49d9a59783
Summary: Initial NUMA support: - associate CPU with domain - associate memory ranges with domain - identify domain for devices - limit device interrupt binding to appropriate domain - Additionally fixes a bug in the setting of Maxmem which led to only memory attached to the first socket being enabled for DMA A pmap variant can opt in to numa support by by calling `numa_mem_regions` at the end of pmap_bootstrap - registering the corresponding ranges with the VM. This yields a ~20% improvement in build times of llvm on dual socket POWER9 over non-NUMA. Original patch by mmacy. Differential Revision: https://reviews.freebsd.org/D17933
873 lines
20 KiB
C
873 lines
20 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-4-Clause
|
|
*
|
|
* Copyright (C) 1996 Wolfgang Solfrank.
|
|
* Copyright (C) 1996 TooLs GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by TooLs GmbH.
|
|
* 4. The name of TooLs GmbH may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_platform.h"
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/disk.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/endian.h>
|
|
|
|
#include <net/ethernet.h>
|
|
|
|
#include <dev/fdt/fdt_common.h>
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <dev/ofw/ofw_pci.h>
|
|
#include <dev/ofw/ofw_bus.h>
|
|
#include <dev/ofw/ofw_subr.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_phys.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/platform.h>
|
|
#include <machine/ofw_machdep.h>
|
|
#include <machine/trap.h>
|
|
|
|
#include <contrib/libfdt/libfdt.h>
|
|
|
|
#ifdef POWERNV
|
|
#include <powerpc/powernv/opal.h>
|
|
#endif
|
|
|
|
static void *fdt;
|
|
int ofw_real_mode;
|
|
|
|
#ifdef AIM
|
|
extern register_t ofmsr[5];
|
|
extern void *openfirmware_entry;
|
|
char save_trap_init[0x2f00]; /* EXC_LAST */
|
|
char save_trap_of[0x2f00]; /* EXC_LAST */
|
|
|
|
int ofwcall(void *);
|
|
static int openfirmware(void *args);
|
|
|
|
__inline void
|
|
ofw_save_trap_vec(char *save_trap_vec)
|
|
{
|
|
if (!ofw_real_mode || !hw_direct_map)
|
|
return;
|
|
|
|
bcopy((void *)PHYS_TO_DMAP(EXC_RST), save_trap_vec, EXC_LAST - EXC_RST);
|
|
}
|
|
|
|
static __inline void
|
|
ofw_restore_trap_vec(char *restore_trap_vec)
|
|
{
|
|
if (!ofw_real_mode || !hw_direct_map)
|
|
return;
|
|
|
|
bcopy(restore_trap_vec, (void *)PHYS_TO_DMAP(EXC_RST),
|
|
EXC_LAST - EXC_RST);
|
|
__syncicache((void *)PHYS_TO_DMAP(EXC_RSVD), EXC_LAST - EXC_RSVD);
|
|
}
|
|
|
|
/*
|
|
* Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback.
|
|
*/
|
|
register_t ofw_sprg0_save;
|
|
|
|
static __inline void
|
|
ofw_sprg_prepare(void)
|
|
{
|
|
if (ofw_real_mode)
|
|
return;
|
|
|
|
/*
|
|
* Assume that interrupt are disabled at this point, or
|
|
* SPRG1-3 could be trashed
|
|
*/
|
|
#ifdef __powerpc64__
|
|
__asm __volatile("mtsprg1 %0\n\t"
|
|
"mtsprg2 %1\n\t"
|
|
"mtsprg3 %2\n\t"
|
|
:
|
|
: "r"(ofmsr[2]),
|
|
"r"(ofmsr[3]),
|
|
"r"(ofmsr[4]));
|
|
#else
|
|
__asm __volatile("mfsprg0 %0\n\t"
|
|
"mtsprg0 %1\n\t"
|
|
"mtsprg1 %2\n\t"
|
|
"mtsprg2 %3\n\t"
|
|
"mtsprg3 %4\n\t"
|
|
: "=&r"(ofw_sprg0_save)
|
|
: "r"(ofmsr[1]),
|
|
"r"(ofmsr[2]),
|
|
"r"(ofmsr[3]),
|
|
"r"(ofmsr[4]));
|
|
#endif
|
|
}
|
|
|
|
static __inline void
|
|
ofw_sprg_restore(void)
|
|
{
|
|
if (ofw_real_mode)
|
|
return;
|
|
|
|
/*
|
|
* Note that SPRG1-3 contents are irrelevant. They are scratch
|
|
* registers used in the early portion of trap handling when
|
|
* interrupts are disabled.
