freebsd-skq/sys/pci/if_xl.c
archie 7357df6b48 Make all Ethernet drivers attach using ether_ifattach() and detach using
ether_ifdetach().

The former consolidates the operations of if_attach(), ng_ether_attach(),
and bpfattach(). The latter consolidates the corresponding detach operations.

Reviewed by:	julian, freebsd-net
2000-07-13 22:54:34 +00:00

2865 lines
72 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* 3Com 3c90x Etherlink XL PCI NIC driver
*
* Supports the 3Com "boomerang", "cyclone" and "hurricane" PCI
* bus-master chips (3c90x cards and embedded controllers) including
* the following:
*
* 3Com 3c900-TPO 10Mbps/RJ-45
* 3Com 3c900-COMBO 10Mbps/RJ-45,AUI,BNC
* 3Com 3c905-TX 10/100Mbps/RJ-45
* 3Com 3c905-T4 10/100Mbps/RJ-45
* 3Com 3c900B-TPO 10Mbps/RJ-45
* 3Com 3c900B-COMBO 10Mbps/RJ-45,AUI,BNC
* 3Com 3c900B-TPC 10Mbps/RJ-45,BNC
* 3Com 3c900B-FL 10Mbps/Fiber-optic
* 3Com 3c905B-COMBO 10/100Mbps/RJ-45,AUI,BNC
* 3Com 3c905B-TX 10/100Mbps/RJ-45
* 3Com 3c905B-FL/FX 10/100Mbps/Fiber-optic
* 3Com 3c905C-TX 10/100Mbps/RJ-45 (Tornado ASIC)
* 3Com 3c980-TX 10/100Mbps server adapter (Hurricane ASIC)
* 3Com 3c980C-TX 10/100Mbps server adapter (Tornado ASIC)
* 3Com 3cSOHO100-TX 10/100Mbps/RJ-45 (Hurricane ASIC)
* 3Com 3c450-TX 10/100Mbps/RJ-45 (Tornado ASIC)
* Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45
* Dell on-board 3c920 10/100Mbps/RJ-45
* Dell Precision on-board 3c905B 10/100Mbps/RJ-45
* Dell Latitude laptop docking station embedded 3c905-TX
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The 3c90x series chips use a bus-master DMA interface for transfering
* packets to and from the controller chip. Some of the "vortex" cards
* (3c59x) also supported a bus master mode, however for those chips
* you could only DMA packets to/from a contiguous memory buffer. For
* transmission this would mean copying the contents of the queued mbuf
* chain into a an mbuf cluster and then DMAing the cluster. This extra
* copy would sort of defeat the purpose of the bus master support for
* any packet that doesn't fit into a single mbuf.
*
* By contrast, the 3c90x cards support a fragment-based bus master
* mode where mbuf chains can be encapsulated using TX descriptors.
* This is similar to other PCI chips such as the Texas Instruments
* ThunderLAN and the Intel 82557/82558.
*
* The "vortex" driver (if_vx.c) happens to work for the "boomerang"
* bus master chips because they maintain the old PIO interface for
* backwards compatibility, but starting with the 3c905B and the
* "cyclone" chips, the compatibility interface has been dropped.
* Since using bus master DMA is a big win, we use this driver to
* support the PCI "boomerang" chips even though they work with the
* "vortex" driver in order to obtain better performance.
*
* This driver is in the /sys/pci directory because it only supports
* PCI-based NICs.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
MODULE_DEPEND(xl, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* The following #define causes the code to use PIO to access the
* chip's registers instead of memory mapped mode. The reason PIO mode
* is on by default is that the Etherlink XL manual seems to indicate
* that only the newer revision chips (3c905B) support both PIO and
* memory mapped access. Since we want to be compatible with the older
* bus master chips, we use PIO here. If you comment this out, the
* driver will use memory mapped I/O, which may be faster but which
* might not work on some devices.
*/
#define XL_USEIOSPACE
#include <pci/if_xlreg.h>
#if !defined(lint)
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct xl_type xl_devs[] = {
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT,
"3Com 3c900-TPO Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT_COMBO,
"3Com 3c900-COMBO Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10_100BT,
"3Com 3c905-TX Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_100BT4,
"3Com 3c905-T4 Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT,
"3Com 3c900B-TPO Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT_COMBO,
"3Com 3c900B-COMBO Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT_TPC,
"3Com 3c900B-TPC Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10FL,
"3Com 3c900B-FL Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_10_100BT,
"3Com 3c905B-TX Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT4,
"3Com 3c905B-T4 Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100FX,
"3Com 3c905B-FX/SC Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100_COMBO,
"3Com 3c905B-COMBO Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT,
"3Com 3c905C-TX Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_10_100BT_SERV,
"3Com 3c980 Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_SERV,
"3Com 3c980C Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_SOHO100TX,
"3Com 3cSOHO100-TX OfficeConnect" },
{ TC_VENDORID, TC_DEVICEID_TORNADO_HOMECONNECT,
"3Com 3c450-TX HomeConnect" },
{ 0, 0, NULL }
};
static int xl_probe __P((device_t));
static int xl_attach __P((device_t));
static int xl_detach __P((device_t));
static int xl_newbuf __P((struct xl_softc *,
struct xl_chain_onefrag *));
static void xl_stats_update __P((void *));
static int xl_encap __P((struct xl_softc *, struct xl_chain *,
struct mbuf * ));
static int xl_encap_90xB __P((struct xl_softc *, struct xl_chain *,
struct mbuf * ));
static void xl_rxeof __P((struct xl_softc *));
static int xl_rx_resync __P((struct xl_softc *));
static void xl_txeof __P((struct xl_softc *));
static void xl_txeof_90xB __P((struct xl_softc *));
static void xl_txeoc __P((struct xl_softc *));
static void xl_intr __P((void *));
static void xl_start __P((struct ifnet *));
static void xl_start_90xB __P((struct ifnet *));
static int xl_ioctl __P((struct ifnet *, u_long, caddr_t));
static void xl_init __P((void *));
static void xl_stop __P((struct xl_softc *));
static void xl_watchdog __P((struct ifnet *));
static void xl_shutdown __P((device_t));
static int xl_ifmedia_upd __P((struct ifnet *));
static void xl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static int xl_eeprom_wait __P((struct xl_softc *));
static int xl_read_eeprom __P((struct xl_softc *, caddr_t, int,
int, int));
static void xl_mii_sync __P((struct xl_softc *));
static void xl_mii_send __P((struct xl_softc *, u_int32_t, int));
static int xl_mii_readreg __P((struct xl_softc *, struct xl_mii_frame *));
static int xl_mii_writereg __P((struct xl_softc *, struct xl_mii_frame *));
static void xl_setcfg __P((struct xl_softc *));
static void xl_setmode __P((struct xl_softc *, int));
static u_int8_t xl_calchash __P((caddr_t));
static void xl_setmulti __P((struct xl_softc *));
static void xl_setmulti_hash __P((struct xl_softc *));
static void xl_reset __P((struct xl_softc *));
static int xl_list_rx_init __P((struct xl_softc *));
static int xl_list_tx_init __P((struct xl_softc *));
static int xl_list_tx_init_90xB __P((struct xl_softc *));
static void xl_wait __P((struct xl_softc *));
static void xl_mediacheck __P((struct xl_softc *));
static void xl_choose_xcvr __P((struct xl_softc *, int));
#ifdef notdef
static void xl_testpacket __P((struct xl_softc *));
#endif
static int xl_miibus_readreg __P((device_t, int, int));
static int xl_miibus_writereg __P((device_t, int, int, int));
static void xl_miibus_statchg __P((device_t));
static void xl_miibus_mediainit __P((device_t));
#ifdef XL_USEIOSPACE
#define XL_RES SYS_RES_IOPORT
#define XL_RID XL_PCI_LOIO
#else
#define XL_RES SYS_RES_MEMORY
#define XL_RID XL_PCI_LOMEM
#endif
static device_method_t xl_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, xl_probe),
DEVMETHOD(device_attach, xl_attach),
DEVMETHOD(device_detach, xl_detach),
DEVMETHOD(device_shutdown, xl_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, xl_miibus_readreg),
DEVMETHOD(miibus_writereg, xl_miibus_writereg),
DEVMETHOD(miibus_statchg, xl_miibus_statchg),
DEVMETHOD(miibus_mediainit, xl_miibus_mediainit),
{ 0, 0 }
};
static driver_t xl_driver = {
"xl",
xl_methods,
sizeof(struct xl_softc)
};
static devclass_t xl_devclass;
DRIVER_MODULE(if_xl, pci, xl_driver, xl_devclass, 0, 0);
DRIVER_MODULE(miibus, xl, miibus_driver, miibus_devclass, 0, 0);
/*
* Murphy's law says that it's possible the chip can wedge and
* the 'command in progress' bit may never clear. Hence, we wait
* only a finite amount of time to avoid getting caught in an
* infinite loop. Normally this delay routine would be a macro,
* but it isn't called during normal operation so we can afford
* to make it a function.
