adc940bfc7
This fixes some IA-64 related bugs.
3439 lines
102 KiB
C
3439 lines
102 KiB
C
/* 32-bit ELF support for ARM
|
|
Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
typedef unsigned long int insn32;
|
|
typedef unsigned short int insn16;
|
|
|
|
static boolean elf32_arm_set_private_flags
|
|
PARAMS ((bfd *, flagword));
|
|
static boolean elf32_arm_copy_private_bfd_data
|
|
PARAMS ((bfd *, bfd *));
|
|
static boolean elf32_arm_merge_private_bfd_data
|
|
PARAMS ((bfd *, bfd *));
|
|
static boolean elf32_arm_print_private_bfd_data
|
|
PARAMS ((bfd *, PTR));
|
|
static int elf32_arm_get_symbol_type
|
|
PARAMS (( Elf_Internal_Sym *, int));
|
|
static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
|
|
PARAMS ((bfd *));
|
|
static bfd_reloc_status_type elf32_arm_final_link_relocate
|
|
PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
|
|
Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
|
|
const char *, unsigned char, struct elf_link_hash_entry *));
|
|
static insn32 insert_thumb_branch
|
|
PARAMS ((insn32, int));
|
|
static struct elf_link_hash_entry *find_thumb_glue
|
|
PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
|
|
static struct elf_link_hash_entry *find_arm_glue
|
|
PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
|
|
static void record_arm_to_thumb_glue
|
|
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
|
static void record_thumb_to_arm_glue
|
|
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
|
static void elf32_arm_post_process_headers
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
static int elf32_arm_to_thumb_stub
|
|
PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
|
|
bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
|
|
static int elf32_thumb_to_arm_stub
|
|
PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
|
|
bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
|
|
|
|
#define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_INTERWORK)
|
|
|
|
/* The linker script knows the section names for placement.
|
|
The entry_names are used to do simple name mangling on the stubs.
|
|
Given a function name, and its type, the stub can be found. The
|
|
name can be changed. The only requirement is the %s be present. */
|
|
#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
|
|
#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
|
|
|
|
#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
|
|
#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
|
|
|
|
/* The name of the dynamic interpreter. This is put in the .interp
|
|
section. */
|
|
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
|
|
|
|
/* The size in bytes of an entry in the procedure linkage table. */
|
|
#define PLT_ENTRY_SIZE 16
|
|
|
|
/* The first entry in a procedure linkage table looks like
|
|
this. It is set up so that any shared library function that is
|
|
called before the relocation has been set up calls the dynamic
|
|
linker first. */
|
|
static const unsigned long elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
|
|
{
|
|
0xe52de004, /* str lr, [sp, #-4]! */
|
|
0xe59fe010, /* ldr lr, [pc, #16] */
|
|
0xe08fe00e, /* add lr, pc, lr */
|
|
0xe5bef008 /* ldr pc, [lr, #8]! */
|
|
};
|
|
|
|
/* Subsequent entries in a procedure linkage table look like
|
|
this. */
|
|
static const unsigned long elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
|
|
{
|
|
0xe59fc004, /* ldr ip, [pc, #4] */
|
|
0xe08fc00c, /* add ip, pc, ip */
|
|
0xe59cf000, /* ldr pc, [ip] */
|
|
0x00000000 /* offset to symbol in got */
|
|
};
|
|
|
|
/* The ARM linker needs to keep track of the number of relocs that it
|
|
decides to copy in check_relocs for each symbol. This is so that
|
|
it can discard PC relative relocs if it doesn't need them when
|
|
linking with -Bsymbolic. We store the information in a field
|
|
extending the regular ELF linker hash table. */
|
|
|
|
/* This structure keeps track of the number of PC relative relocs we
|
|
have copied for a given symbol. */
|
|
struct elf32_arm_pcrel_relocs_copied
|
|
{
|
|
/* Next section. */
|
|
struct elf32_arm_pcrel_relocs_copied * next;
|
|
/* A section in dynobj. */
|
|
asection * section;
|
|
/* Number of relocs copied in this section. */
|
|
bfd_size_type count;
|
|
};
|
|
|
|
/* Arm ELF linker hash entry. */
|
|
struct elf32_arm_link_hash_entry
|
|
{
|
|
struct elf_link_hash_entry root;
|
|
|
|
/* Number of PC relative relocs copied for this symbol. */
|
|
struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
|
|
};
|
|
|
|
/* Declare this now that the above structures are defined. */
|
|
static boolean elf32_arm_discard_copies
|
|
PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
|
|
|
|
/* Traverse an arm ELF linker hash table. */
|
|
#define elf32_arm_link_hash_traverse(table, func, info) \
|
|
(elf_link_hash_traverse \
|
|
(&(table)->root, \
|
|
(boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
|
|
(info)))
|
|
|
|
/* Get the ARM elf linker hash table from a link_info structure. */
|
|
#define elf32_arm_hash_table(info) \
|
|
((struct elf32_arm_link_hash_table *) ((info)->hash))
|
|
|
|
/* ARM ELF linker hash table. */
|
|
struct elf32_arm_link_hash_table
|
|
{
|
|
/* The main hash table. */
|
|
struct elf_link_hash_table root;
|
|
|
|
/* The size in bytes of the section containg the Thumb-to-ARM glue. */
|
|
long int thumb_glue_size;
|
|
|
|
/* The size in bytes of the section containg the ARM-to-Thumb glue. */