|
|
*
|
|
* PCPU data cannot be used until this routine is called !
|
|
*/
|
|
#ifndef __powerpc64__
|
|
__asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save));
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output)
|
|
{
|
|
cell_t address_cells, size_cells;
|
|
cell_t OFmem[4 * PHYS_AVAIL_SZ];
|
|
int sz, i, j;
|
|
phandle_t phandle;
|
|
|
|
sz = 0;
|
|
|
|
/*
|
|
* Get #address-cells from root node, defaulting to 1 if it cannot
|
|
* be found.
|
|
*/
|
|
phandle = OF_finddevice("/");
|
|
if (OF_getencprop(phandle, "#address-cells", &address_cells,
|
|
sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
|
|
address_cells = 1;
|
|
if (OF_getencprop(phandle, "#size-cells", &size_cells,
|
|
sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
|
|
size_cells = 1;
|
|
|
|
/*
|
|
* Get memory.
|
|
*/
|
|
if (node == -1 || (sz = OF_getencprop(node, prop,
|
|
OFmem, sizeof(OFmem))) <= 0)
|
|
panic("Physical memory map not found");
|
|
|
|
i = 0;
|
|
j = 0;
|
|
while (i < sz/sizeof(cell_t)) {
|
|
output[j].mr_start = OFmem[i++];
|
|
if (address_cells == 2) {
|
|
output[j].mr_start <<= 32;
|
|
output[j].mr_start += OFmem[i++];
|
|
}
|
|
|
|
output[j].mr_size = OFmem[i++];
|
|
if (size_cells == 2) {
|
|
output[j].mr_size <<= 32;
|
|
output[j].mr_size += OFmem[i++];
|
|
}
|
|
|
|
if (output[j].mr_start > BUS_SPACE_MAXADDR)
|
|
continue;
|
|
|
|
/*
|
|
* Constrain memory to that which we can access.
|
|
* 32-bit AIM can only reference 32 bits of address currently,
|
|
* but Book-E can access 36 bits.
|
|
*/
|
|
if (((uint64_t)output[j].mr_start +
|
|
(uint64_t)output[j].mr_size - 1) >
|
|
BUS_SPACE_MAXADDR) {
|
|
output[j].mr_size = BUS_SPACE_MAXADDR -
|
|
output[j].mr_start + 1;
|
|
}
|
|
|
|
j++;
|
|
}
|
|
|
|
return (j);
|
|
}
|
|
|
|
static int
|
|
parse_numa_ofw_memory(phandle_t node, const char *prop,
|
|
struct numa_mem_region *output)
|
|
{
|
|
cell_t address_cells, size_cells;
|
|
cell_t OFmem[4 * PHYS_AVAIL_SZ];
|
|
int sz, i, j;
|
|
phandle_t phandle;
|
|
|
|
sz = 0;
|
|
|
|
/*
|
|
* Get #address-cells from root node, defaulting to 1 if it cannot
|
|
* be found.
|
|
*/
|
|
phandle = OF_finddevice("/");
|
|
if (OF_getencprop(phandle, "#address-cells", &address_cells,
|
|
sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
|
|
address_cells = 1;
|
|
if (OF_getencprop(phandle, "#size-cells", &size_cells,
|
|
sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
|
|
size_cells = 1;
|
|
|
|
/*
|
|
* Get memory.
|
|
*/
|
|
if (node == -1 || (sz = OF_getencprop(node, prop,
|
|
OFmem, sizeof(OFmem))) <= 0)
|
|
panic("Physical memory map not found");
|
|
|
|
i = 0;
|
|
j = 0;
|
|
while (i < sz/sizeof(cell_t)) {
|
|
output[j].mr_start = OFmem[i++];
|
|
if (address_cells == 2) {
|
|
output[j].mr_start <<= 32;
|
|
output[j].mr_start += OFmem[i++];
|
|
}
|
|
output[j].mr_size = OFmem[i++];
|
|
if (size_cells == 2) {
|
|
output[j].mr_size <<= 32;
|
|
output[j].mr_size += OFmem[i++];
|
|
}
|
|
j++;
|
|
}
|
|
|
|
return (j);
|
|
}
|
|
|
|
#ifdef FDT
|
|
static int
|
|
excise_reserved_regions(struct mem_region *avail, int asz,
|
|
struct mem_region *exclude, int esz)
|
|
{
|
|
int i, j, k;
|
|
|
|
for (i = 0; i < asz; i++) {
|
|
for (j = 0; j < esz; j++) {
|
|
/*
|
|
* Case 1: Exclusion region encloses complete
|
|
* available entry. Drop it and move on.
