freebsd-skq/sys/dev/nfe/if_nfe.c
Pyun YongHyeon b7e548dc72 Add support for MCP73 chips.
Tested by:	"Daan Vreeken [PA4DAN]" ( Danovitsch AT vitsch DOT net )
MFC after:	1 week
2008-04-10 01:25:09 +00:00

2984 lines
75 KiB
C

/* $OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $ */
/*-
* Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
* Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/nfe/if_nfereg.h>
#include <dev/nfe/if_nfevar.h>
MODULE_DEPEND(nfe, pci, 1, 1, 1);
MODULE_DEPEND(nfe, ether, 1, 1, 1);
MODULE_DEPEND(nfe, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
static int nfe_probe(device_t);
static int nfe_attach(device_t);
static int nfe_detach(device_t);
static int nfe_suspend(device_t);
static int nfe_resume(device_t);
static int nfe_shutdown(device_t);
static void nfe_power(struct nfe_softc *);
static int nfe_miibus_readreg(device_t, int, int);
static int nfe_miibus_writereg(device_t, int, int, int);
static void nfe_miibus_statchg(device_t);
static void nfe_link_task(void *, int);
static void nfe_set_intr(struct nfe_softc *);
static __inline void nfe_enable_intr(struct nfe_softc *);
static __inline void nfe_disable_intr(struct nfe_softc *);
static int nfe_ioctl(struct ifnet *, u_long, caddr_t);
static void nfe_alloc_msix(struct nfe_softc *, int);
static int nfe_intr(void *);
static void nfe_int_task(void *, int);
static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
static int nfe_newbuf(struct nfe_softc *, int);
static int nfe_jnewbuf(struct nfe_softc *, int);
static int nfe_rxeof(struct nfe_softc *, int);
static int nfe_jrxeof(struct nfe_softc *, int);
static void nfe_txeof(struct nfe_softc *);
static int nfe_encap(struct nfe_softc *, struct mbuf **);
static void nfe_setmulti(struct nfe_softc *);
static void nfe_tx_task(void *, int);
static void nfe_start(struct ifnet *);
static void nfe_watchdog(struct ifnet *);
static void nfe_init(void *);
static void nfe_init_locked(void *);
static void nfe_stop(struct ifnet *);
static int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
static int nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
static int nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
static int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
static int nfe_ifmedia_upd(struct ifnet *);
static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void nfe_tick(void *);
static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
#ifdef NFE_DEBUG
static int nfedebug = 0;
#define DPRINTF(sc, ...) do { \
if (nfedebug) \
device_printf((sc)->nfe_dev, __VA_ARGS__); \
} while (0)
#define DPRINTFN(sc, n, ...) do { \
if (nfedebug >= (n)) \
device_printf((sc)->nfe_dev, __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(sc, ...)
#define DPRINTFN(sc, n, ...)
#endif
#define NFE_LOCK(_sc) mtx_lock(&(_sc)->nfe_mtx)
#define NFE_UNLOCK(_sc) mtx_unlock(&(_sc)->nfe_mtx)
#define NFE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
/* Tunables. */
static int msi_disable = 0;
static int msix_disable = 0;
static int jumbo_disable = 0;
TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
static device_method_t nfe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, nfe_probe),
DEVMETHOD(device_attach, nfe_attach),
DEVMETHOD(device_detach, nfe_detach),
DEVMETHOD(device_suspend, nfe_suspend),
DEVMETHOD(device_resume, nfe_resume),
DEVMETHOD(device_shutdown, nfe_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, nfe_miibus_readreg),
DEVMETHOD(miibus_writereg, nfe_miibus_writereg),
DEVMETHOD(miibus_statchg, nfe_miibus_statchg),
{ NULL, NULL }
};
static driver_t nfe_driver = {
"nfe",
nfe_methods,
sizeof(struct nfe_softc)
};
static devclass_t nfe_devclass;
DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
static struct nfe_type nfe_devs[] = {
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
"NVIDIA nForce MCP Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
"NVIDIA nForce2 MCP2 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
"NVIDIA nForce2 400 MCP4 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
"NVIDIA nForce2 400 MCP5 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
"NVIDIA nForce3 MCP3 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
"NVIDIA nForce3 250 MCP6 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
"NVIDIA nForce3 MCP7 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
"NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
"NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
"NVIDIA nForce MCP04 Networking Adapter"}, /* MCP10 */
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
"NVIDIA nForce MCP04 Networking Adapter"}, /* MCP11 */
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
"NVIDIA nForce 430 MCP12 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
"NVIDIA nForce 430 MCP13 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
"NVIDIA nForce MCP55 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
"NVIDIA nForce MCP55 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
"NVIDIA nForce MCP67 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
"NVIDIA nForce MCP67 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
"NVIDIA nForce MCP67 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
"NVIDIA nForce MCP67 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
"NVIDIA nForce MCP73 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
"NVIDIA nForce MCP73 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
"NVIDIA nForce MCP73 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
"NVIDIA nForce MCP73 Networking Adapter"},
{0, 0, NULL}
};
/* Probe for supported hardware ID's */
static int
nfe_probe(device_t dev)
{
struct nfe_type *t;
t = nfe_devs;
/* Check for matching PCI DEVICE ID's */
while (t->name != NULL) {
if ((pci_get_vendor(dev) == t->vid_id) &&
(pci_get_device(dev) == t->dev_id)) {
device_set_desc(dev, t->name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
static void
nfe_alloc_msix(struct nfe_softc *sc, int count)
{
int rid;
rid = PCIR_BAR(2);
sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (sc->nfe_msix_res == NULL) {
device_printf(sc->nfe_dev,
"couldn't allocate MSIX table resource\n");
return;
}
rid = PCIR_BAR(3);
sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (sc->nfe_msix_pba_res == NULL) {
device_printf(sc->nfe_dev,
"couldn't allocate MSIX PBA resource\n");
bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
sc->nfe_msix_res);
sc->nfe_msix_res = NULL;
return;
}
if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
if (count == NFE_MSI_MESSAGES) {
if (bootverbose)
device_printf(sc->nfe_dev,