|
|
long int arm_glue_size;
|
|
|
|
/* An arbitary input BFD chosen to hold the glue sections. */
|
|
bfd * bfd_of_glue_owner;
|
|
|
|
/* A boolean indicating whether knowledge of the ARM's pipeline
|
|
length should be applied by the linker. */
|
|
int no_pipeline_knowledge;
|
|
};
|
|
|
|
/* Create an entry in an ARM ELF linker hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
elf32_arm_link_hash_newfunc (entry, table, string)
|
|
struct bfd_hash_entry * entry;
|
|
struct bfd_hash_table * table;
|
|
const char * string;
|
|
{
|
|
struct elf32_arm_link_hash_entry * ret =
|
|
(struct elf32_arm_link_hash_entry *) entry;
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (ret == (struct elf32_arm_link_hash_entry *) NULL)
|
|
ret = ((struct elf32_arm_link_hash_entry *)
|
|
bfd_hash_allocate (table,
|
|
sizeof (struct elf32_arm_link_hash_entry)));
|
|
if (ret == (struct elf32_arm_link_hash_entry *) NULL)
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
ret = ((struct elf32_arm_link_hash_entry *)
|
|
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
|
table, string));
|
|
if (ret != (struct elf32_arm_link_hash_entry *) NULL)
|
|
ret->pcrel_relocs_copied = NULL;
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
}
|
|
|
|
/* Create an ARM elf linker hash table. */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elf32_arm_link_hash_table_create (abfd)
|
|
bfd *abfd;
|
|
{
|
|
struct elf32_arm_link_hash_table *ret;
|
|
|
|
ret = ((struct elf32_arm_link_hash_table *)
|
|
bfd_alloc (abfd, sizeof (struct elf32_arm_link_hash_table)));
|
|
if (ret == (struct elf32_arm_link_hash_table *) NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
|
elf32_arm_link_hash_newfunc))
|
|
{
|
|
bfd_release (abfd, ret);
|
|
return NULL;
|
|
}
|
|
|
|
ret->thumb_glue_size = 0;
|
|
ret->arm_glue_size = 0;
|
|
ret->bfd_of_glue_owner = NULL;
|
|
ret->no_pipeline_knowledge = 0;
|
|
|
|
return &ret->root.root;
|
|
}
|
|
|
|
/* Locate the Thumb encoded calling stub for NAME. */
|
|
|
|
static struct elf_link_hash_entry *
|
|
find_thumb_glue (link_info, name, input_bfd)
|
|
struct bfd_link_info *link_info;
|
|
CONST char *name;
|
|
bfd *input_bfd;
|
|
{
|
|
char *tmp_name;
|
|
struct elf_link_hash_entry *hash;
|
|
struct elf32_arm_link_hash_table *hash_table;
|
|
|
|
/* We need a pointer to the armelf specific hash table. */
|
|
hash_table = elf32_arm_hash_table (link_info);
|
|
|
|
tmp_name = ((char *)
|
|
bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1));
|
|
|
|
BFD_ASSERT (tmp_name);
|
|
|
|
sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
|
|
|
|
hash = elf_link_hash_lookup
|
|
(&(hash_table)->root, tmp_name, false, false, true);
|
|
|
|
if (hash == NULL)
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("%s: unable to find THUMB glue '%s' for `%s'"),
|
|
bfd_get_filename (input_bfd), tmp_name, name);
|
|
|
|
free (tmp_name);
|
|
|
|
return hash;
|
|
}
|
|
|
|
/* Locate the ARM encoded calling stub for NAME. */
|
|
|
|
static struct elf_link_hash_entry *
|
|
find_arm_glue (link_info, name, input_bfd)
|
|
struct bfd_link_info *link_info;
|
|
CONST char *name;
|
|
bfd *input_bfd;
|
|
{
|
|
char *tmp_name;
|
|
struct elf_link_hash_entry *myh;
|
|
struct elf32_arm_link_hash_table *hash_table;
|
|
|
|
/* We need a pointer to the elfarm specific hash table. */
|
|
hash_table = elf32_arm_hash_table (link_info);
|
|
|
|
tmp_name = ((char *)
|
|
bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
|
|
|
|
BFD_ASSERT (tmp_name);
|
|
|
|
sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
|
|
|
|
myh = elf_link_hash_lookup
|
|
(&(hash_table)->root, tmp_name, false, false, true);
|
|
|
|
if (myh == NULL)
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("%s: unable to find ARM glue '%s' for `%s'"),
|
|
bfd_get_filename (input_bfd), tmp_name, name);
|
|
|
|
free (tmp_name);
|
|
|
|
return myh;
|
|
}
|
|
|
|
/* ARM->Thumb glue:
|
|
|
|
.arm
|
|
__func_from_arm:
|
|
ldr r12, __func_addr
|
|
bx r12
|
|
__func_addr:
|
|
.word func @ behave as if you saw a ARM_32 reloc. */
|
|
|
|
#define ARM2THUMB_GLUE_SIZE 12
|
|
static const insn32 a2t1_ldr_insn = 0xe59fc000;
|
|
static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
|
|
static const insn32 a2t3_func_addr_insn = 0x00000001;
|
|
|
|
/* Thumb->ARM: Thumb->(non-interworking aware) ARM
|
|
|
|
.thumb .thumb
|
|
.align 2 .align 2
|
|
__func_from_thumb: __func_from_thumb:
|
|
bx pc push {r6, lr}
|
|
nop ldr r6, __func_addr
|
|
.arm mov lr, pc
|
|
__func_change_to_arm: bx r6
|
|
b func .arm
|
|
__func_back_to_thumb:
|
|
ldmia r13! {r6, lr}
|
|
bx lr
|
|
__func_addr:
|
|
.word func */
|
|
|
|
#define THUMB2ARM_GLUE_SIZE 8
|
|
static const insn16 t2a1_bx_pc_insn = 0x4778;
|
|
static const insn16 t2a2_noop_insn = 0x46c0;
|
|
static const insn32 t2a3_b_insn = 0xea000000;
|
|
|
|
static const insn16 t2a1_push_insn = 0xb540;
|
|
static const insn16 t2a2_ldr_insn = 0x4e03;
|
|
static const insn16 t2a3_mov_insn = 0x46fe;
|
|
static const insn16 t2a4_bx_insn = 0x4730;
|
|
static const insn32 t2a5_pop_insn = 0xe8bd4040;
|
|
static const insn32 t2a6_bx_insn = 0xe12fff1e;
|
|
|
|
boolean
|
|
bfd_elf32_arm_allocate_interworking_sections (info)
|
|
struct bfd_link_info * info;
|
|
{
|
|
asection * s;
|
|
bfd_byte * foo;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
|
|
BFD_ASSERT (globals != NULL);
|
|
|
|
if (globals->arm_glue_size != 0)
|
|
{