*/
static void xl_wait(sc)
struct xl_softc *sc;
{
register int i;
for (i = 0; i < XL_TIMEOUT; i++) {
if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY))
break;
}
if (i == XL_TIMEOUT)
printf("xl%d: command never completed!\n", sc->xl_unit);
return;
}
/*
* MII access routines are provided for adapters with external
* PHYs (3c905-TX, 3c905-T4, 3c905B-T4) and those with built-in
* autoneg logic that's faked up to look like a PHY (3c905B-TX).
* Note: if you don't perform the MDIO operations just right,
* it's possible to end up with code that works correctly with
* some chips/CPUs/processor speeds/bus speeds/etc but not
* with others.
*/
#define MII_SET(x) \
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \
CSR_READ_2(sc, XL_W4_PHY_MGMT) | x)
#define MII_CLR(x) \
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \
CSR_READ_2(sc, XL_W4_PHY_MGMT) & ~x)
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void xl_mii_sync(sc)
struct xl_softc *sc;
{
register int i;
XL_SEL_WIN(4);
MII_SET(XL_MII_DIR|XL_MII_DATA);
for (i = 0; i < 32; i++) {
MII_SET(XL_MII_CLK);
DELAY(1);
MII_CLR(XL_MII_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void xl_mii_send(sc, bits, cnt)
struct xl_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
XL_SEL_WIN(4);
MII_CLR(XL_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
MII_SET(XL_MII_DATA);
} else {
MII_CLR(XL_MII_DATA);
}
DELAY(1);
MII_CLR(XL_MII_CLK);
DELAY(1);
MII_SET(XL_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int xl_mii_readreg(sc, frame)
struct xl_softc *sc;
struct xl_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = XL_MII_STARTDELIM;
frame->mii_opcode = XL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Select register window 4.
*/
XL_SEL_WIN(4);
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, 0);
/*
* Turn on data xmit.
*/
MII_SET(XL_MII_DIR);
xl_mii_sync(sc);
/*
* Send command/address info.
*/
xl_mii_send(sc, frame->mii_stdelim, 2);
xl_mii_send(sc, frame->mii_opcode, 2);
xl_mii_send(sc, frame->mii_phyaddr, 5);
xl_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
MII_CLR((XL_MII_CLK|XL_MII_DATA));
DELAY(1);
MII_SET(XL_MII_CLK);
DELAY(1);
/* Turn off xmit. */
MII_CLR(XL_MII_DIR);
/* Check for ack */
MII_CLR(XL_MII_CLK);
DELAY(1);
MII_SET(XL_MII_CLK);
DELAY(1);
ack = CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA;
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
MII_CLR(XL_MII_CLK);
DELAY(1);
MII_SET(XL_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
MII_CLR(XL_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA)
frame->mii_data |= i;
DELAY(1);
}
MII_SET(XL_MII_CLK);
DELAY(1);
}
fail:
MII_CLR(XL_MII_CLK);
DELAY(1);
MII_SET(XL_MII_CLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int xl_mii_writereg(sc, frame)
struct xl_softc *sc;
struct xl_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = XL_MII_STARTDELIM;
frame->mii_opcode = XL_MII_WRITEOP;
frame->mii_turnaround = XL_MII_TURNAROUND;
/*
* Select the window 4.
*/
XL_SEL_WIN(4);
/*
* Turn on data output.
*/
MII_SET(XL_MII_DIR);
xl_mii_sync(sc);
xl_mii_send(sc, frame->mii_stdelim, 2);
xl_mii_send(sc, frame->mii_opcode, 2);
xl_mii_send(sc, frame->mii_phyaddr, 5);
xl_mii_send(sc, frame->mii_regaddr, 5);
xl_mii_send(sc, frame->mii_turnaround, 2);
xl_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(XL_MII_CLK);
DELAY(1);
MII_CLR(XL_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
MII_CLR(XL_MII_DIR);
splx(s);
return(0);
}
static int xl_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct xl_softc *sc;
struct xl_mii_frame frame;
/*
* Pretend that PHYs are only available at MII address 24.
* This is to guard against problems with certain 3Com ASIC
* revisions that incorrectly map the internal transceiver
* control registers at all MII addresses. This can cause
* the miibus code to attach the same PHY several times over.
*/
if (phy != 24)
return(0);
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
xl_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static int xl_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct xl_softc *sc;
struct xl_mii_frame frame;
if (phy != 24)
return(0);
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
xl_mii_writereg(sc, &frame);
return(0);
}
static void xl_miibus_statchg(dev)
device_t dev;
{
struct xl_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->xl_miibus);
xl_setcfg(sc);
/* Set ASIC's duplex mode to match the PHY. */
XL_SEL_WIN(3);
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
else
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
return;
}
/*
* Special support for the 3c905B-COMBO. This card has 10/100 support
* plus BNC and AUI ports. This means we will have both an miibus attached
* plus some non-MII media settings. In order to allow this, we have to
* add the extra media to the miibus's ifmedia struct, but we can't do
* that during xl_attach() because the miibus hasn't been attached yet.
* So instead, we wait until the miibus probe/attach is done, at which
* point we will get a callback telling is that it's safe to add our
* extra media.
*/
static void xl_miibus_mediainit(dev)
device_t dev;
{
struct xl_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = device_get_softc(dev);
mii = device_get_softc(sc->xl_miibus);
ifm = &mii->mii_media;
if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
/*
* Check for a 10baseFL board in disguise.
*/
if (sc->xl_type == XL_TYPE_905B &&
sc->xl_media == XL_MEDIAOPT_10FL) {
if (bootverbose)
printf("xl%d: found 10baseFL\n", sc->xl_unit);
ifmedia_add(ifm, IFM_ETHER|IFM_10_FL, 0, NULL);
ifmedia_add(ifm, IFM_ETHER|IFM_10_FL|IFM_HDX, 0, NULL);
if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
ifmedia_add(ifm,
IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
} else {
if (bootverbose)
printf("xl%d: found AUI\n", sc->xl_unit);
ifmedia_add(ifm, IFM_ETHER|IFM_10_5, 0, NULL);
}
}
if (sc->xl_media & XL_MEDIAOPT_BNC) {
if (bootverbose)
printf("xl%d: found BNC\n", sc->xl_unit);
ifmedia_add(ifm, IFM_ETHER|IFM_10_2, 0, NULL);
}
return;
}
/*
* The EEPROM is slow: give it time to come ready after issuing
* it a command.
*/
static int xl_eeprom_wait(sc)
struct xl_softc *sc;
{
int i;
for (i = 0; i < 100; i++) {
if (CSR_READ_2(sc, XL_W0_EE_CMD) & XL_EE_BUSY)
DELAY(162);
else
break;
}
if (i == 100) {
printf("xl%d: eeprom failed to come ready\n", sc->xl_unit);
return(1);
}
return(0);
}
/*
* Read a sequence of words from the EEPROM. Note that ethernet address
* data is stored in the EEPROM in network byte order.
*/
static int xl_read_eeprom(sc, dest, off, cnt, swap)
struct xl_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int err = 0, i;
u_int16_t word = 0, *ptr;
XL_SEL_WIN(0);
if (xl_eeprom_wait(sc))
return(1);
for (i = 0; i < cnt; i++) {
CSR_WRITE_2(sc, XL_W0_EE_CMD, XL_EE_READ | (off + i));
err = xl_eeprom_wait(sc);
if (err)
break;
word = CSR_READ_2(sc, XL_W0_EE_DATA);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return(err ? 1 : 0);
}
/*
* This routine is taken from the 3Com Etherlink XL manual,
* page 10-7. It calculates a CRC of the supplied multicast
* group address and returns the lower 8 bits, which are used
* as the multicast filter position.