|
|
*/
|
|
if (exclude[j].mr_start <= avail[i].mr_start &&
|
|
exclude[j].mr_start + exclude[j].mr_size >=
|
|
avail[i].mr_start + avail[i].mr_size) {
|
|
for (k = i+1; k < asz; k++)
|
|
avail[k-1] = avail[k];
|
|
asz--;
|
|
i--; /* Repeat some entries */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Case 2: Exclusion region starts in available entry.
|
|
* Trim it to where the entry begins and append
|
|
* a new available entry with the region after
|
|
* the excluded region, if any.
|
|
*/
|
|
if (exclude[j].mr_start >= avail[i].mr_start &&
|
|
exclude[j].mr_start < avail[i].mr_start +
|
|
avail[i].mr_size) {
|
|
if (exclude[j].mr_start + exclude[j].mr_size <
|
|
avail[i].mr_start + avail[i].mr_size) {
|
|
avail[asz].mr_start =
|
|
exclude[j].mr_start + exclude[j].mr_size;
|
|
avail[asz].mr_size = avail[i].mr_start +
|
|
avail[i].mr_size -
|
|
avail[asz].mr_start;
|
|
asz++;
|
|
}
|
|
|
|
avail[i].mr_size = exclude[j].mr_start -
|
|
avail[i].mr_start;
|
|
}
|
|
|
|
/*
|
|
* Case 3: Exclusion region ends in available entry.
|
|
* Move start point to where the exclusion zone ends.
|
|
* The case of a contained exclusion zone has already
|
|
* been caught in case 2.
|
|
*/
|
|
if (exclude[j].mr_start + exclude[j].mr_size >=
|
|
avail[i].mr_start && exclude[j].mr_start +
|
|
exclude[j].mr_size < avail[i].mr_start +
|
|
avail[i].mr_size) {
|
|
avail[i].mr_size += avail[i].mr_start;
|
|
avail[i].mr_start =
|
|
exclude[j].mr_start + exclude[j].mr_size;
|
|
avail[i].mr_size -= avail[i].mr_start;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (asz);
|
|
}
|
|
|
|
static int
|
|
excise_initrd_region(struct mem_region *avail, int asz)
|
|
{
|
|
phandle_t chosen;
|
|
uint64_t start, end;
|
|
ssize_t size;
|
|
struct mem_region initrdmap[1];
|
|
pcell_t cell[2];
|
|
|
|
chosen = OF_finddevice("/chosen");
|
|
|
|
size = OF_getencprop(chosen, "linux,initrd-start", cell, sizeof(cell));
|
|
if (size < 0)
|
|
return (asz);
|
|
else if (size == 4)
|
|
start = cell[0];
|
|
else if (size == 8)
|
|
start = (uint64_t)cell[0] << 32 | cell[1];
|
|
else {
|
|
/* Invalid value length */
|
|
printf("WARNING: linux,initrd-start must be either 4 or 8 bytes long\n");
|
|
return (asz);
|
|
}
|
|
|
|
size = OF_getencprop(chosen, "linux,initrd-end", cell, sizeof(cell));
|
|
if (size < 0)
|
|
return (asz);
|
|
else if (size == 4)
|
|
end = cell[0];
|
|
else if (size == 8)
|
|
end = (uint64_t)cell[0] << 32 | cell[1];
|
|
else {
|
|
/* Invalid value length */
|
|
printf("WARNING: linux,initrd-end must be either 4 or 8 bytes long\n");
|
|
return (asz);
|
|
}
|
|
|
|
if (end <= start)
|
|
return (asz);
|
|
|
|
initrdmap[0].mr_start = start;
|
|
initrdmap[0].mr_size = end - start;
|
|
|
|
asz = excise_reserved_regions(avail, asz, initrdmap, 1);
|
|
|
|
return (asz);
|
|
}
|
|
|
|
#ifdef POWERNV
|
|
static int
|
|
excise_msi_region(struct mem_region *avail, int asz)
|
|
{
|
|
uint64_t start, end;
|
|
struct mem_region initrdmap[1];
|
|
|
|
/*
|
|
* This range of physical addresses is used to implement optimized
|
|
* 32 bit MSI interrupts on POWER9. Exclude it to avoid accidentally
|
|
* using it for DMA, as this will cause an immediate PHB fence.