"Using %d MSIX messages\n", count);
sc->nfe_msix = 1;
} else {
if (bootverbose)
device_printf(sc->nfe_dev,
"couldn't allocate MSIX\n");
pci_release_msi(sc->nfe_dev);
bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
PCIR_BAR(3), sc->nfe_msix_pba_res);
bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
PCIR_BAR(2), sc->nfe_msix_res);
sc->nfe_msix_pba_res = NULL;
sc->nfe_msix_res = NULL;
}
}
}
static int
nfe_attach(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
bus_addr_t dma_addr_max;
int error = 0, i, msic, reg, rid;
sc = device_get_softc(dev);
sc->nfe_dev = dev;
mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
TASK_INIT(&sc->nfe_link_task, 0, nfe_link_task, sc);
pci_enable_busmaster(dev);
rid = PCIR_BAR(0);
sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->nfe_res[0] == NULL) {
device_printf(dev, "couldn't map memory resources\n");
mtx_destroy(&sc->nfe_mtx);
return (ENXIO);
}
if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
uint16_t v, width;
v = pci_read_config(dev, reg + 0x08, 2);
/* Change max. read request size to 4096. */
v &= ~(7 << 12);
v |= (5 << 12);
pci_write_config(dev, reg + 0x08, v, 2);
v = pci_read_config(dev, reg + 0x0c, 2);
/* link capability */
v = (v >> 4) & 0x0f;
width = pci_read_config(dev, reg + 0x12, 2);
/* negotiated link width */
width = (width >> 4) & 0x3f;
if (v != width)
device_printf(sc->nfe_dev,
"warning, negotiated width of link(x%d) != "
"max. width of link(x%d)\n", width, v);
}
/* Allocate interrupt */
if (msix_disable == 0 || msi_disable == 0) {
if (msix_disable == 0 &&
(msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
nfe_alloc_msix(sc, msic);
if (msi_disable == 0 && sc->nfe_msix == 0 &&
(msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
pci_alloc_msi(dev, &msic) == 0) {
if (msic == NFE_MSI_MESSAGES) {
if (bootverbose)
device_printf(dev,
"Using %d MSI messages\n", msic);
sc->nfe_msi = 1;
} else
pci_release_msi(dev);
}
}
if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
rid = 0;
sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->nfe_irq[0] == NULL) {
device_printf(dev, "couldn't allocate IRQ resources\n");
error = ENXIO;
goto fail;
}
} else {
for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
sc->nfe_irq[i] = bus_alloc_resource_any(dev,
SYS_RES_IRQ, &rid, RF_ACTIVE);
if (sc->nfe_irq[i] == NULL) {
device_printf(dev,
"couldn't allocate IRQ resources for "
"message %d\n", rid);
error = ENXIO;
goto fail;
}
}
/* Map interrupts to vector 0. */
if (sc->nfe_msix != 0) {
NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
} else if (sc->nfe_msi != 0) {
NFE_WRITE(sc, NFE_MSI_MAP0, 0);
NFE_WRITE(sc, NFE_MSI_MAP1, 0);
}
}
/* Set IRQ status/mask register. */
sc->nfe_irq_status = NFE_IRQ_STATUS;
sc->nfe_irq_mask = NFE_IRQ_MASK;
sc->nfe_intrs = NFE_IRQ_WANTED;
sc->nfe_nointrs = 0;
if (sc->nfe_msix != 0) {
sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
sc->nfe_nointrs = NFE_IRQ_WANTED;
} else if (sc->nfe_msi != 0) {
sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
}
sc->nfe_devid = pci_get_device(dev);
sc->nfe_revid = pci_get_revid(dev);
sc->nfe_flags = 0;
switch (sc->nfe_devid) {
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
break;
case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
break;
case PCI_PRODUCT_NVIDIA_CK804_LAN1:
case PCI_PRODUCT_NVIDIA_CK804_LAN2:
case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
break;
case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL;
break;
case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL;
break;
case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL;
break;
}
nfe_power(sc);
/* Check for reversed ethernet address */
if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
sc->nfe_flags |= NFE_CORRECT_MACADDR;
nfe_get_macaddr(sc, sc->eaddr);
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
dma_addr_max = NFE_DMA_MAXADDR;
error = bus_dma_tag_create(
bus_get_dma_tag(sc->nfe_dev), /* parent */
1, 0, /* alignment, boundary */
dma_addr_max, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->nfe_parent_tag);
if (error)
goto fail;
ifp = sc->nfe_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
TASK_INIT(&sc->nfe_tx_task, 1, nfe_tx_task, ifp);
/*
* Allocate Tx and Rx rings.
*/
if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
goto fail;
if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
goto fail;
nfe_alloc_jrx_ring(sc, &sc->jrxq);
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
&sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
"max number of Rx events to process");
sc->nfe_process_limit = NFE_PROC_DEFAULT;
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
"process_limit", &sc->nfe_process_limit);
if (error == 0) {
if (sc->nfe_process_limit < NFE_PROC_MIN ||
sc->nfe_process_limit > NFE_PROC_MAX) {
device_printf(dev, "process_limit value out of range; "
"using default: %d\n", NFE_PROC_DEFAULT);
sc->nfe_process_limit = NFE_PROC_DEFAULT;
}
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = nfe_ioctl;
ifp->if_start = nfe_start;
ifp->if_hwassist = 0;
ifp->if_capabilities = 0;
ifp->if_watchdog = NULL;
ifp->if_init = nfe_init;
IFQ_SET_MAXLEN(&ifp->if_snd, NFE_TX_RING_COUNT - 1);
ifp->if_snd.ifq_drv_maxlen = NFE_TX_RING_COUNT - 1;
IFQ_SET_READY(&ifp->if_snd);
if (sc->nfe_flags & NFE_HW_CSUM) {
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
ifp->if_hwassist |= NFE_CSUM_FEATURES | CSUM_TSO;
}
ifp->if_capenable = ifp->if_capabilities;
sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_capabilities & IFCAP_HWCSUM) != 0)
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
}
ifp->if_capenable = ifp->if_capabilities;
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* Do MII setup */
if (mii_phy_probe(dev, &sc->nfe_miibus, nfe_ifmedia_upd,
nfe_ifmedia_sts)) {
device_printf(dev, "MII without any phy!\n");
error = ENXIO;
goto fail;
}
ether_ifattach(ifp, sc->eaddr);
TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->nfe_tq);
taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->nfe_dev));
error = 0;
if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
error = bus_setup_intr(dev, sc->nfe_irq[0],
INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
&sc->nfe_intrhand[0]);
} else {
for (i = 0; i < NFE_MSI_MESSAGES; i++) {
error = bus_setup_intr(dev, sc->nfe_irq[i],
INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
&sc->nfe_intrhand[i]);
if (error != 0)
break;
}
}
if (error) {
device_printf(dev, "couldn't set up irq\n");
taskqueue_free(sc->nfe_tq);
sc->nfe_tq = NULL;
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
nfe_detach(dev);