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
s = bfd_get_section_by_name
|
|
(globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
foo = (bfd_byte *) bfd_alloc
|
|
(globals->bfd_of_glue_owner, globals->arm_glue_size);
|
|
|
|
s->_raw_size = s->_cooked_size = globals->arm_glue_size;
|
|
s->contents = foo;
|
|
}
|
|
|
|
if (globals->thumb_glue_size != 0)
|
|
{
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
s = bfd_get_section_by_name
|
|
(globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
foo = (bfd_byte *) bfd_alloc
|
|
(globals->bfd_of_glue_owner, globals->thumb_glue_size);
|
|
|
|
s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
|
|
s->contents = foo;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
record_arm_to_thumb_glue (link_info, h)
|
|
struct bfd_link_info * link_info;
|
|
struct elf_link_hash_entry * h;
|
|
{
|
|
const char * name = h->root.root.string;
|
|
register asection * s;
|
|
char * tmp_name;
|
|
struct elf_link_hash_entry * myh;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
globals = elf32_arm_hash_table (link_info);
|
|
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
s = bfd_get_section_by_name
|
|
(globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
tmp_name = ((char *)
|
|
bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
|
|
|
|
BFD_ASSERT (tmp_name);
|
|
|
|
sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
|
|
|
|
myh = elf_link_hash_lookup
|
|
(&(globals)->root, tmp_name, false, false, true);
|
|
|
|
if (myh != NULL)
|
|
{
|
|
/* We've already seen this guy. */
|
|
free (tmp_name);
|
|
return;
|
|
}
|
|
|
|
/* The only trick here is using hash_table->arm_glue_size as the value. Even
|
|
though the section isn't allocated yet, this is where we will be putting
|
|
it. */
|
|
_bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name,
|
|
BSF_GLOBAL,
|
|
s, globals->arm_glue_size + 1,
|
|
NULL, true, false,
|
|
(struct bfd_link_hash_entry **) &myh);
|
|
|
|
free (tmp_name);
|
|
|
|
globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
record_thumb_to_arm_glue (link_info, h)
|
|
struct bfd_link_info *link_info;
|
|
struct elf_link_hash_entry *h;
|
|
{
|
|
const char *name = h->root.root.string;
|
|
register asection *s;
|
|
char *tmp_name;
|
|
struct elf_link_hash_entry *myh;
|
|
struct elf32_arm_link_hash_table *hash_table;
|
|
char bind;
|
|
|
|
hash_table = elf32_arm_hash_table (link_info);
|
|
|
|
BFD_ASSERT (hash_table != NULL);
|
|
BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
|
|
|
|
s = bfd_get_section_by_name
|
|
(hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
tmp_name = (char *) bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
|
|
|
|
BFD_ASSERT (tmp_name);
|
|
|
|
sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
|
|
|
|
myh = elf_link_hash_lookup
|
|
(&(hash_table)->root, tmp_name, false, false, true);
|
|
|
|
if (myh != NULL)
|
|
{
|
|
/* We've already seen this guy. */
|
|
free (tmp_name);
|
|
return;
|
|
}
|
|
|
|
_bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
|
|
BSF_GLOBAL, s, hash_table->thumb_glue_size + 1,
|
|
NULL, true, false,
|
|
(struct bfd_link_hash_entry **) &myh);
|
|
|
|
/* If we mark it 'Thumb', the disassembler will do a better job. */
|
|
bind = ELF_ST_BIND (myh->type);
|
|
myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
|
|
|
|
free (tmp_name);
|
|
|
|
#define CHANGE_TO_ARM "__%s_change_to_arm"
|
|
#define BACK_FROM_ARM "__%s_back_from_arm"
|
|
|
|
/* Allocate another symbol to mark where we switch to Arm mode. */
|
|
tmp_name = (char *) bfd_malloc (strlen (name) + strlen (CHANGE_TO_ARM) + 1);
|
|
|
|
BFD_ASSERT (tmp_name);
|
|
|
|
sprintf (tmp_name, CHANGE_TO_ARM, name);
|
|
|
|
myh = NULL;
|
|
|
|
_bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
|
|
BSF_LOCAL, s, hash_table->thumb_glue_size + 4,
|
|
NULL, true, false,
|
|
(struct bfd_link_hash_entry **) &myh);
|
|
|
|
free (tmp_name);
|
|
|
|
hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
|
|
|
|
return;
|
|
}
|
|
|
|
/* Select a BFD to be used to hold the sections used by the glue code.
|
|
This function is called from the linker scripts in ld/emultempl/
|
|
{armelf/pe}.em */
|
|
|
|
boolean
|
|
bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info;
|
|
{
|
|
struct elf32_arm_link_hash_table *globals;
|
|
flagword flags;
|
|
asection *sec;
|
|
|
|
/* If we are only performing a partial link do not bother
|
|
getting a bfd to hold the glue. */
|
|
if (info->relocateable)
|
|
return true;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
|
|
BFD_ASSERT (globals != NULL);
|
|
|
|
if (globals->bfd_of_glue_owner != NULL)
|
|
return true;
|
|
|
|
sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
|
|
|
|
if (sec == NULL)
|
|
{
|
|
/* Note: we do not include the flag SEC_LINKER_CREATED, as this
|
|
will prevent elf_link_input_bfd() from processing the contents
|
|
of this section. */
|
|
flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
|
|
|
|
sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
|
|
|
|
if (sec == NULL
|
|
|| !bfd_set_section_flags (abfd, sec, flags)
|
|
|| !bfd_set_section_alignment (abfd, sec, 2))
|
|
return false;
|
|
|
|
/* Set the gc mark to prevent the section from being removed by garbage
|
|
collection, despite the fact that no relocs refer to this section. */
|
|
sec->gc_mark = 1;
|
|
}
|
|
|
|
sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
|
|
|
|
if (sec == NULL)