|
|
* While we could theoretically turn off this behavior in the ETU,
|
|
* doing so would break 32-bit MSI, so just reserve the range in
|
|
* the physical map instead.
|
|
* See section 4.4.2.8 of the PHB4 specification.
|
|
*/
|
|
start = 0x00000000ffff0000ul;
|
|
end = 0x00000000fffffffful;
|
|
|
|
initrdmap[0].mr_start = start;
|
|
initrdmap[0].mr_size = end - start;
|
|
|
|
asz = excise_reserved_regions(avail, asz, initrdmap, 1);
|
|
|
|
return (asz);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
excise_fdt_reserved(struct mem_region *avail, int asz)
|
|
{
|
|
struct mem_region fdtmap[32];
|
|
ssize_t fdtmapsize;
|
|
phandle_t chosen;
|
|
int j, fdtentries;
|
|
|
|
chosen = OF_finddevice("/chosen");
|
|
fdtmapsize = OF_getprop(chosen, "fdtmemreserv", fdtmap, sizeof(fdtmap));
|
|
|
|
for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) {
|
|
fdtmap[j].mr_start = be64toh(fdtmap[j].mr_start) & ~PAGE_MASK;
|
|
fdtmap[j].mr_size = round_page(be64toh(fdtmap[j].mr_size));
|
|
}
|
|
|
|
KASSERT(j*sizeof(fdtmap[0]) < sizeof(fdtmap),
|
|
("Exceeded number of FDT reservations"));
|
|
/* Add a virtual entry for the FDT itself */
|
|
if (fdt != NULL) {
|
|
fdtmap[j].mr_start = (vm_offset_t)fdt & ~PAGE_MASK;
|
|
fdtmap[j].mr_size = round_page(fdt_totalsize(fdt));
|
|
fdtmapsize += sizeof(fdtmap[0]);
|
|
}
|
|
|
|
fdtentries = fdtmapsize/sizeof(fdtmap[0]);
|
|
asz = excise_reserved_regions(avail, asz, fdtmap, fdtentries);
|
|
|
|
return (asz);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This is called during powerpc_init, before the system is really initialized.
|
|
* It shall provide the total and the available regions of RAM.
|
|
* The available regions need not take the kernel into account.
|
|
*/
|
|
void
|
|
ofw_numa_mem_regions(struct numa_mem_region *memp, int *memsz)
|
|
{
|
|
phandle_t phandle;
|
|
int res, count, msz;
|
|
char name[31];
|
|
cell_t associativity[5];
|
|
struct numa_mem_region *curmemp;
|
|
|
|
msz = 0;
|
|
/*
|
|
* Get memory from all the /memory nodes.
|
|
*/
|
|
for (phandle = OF_child(OF_peer(0)); phandle != 0;
|
|
phandle = OF_peer(phandle)) {
|
|
if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
|
|
continue;
|
|
if (strncmp(name, "memory@", strlen("memory@")) != 0)
|
|
continue;
|
|
|
|
count = parse_numa_ofw_memory(phandle, "reg", &memp[msz]);
|
|
if (count == 0)
|
|
continue;
|
|
curmemp = &memp[msz];
|
|
res = OF_getproplen(phandle, "ibm,associativity");
|
|
if (res <= 0)
|
|
continue;
|
|
MPASS(count == 1);
|
|
OF_getencprop(phandle, "ibm,associativity",
|
|
associativity, res);
|
|
curmemp->mr_domain = associativity[3] - 1;
|
|
if (bootverbose)
|
|
printf("%s %#jx-%#jx domain(%ju)\n",
|
|
name, (uintmax_t)curmemp->mr_start,
|
|
(uintmax_t)curmemp->mr_start + curmemp->mr_size,
|
|
(uintmax_t)curmemp->mr_domain);
|
|
msz += count;
|
|
}
|
|
*memsz = msz;
|
|
}
|
|
/*
|
|
* This is called during powerpc_init, before the system is really initialized.