* Note: the 3c905B currently only supports a 64-bit hash table,
* which means we really only need 6 bits, but the manual indicates
* that future chip revisions will have a 256-bit hash table,
* hence the routine is set up to calculate 8 bits of position
* info in case we need it some day.
* Note II, The Sequel: _CURRENT_ versions of the 3c905B have a
* 256 bit hash table. This means we have to use all 8 bits regardless.
* On older cards, the upper 2 bits will be ignored. Grrrr....
*/
static u_int8_t xl_calchash(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return(crc & 0x000000FF);
}
/*
* NICs older than the 3c905B have only one multicast option, which
* is to enable reception of all multicast frames.
*/
static void xl_setmulti(sc)
struct xl_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int8_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
if (ifp->if_flags & IFF_ALLMULTI) {
rxfilt |= XL_RXFILTER_ALLMULTI;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
return;
}
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next)
mcnt++;
if (mcnt)
rxfilt |= XL_RXFILTER_ALLMULTI;
else
rxfilt &= ~XL_RXFILTER_ALLMULTI;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
return;
}
/*
* 3c905B adapters have a hash filter that we can program.
*/
static void xl_setmulti_hash(sc)
struct xl_softc *sc;
{
struct ifnet *ifp;
int h = 0, i;
struct ifmultiaddr *ifma;
u_int8_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
if (ifp->if_flags & IFF_ALLMULTI) {
rxfilt |= XL_RXFILTER_ALLMULTI;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
return;
} else
rxfilt &= ~XL_RXFILTER_ALLMULTI;
/* first, zot all the existing hash bits */
for (i = 0; i < XL_HASHFILT_SIZE; i++)
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|i);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = xl_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|XL_HASH_SET|h);
mcnt++;
}
if (mcnt)
rxfilt |= XL_RXFILTER_MULTIHASH;
else
rxfilt &= ~XL_RXFILTER_MULTIHASH;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
return;
}
#ifdef notdef
static void xl_testpacket(sc)
struct xl_softc *sc;
{
struct mbuf *m;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return;
bcopy(&sc->arpcom.ac_enaddr,
mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN);
bcopy(&sc->arpcom.ac_enaddr,
mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN);
mtod(m, struct ether_header *)->ether_type = htons(3);
mtod(m, unsigned char *)[14] = 0;
mtod(m, unsigned char *)[15] = 0;
mtod(m, unsigned char *)[16] = 0xE3;
m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3;
IF_ENQUEUE(&ifp->if_snd, m);
xl_start(ifp);
return;
}
#endif
static void xl_setcfg(sc)
struct xl_softc *sc;
{
u_int32_t icfg;
XL_SEL_WIN(3);
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
icfg &= ~XL_ICFG_CONNECTOR_MASK;
if (sc->xl_media & XL_MEDIAOPT_MII ||
sc->xl_media & XL_MEDIAOPT_BT4)
icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS);
if (sc->xl_media & XL_MEDIAOPT_BTX)
icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS);
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
return;
}
static void xl_setmode(sc, media)
struct xl_softc *sc;
int media;
{
u_int32_t icfg;
u_int16_t mediastat;
printf("xl%d: selecting ", sc->xl_unit);
XL_SEL_WIN(4);
mediastat = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
XL_SEL_WIN(3);
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
if (sc->xl_media & XL_MEDIAOPT_BT) {
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10baseT transceiver, ");
sc->xl_xcvr = XL_XCVR_10BT;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_10BT << XL_ICFG_CONNECTOR_BITS);
mediastat |= XL_MEDIASTAT_LINKBEAT|
XL_MEDIASTAT_JABGUARD;
mediastat &= ~XL_MEDIASTAT_SQEENB;
}
}
if (sc->xl_media & XL_MEDIAOPT_BFX) {
if (IFM_SUBTYPE(media) == IFM_100_FX) {
printf("100baseFX port, ");
sc->xl_xcvr = XL_XCVR_100BFX;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS);
mediastat |= XL_MEDIASTAT_LINKBEAT;
mediastat &= ~XL_MEDIASTAT_SQEENB;
}
}
if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
if (IFM_SUBTYPE(media) == IFM_10_5) {
printf("AUI port, ");
sc->xl_xcvr = XL_XCVR_AUI;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS);
mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
XL_MEDIASTAT_JABGUARD);
mediastat |= ~XL_MEDIASTAT_SQEENB;
}
if (IFM_SUBTYPE(media) == IFM_10_FL) {
printf("10baseFL transceiver, ");
sc->xl_xcvr = XL_XCVR_AUI;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS);
mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
XL_MEDIASTAT_JABGUARD);
mediastat |= ~XL_MEDIASTAT_SQEENB;
}
}
if (sc->xl_media & XL_MEDIAOPT_BNC) {
if (IFM_SUBTYPE(media) == IFM_10_2) {
printf("BNC port, ");
sc->xl_xcvr = XL_XCVR_COAX;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_COAX << XL_ICFG_CONNECTOR_BITS);
mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
XL_MEDIASTAT_JABGUARD|
XL_MEDIASTAT_SQEENB);
}
}
if ((media & IFM_GMASK) == IFM_FDX ||
IFM_SUBTYPE(media) == IFM_100_FX) {
printf("full duplex\n");
XL_SEL_WIN(3);
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
} else {
printf("half duplex\n");
XL_SEL_WIN(3);
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
}
if (IFM_SUBTYPE(media) == IFM_10_2)
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
else
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
XL_SEL_WIN(4);
CSR_WRITE_2(sc, XL_W4_MEDIA_STATUS, mediastat);
DELAY(800);
XL_SEL_WIN(7);
return;
}
static void xl_reset(sc)
struct xl_softc *sc;
{
register int i;
XL_SEL_WIN(0);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RESET);
for (i = 0; i < XL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY))
break;
}
if (i == XL_TIMEOUT)
printf("xl%d: reset didn't complete\n", sc->xl_unit);
DELAY(100000);
/* Reset TX and RX. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
/* Wait a little while for the chip to get its brains in order. */
DELAY(100000);
return;
}
/*
* Probe for a 3Com Etherlink XL chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int xl_probe(dev)
device_t dev;
{
struct xl_type *t;
t = xl_devs;
while(t->xl_name != NULL) {
if ((pci_get_vendor(dev) == t->xl_vid) &&
(pci_get_device(dev) == t->xl_did)) {
device_set_desc(dev, t->xl_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* This routine is a kludge to work around possible hardware faults
* or manufacturing defects that can cause the media options register
* (or reset options register, as it's called for the first generation
* 3c90x adapters) to return an incorrect result. I have encountered
* one Dell Latitude laptop docking station with an integrated 3c905-TX
* which doesn't have any of the 'mediaopt' bits set. This screws up
* the attach routine pretty badly because it doesn't know what media
* to look for. If we find ourselves in this predicament, this routine
* will try to guess the media options values and warn the user of a
* possible manufacturing defect with his adapter/system/whatever.
*/
static void xl_mediacheck(sc)
struct xl_softc *sc;
{
/*
* If some of the media options bits are set, assume they are
* correct. If not, try to figure it out down below.
* XXX I should check for 10baseFL, but I don't have an adapter
* to test with.
*/
if (sc->xl_media & (XL_MEDIAOPT_MASK & ~XL_MEDIAOPT_VCO)) {
/*
* Check the XCVR value. If it's not in the normal range
* of values, we need to fake it up here.
*/
if (sc->xl_xcvr <= XL_XCVR_AUTO)
return;
else {
printf("xl%d: bogus xcvr value "
"in EEPROM (%x)\n", sc->xl_unit, sc->xl_xcvr);
printf("xl%d: choosing new default based "
"on card type\n", sc->xl_unit);
}
} else {
if (sc->xl_type == XL_TYPE_905B &&
sc->xl_media & XL_MEDIAOPT_10FL)
return;
printf("xl%d: WARNING: no media options bits set in "
"the media options register!!\n", sc->xl_unit);
printf("xl%d: this could be a manufacturing defect in "
"your adapter or system\n", sc->xl_unit);
printf("xl%d: attempting to guess media type; you "
"should probably consult your vendor\n", sc->xl_unit);
}
xl_choose_xcvr(sc, 1);
return;
}
static void xl_choose_xcvr(sc, verbose)
struct xl_softc *sc;
int verbose;
{
u_int16_t devid;
/*
* Read the device ID from the EEPROM.