return (error);
}
static int
nfe_detach(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
uint8_t eaddr[ETHER_ADDR_LEN];
int i, rid;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
ifp = sc->nfe_ifp;
#ifdef DEVICE_POLLING
if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
if (device_is_attached(dev)) {
NFE_LOCK(sc);
nfe_stop(ifp);
ifp->if_flags &= ~IFF_UP;
NFE_UNLOCK(sc);
callout_drain(&sc->nfe_stat_ch);
taskqueue_drain(taskqueue_fast, &sc->nfe_tx_task);
taskqueue_drain(taskqueue_swi, &sc->nfe_link_task);
ether_ifdetach(ifp);
}
if (ifp) {
/* restore ethernet address */
if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
for (i = 0; i < ETHER_ADDR_LEN; i++) {
eaddr[i] = sc->eaddr[5 - i];
}
} else
bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
nfe_set_macaddr(sc, eaddr);
if_free(ifp);
}
if (sc->nfe_miibus)
device_delete_child(dev, sc->nfe_miibus);
bus_generic_detach(dev);
if (sc->nfe_tq != NULL) {
taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
taskqueue_free(sc->nfe_tq);
sc->nfe_tq = NULL;
}
for (i = 0; i < NFE_MSI_MESSAGES; i++) {
if (sc->nfe_intrhand[i] != NULL) {
bus_teardown_intr(dev, sc->nfe_irq[i],
sc->nfe_intrhand[i]);
sc->nfe_intrhand[i] = NULL;
}
}
if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
if (sc->nfe_irq[0] != NULL)
bus_release_resource(dev, SYS_RES_IRQ, 0,
sc->nfe_irq[0]);
} else {
for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
if (sc->nfe_irq[i] != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, rid,
sc->nfe_irq[i]);
sc->nfe_irq[i] = NULL;
}
}
pci_release_msi(dev);
}
if (sc->nfe_msix_pba_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
sc->nfe_msix_pba_res);
sc->nfe_msix_pba_res = NULL;
}
if (sc->nfe_msix_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
sc->nfe_msix_res);
sc->nfe_msix_res = NULL;
}
if (sc->nfe_res[0] != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
sc->nfe_res[0]);
sc->nfe_res[0] = NULL;
}
nfe_free_tx_ring(sc, &sc->txq);
nfe_free_rx_ring(sc, &sc->rxq);
nfe_free_jrx_ring(sc, &sc->jrxq);
if (sc->nfe_parent_tag) {
bus_dma_tag_destroy(sc->nfe_parent_tag);
sc->nfe_parent_tag = NULL;
}
mtx_destroy(&sc->nfe_mtx);
return (0);
}
static int
nfe_suspend(device_t dev)
{
struct nfe_softc *sc;
sc = device_get_softc(dev);
NFE_LOCK(sc);
nfe_stop(sc->nfe_ifp);
sc->nfe_suspended = 1;
NFE_UNLOCK(sc);
return (0);
}
static int
nfe_resume(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
NFE_LOCK(sc);
ifp = sc->nfe_ifp;
if (ifp->if_flags & IFF_UP)
nfe_init_locked(sc);
sc->nfe_suspended = 0;
NFE_UNLOCK(sc);
return (0);
}
/* Take PHY/NIC out of powerdown, from Linux */
static void
nfe_power(struct nfe_softc *sc)
{
uint32_t pwr;
if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
return;
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
DELAY(100);
NFE_WRITE(sc, NFE_MAC_RESET, 0);
DELAY(100);
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
pwr = NFE_READ(sc, NFE_PWR2_CTL);
pwr &= ~NFE_PWR2_WAKEUP_MASK;
if (sc->nfe_revid >= 0xa3 &&
(sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
pwr |= NFE_PWR2_REVA3;
NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
}
static void
nfe_miibus_statchg(device_t dev)
{
struct nfe_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->nfe_link_task);
}
static void
nfe_link_task(void *arg, int pending)
{
struct nfe_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
uint32_t gmask, rxctl, txctl, val;
sc = (struct nfe_softc *)arg;
NFE_LOCK(sc);
mii = device_get_softc(sc->nfe_miibus);
ifp = sc->nfe_ifp;
if (mii == NULL || ifp == NULL) {
NFE_UNLOCK(sc);
return;
}
if (mii->mii_media_status & IFM_ACTIVE) {
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc->nfe_link = 1;
} else
sc->nfe_link = 0;
phy = NFE_READ(sc, NFE_PHY_IFACE);
phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
seed = NFE_READ(sc, NFE_RNDSEED);
seed &= ~NFE_SEED_MASK;
if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) {
phy |= NFE_PHY_HDX; /* half-duplex */
misc |= NFE_MISC1_HDX;
}
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T: /* full-duplex only */
link |= NFE_MEDIA_1000T;
seed |= NFE_SEED_1000T;
phy |= NFE_PHY_1000T;
break;
case IFM_100_TX:
link |= NFE_MEDIA_100TX;
seed |= NFE_SEED_100TX;
phy |= NFE_PHY_100TX;
break;
case IFM_10_T:
link |= NFE_MEDIA_10T;
seed |= NFE_SEED_10T;
break;
}
if ((phy & 0x10000000) != 0) {
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
val = NFE_R1_MAGIC_1000;
else
val = NFE_R1_MAGIC_10_100;
} else
val = NFE_R1_MAGIC_DEFAULT;
NFE_WRITE(sc, NFE_SETUP_R1, val);
NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
NFE_WRITE(sc, NFE_PHY_IFACE, phy);
NFE_WRITE(sc, NFE_MISC1, misc);
NFE_WRITE(sc, NFE_LINKSPEED, link);
gmask = mii->mii_media_active & IFM_GMASK;
if ((gmask & IFM_FDX) != 0) {
/* It seems all hardwares supports Rx pause frames. */
val = NFE_READ(sc, NFE_RXFILTER);
if ((gmask & IFM_FLAG0) != 0)
val |= NFE_PFF_RX_PAUSE;
else
val &= ~NFE_PFF_RX_PAUSE;
NFE_WRITE(sc, NFE_RXFILTER, val);
if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
val = NFE_READ(sc, NFE_MISC1);
if ((gmask & IFM_FLAG1) != 0) {
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
NFE_TX_PAUSE_FRAME_ENABLE);
val |= NFE_MISC1_TX_PAUSE;
} else {
val &= ~NFE_MISC1_TX_PAUSE;
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
NFE_TX_PAUSE_FRAME_DISABLE);
}
NFE_WRITE(sc, NFE_MISC1, val);
}
} else {
/* disable rx/tx pause frames */
val = NFE_READ(sc, NFE_RXFILTER);
val &= ~NFE_PFF_RX_PAUSE;
NFE_WRITE(sc, NFE_RXFILTER, val);
if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
NFE_TX_PAUSE_FRAME_DISABLE);
val = NFE_READ(sc, NFE_MISC1);
val &= ~NFE_MISC1_TX_PAUSE;
NFE_WRITE(sc, NFE_MISC1, val);
}
}
txctl = NFE_READ(sc, NFE_TX_CTL);
rxctl = NFE_READ(sc, NFE_RX_CTL);
if (sc->nfe_link != 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
txctl |= NFE_TX_START;
rxctl |= NFE_RX_START;
} else {
txctl &= ~NFE_TX_START;
rxctl &= ~NFE_RX_START;
}
NFE_WRITE(sc, NFE_TX_CTL, txctl);
NFE_WRITE(sc, NFE_RX_CTL, rxctl);
NFE_UNLOCK(sc);
}
static int
nfe_miibus_readreg(device_t dev, int phy, int reg)
{
struct nfe_softc *sc = device_get_softc(dev);
uint32_t val;
int ntries;
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
DELAY(100);
}
NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
DELAY(100);
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
break;
}
if (ntries == NFE_TIMEOUT) {
DPRINTFN(sc, 2, "timeout waiting for PHY\n");
return 0;
}
if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
DPRINTFN(sc, 2, "could not read PHY\n");
return 0;
}
val = NFE_READ(sc, NFE_PHY_DATA);
if (val != 0xffffffff && val != 0)