|
|
* It shall provide the total and the available regions of RAM.
|
|
* The available regions need not take the kernel into account.
|
|
*/
|
|
void
|
|
ofw_mem_regions(struct mem_region *memp, int *memsz,
|
|
struct mem_region *availp, int *availsz)
|
|
{
|
|
phandle_t phandle;
|
|
int asz, msz;
|
|
int res;
|
|
char name[31];
|
|
|
|
asz = msz = 0;
|
|
|
|
/*
|
|
* Get memory from all the /memory nodes.
|
|
*/
|
|
for (phandle = OF_child(OF_peer(0)); phandle != 0;
|
|
phandle = OF_peer(phandle)) {
|
|
if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
|
|
continue;
|
|
if (strncmp(name, "memory", sizeof(name)) != 0 &&
|
|
strncmp(name, "memory@", strlen("memory@")) != 0)
|
|
continue;
|
|
|
|
res = parse_ofw_memory(phandle, "reg", &memp[msz]);
|
|
msz += res;
|
|
|
|
/*
|
|
* On POWER9 Systems we might have both linux,usable-memory and
|
|
* reg properties. 'reg' denotes all available memory, but we
|
|
* must use 'linux,usable-memory', a subset, as some memory
|
|
* regions are reserved for NVLink.
|
|
*/
|
|
if (OF_getproplen(phandle, "linux,usable-memory") >= 0)
|
|
res = parse_ofw_memory(phandle, "linux,usable-memory",
|
|
&availp[asz]);
|
|
else if (OF_getproplen(phandle, "available") >= 0)
|
|
res = parse_ofw_memory(phandle, "available",
|
|
&availp[asz]);
|
|
else
|
|
res = parse_ofw_memory(phandle, "reg", &availp[asz]);
|
|
asz += res;
|
|
}
|
|
|
|
#ifdef FDT
|
|
phandle = OF_finddevice("/chosen");
|
|
if (OF_hasprop(phandle, "fdtmemreserv"))
|
|
asz = excise_fdt_reserved(availp, asz);
|
|
|
|
/* If the kernel is being loaded through kexec, initrd region is listed
|
|
* in /chosen but the region is not marked as reserved, so, we might exclude
|
|
* it here.
|
|
*/
|
|
if (OF_hasprop(phandle, "linux,initrd-start"))
|
|
asz = excise_initrd_region(availp, asz);
|
|
#endif
|
|
|
|
#ifdef POWERNV
|
|
if (opal_check() == 0)
|
|
asz = excise_msi_region(availp, asz);
|
|
#endif
|
|
|
|
*memsz = msz;
|
|
*availsz = asz;
|
|
}
|
|
|
|
void
|
|
OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *))
|
|
{
|
|
#ifdef AIM
|
|
ofmsr[0] = mfmsr();
|
|
#ifdef __powerpc64__
|
|
ofmsr[0] &= ~PSL_SF;
|
|
#else
|
|
__asm __volatile("mfsprg0 %0" : "=&r"(ofmsr[1]));
|
|
#endif
|
|
__asm __volatile("mfsprg1 %0" : "=&r"(ofmsr[2]));
|
|
__asm __volatile("mfsprg2 %0" : "=&r"(ofmsr[3]));
|
|
__asm __volatile("mfsprg3 %0" : "=&r"(ofmsr[4]));
|
|
openfirmware_entry = openfirm;
|
|
|
|
if (ofmsr[0] & PSL_DR)
|
|
ofw_real_mode = 0;
|
|
else
|
|
ofw_real_mode = 1;
|
|
|
|
ofw_save_trap_vec(save_trap_init);
|
|
#else
|
|
ofw_real_mode = 1;
|
|
#endif
|
|
|
|
fdt = fdt_ptr;
|
|
}
|
|
|
|
boolean_t
|
|
OF_bootstrap()
|