* This is what's loaded into the PCI device ID register, so it has
* to be correct otherwise we wouldn't have gotten this far.
*/
xl_read_eeprom(sc, (caddr_t)&devid, XL_EE_PRODID, 1, 0);
switch(devid) {
case TC_DEVICEID_BOOMERANG_10BT: /* 3c900-TPO */
case TC_DEVICEID_KRAKATOA_10BT: /* 3c900B-TPO */
sc->xl_media = XL_MEDIAOPT_BT;
sc->xl_xcvr = XL_XCVR_10BT;
if (verbose)
printf("xl%d: guessing 10BaseT "
"transceiver\n", sc->xl_unit);
break;
case TC_DEVICEID_BOOMERANG_10BT_COMBO: /* 3c900-COMBO */
case TC_DEVICEID_KRAKATOA_10BT_COMBO: /* 3c900B-COMBO */
sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI;
sc->xl_xcvr = XL_XCVR_10BT;
if (verbose)
printf("xl%d: guessing COMBO "
"(AUI/BNC/TP)\n", sc->xl_unit);
break;
case TC_DEVICEID_KRAKATOA_10BT_TPC: /* 3c900B-TPC */
sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC;
sc->xl_xcvr = XL_XCVR_10BT;
if (verbose)
printf("xl%d: guessing TPC (BNC/TP)\n", sc->xl_unit);
break;
case TC_DEVICEID_CYCLONE_10FL: /* 3c900B-FL */
sc->xl_media = XL_MEDIAOPT_10FL;
sc->xl_xcvr = XL_XCVR_AUI;
if (verbose)
printf("xl%d: guessing 10baseFL\n", sc->xl_unit);
break;
case TC_DEVICEID_BOOMERANG_10_100BT: /* 3c905-TX */
sc->xl_media = XL_MEDIAOPT_MII;
sc->xl_xcvr = XL_XCVR_MII;
if (verbose)
printf("xl%d: guessing MII\n", sc->xl_unit);
break;
case TC_DEVICEID_BOOMERANG_100BT4: /* 3c905-T4 */
case TC_DEVICEID_CYCLONE_10_100BT4: /* 3c905B-T4 */
sc->xl_media = XL_MEDIAOPT_BT4;
sc->xl_xcvr = XL_XCVR_MII;
if (verbose)
printf("xl%d: guessing 100BaseT4/MII\n", sc->xl_unit);
break;
case TC_DEVICEID_HURRICANE_10_100BT: /* 3c905B-TX */
case TC_DEVICEID_HURRICANE_10_100BT_SERV:/*3c980-TX */
case TC_DEVICEID_TORNADO_10_100BT_SERV: /* 3c980C-TX */
case TC_DEVICEID_HURRICANE_SOHO100TX: /* 3cSOHO100-TX */
case TC_DEVICEID_TORNADO_10_100BT: /* 3c905C-TX */
case TC_DEVICEID_TORNADO_HOMECONNECT: /* 3c450-TX */
sc->xl_media = XL_MEDIAOPT_BTX;
sc->xl_xcvr = XL_XCVR_AUTO;
if (verbose)
printf("xl%d: guessing 10/100 internal\n", sc->xl_unit);
break;
case TC_DEVICEID_CYCLONE_10_100_COMBO: /* 3c905B-COMBO */
sc->xl_media = XL_MEDIAOPT_BTX|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI;
sc->xl_xcvr = XL_XCVR_AUTO;
if (verbose)
printf("xl%d: guessing 10/100 "
"plus BNC/AUI\n", sc->xl_unit);
break;
default:
printf("xl%d: unknown device ID: %x -- "
"defaulting to 10baseT\n", sc->xl_unit, devid);
sc->xl_media = XL_MEDIAOPT_BT;
break;
}
return;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int xl_attach(dev)
device_t dev;
{
int s;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct xl_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
int unit, error = 0, rid;
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
/*
* If this is a 3c905B, we have to check one extra thing.
* The 905B supports power management and may be placed in
* a low-power mode (D3 mode), typically by certain operating
* systems which shall not be named. The PCI BIOS is supposed
* to reset the NIC and bring it out of low-power mode, but
* some do not. Consequently, we have to see if this chip
* supports power management, and if so, make sure it's not
* in low-power mode. If power management is available, the
* capid byte will be 0x01.
*
* I _think_ that what actually happens is that the chip
* loses its PCI configuration during the transition from
* D3 back to D0; this means that it should be possible for
* us to save the PCI iobase, membase and IRQ, put the chip
* back in the D0 state, then restore the PCI config ourselves.
*/
command = pci_read_config(dev, XL_PCI_CAPID, 4) & 0x000000FF;
if (command == 0x01) {
command = pci_read_config(dev, XL_PCI_PWRMGMTCTRL, 4);
if (command & XL_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, XL_PCI_LOIO, 4);
membase = pci_read_config(dev, XL_PCI_LOMEM, 4);
irq = pci_read_config(dev, XL_PCI_INTLINE, 4);
/* Reset the power state. */
printf("xl%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & XL_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_write_config(dev, XL_PCI_PWRMGMTCTRL, command, 4);
/* Restore PCI config data. */
pci_write_config(dev, XL_PCI_LOIO, iobase, 4);
pci_write_config(dev, XL_PCI_LOMEM, membase, 4);
pci_write_config(dev, XL_PCI_INTLINE, irq, 4);
}
}
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCIR_COMMAND, 4);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCIR_COMMAND, command, 4);
command = pci_read_config(dev, PCIR_COMMAND, 4);
#ifdef XL_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("xl%d: failed to enable I/O ports!\n", unit);
error = ENXIO;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("xl%d: failed to enable memory mapping!\n", unit);
error = ENXIO;
goto fail;
}
#endif
rid = XL_RID;
sc->xl_res = bus_alloc_resource(dev, XL_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->xl_res == NULL) {
printf ("xl%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->xl_btag = rman_get_bustag(sc->xl_res);
sc->xl_bhandle = rman_get_bushandle(sc->xl_res);
rid = 0;
sc->xl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->xl_irq == NULL) {
printf("xl%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, XL_RES, XL_RID, sc->xl_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->xl_irq, INTR_TYPE_NET,
xl_intr, sc, &sc->xl_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->xl_irq);
bus_release_resource(dev, XL_RES, XL_RID, sc->xl_res);
printf("xl%d: couldn't set up irq\n", unit);
goto fail;
}
/* Reset the adapter. */
xl_reset(sc);
/*
* Get station address from the EEPROM.
*/
if (xl_read_eeprom(sc, (caddr_t)&eaddr, XL_EE_OEM_ADR0, 3, 1)) {
printf("xl%d: failed to read station address\n", sc->xl_unit);
bus_teardown_intr(dev, sc->xl_irq, sc->xl_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->xl_irq);
bus_release_resource(dev, XL_RES, XL_RID, sc->xl_res);
error = ENXIO;
goto fail;
}
/*
* A 3Com chip was detected. Inform the world.
*/
printf("xl%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->xl_unit = unit;
callout_handle_init(&sc->xl_stat_ch);
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->xl_ldata = contigmalloc(sizeof(struct xl_list_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->xl_ldata == NULL) {
printf("xl%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->xl_irq, sc->xl_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->xl_irq);
bus_release_resource(dev, XL_RES, XL_RID, sc->xl_res);
error = ENXIO;
goto fail;
}
bzero(sc->xl_ldata, sizeof(struct xl_list_data));
/*
* Figure out the card type. 3c905B adapters have the
* 'supportsNoTxLength' bit set in the capabilities
* word in the EEPROM.
*/
xl_read_eeprom(sc, (caddr_t)&sc->xl_caps, XL_EE_CAPS, 1, 0);
if (sc->xl_caps & XL_CAPS_NO_TXLENGTH)
sc->xl_type = XL_TYPE_905B;
else
sc->xl_type = XL_TYPE_90X;
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "xl";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = xl_ioctl;
ifp->if_output = ether_output;
if (sc->xl_type == XL_TYPE_905B)
ifp->if_start = xl_start_90xB;
else
ifp->if_start = xl_start;
ifp->if_watchdog = xl_watchdog;
ifp->if_init = xl_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = XL_TX_LIST_CNT - 1;
/*
* Now we have to see what sort of media we have.