sc->mii_phyaddr = phy;
DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
return (val);
}
static int
nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct nfe_softc *sc = device_get_softc(dev);
uint32_t ctl;
int ntries;
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
DELAY(100);
}
NFE_WRITE(sc, NFE_PHY_DATA, val);
ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
NFE_WRITE(sc, NFE_PHY_CTL, ctl);
for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
DELAY(100);
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
break;
}
#ifdef NFE_DEBUG
if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
device_printf(sc->nfe_dev, "could not write to PHY\n");
#endif
return (0);
}
struct nfe_dmamap_arg {
bus_addr_t nfe_busaddr;
};
static int
nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
struct nfe_dmamap_arg ctx;
struct nfe_rx_data *data;
void *desc;
int i, error, descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
ring->cur = ring->next = 0;
error = bus_dma_tag_create(sc->nfe_parent_tag,
NFE_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_RX_RING_COUNT * descsize, 1, /* maxsize, nsegments */
NFE_RX_RING_COUNT * descsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->rx_desc_tag);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
goto fail;
}
/* allocate memory to desc */
error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create desc DMA map\n");
goto fail;
}
if (sc->nfe_flags & NFE_40BIT_ADDR)
ring->desc64 = desc;
else
ring->desc32 = desc;
/* map desc to device visible address space */
ctx.nfe_busaddr = 0;
error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
if (error != 0) {
device_printf(sc->nfe_dev, "could not load desc DMA map\n");
goto fail;
}
ring->physaddr = ctx.nfe_busaddr;
error = bus_dma_tag_create(sc->nfe_parent_tag,
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->rx_data_tag);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
goto fail;
}
error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create Rx DMA spare map\n");
goto fail;
}
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
data = &sc->rxq.data[i];
data->rx_data_map = NULL;
data->m = NULL;
error = bus_dmamap_create(ring->rx_data_tag, 0,
&data->rx_data_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create Rx DMA map\n");
goto fail;
}
}
fail:
return (error);
}
static void
nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
{
struct nfe_dmamap_arg ctx;
struct nfe_rx_data *data;
void *desc;
int i, error, descsize;
if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
return;
if (jumbo_disable != 0) {
device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
sc->nfe_jumbo_disable = 1;
return;
}
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->jdesc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->jdesc32;
descsize = sizeof (struct nfe_desc32);
}
ring->jcur = ring->jnext = 0;
/* Create DMA tag for jumbo Rx ring. */
error = bus_dma_tag_create(sc->nfe_parent_tag,
NFE_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsize */
1, /* nsegments */
NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->jrx_desc_tag);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create jumbo ring DMA tag\n");
goto fail;
}
/* Create DMA tag for jumbo Rx buffers. */
error = bus_dma_tag_create(sc->nfe_parent_tag,
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUM9BYTES, /* maxsize */
1, /* nsegments */
MJUM9BYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->jrx_data_tag);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create jumbo Rx buffer DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not allocate DMA'able memory for jumbo Rx ring\n");
goto fail;
}
if (sc->nfe_flags & NFE_40BIT_ADDR)
ring->jdesc64 = desc;
else
ring->jdesc32 = desc;
ctx.nfe_busaddr = 0;
error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not load DMA'able memory for jumbo Rx ring\n");
goto fail;
}
ring->jphysaddr = ctx.nfe_busaddr;
/* Create DMA maps for jumbo Rx buffers. */
error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create jumbo Rx DMA spare map\n");
goto fail;
}
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
data = &sc->jrxq.jdata[i];
data->rx_data_map = NULL;
data->m = NULL;
error = bus_dmamap_create(ring->jrx_data_tag, 0,
&data->rx_data_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create jumbo Rx DMA map\n");
goto fail;
}
}
return;
fail:
/*
* Running without jumbo frame support is ok for most cases
* so don't fail on creating dma tag/map for jumbo frame.
*/
nfe_free_jrx_ring(sc, ring);
device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
"resource shortage\n");
sc->nfe_jumbo_disable = 1;
}
static int
nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
void *desc;
size_t descsize;
int i;
ring->cur = ring->next = 0;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
bzero(desc, descsize * NFE_RX_RING_COUNT);
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
if (nfe_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static int
nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
{
void *desc;
size_t descsize;
int i;
ring->jcur = ring->jnext = 0;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->jdesc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->jdesc32;
descsize = sizeof (struct nfe_desc32);
}
bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
if (nfe_jnewbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
struct nfe_rx_data *data;
void *desc;
int i, descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->rx_data_map != NULL) {
bus_dmamap_destroy(ring->rx_data_tag,
data->rx_data_map);
data->rx_data_map = NULL;
}
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
}
if (ring->rx_data_tag != NULL) {
if (ring->rx_spare_map != NULL) {
bus_dmamap_destroy(ring->rx_data_tag,
ring->rx_spare_map);
ring->rx_spare_map = NULL;
}
bus_dma_tag_destroy(ring->rx_data_tag);
ring->rx_data_tag = NULL;
}
if (desc != NULL) {
bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
ring->desc64 = NULL;
ring->desc32 = NULL;
ring->rx_desc_map = NULL;
}
if (ring->rx_desc_tag != NULL) {
bus_dma_tag_destroy(ring->rx_desc_tag);
ring->rx_desc_tag = NULL;
}
}
static void
nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
{
struct nfe_rx_data *data;
void *desc;
int i, descsize;
if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
return;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->jdesc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->jdesc32;
descsize = sizeof (struct nfe_desc32);
}
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
data = &ring->jdata[i];