|
{
|
|
boolean_t status = FALSE;
|
|
int err = 0;
|
|
|
|
#ifdef AIM
|
|
if (openfirmware_entry != NULL) {
|
|
if (ofw_real_mode) {
|
|
status = OF_install(OFW_STD_REAL, 0);
|
|
} else {
|
|
#ifdef __powerpc64__
|
|
status = OF_install(OFW_STD_32BIT, 0);
|
|
#else
|
|
status = OF_install(OFW_STD_DIRECT, 0);
|
|
#endif
|
|
}
|
|
|
|
if (status != TRUE)
|
|
return status;
|
|
|
|
err = OF_init(openfirmware);
|
|
} else
|
|
#endif
|
|
if (fdt != NULL) {
|
|
#ifdef FDT
|
|
#ifdef AIM
|
|
bus_space_tag_t fdt_bt;
|
|
vm_offset_t tmp_fdt_ptr;
|
|
vm_size_t fdt_size;
|
|
uintptr_t fdt_va;
|
|
#endif
|
|
|
|
status = OF_install(OFW_FDT, 0);
|
|
if (status != TRUE)
|
|
return status;
|
|
|
|
#ifdef AIM /* AIM-only for now -- Book-E does this remapping in early init */
|
|
/* Get the FDT size for mapping if we can */
|
|
tmp_fdt_ptr = pmap_early_io_map((vm_paddr_t)fdt, PAGE_SIZE);
|
|
if (fdt_check_header((void *)tmp_fdt_ptr) != 0) {
|
|
pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
|
|
return FALSE;
|
|
}
|
|
fdt_size = fdt_totalsize((void *)tmp_fdt_ptr);
|
|
pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
|
|
|
|
/*
|
|
* Map this for real. Use bus_space_map() to take advantage
|
|
* of its auto-remapping function once the kernel is loaded.
|
|
* This is a dirty hack, but what we have.
|
|
*/
|
|
#ifdef _LITTLE_ENDIAN
|
|
fdt_bt = &bs_le_tag;
|
|
#else
|
|
fdt_bt = &bs_be_tag;
|
|
#endif
|
|
bus_space_map(fdt_bt, (vm_paddr_t)fdt, fdt_size, 0, &fdt_va);
|
|
|
|
err = OF_init((void *)fdt_va);
|
|
#else
|
|
err = OF_init(fdt);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#ifdef FDT_DTB_STATIC
|
|
/*
|
|
* Check for a statically included blob already in the kernel and
|
|
* needing no mapping.
|
|
*/
|
|
else {
|
|
status = OF_install(OFW_FDT, 0);
|
|
if (status != TRUE)
|
|
return status;
|
|
err = OF_init(&fdt_static_dtb);
|
|
}
|
|
#endif
|
|
|
|
if (err != 0) {
|
|
OF_install(NULL, 0);
|
|
status = FALSE;
|
|
}
|
|
|
|
return (status);
|
|
}
|
|
|
|
#ifdef AIM
|
|
void
|
|
ofw_quiesce(void)
|
|
{
|
|
struct {
|
|
cell_t name;
|
|
cell_t nargs;
|
|
cell_t nreturns;
|
|
} args;
|
|
|
|
KASSERT(!pmap_bootstrapped, ("Cannot call ofw_quiesce after VM is up"));
|
|
|
|
args.name = (cell_t)(uintptr_t)"quiesce";
|
|
args.nargs = 0;
|
|
args.nreturns = 0;
|
|
openfirmware(&args);
|
|
}
|
|
|
|
static int
|
|
openfirmware_core(void *args)
|
|
{
|
|
int result;
|
|
register_t oldmsr;
|
|
|
|
if (openfirmware_entry == NULL)
|
|
return (-1);
|
|
|
|
/*
|
|
* Turn off exceptions - we really don't want to end up
|
|
* anywhere unexpected with PCPU set to something strange
|
|
* or the stack pointer wrong.