|
|
{
|
|
flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
|
|
|
|
sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
|
|
|
|
if (sec == NULL
|
|
|| !bfd_set_section_flags (abfd, sec, flags)
|
|
|| !bfd_set_section_alignment (abfd, sec, 2))
|
|
return false;
|
|
|
|
sec->gc_mark = 1;
|
|
}
|
|
|
|
/* Save the bfd for later use. */
|
|
globals->bfd_of_glue_owner = abfd;
|
|
|
|
return true;
|
|
}
|
|
|
|
boolean
|
|
bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
|
|
bfd *abfd;
|
|
struct bfd_link_info *link_info;
|
|
int no_pipeline_knowledge;
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Rela *free_relocs = NULL;
|
|
Elf_Internal_Rela *irel, *irelend;
|
|
bfd_byte *contents = NULL;
|
|
bfd_byte *free_contents = NULL;
|
|
Elf32_External_Sym *extsyms = NULL;
|
|
Elf32_External_Sym *free_extsyms = NULL;
|
|
|
|
asection *sec;
|
|
struct elf32_arm_link_hash_table *globals;
|
|
|
|
/* If we are only performing a partial link do not bother
|
|
to construct any glue. */
|
|
if (link_info->relocateable)
|
|
return true;
|
|
|
|
/* Here we have a bfd that is to be included on the link. We have a hook
|
|
to do reloc rummaging, before section sizes are nailed down. */
|
|
globals = elf32_arm_hash_table (link_info);
|
|
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
globals->no_pipeline_knowledge = no_pipeline_knowledge;
|
|
|
|
/* Rummage around all the relocs and map the glue vectors. */
|
|
sec = abfd->sections;
|
|
|
|
if (sec == NULL)
|
|
return true;
|
|
|
|
for (; sec != NULL; sec = sec->next)
|
|
{
|
|
if (sec->reloc_count == 0)
|
|
continue;
|
|
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
|
|
/* Load the relocs. */
|
|
irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
|
|
(Elf_Internal_Rela *) NULL, false));
|
|
|
|
BFD_ASSERT (irel != 0);
|
|
|
|
irelend = irel + sec->reloc_count;
|
|
for (; irel < irelend; irel++)
|
|
{
|
|
long r_type;
|
|
unsigned long r_index;
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
r_type = ELF32_R_TYPE (irel->r_info);
|
|
r_index = ELF32_R_SYM (irel->r_info);
|
|
|
|
/* These are the only relocation types we care about. */
|
|
if ( r_type != R_ARM_PC24
|
|
&& r_type != R_ARM_THM_PC22)
|
|
continue;
|
|
|
|
/* Get the section contents if we haven't done so already. */
|
|
if (contents == NULL)
|
|
{
|
|
/* Get cached copy if it exists. */
|
|
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
|
else
|
|
{
|
|
/* Go get them off disk. */
|
|
contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
|
|
if (contents == NULL)
|
|
goto error_return;
|
|
|
|
free_contents = contents;
|
|
|
|
if (!bfd_get_section_contents (abfd, sec, contents,
|
|
(file_ptr) 0, sec->_raw_size))
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
/* Read this BFD's symbols if we haven't done so already. */
|
|
if (extsyms == NULL)
|
|
{
|
|
/* Get cached copy if it exists. */
|
|
if (symtab_hdr->contents != NULL)
|
|
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
|
|
else
|
|
{
|
|
/* Go get them off disk. */
|
|
extsyms = ((Elf32_External_Sym *)
|
|
bfd_malloc (symtab_hdr->sh_size));
|
|
if (extsyms == NULL)
|
|
goto error_return;
|
|
|
|
free_extsyms = extsyms;
|
|
|
|
if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
|
|| (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
|
|
!= symtab_hdr->sh_size))
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
/* If the relocation is not against a symbol it cannot concern us. */
|
|
h = NULL;
|
|
|
|
/* We don't care about local symbols. */
|
|
if (r_index < symtab_hdr->sh_info)
|
|
continue;
|
|
|
|
/* This is an external symbol. */
|
|
r_index -= symtab_hdr->sh_info;
|
|
h = (struct elf_link_hash_entry *)
|
|
elf_sym_hashes (abfd)[r_index];
|
|
|
|
/* If the relocation is against a static symbol it must be within
|
|
the current section and so cannot be a cross ARM/Thumb relocation. */
|
|
if (h == NULL)
|
|
continue;
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_PC24:
|
|
/* This one is a call from arm code. We need to look up
|
|
the target of the call. If it is a thumb target, we
|
|
insert glue. */
|
|
if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
|
|
record_arm_to_thumb_glue (link_info, h);
|
|
break;
|
|
|
|
case R_ARM_THM_PC22:
|
|
/* This one is a call from thumb code. We look
|
|
up the target of the call. If it is not a thumb
|
|
target, we insert glue. */
|
|
if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
|
|
record_thumb_to_arm_glue (link_info, h);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
|
|
error_return:
|
|
if (free_relocs != NULL)
|
|
free (free_relocs);
|
|
if (free_contents != NULL)
|
|
free (free_contents);
|
|
if (free_extsyms != NULL)
|
|
free (free_extsyms);
|
|
|
|
return false;
|
|
}
|
|
|
|
/* The thumb form of a long branch is a bit finicky, because the offset
|
|
encoding is split over two fields, each in it's own instruction. They
|
|
can occur in any order. So given a thumb form of long branch, and an
|
|
offset, insert the offset into the thumb branch and return finished
|
|
instruction.
|
|
|
|
It takes two thumb instructions to encode the target address. Each has
|
|
11 bits to invest. The upper 11 bits are stored in one (identifed by
|
|
H-0.. see below), the lower 11 bits are stored in the other (identified
|
|
by H-1).
|
|
|
|
Combine together and shifted left by 1 (it's a half word address) and
|
|
there you have it.