* This includes probing for an MII interace and a
* possible PHY.
*/
XL_SEL_WIN(3);
sc->xl_media = CSR_READ_2(sc, XL_W3_MEDIA_OPT);
if (bootverbose)
printf("xl%d: media options word: %x\n", sc->xl_unit,
sc->xl_media);
xl_read_eeprom(sc, (char *)&sc->xl_xcvr, XL_EE_ICFG_0, 2, 0);
sc->xl_xcvr &= XL_ICFG_CONNECTOR_MASK;
sc->xl_xcvr >>= XL_ICFG_CONNECTOR_BITS;
xl_mediacheck(sc);
if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX
|| sc->xl_media & XL_MEDIAOPT_BT4) {
if (bootverbose)
printf("xl%d: found MII/AUTO\n", sc->xl_unit);
xl_setcfg(sc);
if (mii_phy_probe(dev, &sc->xl_miibus,
xl_ifmedia_upd, xl_ifmedia_sts)) {
printf("xl%d: no PHY found!\n", sc->xl_unit);
bus_teardown_intr(dev, sc->xl_irq, sc->xl_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->xl_irq);
bus_release_resource(dev, XL_RES, XL_RID, sc->xl_res);
contigfree(sc->xl_ldata,
sizeof(struct xl_list_data), M_DEVBUF);
error = ENXIO;
goto fail;
}
goto done;
}
/*
* Sanity check. If the user has selected "auto" and this isn't
* a 10/100 card of some kind, we need to force the transceiver
* type to something sane.
*/
if (sc->xl_xcvr == XL_XCVR_AUTO)
xl_choose_xcvr(sc, bootverbose);
/*
* Do ifmedia setup.
*/
ifmedia_init(&sc->ifmedia, 0, xl_ifmedia_upd, xl_ifmedia_sts);
if (sc->xl_media & XL_MEDIAOPT_BT) {
if (bootverbose)
printf("xl%d: found 10baseT\n", sc->xl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
}
if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
/*
* Check for a 10baseFL board in disguise.
*/
if (sc->xl_type == XL_TYPE_905B &&
sc->xl_media == XL_MEDIAOPT_10FL) {
if (bootverbose)
printf("xl%d: found 10baseFL\n", sc->xl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_HDX,
0, NULL);
if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
} else {
if (bootverbose)
printf("xl%d: found AUI\n", sc->xl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
}
}
if (sc->xl_media & XL_MEDIAOPT_BNC) {
if (bootverbose)
printf("xl%d: found BNC\n", sc->xl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_2, 0, NULL);
}
if (sc->xl_media & XL_MEDIAOPT_BFX) {
if (bootverbose)
printf("xl%d: found 100baseFX\n", sc->xl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
}
/* Choose a default media. */
switch(sc->xl_xcvr) {
case XL_XCVR_10BT:
media = IFM_ETHER|IFM_10_T;
xl_setmode(sc, media);
break;
case XL_XCVR_AUI:
if (sc->xl_type == XL_TYPE_905B &&
sc->xl_media == XL_MEDIAOPT_10FL) {
media = IFM_ETHER|IFM_10_FL;
xl_setmode(sc, media);
} else {
media = IFM_ETHER|IFM_10_5;
xl_setmode(sc, media);
}
break;
case XL_XCVR_COAX:
media = IFM_ETHER|IFM_10_2;
xl_setmode(sc, media);
break;
case XL_XCVR_AUTO:
case XL_XCVR_100BTX:
case XL_XCVR_MII:
/* Chosen by miibus */
break;
case XL_XCVR_100BFX:
media = IFM_ETHER|IFM_100_FX;
break;
default:
printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit,
sc->xl_xcvr);
/*
* This will probably be wrong, but it prevents
* the ifmedia code from panicking.
*/
media = IFM_ETHER|IFM_10_T;
break;
}
if (sc->xl_miibus == NULL)
ifmedia_set(&sc->ifmedia, media);
done:
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
fail:
splx(s);
return(error);
}
static int xl_detach(dev)
device_t dev;
{
struct xl_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
xl_reset(sc);
xl_stop(sc);
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
/* Delete any miibus and phy devices attached to this interface */
if (sc->xl_miibus != NULL) {
bus_generic_detach(dev);
device_delete_child(dev, sc->xl_miibus);
}
bus_teardown_intr(dev, sc->xl_irq, sc->xl_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->xl_irq);
bus_release_resource(dev, XL_RES, XL_RID, sc->xl_res);
ifmedia_removeall(&sc->ifmedia);
contigfree(sc->xl_ldata, sizeof(struct xl_list_data), M_DEVBUF);
splx(s);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int xl_list_tx_init(sc)
struct xl_softc *sc;
{
struct xl_chain_data *cd;
struct xl_list_data *ld;
int i;
cd = &sc->xl_cdata;
ld = sc->xl_ldata;
for (i = 0; i < XL_TX_LIST_CNT; i++) {
cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i];
if (i == (XL_TX_LIST_CNT - 1))
cd->xl_tx_chain[i].xl_next = NULL;
else
cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1];
}
cd->xl_tx_free = &cd->xl_tx_chain[0];
cd->xl_tx_tail = cd->xl_tx_head = NULL;
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int xl_list_tx_init_90xB(sc)
struct xl_softc *sc;
{
struct xl_chain_data *cd;
struct xl_list_data *ld;
int i;
cd = &sc->xl_cdata;
ld = sc->xl_ldata;
for (i = 0; i < XL_TX_LIST_CNT; i++) {
cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i];
cd->xl_tx_chain[i].xl_phys = vtophys(&ld->xl_tx_list[i]);
if (i == (XL_TX_LIST_CNT - 1))
cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[0];
else
cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1];
if (i == 0)
cd->xl_tx_chain[i].xl_prev =
&cd->xl_tx_chain[XL_TX_LIST_CNT - 1];
else
cd->xl_tx_chain[i].xl_prev =
&cd->xl_tx_chain[i - 1];
}
bzero((char *)ld->xl_tx_list,
sizeof(struct xl_list) * XL_TX_LIST_CNT);
ld->xl_tx_list[0].xl_status = XL_TXSTAT_EMPTY;
cd->xl_tx_prod = 1;
cd->xl_tx_cons = 1;
cd->xl_tx_cnt = 0;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int xl_list_rx_init(sc)
struct xl_softc *sc;
{
struct xl_chain_data *cd;
struct xl_list_data *ld;
int i;
cd = &sc->xl_cdata;
ld = sc->xl_ldata;
for (i = 0; i < XL_RX_LIST_CNT; i++) {
cd->xl_rx_chain[i].xl_ptr =
(struct xl_list_onefrag *)&ld->xl_rx_list[i];
if (xl_newbuf(sc, &cd->xl_rx_chain[i]) == ENOBUFS)
return(ENOBUFS);
if (i == (XL_RX_LIST_CNT - 1)) {
cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[0];
ld->xl_rx_list[i].xl_next =
vtophys(&ld->xl_rx_list[0]);
} else {
cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[i + 1];
ld->xl_rx_list[i].xl_next =
vtophys(&ld->xl_rx_list[i + 1]);
}
}
cd->xl_rx_head = &cd->xl_rx_chain[0];
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int xl_newbuf(sc, c)
struct xl_softc *sc;
struct xl_chain_onefrag *c;
{
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("xl%d: no memory for rx list -- "
"packet dropped!\n", sc->xl_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("xl%d: no memory for rx list -- "
"packet dropped!\n", sc->xl_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
/* Force longword alignment for packet payload. */
m_adj(m_new, ETHER_ALIGN);
c->xl_mbuf = m_new;
c->xl_ptr->xl_frag.xl_addr = vtophys(mtod(m_new, caddr_t));
c->xl_ptr->xl_frag.xl_len = MCLBYTES | XL_LAST_FRAG;
c->xl_ptr->xl_status = 0;
return(0);
}
static int xl_rx_resync(sc)
struct xl_softc *sc;
{
struct xl_chain_onefrag *pos;
int i;
pos = sc->xl_cdata.xl_rx_head;
for (i = 0; i < XL_RX_LIST_CNT; i++) {
if (pos->xl_ptr->xl_status)
break;
pos = pos->xl_next;
}
if (i == XL_RX_LIST_CNT)
return(0);
sc->xl_cdata.xl_rx_head = pos;
return(EAGAIN);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void xl_rxeof(sc)
struct xl_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct xl_chain_onefrag *cur_rx;
int total_len = 0;
u_int16_t rxstat;
ifp = &sc->arpcom.ac_if;
again:
while((rxstat = sc->xl_cdata.xl_rx_head->xl_ptr->xl_status)) {
cur_rx = sc->xl_cdata.xl_rx_head;
sc->xl_cdata.xl_rx_head = cur_rx->xl_next;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & XL_RXSTAT_UP_ERROR) {
ifp->if_ierrors++;
cur_rx->xl_ptr->xl_status = 0;
continue;
}
/*
* If there error bit was not set, the upload complete
* bit should be set which means we have a valid packet.