if (data->rx_data_map != NULL) {
bus_dmamap_destroy(ring->jrx_data_tag,
data->rx_data_map);
data->rx_data_map = NULL;
}
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
}
if (ring->jrx_data_tag != NULL) {
if (ring->jrx_spare_map != NULL) {
bus_dmamap_destroy(ring->jrx_data_tag,
ring->jrx_spare_map);
ring->jrx_spare_map = NULL;
}
bus_dma_tag_destroy(ring->jrx_data_tag);
ring->jrx_data_tag = NULL;
}
if (desc != NULL) {
bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
ring->jdesc64 = NULL;
ring->jdesc32 = NULL;
ring->jrx_desc_map = NULL;
}
if (ring->jrx_desc_tag != NULL) {
bus_dma_tag_destroy(ring->jrx_desc_tag);
ring->jrx_desc_tag = NULL;
}
}
static int
nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
struct nfe_dmamap_arg ctx;
int i, error;
void *desc;
int descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
ring->queued = 0;
ring->cur = ring->next = 0;
error = bus_dma_tag_create(sc->nfe_parent_tag,
NFE_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_TX_RING_COUNT * descsize, 1, /* maxsize, nsegments */
NFE_TX_RING_COUNT * descsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->tx_desc_tag);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create desc DMA map\n");
goto fail;
}
if (sc->nfe_flags & NFE_40BIT_ADDR)
ring->desc64 = desc;
else
ring->desc32 = desc;
ctx.nfe_busaddr = 0;
error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
if (error != 0) {
device_printf(sc->nfe_dev, "could not load desc DMA map\n");
goto fail;
}
ring->physaddr = ctx.nfe_busaddr;
error = bus_dma_tag_create(sc->nfe_parent_tag,
1, 0,
BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR,
NULL, NULL,
NFE_TSO_MAXSIZE,
NFE_MAX_SCATTER,
NFE_TSO_MAXSGSIZE,
0,
NULL, NULL,
&ring->tx_data_tag);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
goto fail;
}
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
error = bus_dmamap_create(ring->tx_data_tag, 0,
&ring->data[i].tx_data_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create Tx DMA map\n");
goto fail;
}
}
fail:
return (error);
}
static void
nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
void *desc;
size_t descsize;
sc->nfe_force_tx = 0;
ring->queued = 0;
ring->cur = ring->next = 0;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
bzero(desc, descsize * NFE_TX_RING_COUNT);
bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
struct nfe_tx_data *data;
void *desc;
int i, descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
m_freem(data->m);
data->m = NULL;
}
if (data->tx_data_map != NULL) {
bus_dmamap_destroy(ring->tx_data_tag,
data->tx_data_map);
data->tx_data_map = NULL;
}
}
if (ring->tx_data_tag != NULL) {
bus_dma_tag_destroy(ring->tx_data_tag);
ring->tx_data_tag = NULL;
}
if (desc != NULL) {
bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
ring->desc64 = NULL;
ring->desc32 = NULL;
ring->tx_desc_map = NULL;
bus_dma_tag_destroy(ring->tx_desc_tag);
ring->tx_desc_tag = NULL;
}
}
#ifdef DEVICE_POLLING
static poll_handler_t nfe_poll;
static void
nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct nfe_softc *sc = ifp->if_softc;
uint32_t r;
NFE_LOCK(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
NFE_UNLOCK(sc);
return;
}
if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
nfe_jrxeof(sc, count);
else
nfe_rxeof(sc, count);
nfe_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task);
if (cmd == POLL_AND_CHECK_STATUS) {
if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
NFE_UNLOCK(sc);
return;
}
NFE_WRITE(sc, sc->nfe_irq_status, r);
if (r & NFE_IRQ_LINK) {
NFE_READ(sc, NFE_PHY_STATUS);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
DPRINTF(sc, "link state changed\n");
}
}
NFE_UNLOCK(sc);
}
#endif /* DEVICE_POLLING */
static void
nfe_set_intr(struct nfe_softc *sc)
{
if (sc->nfe_msi != 0)
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
}
/* In MSIX, a write to mask reegisters behaves as XOR. */
static __inline void
nfe_enable_intr(struct nfe_softc *sc)
{
if (sc->nfe_msix != 0) {
/* XXX Should have a better way to enable interrupts! */
if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
} else
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
}
static __inline void
nfe_disable_intr(struct nfe_softc *sc)
{
if (sc->nfe_msix != 0) {
/* XXX Should have a better way to disable interrupts! */
if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
} else
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
}
static int
nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct nfe_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error, init, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *) data;
error = 0;
init = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
(sc->nfe_jumbo_disable != 0)) &&
ifr->ifr_mtu > ETHERMTU)
error = EINVAL;
else {
NFE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
nfe_init_locked(sc);
NFE_UNLOCK(sc);
}
}
break;
case SIOCSIFFLAGS:
NFE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
/*
* If only the PROMISC or ALLMULTI flag changes, then
* don't do a full re-init of the chip, just update
* the Rx filter.
*/
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
((ifp->if_flags ^ sc->nfe_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
nfe_setmulti(sc);
else
nfe_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
nfe_stop(ifp);
}
sc->nfe_if_flags = ifp->if_flags;
NFE_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
NFE_LOCK(sc);
nfe_setmulti(sc);
NFE_UNLOCK(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->nfe_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0) {
if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
error = ether_poll_register(nfe_poll, ifp);
if (error)
break;
NFE_LOCK(sc);
nfe_disable_intr(sc);
ifp->if_capenable |= IFCAP_POLLING;
NFE_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupt even in error case */
NFE_LOCK(sc);
nfe_enable_intr(sc);
ifp->if_capenable &= ~IFCAP_POLLING;
NFE_UNLOCK(sc);
}
}
#endif /* DEVICE_POLLING */
if ((sc->nfe_flags & NFE_HW_CSUM) != 0 &&
(mask & IFCAP_HWCSUM) != 0) {
ifp->if_capenable ^= IFCAP_HWCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
(IFCAP_TXCSUM & ifp->if_capabilities) != 0)
ifp->if_hwassist |= NFE_CSUM_FEATURES;
else
ifp->if_hwassist &= ~NFE_CSUM_FEATURES;
init++;
}
if ((sc->nfe_flags & NFE_HW_VLAN) != 0 &&
(mask & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
init++;
}
/*
* XXX
* It seems that VLAN stripping requires Rx checksum offload.
* Unfortunately FreeBSD has no way to disable only Rx side
* VLAN stripping. So when we know Rx checksum offload is
* disabled turn entire hardware VLAN assist off.