|
|
|
|
Op: 1111 = F,
|
|
H-0, upper address-0 = 000
|
|
Op: 1111 = F,
|
|
H-1, lower address-0 = 800
|
|
|
|
They can be ordered either way, but the arm tools I've seen always put
|
|
the lower one first. It probably doesn't matter. krk@cygnus.com
|
|
|
|
XXX: Actually the order does matter. The second instruction (H-1)
|
|
moves the computed address into the PC, so it must be the second one
|
|
in the sequence. The problem, however is that whilst little endian code
|
|
stores the instructions in HI then LOW order, big endian code does the
|
|
reverse. nickc@cygnus.com. */
|
|
|
|
#define LOW_HI_ORDER 0xF800F000
|
|
#define HI_LOW_ORDER 0xF000F800
|
|
|
|
static insn32
|
|
insert_thumb_branch (br_insn, rel_off)
|
|
insn32 br_insn;
|
|
int rel_off;
|
|
{
|
|
unsigned int low_bits;
|
|
unsigned int high_bits;
|
|
|
|
BFD_ASSERT ((rel_off & 1) != 1);
|
|
|
|
rel_off >>= 1; /* Half word aligned address. */
|
|
low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
|
|
high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
|
|
|
|
if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
|
|
br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
|
|
else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
|
|
br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
|
|
else
|
|
/* FIXME: abort is probably not the right call. krk@cygnus.com */
|
|
abort (); /* error - not a valid branch instruction form. */
|
|
|
|
return br_insn;
|
|
}
|
|
|
|
/* Thumb code calling an ARM function. */
|
|
|
|
static int
|
|
elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
|
|
hit_data, sym_sec, offset, addend, val)
|
|
struct bfd_link_info * info;
|
|
const char * name;
|
|
bfd * input_bfd;
|
|
bfd * output_bfd;
|
|
asection * input_section;
|
|
bfd_byte * hit_data;
|
|
asection * sym_sec;
|
|
bfd_vma offset;
|
|
bfd_signed_vma addend;
|
|
bfd_vma val;
|
|
{
|
|
asection * s = 0;
|
|
long int my_offset;
|
|
unsigned long int tmp;
|
|
long int ret_offset;
|
|
struct elf_link_hash_entry * myh;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
myh = find_thumb_glue (info, name, input_bfd);
|
|
if (myh == NULL)
|
|
return false;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
my_offset = myh->root.u.def.value;
|
|
|
|
s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
|
|
THUMB2ARM_GLUE_SECTION_NAME);
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
BFD_ASSERT (s->contents != NULL);
|
|
BFD_ASSERT (s->output_section != NULL);
|
|
|
|
if ((my_offset & 0x01) == 0x01)
|
|
{
|
|
if (sym_sec != NULL
|
|
&& sym_sec->owner != NULL
|
|
&& !INTERWORK_FLAG (sym_sec->owner))
|
|
{
|
|
_bfd_error_handler
|
|
(_("%s(%s): warning: interworking not enabled."),
|
|
bfd_get_filename (sym_sec->owner), name);
|
|
_bfd_error_handler
|
|
(_(" first occurrence: %s: thumb call to arm"),
|
|
bfd_get_filename (input_bfd));
|
|
|
|
return false;
|
|
}
|
|
|
|
--my_offset;
|
|
myh->root.u.def.value = my_offset;
|
|
|
|
bfd_put_16 (output_bfd, t2a1_bx_pc_insn,
|
|
s->contents + my_offset);
|
|
|
|
bfd_put_16 (output_bfd, t2a2_noop_insn,
|
|
s->contents + my_offset + 2);
|
|
|
|
ret_offset =
|
|
/* Address of destination of the stub. */
|
|
((bfd_signed_vma) val)
|
|
- ((bfd_signed_vma)
|
|
/* Offset from the start of the current section to the start of the stubs. */
|
|
(s->output_offset
|
|
/* Offset of the start of this stub from the start of the stubs. */
|
|
+ my_offset
|
|
/* Address of the start of the current section. */
|
|
+ s->output_section->vma)
|
|
/* The branch instruction is 4 bytes into the stub. */
|
|
+ 4
|
|
/* ARM branches work from the pc of the instruction + 8. */
|
|
+ 8);
|
|
|
|
bfd_put_32 (output_bfd,
|
|
t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
|
|
s->contents + my_offset + 4);
|
|
}
|
|
|
|
BFD_ASSERT (my_offset <= globals->thumb_glue_size);
|
|
|
|
/* Now go back and fix up the original BL insn to point
|
|
to here. */
|
|
ret_offset =
|
|
s->output_offset
|
|
+ my_offset
|
|
- (input_section->output_offset
|
|
+ offset + addend)
|
|
- 8;
|
|
|
|
tmp = bfd_get_32 (input_bfd, hit_data
|
|
- input_section->vma);
|
|
|
|
bfd_put_32 (output_bfd,
|
|
insert_thumb_branch (tmp, ret_offset),
|
|
hit_data - input_section->vma);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Arm code calling a Thumb function. */
|
|
|
|
static int
|
|
elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
|
|
hit_data, sym_sec, offset, addend, val)
|
|
struct bfd_link_info * info;
|
|
const char * name;
|
|
bfd * input_bfd;
|
|
bfd * output_bfd;
|
|
asection * input_section;
|
|
bfd_byte * hit_data;
|
|
asection * sym_sec;
|
|
bfd_vma offset;
|
|
bfd_signed_vma addend;
|
|
bfd_vma val;
|
|
{
|
|
unsigned long int tmp;
|
|
long int my_offset;
|
|
asection * s;
|
|
long int ret_offset;
|
|
struct elf_link_hash_entry * myh;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
myh = find_arm_glue (info, name, input_bfd);
|
|
if (myh == NULL)
|
|
return false;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
my_offset = myh->root.u.def.value;
|
|
s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
|
|
ARM2THUMB_GLUE_SECTION_NAME);
|
|
BFD_ASSERT (s != NULL);
|
|
BFD_ASSERT (s->contents != NULL);
|
|
BFD_ASSERT (s->output_section != NULL);
|
|
|
|
if ((my_offset & 0x01) == 0x01)
|
|
{
|
|
if (sym_sec != NULL
|
|
&& sym_sec->owner != NULL
|
|
&& !INTERWORK_FLAG (sym_sec->owner))
|
|
{
|
|
_bfd_error_handler
|
|
(_("%s(%s): warning: interworking not enabled."),
|
|
bfd_get_filename (sym_sec->owner), name);
|
|
_bfd_error_handler
|
|
(_(" first occurrence: %s: arm call to thumb"),
|
|
bfd_get_filename (input_bfd));
|
|
}
|
|
|
|
--my_offset;
|
|
myh->root.u.def.value = my_offset;
|
|
|
|
bfd_put_32 (output_bfd, a2t1_ldr_insn,
|
|
s->contents + my_offset);
|
|
|
|
bfd_put_32 (output_bfd, a2t2_bx_r12_insn,
|
|
s->contents + my_offset + 4);
|
|
|
|
/* It's a thumb address. Add the low order bit. */
|
|
bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
|
|
s->contents + my_offset + 8);
|
|
}
|
|
|
|
BFD_ASSERT (my_offset <= globals->arm_glue_size);
|
|
|
|
tmp = bfd_get_32 (input_bfd, hit_data);
|
|
tmp = tmp & 0xFF000000;
|
|
|
|
/* Somehow these are both 4 too far, so subtract 8. */
|
|
ret_offset = s->output_offset
|
|
+ my_offset
|
|
+ s->output_section->vma
|
|
- (input_section->output_offset
|
|
+ input_section->output_section->vma
|
|
+ offset + addend)
|
|
- 8;
|
|
|
|
tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
|
|
|
|
bfd_put_32 (output_bfd, tmp, hit_data
|
|
- input_section->vma);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Perform a relocation as part of a final link. */
|
|
|
|
static bfd_reloc_status_type
|
|
elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
|
|
input_section, contents, rel, value,
|
|
info, sym_sec, sym_name, sym_flags, h)
|
|
reloc_howto_type * howto;
|
|
bfd * input_bfd;
|
|
bfd * output_bfd;
|
|
asection * input_section;
|
|
bfd_byte * contents;
|
|
Elf_Internal_Rela * rel;
|
|
bfd_vma value;
|
|
struct bfd_link_info * info;
|
|
asection * sym_sec;
|
|
const char * sym_name;
|
|
unsigned char sym_flags;
|
|
struct elf_link_hash_entry * h;
|
|
{
|
|
unsigned long r_type = howto->type;
|
|
unsigned long r_symndx;
|
|
bfd_byte * hit_data = contents + rel->r_offset;
|
|
bfd * dynobj = NULL;
|
|
Elf_Internal_Shdr * symtab_hdr;
|
|
struct elf_link_hash_entry ** sym_hashes;
|
|
bfd_vma * local_got_offsets;
|
|
asection * sgot = NULL;
|
|
asection * splt = NULL;
|
|
asection * sreloc = NULL;
|
|
bfd_vma addend;
|
|
bfd_signed_vma signed_addend;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
/* If the start address has been set, then set the EF_ARM_HASENTRY
|
|
flag. Setting this more than once is redundant, but the cost is
|
|
not too high, and it keeps the code simple.