* If not, something truly strange has happened.
*/
if (!(rxstat & XL_RXSTAT_UP_CMPLT)) {
printf("xl%d: bad receive status -- "
"packet dropped", sc->xl_unit);
ifp->if_ierrors++;
cur_rx->xl_ptr->xl_status = 0;
continue;
}
/* No errors; receive the packet. */
m = cur_rx->xl_mbuf;
total_len = cur_rx->xl_ptr->xl_status & XL_RXSTAT_LENMASK;
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (xl_newbuf(sc, cur_rx) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->xl_ptr->xl_status = 0;
continue;
}
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
/*
* Handle the 'end of channel' condition. When the upload
* engine hits the end of the RX ring, it will stall. This
* is our cue to flush the RX ring, reload the uplist pointer
* register and unstall the engine.
* XXX This is actually a little goofy. With the ThunderLAN
* chip, you get an interrupt when the receiver hits the end
* of the receive ring, which tells you exactly when you
* you need to reload the ring pointer. Here we have to
* fake it. I'm mad at myself for not being clever enough
* to avoid the use of a goto here.
*/
if (CSR_READ_4(sc, XL_UPLIST_PTR) == 0 ||
CSR_READ_4(sc, XL_UPLIST_STATUS) & XL_PKTSTAT_UP_STALLED) {
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
xl_wait(sc);
CSR_WRITE_4(sc, XL_UPLIST_PTR,
vtophys(&sc->xl_ldata->xl_rx_list[0]));
sc->xl_cdata.xl_rx_head = &sc->xl_cdata.xl_rx_chain[0];
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
goto again;
}
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void xl_txeof(sc)
struct xl_softc *sc;
{
struct xl_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
/*
* Go through our tx list and free mbufs for those
* frames that have been uploaded. Note: the 3c905B
* sets a special bit in the status word to let us
* know that a frame has been downloaded, but the
* original 3c900/3c905 adapters don't do that.
* Consequently, we have to use a different test if
* xl_type != XL_TYPE_905B.
*/
while(sc->xl_cdata.xl_tx_head != NULL) {
cur_tx = sc->xl_cdata.xl_tx_head;
if (CSR_READ_4(sc, XL_DOWNLIST_PTR))
break;
sc->xl_cdata.xl_tx_head = cur_tx->xl_next;
m_freem(cur_tx->xl_mbuf);
cur_tx->xl_mbuf = NULL;
ifp->if_opackets++;
cur_tx->xl_next = sc->xl_cdata.xl_tx_free;
sc->xl_cdata.xl_tx_free = cur_tx;
}
if (sc->xl_cdata.xl_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->xl_cdata.xl_tx_tail = NULL;
} else {
if (CSR_READ_4(sc, XL_DMACTL) & XL_DMACTL_DOWN_STALLED ||
!CSR_READ_4(sc, XL_DOWNLIST_PTR)) {
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
vtophys(sc->xl_cdata.xl_tx_head->xl_ptr));
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
}
}
return;
}
static void xl_txeof_90xB(sc)
struct xl_softc *sc;
{
struct xl_chain *cur_tx = NULL;
struct ifnet *ifp;
int idx;
ifp = &sc->arpcom.ac_if;
idx = sc->xl_cdata.xl_tx_cons;
while(idx != sc->xl_cdata.xl_tx_prod) {
cur_tx = &sc->xl_cdata.xl_tx_chain[idx];
if (!(cur_tx->xl_ptr->xl_status & XL_TXSTAT_DL_COMPLETE))
break;
if (cur_tx->xl_mbuf != NULL) {
m_freem(cur_tx->xl_mbuf);
cur_tx->xl_mbuf = NULL;
}
ifp->if_opackets++;
sc->xl_cdata.xl_tx_cnt--;
XL_INC(idx, XL_TX_LIST_CNT);
ifp->if_timer = 0;
}
sc->xl_cdata.xl_tx_cons = idx;
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
/*
* TX 'end of channel' interrupt handler. Actually, we should
* only get a 'TX complete' interrupt if there's a transmit error,
* so this is really TX error handler.
*/
static void xl_txeoc(sc)
struct xl_softc *sc;
{
u_int8_t txstat;
while((txstat = CSR_READ_1(sc, XL_TX_STATUS))) {
if (txstat & XL_TXSTATUS_UNDERRUN ||
txstat & XL_TXSTATUS_JABBER ||
txstat & XL_TXSTATUS_RECLAIM) {
printf("xl%d: transmission error: %x\n",
sc->xl_unit, txstat);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
if (sc->xl_type == XL_TYPE_905B) {
if (sc->xl_cdata.xl_tx_cnt) {
int i;
struct xl_chain *c;
i = sc->xl_cdata.xl_tx_cons;
c = &sc->xl_cdata.xl_tx_chain[i];
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
c->xl_phys);
CSR_WRITE_1(sc, XL_DOWN_POLL, 64);
}
} else {
if (sc->xl_cdata.xl_tx_head != NULL)
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
vtophys(sc->xl_cdata.xl_tx_head->xl_ptr));
}
/*
* Remember to set this for the
* first generation 3c90X chips.
*/
CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
if (txstat & XL_TXSTATUS_UNDERRUN &&
sc->xl_tx_thresh < XL_PACKET_SIZE) {
sc->xl_tx_thresh += XL_MIN_FRAMELEN;
printf("xl%d: tx underrun, increasing tx start"
" threshold to %d bytes\n", sc->xl_unit,
sc->xl_tx_thresh);
}
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_TX_SET_START|sc->xl_tx_thresh);
if (sc->xl_type == XL_TYPE_905B) {
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
}
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
} else {
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
}
/*
* Write an arbitrary byte to the TX_STATUS register
* to clear this interrupt/error and advance to the next.
*/
CSR_WRITE_1(sc, XL_TX_STATUS, 0x01);
}
return;
}
static void xl_intr(arg)
void *arg;
{
struct xl_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
while((status = CSR_READ_2(sc, XL_STATUS)) & XL_INTRS) {
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_INTR_ACK|(status & XL_INTRS));
if (status & XL_STAT_UP_COMPLETE) {
int curpkts;
curpkts = ifp->if_ipackets;
xl_rxeof(sc);
if (curpkts == ifp->if_ipackets) {
while (xl_rx_resync(sc))
xl_rxeof(sc);
}
}
if (status & XL_STAT_DOWN_COMPLETE) {
if (sc->xl_type == XL_TYPE_905B)
xl_txeof_90xB(sc);
else
xl_txeof(sc);
}
if (status & XL_STAT_TX_COMPLETE) {
ifp->if_oerrors++;
xl_txeoc(sc);
}
if (status & XL_STAT_ADFAIL) {
xl_reset(sc);
xl_init(sc);
}
if (status & XL_STAT_STATSOFLOW) {
sc->xl_stats_no_timeout = 1;
xl_stats_update(sc);
sc->xl_stats_no_timeout = 0;
}
}
if (ifp->if_snd.ifq_head != NULL)
(*ifp->if_start)(ifp);
return;
}
static void xl_stats_update(xsc)
void *xsc;
{
struct xl_softc *sc;
struct ifnet *ifp;
struct xl_stats xl_stats;
u_int8_t *p;
int i;
struct mii_data *mii = NULL;
bzero((char *)&xl_stats, sizeof(struct xl_stats));
sc = xsc;
ifp = &sc->arpcom.ac_if;
if (sc->xl_miibus != NULL)
mii = device_get_softc(sc->xl_miibus);
p = (u_int8_t *)&xl_stats;
/* Read all the stats registers. */
XL_SEL_WIN(6);
for (i = 0; i < 16; i++)
*p++ = CSR_READ_1(sc, XL_W6_CARRIER_LOST + i);
ifp->if_ierrors += xl_stats.xl_rx_overrun;
ifp->if_collisions += xl_stats.xl_tx_multi_collision +
xl_stats.xl_tx_single_collision +
xl_stats.xl_tx_late_collision;
/*
* Boomerang and cyclone chips have an extra stats counter
* in window 4 (BadSSD). We have to read this too in order
* to clear out all the stats registers and avoid a statsoflow
* interrupt.