|
|
*/
|
|
oldmsr = intr_disable();
|
|
|
|
ofw_sprg_prepare();
|
|
|
|
/* Save trap vectors */
|
|
ofw_save_trap_vec(save_trap_of);
|
|
|
|
/* Restore initially saved trap vectors */
|
|
ofw_restore_trap_vec(save_trap_init);
|
|
|
|
#ifndef __powerpc64__
|
|
/*
|
|
* Clear battable[] translations
|
|
*/
|
|
if (!(cpu_features & PPC_FEATURE_64))
|
|
__asm __volatile("mtdbatu 2, %0\n"
|
|
"mtdbatu 3, %0" : : "r" (0));
|
|
isync();
|
|
#endif
|
|
|
|
result = ofwcall(args);
|
|
|
|
/* Restore trap vecotrs */
|
|
ofw_restore_trap_vec(save_trap_of);
|
|
|
|
ofw_sprg_restore();
|
|
|
|
intr_restore(oldmsr);
|
|
|
|
return (result);
|
|
}
|
|
|
|
#ifdef SMP
|
|
struct ofw_rv_args {
|
|
void *args;
|
|
int retval;
|
|
volatile int in_progress;
|
|
};
|
|
|
|
static void
|
|
ofw_rendezvous_dispatch(void *xargs)
|
|
{
|
|
struct ofw_rv_args *rv_args = xargs;
|
|
|
|
/* NOTE: Interrupts are disabled here */
|
|
|
|
if (PCPU_GET(cpuid) == 0) {
|
|
/*
|
|
* Execute all OF calls on CPU 0
|
|
*/
|
|
rv_args->retval = openfirmware_core(rv_args->args);
|
|
rv_args->in_progress = 0;
|
|
} else {
|
|
/*
|
|
* Spin with interrupts off on other CPUs while OF has
|
|
* control of the machine.
|
|
*/
|
|
while (rv_args->in_progress)
|
|
cpu_spinwait();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
openfirmware(void *args)
|
|
{
|
|
int result;
|
|
#ifdef SMP
|
|
struct ofw_rv_args rv_args;
|
|
#endif
|
|
|
|
if (openfirmware_entry == NULL)
|
|
return (-1);
|
|
|
|
#ifdef SMP
|
|
if (cold) {
|
|
result = openfirmware_core(args);
|
|
} else {
|
|
rv_args.args = args;
|
|
rv_args.in_progress = 1;
|
|
smp_rendezvous(smp_no_rendezvous_barrier,
|
|
ofw_rendezvous_dispatch, smp_no_rendezvous_barrier,
|
|
&rv_args);
|
|
result = rv_args.retval;
|
|
}
|
|
#else
|
|
result = openfirmware_core(args);
|
|
#endif
|
|
|
|
return (result);
|
|
}
|
|
|
|
void
|
|
OF_reboot()
|
|
{
|
|
struct {
|
|
cell_t name;
|
|
cell_t nargs;
|
|
cell_t nreturns;
|
|
cell_t arg;
|
|
} args;
|
|
|
|
args.name = (cell_t)(uintptr_t)"interpret";
|
|
args.nargs = 1;
|
|
args.nreturns = 0;
|
|
args.arg = (cell_t)(uintptr_t)"reset-all";
|
|
openfirmware_core(&args); /* Don't do rendezvous! */
|
|
|
|
for (;;); /* just in case */
|
|
}
|
|
|
|
#endif /* AIM */
|
|
|
|
void
|
|
OF_getetheraddr(device_t dev, u_char *addr)
|
|
{
|
|
phandle_t node;
|
|
|
|
node = ofw_bus_get_node(dev);
|
|
OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN);
|
|
}
|
|
|
|
/*
|
|
* Return a bus handle and bus tag that corresponds to the register
|
|
* numbered regno for the device referenced by the package handle
|
|
* dev. This function is intended to be used by console drivers in
|
|
* early boot only. It works by mapping the address of the device's
|
|
* register in the address space of its parent and recursively walk
|
|
* the device tree upward this way.
|
|
*/
|
|
int
|
|
OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag,
|
|
bus_space_handle_t *handle, bus_size_t *sz)
|
|
{
|
|
bus_addr_t addr;
|
|
bus_size_t size;
|
|
pcell_t pci_hi;
|
|
int flags, res;
|
|
|
|
res = ofw_reg_to_paddr(dev, regno, &addr, &size, &pci_hi);
|
|
if (res < 0)
|
|
return (res);
|
|
|
|
if (pci_hi == OFW_PADDR_NOT_PCI) {
|
|
*tag = &bs_be_tag;
|
|
flags = 0;
|
|
} else {
|
|
*tag = &bs_le_tag;
|
|
flags = (pci_hi & OFW_PCI_PHYS_HI_PREFETCHABLE) ?
|
|
BUS_SPACE_MAP_PREFETCHABLE: 0;
|
|
}
|
|
|
|
if (sz != NULL)
|
|
*sz = size;
|
|
|
|
return (bus_space_map(*tag, addr, size, flags, handle));
|
|
}
|
|
|