|
|
|
|
The test is done here, rather than somewhere else, because the
|
|
start address is only set just before the final link commences.
|
|
|
|
Note - if the user deliberately sets a start address of 0, the
|
|
flag will not be set. */
|
|
if (bfd_get_start_address (output_bfd) != 0)
|
|
elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
if (dynobj)
|
|
{
|
|
sgot = bfd_get_section_by_name (dynobj, ".got");
|
|
splt = bfd_get_section_by_name (dynobj, ".plt");
|
|
}
|
|
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
|
local_got_offsets = elf_local_got_offsets (input_bfd);
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
|
|
#ifdef USE_REL
|
|
addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
|
|
|
|
if (addend & ((howto->src_mask + 1) >> 1))
|
|
{
|
|
signed_addend = -1;
|
|
signed_addend &= ~ howto->src_mask;
|
|
signed_addend |= addend;
|
|
}
|
|
else
|
|
signed_addend = addend;
|
|
#else
|
|
addend = signed_addend = rel->r_addend;
|
|
#endif
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_NONE:
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_PC24:
|
|
case R_ARM_ABS32:
|
|
case R_ARM_REL32:
|
|
#ifndef OLD_ARM_ABI
|
|
case R_ARM_XPC25:
|
|
#endif
|
|
/* When generating a shared object, these relocations are copied
|
|
into the output file to be resolved at run time. */
|
|
if (info->shared
|
|
&& (r_type != R_ARM_PC24
|
|
|| (h != NULL
|
|
&& h->dynindx != -1
|
|
&& (! info->symbolic
|
|
|| (h->elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|
|
{
|
|
Elf_Internal_Rel outrel;
|
|
boolean skip, relocate;
|
|
|
|
if (sreloc == NULL)
|
|
{
|
|
const char * name;
|
|
|
|
name = (bfd_elf_string_from_elf_section
|
|
(input_bfd,
|
|
elf_elfheader (input_bfd)->e_shstrndx,
|
|
elf_section_data (input_section)->rel_hdr.sh_name));
|
|
if (name == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
BFD_ASSERT (strncmp (name, ".rel", 4) == 0
|
|
&& strcmp (bfd_get_section_name (input_bfd,
|
|
input_section),
|
|
name + 4) == 0);
|
|
|
|
sreloc = bfd_get_section_by_name (dynobj, name);
|
|
BFD_ASSERT (sreloc != NULL);
|
|
}
|
|
|
|
skip = false;
|
|
|
|
if (elf_section_data (input_section)->stab_info == NULL)
|
|
outrel.r_offset = rel->r_offset;
|
|
else
|
|
{
|
|
bfd_vma off;
|
|
|
|
off = (_bfd_stab_section_offset
|
|
(output_bfd, &elf_hash_table (info)->stab_info,
|
|
input_section,
|
|
& elf_section_data (input_section)->stab_info,
|
|
rel->r_offset));
|
|
if (off == (bfd_vma) -1)
|
|
skip = true;
|
|
outrel.r_offset = off;
|
|
}
|
|
|
|
outrel.r_offset += (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
|
|
if (skip)
|
|
{
|
|
memset (&outrel, 0, sizeof outrel);
|
|
relocate = false;
|
|
}
|
|
else if (r_type == R_ARM_PC24)
|
|
{
|
|
BFD_ASSERT (h != NULL && h->dynindx != -1);
|
|
if ((input_section->flags & SEC_ALLOC) != 0)
|
|
relocate = false;
|
|
else
|
|
relocate = true;
|
|
outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
|
|
}
|
|
else
|
|
{
|
|
if (h == NULL
|
|
|| ((info->symbolic || h->dynindx == -1)
|
|
&& (h->elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_REGULAR) != 0))
|
|
{
|
|
relocate = true;
|
|
outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
|
|
}
|
|
else
|
|
{
|
|
BFD_ASSERT (h->dynindx != -1);
|
|
if ((input_section->flags & SEC_ALLOC) != 0)
|
|
relocate = false;
|
|
else
|
|
relocate = true;
|
|
outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
|
|
}
|
|
}
|
|
|
|
bfd_elf32_swap_reloc_out (output_bfd, &outrel,
|
|
(((Elf32_External_Rel *)
|
|
sreloc->contents)
|
|
+ sreloc->reloc_count));
|
|
++sreloc->reloc_count;
|
|
|
|
/* If this reloc is against an external symbol, we do not want to
|
|
fiddle with the addend. Otherwise, we need to include the symbol
|
|
value so that it becomes an addend for the dynamic reloc. */
|
|
if (! relocate)
|
|
return bfd_reloc_ok;
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
(bfd_vma) 0);
|
|
}
|
|
else switch (r_type)
|
|
{
|
|
#ifndef OLD_ARM_ABI
|
|
case R_ARM_XPC25: /* Arm BLX instruction. */
|
|
#endif
|
|
case R_ARM_PC24: /* Arm B/BL instruction */
|
|
#ifndef OLD_ARM_ABI
|
|
if (r_type == R_ARM_XPC25)
|
|
{
|
|
/* Check for Arm calling Arm function. */
|
|
/* FIXME: Should we translate the instruction into a BL
|
|
instruction instead ? */
|
|
if (sym_flags != STT_ARM_TFUNC)
|
|
_bfd_error_handler (_("\
|
|
%s: Warning: Arm BLX instruction targets Arm function '%s'."),
|
|
bfd_get_filename (input_bfd),
|
|
h ? h->root.root.string : "(local)");
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* Check for Arm calling Thumb function. */
|
|
if (sym_flags == STT_ARM_TFUNC)
|
|
{
|
|
elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
|
|
input_section, hit_data, sym_sec, rel->r_offset,
|
|
signed_addend, value);
|
|
return bfd_reloc_ok;
|
|
}
|
|
}
|
|
|
|
if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
|
|
|| strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
|
|
{
|
|
/* The old way of doing things. Trearing the addend as a
|
|
byte sized field and adding in the pipeline offset. */
|
|
value -= (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
value -= rel->r_offset;
|
|
value += addend;
|
|
|
|
if (! globals->no_pipeline_knowledge)
|
|
value -= 8;
|
|
}
|
|
else
|
|
{
|
|
/* The ARM ELF ABI says that this reloc is computed as: S - P + A
|
|
where:
|
|
S is the address of the symbol in the relocation.