*/
if ((sc->nfe_flags & (NFE_HW_CSUM | NFE_HW_VLAN)) ==
(NFE_HW_CSUM | NFE_HW_VLAN)) {
if ((ifp->if_capenable & IFCAP_RXCSUM) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWTAGGING;
}
if ((sc->nfe_flags & NFE_HW_CSUM) != 0 &&
(mask & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
(IFCAP_TSO4 & ifp->if_capabilities) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if (init > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
nfe_init(sc);
}
if ((sc->nfe_flags & NFE_HW_VLAN) != 0)
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static int
nfe_intr(void *arg)
{
struct nfe_softc *sc;
uint32_t status;
sc = (struct nfe_softc *)arg;
status = NFE_READ(sc, sc->nfe_irq_status);
if (status == 0 || status == 0xffffffff)
return (FILTER_STRAY);
nfe_disable_intr(sc);
taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
return (FILTER_HANDLED);
}
static void
nfe_int_task(void *arg, int pending)
{
struct nfe_softc *sc = arg;
struct ifnet *ifp = sc->nfe_ifp;
uint32_t r;
int domore;
NFE_LOCK(sc);
if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
nfe_enable_intr(sc);
NFE_UNLOCK(sc);
return; /* not for us */
}
NFE_WRITE(sc, sc->nfe_irq_status, r);
DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
NFE_UNLOCK(sc);
return;
}
#endif
if (r & NFE_IRQ_LINK) {
NFE_READ(sc, NFE_PHY_STATUS);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
DPRINTF(sc, "link state changed\n");
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
NFE_UNLOCK(sc);
nfe_enable_intr(sc);
return;
}
domore = 0;
/* check Rx ring */
if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
domore = nfe_jrxeof(sc, sc->nfe_process_limit);
else
domore = nfe_rxeof(sc, sc->nfe_process_limit);
/* check Tx ring */
nfe_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task);
NFE_UNLOCK(sc);
if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
return;
}
/* Reenable interrupts. */
nfe_enable_intr(sc);
}
static __inline void
nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
{
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct mbuf *m;
data = &sc->rxq.data[idx];
m = data->m;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[idx];
/* VLAN packet may have overwritten it. */
desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
desc64->length = htole16(m->m_len);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->rxq.desc32[idx];
desc32->length = htole16(m->m_len);
desc32->flags = htole16(NFE_RX_READY);
}
}
static __inline void
nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
{
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct mbuf *m;
data = &sc->jrxq.jdata[idx];
m = data->m;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->jrxq.jdesc64[idx];
/* VLAN packet may have overwritten it. */
desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
desc64->length = htole16(m->m_len);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->jrxq.jdesc32[idx];
desc32->length = htole16(m->m_len);
desc32->flags = htole16(NFE_RX_READY);
}
}
static int
nfe_newbuf(struct nfe_softc *sc, int idx)
{
struct nfe_rx_data *data;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
data = &sc->rxq.data[idx];
if (data->m != NULL) {
bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
}
map = data->rx_data_map;
data->rx_data_map = sc->rxq.rx_spare_map;
sc->rxq.rx_spare_map = map;
bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
BUS_DMASYNC_PREREAD);
data->paddr = segs[0].ds_addr;
data->m = m;
/* update mapping address in h/w descriptor */
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[idx];
desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
desc64->length = htole16(segs[0].ds_len);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->rxq.desc32[idx];
desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
desc32->length = htole16(segs[0].ds_len);
desc32->flags = htole16(NFE_RX_READY);
}
return (0);
}
static int
nfe_jnewbuf(struct nfe_softc *sc, int idx)
{
struct nfe_rx_data *data;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
if (m == NULL)
return (ENOBUFS);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
m->m_pkthdr.len = m->m_len = MJUM9BYTES;
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
data = &sc->jrxq.jdata[idx];
if (data->m != NULL) {
bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
}
map = data->rx_data_map;
data->rx_data_map = sc->jrxq.jrx_spare_map;
sc->jrxq.jrx_spare_map = map;
bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
BUS_DMASYNC_PREREAD);
data->paddr = segs[0].ds_addr;
data->m = m;
/* update mapping address in h/w descriptor */
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->jrxq.jdesc64[idx];
desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
desc64->length = htole16(segs[0].ds_len);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->jrxq.jdesc32[idx];
desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
desc32->length = htole16(segs[0].ds_len);
desc32->flags = htole16(NFE_RX_READY);
}
return (0);
}
static int
nfe_rxeof(struct nfe_softc *sc, int count)
{
struct ifnet *ifp = sc->nfe_ifp;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct mbuf *m;
uint16_t flags;
int len, prog;
uint32_t vtag = 0;
NFE_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
BUS_DMASYNC_POSTREAD);
for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
if (count <= 0)
break;
count--;
data = &sc->rxq.data[sc->rxq.cur];
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[sc->rxq.cur];
vtag = le32toh(desc64->physaddr[1]);
flags = le16toh(desc64->flags);
len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
} else {
desc32 = &sc->rxq.desc32[sc->rxq.cur];
flags = le16toh(desc32->flags);
len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
}
if (flags & NFE_RX_READY)
break;
prog++;
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if (!(flags & NFE_RX_VALID_V1)) {
ifp->if_ierrors++;
nfe_discard_rxbuf(sc, sc->rxq.cur);
continue;
}
if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
} else {
if (!(flags & NFE_RX_VALID_V2)) {
ifp->if_ierrors++;
nfe_discard_rxbuf(sc, sc->rxq.cur);
continue;
}
if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
}
if (flags & NFE_RX_ERROR) {
ifp->if_ierrors++;
nfe_discard_rxbuf(sc, sc->rxq.cur);
continue;
}
m = data->m;
if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
ifp->if_iqdrops++;
nfe_discard_rxbuf(sc, sc->rxq.cur);
continue;
}
if ((vtag & NFE_RX_VTAG) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m->m_pkthdr.ether_vtag = vtag & 0xffff;
m->m_flags |= M_VLANTAG;
}
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = ifp;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
if ((flags & NFE_RX_IP_CSUMOK) != 0) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
(flags & NFE_RX_UDP_CSUMOK) != 0) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
}
ifp->if_ipackets++;
NFE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
NFE_LOCK(sc);
}
if (prog > 0)
bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (count > 0 ? 0 : EAGAIN);
}
static int
nfe_jrxeof(struct nfe_softc *sc, int count)
{
struct ifnet *ifp = sc->nfe_ifp;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct mbuf *m;
uint16_t flags;
int len, prog;
uint32_t vtag = 0;
NFE_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
BUS_DMASYNC_POSTREAD);
for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
vtag = 0) {
if (count <= 0)
break;
count--;
data = &sc->jrxq.jdata[sc->jrxq.jcur];
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
vtag = le32toh(desc64->physaddr[1]);
flags = le16toh(desc64->flags);
len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
} else {
desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
flags = le16toh(desc32->flags);
len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
}
if (flags & NFE_RX_READY)
break;
prog++;
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if (!(flags & NFE_RX_VALID_V1)) {
ifp->if_ierrors++;
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
continue;
}
if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
} else {
