap_uniform(const struct safe_operand *op)
{
int result = 1;
if (op->nsegs > 0) {
int i;
for (i = 0; i < op->nsegs-1; i++) {
if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
return (0);
if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
result = 2;
}
}
return (result);
}
#ifdef SAFE_DEBUG
static void
safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
{
printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
, tag
, READ_REG(sc, SAFE_DMA_ENDIAN)
, READ_REG(sc, SAFE_DMA_SRCADDR)
, READ_REG(sc, SAFE_DMA_DSTADDR)
, READ_REG(sc, SAFE_DMA_STAT)
);
}
static void
safe_dump_intrstate(struct safe_softc *sc, const char *tag)
{
printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
, tag
, READ_REG(sc, SAFE_HI_CFG)
, READ_REG(sc, SAFE_HI_MASK)
, READ_REG(sc, SAFE_HI_DESC_CNT)
, READ_REG(sc, SAFE_HU_STAT)
, READ_REG(sc, SAFE_HM_STAT)
);
}
static void
safe_dump_ringstate(struct safe_softc *sc, const char *tag)
{
u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
/* NB: assume caller has lock on ring */
printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
tag,
estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
(unsigned long)(sc->sc_back - sc->sc_ring),
(unsigned long)(sc->sc_front - sc->sc_ring));
}
static void
safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
{
int ix, nsegs;
ix = re - sc->sc_ring;
printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
, tag
, re, ix
, re->re_desc.d_csr
, re->re_desc.d_src
, re->re_desc.d_dst
, re->re_desc.d_sa
, re->re_desc.d_len
);
if (re->re_src.nsegs > 1) {
ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
sizeof(struct safe_pdesc);
for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
printf(" spd[%u] %p: %p size %u flags %x"
, ix, &sc->sc_spring[ix]
, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
, sc->sc_spring[ix].pd_size
, sc->sc_spring[ix].pd_flags
);
if (sc->sc_spring[ix].pd_size == 0)
printf(" (zero!)");
printf("\n");
if (++ix == SAFE_TOTAL_SPART)
ix = 0;
}
}
if (re->re_dst.nsegs > 1) {
ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
sizeof(struct safe_pdesc);
for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
printf(" dpd[%u] %p: %p flags %x\n"
, ix, &sc->sc_dpring[ix]
, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
, sc->sc_dpring[ix].pd_flags
);
if (++ix == SAFE_TOTAL_DPART)
ix = 0;
}
}
printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
printf("sa: key %x %x %x %x %x %x %x %x\n"
, re->re_sa.sa_key[0]
, re->re_sa.sa_key[1]
, re->re_sa.sa_key[2]
, re->re_sa.sa_key[3]
, re->re_sa.sa_key[4]
, re->re_sa.sa_key[5]
, re->re_sa.sa_key[6]
, re->re_sa.sa_key[7]
);
printf("sa: indigest %x %x %x %x %x\n"
, re->re_sa.sa_indigest[0]
, re->re_sa.sa_indigest[1]
, re->re_sa.sa_indigest[2]
, re->re_sa.sa_indigest[3]
, re->re_sa.sa_indigest[4]
);
printf("sa: outdigest %x %x %x %x %x\n"
, re->re_sa.sa_outdigest[0]
, re->re_sa.sa_outdigest[1]
, re->re_sa.sa_outdigest[2]
, re->re_sa.sa_outdigest[3]
, re->re_sa.sa_outdigest[4]
);
printf("sr: iv %x %x %x %x\n"
, re->re_sastate.sa_saved_iv[0]
, re->re_sastate.sa_saved_iv[1]
, re->re_sastate.sa_saved_iv[2]
, re->re_sastate.sa_saved_iv[3]
);
printf("sr: hashbc %u indigest %x %x %x %x %x\n"
, re->re_sastate.sa_saved_hashbc
, re->re_sastate.sa_saved_indigest[0]
, re->re_sastate.sa_saved_indigest[1]
, re->re_sastate.sa_saved_indigest[2]
, re->re_sastate.sa_saved_indigest[3]
, re->re_sastate.sa_saved_indigest[4]
);
}
static void
safe_dump_ring(struct safe_softc *sc, const char *tag)
{
mtx_lock(&sc->sc_ringmtx);
printf("\nSafeNet Ring State:\n");
safe_dump_intrstate(sc, tag);
safe_dump_dmastatus(sc, tag);
safe_dump_ringstate(sc, tag);
if (sc->sc_nqchip) {
struct safe_ringentry *re = sc->sc_back;
do {
safe_dump_request(sc, tag, re);
if (++re == sc->sc_ringtop)
re = sc->sc_ring;
} while (re != sc->sc_front);
}
mtx_unlock(&sc->sc_ringmtx);
}
static int
sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
{
char dmode[64];
int error;
strncpy(dmode, "", sizeof(dmode) - 1);
dmode[sizeof(dmode) - 1] = '\0';
error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
if (error == 0 && req->newptr != NULL) {
struct safe_softc *sc = safec;
if (!sc)
return EINVAL;
if (strncmp(dmode, "dma", 3) == 0)
safe_dump_dmastatus(sc, "safe0");
else if (strncmp(dmode, "int", 3) == 0)
safe_dump_intrstate(sc, "safe0");
else if (strncmp(dmode, "ring", 4) == 0)
safe_dump_ring(sc, "safe0");
else
return EINVAL;
}
return error;
}
SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
#endif /* SAFE_DEBUG */