|
|
P is address of the instruction being relocated.
|
|
A is the addend (extracted from the instruction) in bytes.
|
|
|
|
S is held in 'value'.
|
|
P is the base address of the section containing the instruction
|
|
plus the offset of the reloc into that section, ie:
|
|
(input_section->output_section->vma +
|
|
input_section->output_offset +
|
|
rel->r_offset).
|
|
A is the addend, converted into bytes, ie:
|
|
(signed_addend * 4)
|
|
|
|
Note: None of these operations have knowledge of the pipeline
|
|
size of the processor, thus it is up to the assembler to encode
|
|
this information into the addend. */
|
|
value -= (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
value -= rel->r_offset;
|
|
value += (signed_addend << howto->size);
|
|
|
|
/* Previous versions of this code also used to add in the pipeline
|
|
offset here. This is wrong because the linker is not supposed
|
|
to know about such things, and one day it might change. In order
|
|
to support old binaries that need the old behaviour however, so
|
|
we attempt to detect which ABI was used to create the reloc. */
|
|
if (! globals->no_pipeline_knowledge)
|
|
{
|
|
Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
|
|
|
|
i_ehdrp = elf_elfheader (input_bfd);
|
|
|
|
if (i_ehdrp->e_ident[EI_OSABI] == 0)
|
|
value -= 8;
|
|
}
|
|
}
|
|
|
|
signed_addend = value;
|
|
signed_addend >>= howto->rightshift;
|
|
|
|
/* It is not an error for an undefined weak reference to be
|
|
out of range. Any program that branches to such a symbol
|
|
is going to crash anyway, so there is no point worrying
|
|
about getting the destination exactly right. */
|
|
if (! h || h->root.type != bfd_link_hash_undefweak)
|
|
{
|
|
/* Perform a signed range check. */
|
|
if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
|
|
|| signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
|
|
return bfd_reloc_overflow;
|
|
}
|
|
|
|
#ifndef OLD_ARM_ABI
|
|
/* If necessary set the H bit in the BLX instruction. */
|
|
if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
|
|
value = (signed_addend & howto->dst_mask)
|
|
| (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
|
|
| (1 << 24);
|
|
else
|
|
#endif
|
|
value = (signed_addend & howto->dst_mask)
|
|
| (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
|
|
break;
|
|
|
|
case R_ARM_ABS32:
|
|
value += addend;
|
|
if (sym_flags == STT_ARM_TFUNC)
|
|
value |= 1;
|
|
break;
|
|
|
|
case R_ARM_REL32:
|
|
value -= (input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset);
|
|
value += addend;
|
|
break;
|
|
}
|
|
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_ABS8:
|
|
value += addend;
|
|
if ((long) value > 0x7f || (long) value < -0x80)
|
|
return bfd_reloc_overflow;
|
|
|
|
bfd_put_8 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_ABS16:
|
|
value += addend;
|
|
|
|
if ((long) value > 0x7fff || (long) value < -0x8000)
|
|
return bfd_reloc_overflow;
|
|
|
|
bfd_put_16 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_ABS12:
|
|
/* Support ldr and str instruction for the arm */
|
|
/* Also thumb b (unconditional branch). ??? Really? */
|
|
value += addend;
|
|
|
|
if ((long) value > 0x7ff || (long) value < -0x800)
|
|
return bfd_reloc_overflow;
|
|
|
|
value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_THM_ABS5:
|
|
/* Support ldr and str instructions for the thumb. */
|
|
#ifdef USE_REL
|
|
/* Need to refetch addend. */
|
|
addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
|
|
/* ??? Need to determine shift amount from operand size. */
|
|
addend >>= howto->rightshift;
|
|
#endif
|
|
value += addend;
|
|
|
|
/* ??? Isn't value unsigned? */
|
|
if ((long) value > 0x1f || (long) value < -0x10)
|
|
return bfd_reloc_overflow;
|
|
|
|
/* ??? Value needs to be properly shifted into place first. */
|
|
value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
|
|
bfd_put_16 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
#ifndef OLD_ARM_ABI
|
|
case R_ARM_THM_XPC22:
|
|
#endif
|
|
case R_ARM_THM_PC22:
|
|
/* Thumb BL (branch long instruction). */
|
|
{
|
|
bfd_vma relocation;
|
|
boolean overflow = false;
|
|
bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
|
|
bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
|
|
bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
|
|
bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
|
|
bfd_vma check;
|
|
bfd_signed_vma signed_check;
|
|
|
|
#ifdef USE_REL
|
|
/* Need to refetch the addend and squish the two 11 bit pieces
|
|
together. */
|
|
{
|
|
bfd_vma upper = upper_insn & 0x7ff;
|
|
bfd_vma lower = lower_insn & 0x7ff;
|
|
upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
|
|
addend = (upper << 12) | (lower << 1);
|
|
signed_addend = addend;
|
|
}
|
|
#endif
|
|
#ifndef OLD_ARM_ABI
|
|
if (r_type == R_ARM_THM_XPC22)
|
|
{
|
|
/* Check for Thumb to Thumb call. */
|
|
/* FIXME: Should we translate the instruction into a BL
|
|
instruction instead ? */
|
|
if (sym_flags == STT_ARM_TFUNC)
|
|
_bfd_error_handler (_("\
|
|
%s: Warning: Thumb BLX instruction targets thumb function '%s'."),
|
|
bfd_get_filename (input_bfd),
|
|
h ? h->root.root.string : "(local)");
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* If it is not a call to Thumb, assume call to Arm.