if (!(flags & NFE_RX_VALID_V2)) {
ifp->if_ierrors++;
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
continue;
}
if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
}
if (flags & NFE_RX_ERROR) {
ifp->if_ierrors++;
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
continue;
}
m = data->m;
if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
ifp->if_iqdrops++;
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
continue;
}
if ((vtag & NFE_RX_VTAG) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m->m_pkthdr.ether_vtag = vtag & 0xffff;
m->m_flags |= M_VLANTAG;
}
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = ifp;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
if ((flags & NFE_RX_IP_CSUMOK) != 0) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
(flags & NFE_RX_UDP_CSUMOK) != 0) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
}
ifp->if_ipackets++;
NFE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
NFE_LOCK(sc);
}
if (prog > 0)
bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (count > 0 ? 0 : EAGAIN);
}
static void
nfe_txeof(struct nfe_softc *sc)
{
struct ifnet *ifp = sc->nfe_ifp;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_tx_data *data = NULL;
uint16_t flags;
int cons, prog;
NFE_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
BUS_DMASYNC_POSTREAD);
prog = 0;
for (cons = sc->txq.next; cons != sc->txq.cur;
NFE_INC(cons, NFE_TX_RING_COUNT)) {
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->txq.desc64[cons];
flags = le16toh(desc64->flags);
} else {
desc32 = &sc->txq.desc32[cons];
flags = le16toh(desc32->flags);
}
if (flags & NFE_TX_VALID)
break;
prog++;
sc->txq.queued--;
data = &sc->txq.data[cons];
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if ((flags & NFE_TX_LASTFRAG_V1) == 0)
continue;
if ((flags & NFE_TX_ERROR_V1) != 0) {
device_printf(sc->nfe_dev,
"tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
ifp->if_oerrors++;
} else
ifp->if_opackets++;
} else {
if ((flags & NFE_TX_LASTFRAG_V2) == 0)
continue;
if ((flags & NFE_TX_ERROR_V2) != 0) {
device_printf(sc->nfe_dev,
"tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
ifp->if_oerrors++;
} else
ifp->if_opackets++;
}
/* last fragment of the mbuf chain transmitted */
KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
m_freem(data->m);
data->m = NULL;
}
if (prog > 0) {
sc->nfe_force_tx = 0;
sc->txq.next = cons;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (sc->txq.queued == 0)
sc->nfe_watchdog_timer = 0;
}
}
static int
nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
{
struct nfe_desc32 *desc32 = NULL;
struct nfe_desc64 *desc64 = NULL;
bus_dmamap_t map;
bus_dma_segment_t segs[NFE_MAX_SCATTER];
int error, i, nsegs, prod, si;
uint32_t tso_segsz;
uint16_t cflags, flags;
struct mbuf *m;
prod = si = sc->txq.cur;
map = sc->txq.data[prod].tx_data_map;
error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
&nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, NFE_MAX_SCATTER);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
*m_head, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
bus_dmamap_unload(sc->txq.tx_data_tag, map);
return (ENOBUFS);
}
m = *m_head;
cflags = flags = 0;
tso_segsz = 0;
if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
cflags |= NFE_TX_IP_CSUM;
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
cflags |= NFE_TX_TCP_UDP_CSUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
cflags |= NFE_TX_TCP_UDP_CSUM;
}
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
NFE_TX_TSO_SHIFT;
cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
cflags |= NFE_TX_TSO;
}
for (i = 0; i < nsegs; i++) {
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->txq.desc64[prod];
desc64->physaddr[0] =
htole32(NFE_ADDR_HI(segs[i].ds_addr));
desc64->physaddr[1] =
htole32(NFE_ADDR_LO(segs[i].ds_addr));
desc64->vtag = 0;
desc64->length = htole16(segs[i].ds_len - 1);
desc64->flags = htole16(flags);
} else {
desc32 = &sc->txq.desc32[prod];
desc32->physaddr =
htole32(NFE_ADDR_LO(segs[i].ds_addr));
desc32->length = htole16(segs[i].ds_len - 1);
desc32->flags = htole16(flags);
}
/*
* Setting of the valid bit in the first descriptor is
* deferred until the whole chain is fully setup.
*/
flags |= NFE_TX_VALID;
sc->txq.queued++;
NFE_INC(prod, NFE_TX_RING_COUNT);
}
/*
* the whole mbuf chain has been DMA mapped, fix last/first descriptor.
* csum flags, vtag and TSO belong to the first fragment only.
*/
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
desc64 = &sc->txq.desc64[si];
if ((m->m_flags & M_VLANTAG) != 0)
desc64->vtag = htole32(NFE_TX_VTAG |
m->m_pkthdr.ether_vtag);
if (tso_segsz != 0) {
/*
* XXX
* The following indicates the descriptor element
* is a 32bit quantity.
*/
desc64->length |= htole16((uint16_t)tso_segsz);
desc64->flags |= htole16(tso_segsz >> 16);
}
/*
* finally, set the valid/checksum/TSO bit in the first
* descriptor.
*/
desc64->flags |= htole16(NFE_TX_VALID | cflags);
} else {
if (sc->nfe_flags & NFE_JUMBO_SUP)
desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
else
desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
desc32 = &sc->txq.desc32[si];
if (tso_segsz != 0) {
/*
* XXX
* The following indicates the descriptor element
* is a 32bit quantity.
*/
desc32->length |= htole16((uint16_t)tso_segsz);
desc32->flags |= htole16(tso_segsz >> 16);
}
/*
* finally, set the valid/checksum/TSO bit in the first
* descriptor.
*/
desc32->flags |= htole16(NFE_TX_VALID | cflags);
}
sc->txq.cur = prod;
prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
sc->txq.data[prod].tx_data_map = map;
sc->txq.data[prod].m = m;
bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
return (0);
}
static void
nfe_setmulti(struct nfe_softc *sc)
{
struct ifnet *ifp = sc->nfe_ifp;
struct ifmultiaddr *ifma;
int i;
uint32_t filter;
uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
NFE_LOCK_ASSERT(sc);
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
bzero(addr, ETHER_ADDR_LEN);
bzero(mask, ETHER_ADDR_LEN);
goto done;
}
bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
u_char *addrp;
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
u_int8_t mcaddr = addrp[i];
addr[i] &= mcaddr;
mask[i] &= ~mcaddr;
}
}
IF_ADDR_UNLOCK(ifp);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
mask[i] |= addr[i];
}
done:
addr[0] |= 0x01; /* make sure multicast bit is set */
NFE_WRITE(sc, NFE_MULTIADDR_HI,
addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
NFE_WRITE(sc, NFE_MULTIADDR_LO,
addr[5] << 8 | addr[4]);
NFE_WRITE(sc, NFE_MULTIMASK_HI,
mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
NFE_WRITE(sc, NFE_MULTIMASK_LO,
mask[5] << 8 | mask[4]);
filter = NFE_READ(sc, NFE_RXFILTER);
filter &= NFE_PFF_RX_PAUSE;
filter |= NFE_RXFILTER_MAGIC;
filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
NFE_WRITE(sc, NFE_RXFILTER, filter);
}
static void
nfe_tx_task(void *arg, int pending)
{
struct ifnet *ifp;
ifp = (struct ifnet *)arg;
nfe_start(ifp);
}
static void
nfe_start(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
struct mbuf *m0;
int enq;
NFE_LOCK(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc->nfe_link == 0) {
NFE_UNLOCK(sc);
return;
}
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (nfe_encap(sc, &m0) != 0) {
if (m0 == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
ETHER_BPF_MTAP(ifp, m0);
}
if (enq > 0) {
bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* kick Tx */
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->nfe_watchdog_timer = 5;
}
NFE_UNLOCK(sc);
}
static void
nfe_watchdog(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
return;
/* Check if we've lost Tx completion interrupt. */
nfe_txeof(sc);
if (sc->txq.queued == 0) {
if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
"-- recovering\n");
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task);
return;
}
/* Check if we've lost start Tx command. */
sc->nfe_force_tx++;
if (sc->nfe_force_tx <= 3) {
/*
* If this is the case for watchdog timeout, the following
* code should go to nfe_txeof().