*/
XL_SEL_WIN(4);
CSR_READ_1(sc, XL_W4_BADSSD);
if (mii != NULL)
mii_tick(mii);
XL_SEL_WIN(7);
if (!sc->xl_stats_no_timeout)
sc->xl_stat_ch = timeout(xl_stats_update, sc, hz);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int xl_encap(sc, c, m_head)
struct xl_softc *sc;
struct xl_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct xl_frag *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == XL_MAXFRAGS)
break;
total_len+= m->m_len;
c->xl_ptr->xl_frag[frag].xl_addr =
vtophys(mtod(m, vm_offset_t));
c->xl_ptr->xl_frag[frag].xl_len = m->m_len;
frag++;
}
}
/*
* Handle special case: we used up all 63 fragments,
* but we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("xl%d: no memory for tx list", sc->xl_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("xl%d: no memory for tx list",
sc->xl_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->xl_ptr->xl_frag[0];
f->xl_addr = vtophys(mtod(m_new, caddr_t));
f->xl_len = total_len = m_new->m_len;
frag = 1;
}
c->xl_mbuf = m_head;
c->xl_ptr->xl_frag[frag - 1].xl_len |= XL_LAST_FRAG;
c->xl_ptr->xl_status = total_len;
c->xl_ptr->xl_next = 0;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void xl_start(ifp)
struct ifnet *ifp;
{
struct xl_softc *sc;
struct mbuf *m_head = NULL;
struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->xl_cdata.xl_tx_free == NULL) {
xl_txeoc(sc);
xl_txeof(sc);
if (sc->xl_cdata.xl_tx_free == NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
}
start_tx = sc->xl_cdata.xl_tx_free;
while(sc->xl_cdata.xl_tx_free != NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->xl_cdata.xl_tx_free;
sc->xl_cdata.xl_tx_free = cur_tx->xl_next;
cur_tx->xl_next = NULL;
/* Pack the data into the descriptor. */
xl_encap(sc, cur_tx, m_head);
/* Chain it together. */
if (prev != NULL) {
prev->xl_next = cur_tx;
prev->xl_ptr->xl_next = vtophys(cur_tx->xl_ptr);
}
prev = cur_tx;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->xl_mbuf);
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL)
return;
/*
* Place the request for the upload interrupt
* in the last descriptor in the chain. This way, if
* we're chaining several packets at once, we'll only
* get an interupt once for the whole chain rather than
* once for each packet.
*/
cur_tx->xl_ptr->xl_status |= XL_TXSTAT_DL_INTR;
/*
* Queue the packets. If the TX channel is clear, update
* the downlist pointer register.
*/
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL);
xl_wait(sc);
if (sc->xl_cdata.xl_tx_head != NULL) {
sc->xl_cdata.xl_tx_tail->xl_next = start_tx;
sc->xl_cdata.xl_tx_tail->xl_ptr->xl_next =
vtophys(start_tx->xl_ptr);
sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status &=
~XL_TXSTAT_DL_INTR;
sc->xl_cdata.xl_tx_tail = cur_tx;
} else {
sc->xl_cdata.xl_tx_head = start_tx;
sc->xl_cdata.xl_tx_tail = cur_tx;
}
if (!CSR_READ_4(sc, XL_DOWNLIST_PTR))
CSR_WRITE_4(sc, XL_DOWNLIST_PTR, vtophys(start_tx->xl_ptr));
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
XL_SEL_WIN(7);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
/*
* XXX Under certain conditions, usually on slower machines
* where interrupts may be dropped, it's possible for the
* adapter to chew up all the buffers in the receive ring
* and stall, without us being able to do anything about it.
* To guard against this, we need to make a pass over the
* RX queue to make sure there aren't any packets pending.
* Doing it here means we can flush the receive ring at the
* same time the chip is DMAing the transmit descriptors we
* just gave it.
*
* 3Com goes to some lengths to emphasize the Parallel Tasking (tm)
* nature of their chips in all their marketing literature;
* we may as well take advantage of it. :)
*/
xl_rxeof(sc);
return;
}
static int xl_encap_90xB(sc, c, m_head)
struct xl_softc *sc;
struct xl_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct xl_frag *f = NULL;
struct mbuf *m;
struct xl_list *d;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
d = c->xl_ptr;
d->xl_status = 0;
d->xl_next = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == XL_MAXFRAGS)
break;
f = &d->xl_frag[frag];
f->xl_addr = vtophys(mtod(m, vm_offset_t));
f->xl_len = m->m_len;
frag++;
}
}
c->xl_mbuf = m_head;
c->xl_ptr->xl_frag[frag - 1].xl_len |= XL_LAST_FRAG;
c->xl_ptr->xl_status = XL_TXSTAT_RND_DEFEAT;
return(0);
}
static void xl_start_90xB(ifp)
struct ifnet *ifp;
{
struct xl_softc *sc;
struct mbuf *m_head = NULL;
struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
int idx;
sc = ifp->if_softc;
if (ifp->if_flags & IFF_OACTIVE)
return;
idx = sc->xl_cdata.xl_tx_prod;
start_tx = &sc->xl_cdata.xl_tx_chain[idx];
while (sc->xl_cdata.xl_tx_chain[idx].xl_mbuf == NULL) {
if ((XL_TX_LIST_CNT - sc->xl_cdata.xl_tx_cnt) < 3) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
cur_tx = &sc->xl_cdata.xl_tx_chain[idx];
/* Pack the data into the descriptor. */
xl_encap_90xB(sc, cur_tx, m_head);
/* Chain it together. */
if (prev != NULL)
prev->xl_ptr->xl_next = cur_tx->xl_phys;
prev = cur_tx;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->xl_mbuf);
XL_INC(idx, XL_TX_LIST_CNT);
sc->xl_cdata.xl_tx_cnt++;
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL)
return;
/*
* Place the request for the upload interrupt
* in the last descriptor in the chain. This way, if
* we're chaining several packets at once, we'll only
* get an interupt once for the whole chain rather than
* once for each packet.
*/
cur_tx->xl_ptr->xl_status |= XL_TXSTAT_DL_INTR;
/* Start transmission */
sc->xl_cdata.xl_tx_prod = idx;
start_tx->xl_prev->xl_ptr->xl_next = start_tx->xl_phys;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void xl_init(xsc)
void *xsc;
{
struct xl_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
int s, i;
u_int16_t rxfilt = 0;
struct mii_data *mii = NULL;
s = splimp();
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
xl_stop(sc);
if (sc->xl_miibus == NULL) {
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
xl_wait(sc);
}
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
DELAY(10000);
if (sc->xl_miibus != NULL)
mii = device_get_softc(sc->xl_miibus);
/* Init our MAC address */
XL_SEL_WIN(2);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, XL_W2_STATION_ADDR_LO + i,
sc->arpcom.ac_enaddr[i]);
}
/* Clear the station mask. */
for (i = 0; i < 3; i++)
CSR_WRITE_2(sc, XL_W2_STATION_MASK_LO + (i * 2), 0);
#ifdef notdef
/* Reset TX and RX. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
#endif
/* Init circular RX list. */
if (xl_list_rx_init(sc) == ENOBUFS) {
printf("xl%d: initialization failed: no "
"memory for rx buffers\n", sc->xl_unit);
xl_stop(sc);
return;
}
/* Init TX descriptors. */
if (sc->xl_type == XL_TYPE_905B)
xl_list_tx_init_90xB(sc);
else
xl_list_tx_init(sc);
/*
* Set the TX freethresh value.
* Note that this has no effect on 3c905B "cyclone"
* cards but is required for 3c900/3c905 "boomerang"
* cards in order to enable the download engine.