*/
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
return;
}
sc->nfe_force_tx = 0;
if_printf(ifp, "watchdog timeout\n");
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ifp->if_oerrors++;
nfe_init_locked(sc);
}
static void
nfe_init(void *xsc)
{
struct nfe_softc *sc = xsc;
NFE_LOCK(sc);
nfe_init_locked(sc);
NFE_UNLOCK(sc);
}
static void
nfe_init_locked(void *xsc)
{
struct nfe_softc *sc = xsc;
struct ifnet *ifp = sc->nfe_ifp;
struct mii_data *mii;
uint32_t val;
int error;
NFE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->nfe_miibus);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
nfe_stop(ifp);
sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
nfe_init_tx_ring(sc, &sc->txq);
if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
error = nfe_init_jrx_ring(sc, &sc->jrxq);
else
error = nfe_init_rx_ring(sc, &sc->rxq);
if (error != 0) {
device_printf(sc->nfe_dev,
"initialization failed: no memory for rx buffers\n");
nfe_stop(ifp);
return;
}
val = 0;
if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
val |= NFE_MAC_ADDR_INORDER;
NFE_WRITE(sc, NFE_TX_UNK, val);
NFE_WRITE(sc, NFE_STATUS, 0);
if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
sc->rxtxctl = NFE_RXTX_BIT2;
if (sc->nfe_flags & NFE_40BIT_ADDR)
sc->rxtxctl |= NFE_RXTX_V3MAGIC;
else if (sc->nfe_flags & NFE_JUMBO_SUP)
sc->rxtxctl |= NFE_RXTX_V2MAGIC;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
sc->rxtxctl |= NFE_RXTX_RXCSUM;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
DELAY(10);
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
else
NFE_WRITE(sc, NFE_VTAG_CTL, 0);
NFE_WRITE(sc, NFE_SETUP_R6, 0);
/* set MAC address */
nfe_set_macaddr(sc, IF_LLADDR(ifp));
/* tell MAC where rings are in memory */
if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
NFE_ADDR_HI(sc->jrxq.jphysaddr));
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
NFE_ADDR_LO(sc->jrxq.jphysaddr));
} else {
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
NFE_ADDR_HI(sc->rxq.physaddr));
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
NFE_ADDR_LO(sc->rxq.physaddr));
}
NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
NFE_WRITE(sc, NFE_RING_SIZE,
(NFE_RX_RING_COUNT - 1) << 16 |
(NFE_TX_RING_COUNT - 1));
NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
/* force MAC to wakeup */
val = NFE_READ(sc, NFE_PWR_STATE);
if ((val & NFE_PWR_WAKEUP) == 0)
NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
DELAY(10);
val = NFE_READ(sc, NFE_PWR_STATE);
NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
#if 1
/* configure interrupts coalescing/mitigation */
NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
#else
/* no interrupt mitigation: one interrupt per packet */
NFE_WRITE(sc, NFE_IMTIMER, 970);
#endif
NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
sc->rxtxctl &= ~NFE_RXTX_BIT2;
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
DELAY(10);
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
/* set Rx filter */
nfe_setmulti(sc);
/* enable Rx */
NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
/* enable Tx */
NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
nfe_disable_intr(sc);
else
#endif
nfe_set_intr(sc);
nfe_enable_intr(sc); /* enable interrupts */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->nfe_link = 0;
mii_mediachg(mii);
callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
}
static void
nfe_stop(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
struct nfe_rx_ring *rx_ring;
struct nfe_jrx_ring *jrx_ring;
struct nfe_tx_ring *tx_ring;
struct nfe_rx_data *rdata;
struct nfe_tx_data *tdata;
int i;
NFE_LOCK_ASSERT(sc);
sc->nfe_watchdog_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&sc->nfe_stat_ch);
/* abort Tx */
NFE_WRITE(sc, NFE_TX_CTL, 0);
/* disable Rx */
NFE_WRITE(sc, NFE_RX_CTL, 0);
/* disable interrupts */
nfe_disable_intr(sc);
sc->nfe_link = 0;
/* free Rx and Tx mbufs still in the queues. */
rx_ring = &sc->rxq;
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
rdata = &rx_ring->data[i];
if (rdata->m != NULL) {
bus_dmamap_sync(rx_ring->rx_data_tag,
rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(rx_ring->rx_data_tag,
rdata->rx_data_map);
m_freem(rdata->m);
rdata->m = NULL;
}
}
if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
jrx_ring = &sc->jrxq;
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
rdata = &jrx_ring->jdata[i];
if (rdata->m != NULL) {
bus_dmamap_sync(jrx_ring->jrx_data_tag,
rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(jrx_ring->jrx_data_tag,
rdata->rx_data_map);
m_freem(rdata->m);
rdata->m = NULL;
}
}
}
tx_ring = &sc->txq;
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
tdata = &tx_ring->data[i];
if (tdata->m != NULL) {
bus_dmamap_sync(tx_ring->tx_data_tag,
tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(tx_ring->tx_data_tag,
tdata->tx_data_map);
m_freem(tdata->m);
tdata->m = NULL;
}
}
}
static int
nfe_ifmedia_upd(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
struct mii_data *mii;
NFE_LOCK(sc);
mii = device_get_softc(sc->nfe_miibus);
mii_mediachg(mii);
NFE_UNLOCK(sc);
return (0);
}
static void
nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct nfe_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
NFE_LOCK(sc);
mii = device_get_softc(sc->nfe_miibus);
mii_pollstat(mii);
NFE_UNLOCK(sc);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
void
nfe_tick(void *xsc)
{
struct nfe_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = (struct nfe_softc *)xsc;
NFE_LOCK_ASSERT(sc);
ifp = sc->nfe_ifp;
mii = device_get_softc(sc->nfe_miibus);
mii_tick(mii);
nfe_watchdog(ifp);
callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
}
static int
nfe_shutdown(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
NFE_LOCK(sc);
ifp = sc->nfe_ifp;
nfe_stop(ifp);
/* nfe_reset(sc); */
NFE_UNLOCK(sc);
return (0);
}
static void
nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
{
uint32_t val;
if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
val = NFE_READ(sc, NFE_MACADDR_LO);
addr[0] = (val >> 8) & 0xff;
addr[1] = (val & 0xff);
val = NFE_READ(sc, NFE_MACADDR_HI);
addr[2] = (val >> 24) & 0xff;
addr[3] = (val >> 16) & 0xff;
addr[4] = (val >> 8) & 0xff;
addr[5] = (val & 0xff);
} else {
val = NFE_READ(sc, NFE_MACADDR_LO);
addr[5] = (val >> 8) & 0xff;
addr[4] = (val & 0xff);
val = NFE_READ(sc, NFE_MACADDR_HI);
addr[3] = (val >> 24) & 0xff;
addr[2] = (val >> 16) & 0xff;
addr[1] = (val >> 8) & 0xff;
addr[0] = (val & 0xff);
}
}
static void
nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
{
NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] << 8 | addr[4]);
NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
addr[1] << 8 | addr[0]);
}
/*
* Map a single buffer address.
*/
static void
nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct nfe_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
ctx = (struct nfe_dmamap_arg *)arg;
ctx->nfe_busaddr = segs[0].ds_addr;
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (!arg1)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
NFE_PROC_MAX));
}