*/
CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
/* Set the TX start threshold for best performance. */
sc->xl_tx_thresh = XL_MIN_FRAMELEN;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_SET_START|sc->xl_tx_thresh);
/*
* If this is a 3c905B, also set the tx reclaim threshold.
* This helps cut down on the number of tx reclaim errors
* that could happen on a busy network. The chip multiplies
* the register value by 16 to obtain the actual threshold
* in bytes, so we divide by 16 when setting the value here.
* The existing threshold value can be examined by reading
* the register at offset 9 in window 5.
*/
if (sc->xl_type == XL_TYPE_905B) {
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
}
/* Set RX filter bits. */
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
/* Set the individual bit to receive frames for this host only. */
rxfilt |= XL_RXFILTER_INDIVIDUAL;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
rxfilt |= XL_RXFILTER_ALLFRAMES;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
} else {
rxfilt &= ~XL_RXFILTER_ALLFRAMES;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
rxfilt |= XL_RXFILTER_BROADCAST;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
} else {
rxfilt &= ~XL_RXFILTER_BROADCAST;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
}
/*
* Program the multicast filter, if necessary.
*/
if (sc->xl_type == XL_TYPE_905B)
xl_setmulti_hash(sc);
else
xl_setmulti(sc);
/*
* Load the address of the RX list. We have to
* stall the upload engine before we can manipulate
* the uplist pointer register, then unstall it when
* we're finished. We also have to wait for the
* stall command to complete before proceeding.
* Note that we have to do this after any RX resets
* have completed since the uplist register is cleared
* by a reset.
*/
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
xl_wait(sc);
CSR_WRITE_4(sc, XL_UPLIST_PTR, vtophys(&sc->xl_ldata->xl_rx_list[0]));
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
xl_wait(sc);
if (sc->xl_type == XL_TYPE_905B) {
/* Set polling interval */
CSR_WRITE_1(sc, XL_DOWN_POLL, 64);
/* Load the address of the TX list */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL);
xl_wait(sc);
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
vtophys(&sc->xl_ldata->xl_tx_list[0]));
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
xl_wait(sc);
}
/*
* If the coax transceiver is on, make sure to enable
* the DC-DC converter.
*/
XL_SEL_WIN(3);
if (sc->xl_xcvr == XL_XCVR_COAX)
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
else
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
/* Clear out the stats counters. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
sc->xl_stats_no_timeout = 1;
xl_stats_update(sc);
sc->xl_stats_no_timeout = 0;
XL_SEL_WIN(4);
CSR_WRITE_2(sc, XL_W4_NET_DIAG, XL_NETDIAG_UPPER_BYTES_ENABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_ENABLE);
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|0xFF);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|XL_INTRS);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS);
/* Set the RX early threshold */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_THRESH|(XL_PACKET_SIZE >>2));
CSR_WRITE_2(sc, XL_DMACTL, XL_DMACTL_UP_RX_EARLY);
/* Enable receiver and transmitter. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_ENABLE);
xl_wait(sc);
if (mii != NULL)
mii_mediachg(mii);
/* Select window 7 for normal operations. */
XL_SEL_WIN(7);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
sc->xl_stat_ch = timeout(xl_stats_update, sc, hz);
return;
}
/*
* Set media options.
*/
static int xl_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct xl_softc *sc;
struct ifmedia *ifm = NULL;
struct mii_data *mii = NULL;
sc = ifp->if_softc;
if (sc->xl_miibus != NULL)
mii = device_get_softc(sc->xl_miibus);
if (mii == NULL)
ifm = &sc->ifmedia;
else
ifm = &mii->mii_media;
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_100_FX:
case IFM_10_FL:
case IFM_10_2:
case IFM_10_5:
xl_setmode(sc, ifm->ifm_media);
return(0);
break;
default:
break;
}
if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX
|| sc->xl_media & XL_MEDIAOPT_BT4) {
xl_init(sc);
} else {
xl_setmode(sc, ifm->ifm_media);
}
return(0);
}
/*
* Report current media status.
*/
static void xl_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct xl_softc *sc;
u_int32_t icfg;
struct mii_data *mii = NULL;
sc = ifp->if_softc;
if (sc->xl_miibus != NULL)
mii = device_get_softc(sc->xl_miibus);
XL_SEL_WIN(3);
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG) & XL_ICFG_CONNECTOR_MASK;
icfg >>= XL_ICFG_CONNECTOR_BITS;
ifmr->ifm_active = IFM_ETHER;
switch(icfg) {
case XL_XCVR_10BT:
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
break;
case XL_XCVR_AUI:
if (sc->xl_type == XL_TYPE_905B &&
sc->xl_media == XL_MEDIAOPT_10FL) {
ifmr->ifm_active = IFM_ETHER|IFM_10_FL;
if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
} else
ifmr->ifm_active = IFM_ETHER|IFM_10_5;
break;
case XL_XCVR_COAX:
ifmr->ifm_active = IFM_ETHER|IFM_10_2;
break;
/*
* XXX MII and BTX/AUTO should be separate cases.
*/
case XL_XCVR_100BTX:
case XL_XCVR_AUTO:
case XL_XCVR_MII:
if (mii != NULL) {
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
break;
case XL_XCVR_100BFX:
ifmr->ifm_active = IFM_ETHER|IFM_100_FX;
break;
default:
printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit, icfg);
break;
}
return;
}
static int xl_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct xl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
struct mii_data *mii = NULL;
u_int8_t rxfilt;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->xl_if_flags & IFF_PROMISC)) {
rxfilt |= XL_RXFILTER_ALLFRAMES;
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_RX_SET_FILT|rxfilt);
XL_SEL_WIN(7);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->xl_if_flags & IFF_PROMISC) {
rxfilt &= ~XL_RXFILTER_ALLFRAMES;
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_RX_SET_FILT|rxfilt);
XL_SEL_WIN(7);
} else
xl_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
xl_stop(sc);
}
sc->xl_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (sc->xl_type == XL_TYPE_905B)
xl_setmulti_hash(sc);
else
xl_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
if (sc->xl_miibus != NULL)
mii = device_get_softc(sc->xl_miibus);
if (mii == NULL)
error = ifmedia_ioctl(ifp, ifr,
&sc->ifmedia, command);
else
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void xl_watchdog(ifp)
struct ifnet *ifp;
{
struct xl_softc *sc;
u_int16_t status = 0;
sc = ifp->if_softc;
ifp->if_oerrors++;
XL_SEL_WIN(4);
status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
printf("xl%d: watchdog timeout\n", sc->xl_unit);
if (status & XL_MEDIASTAT_CARRIER)
printf("xl%d: no carrier - transceiver cable problem?\n",
sc->xl_unit);
xl_txeoc(sc);
xl_txeof(sc);
xl_rxeof(sc);
xl_reset(sc);
xl_init(sc);
if (ifp->if_snd.ifq_head != NULL)
(*ifp->if_start)(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void xl_stop(sc)
struct xl_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISCARD);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_DISABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
DELAY(800);
#ifdef foo
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
#endif
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_INTLATCH);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|0);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|0);
/* Stop the stats updater. */
untimeout(xl_stats_update, sc, sc->xl_stat_ch);
/*
* Free data in the RX lists.
*/
for (i = 0; i < XL_RX_LIST_CNT; i++) {
if (sc->xl_cdata.xl_rx_chain[i].xl_mbuf != NULL) {
m_freem(sc->xl_cdata.xl_rx_chain[i].xl_mbuf);
sc->xl_cdata.xl_rx_chain[i].xl_mbuf = NULL;
}
}
bzero((char *)&sc->xl_ldata->xl_rx_list,
sizeof(sc->xl_ldata->xl_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < XL_TX_LIST_CNT; i++) {
if (sc->xl_cdata.xl_tx_chain[i].xl_mbuf != NULL) {
m_freem(sc->xl_cdata.xl_tx_chain[i].xl_mbuf);
sc->xl_cdata.xl_tx_chain[i].xl_mbuf = NULL;
}
}
bzero((char *)&sc->xl_ldata->xl_tx_list,
sizeof(sc->xl_ldata->xl_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void xl_shutdown(dev)
device_t dev;
{
struct xl_softc *sc;
sc = device_get_softc(dev);
xl_reset(sc);
xl_stop(sc);
return;
}