|
|
If it is a call relative to a section name, then it is not a
|
|
function call at all, but rather a long jump. */
|
|
if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
|
|
{
|
|
if (elf32_thumb_to_arm_stub
|
|
(info, sym_name, input_bfd, output_bfd, input_section,
|
|
hit_data, sym_sec, rel->r_offset, signed_addend, value))
|
|
return bfd_reloc_ok;
|
|
else
|
|
return bfd_reloc_dangerous;
|
|
}
|
|
}
|
|
|
|
relocation = value + signed_addend;
|
|
|
|
relocation -= (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset);
|
|
|
|
if (! globals->no_pipeline_knowledge)
|
|
{
|
|
Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
|
|
|
|
i_ehdrp = elf_elfheader (input_bfd);
|
|
|
|
/* Previous versions of this code also used to add in the pipline
|
|
offset here. This is wrong because the linker is not supposed
|
|
to know about such things, and one day it might change. In order
|
|
to support old binaries that need the old behaviour however, so
|
|
we attempt to detect which ABI was used to create the reloc. */
|
|
if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
|
|
|| strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
|
|
|| i_ehdrp->e_ident[EI_OSABI] == 0)
|
|
relocation += 4;
|
|
}
|
|
|
|
check = relocation >> howto->rightshift;
|
|
|
|
/* If this is a signed value, the rightshift just dropped
|
|
leading 1 bits (assuming twos complement). */
|
|
if ((bfd_signed_vma) relocation >= 0)
|
|
signed_check = check;
|
|
else
|
|
signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
|
|
|
|
/* Assumes two's complement. */
|
|
if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
|
|
overflow = true;
|
|
|
|
/* Put RELOCATION back into the insn. */
|
|
upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
|
|
lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
|
|
|
|
#ifndef OLD_ARM_ABI
|
|
if (r_type == R_ARM_THM_XPC22
|
|
&& ((lower_insn & 0x1800) == 0x0800))
|
|
/* Remove bit zero of the adjusted offset. Bit zero can only be
|
|
set if the upper insn is at a half-word boundary, since the
|
|
destination address, an ARM instruction, must always be on a
|
|
word boundary. The semantics of the BLX (1) instruction, however,
|
|
are that bit zero in the offset must always be zero, and the
|
|
corresponding bit one in the target address will be set from bit
|
|
one of the source address. */
|
|
lower_insn &= ~1;
|
|
#endif
|
|
/* Put the relocated value back in the object file: */
|
|
bfd_put_16 (input_bfd, upper_insn, hit_data);
|
|
bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
|
|
|
|
return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
|
|
}
|
|
break;
|
|
|
|
case R_ARM_GNU_VTINHERIT:
|
|
case R_ARM_GNU_VTENTRY:
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_COPY:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_GLOB_DAT:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_JUMP_SLOT:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_RELATIVE:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_GOTOFF:
|
|
/* Relocation is relative to the start of the
|
|
global offset table. */
|
|
|
|
BFD_ASSERT (sgot != NULL);
|
|
if (sgot == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
/* Note that sgot->output_offset is not involved in this
|
|
calculation. We always want the start of .got. If we
|
|
define _GLOBAL_OFFSET_TABLE in a different way, as is
|
|
permitted by the ABI, we might have to change this
|
|
calculation. */
|
|
value -= sgot->output_section->vma;
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
(bfd_vma) 0);
|
|
|
|
case R_ARM_GOTPC:
|
|
/* Use global offset table as symbol value. */
|
|
BFD_ASSERT (sgot != NULL);
|
|
|
|
if (sgot == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
value = sgot->output_section->vma;
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
(bfd_vma) 0);
|
|
|
|
case R_ARM_GOT32:
|
|
/* Relocation is to the entry for this symbol in the
|
|
global offset table. */
|
|
if (sgot == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
if (h != NULL)
|
|
{
|
|
bfd_vma off;
|
|
|
|
off = h->got.offset;
|
|
BFD_ASSERT (off != (bfd_vma) -1);
|
|
|
|
if (!elf_hash_table (info)->dynamic_sections_created ||
|
|
(info->shared && (info->symbolic || h->dynindx == -1)
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
|
|
{
|
|
/* This is actually a static link, or it is a -Bsymbolic link
|
|
and the symbol is defined locally. We must initialize this
|
|
entry in the global offset table. Since the offset must
|
|
always be a multiple of 4, we use the least significant bit
|
|
to record whether we have initialized it already.
|
|
|
|
When doing a dynamic link, we create a .rel.got relocation
|
|
entry to initialize the value. This is done in the
|
|
finish_dynamic_symbol routine. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, value, sgot->contents + off);
|
|
h->got.offset |= 1;
|
|
}
|
|
}
|
|
|
|
value = sgot->output_offset + off;
|
|
}
|
|
else
|
|
{
|
|
bfd_vma off;
|
|
|
|
BFD_ASSERT (local_got_offsets != NULL &&
|
|
local_got_offsets[r_symndx] != (bfd_vma) -1);
|
|
|
|
off = local_got_offsets[r_symndx];
|
|
|
|
/* The offset must always be a multiple of 4. We use the
|
|
least significant bit to record whether we have already
|
|
generated the necessary reloc. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, value, sgot->contents + off);
|
|
|
|
if (info->shared)
|
|
{
|
|
asection * srelgot;
|
|
Elf_Internal_Rel outrel;
|
|
|
|
srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
|
|
BFD_ASSERT (srelgot != NULL);
|
|
|
|
outrel.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ off);
|
|
outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
|
|
bfd_elf32_swap_reloc_out (output_bfd, &outrel,
|
|
(((Elf32_External_Rel *)
|
|
srelgot->contents)
|
|
+ srelgot->reloc_count));
|
|
++srelgot->reloc_count;
|
|
}
|
|
|
|
local_got_offsets[r_symndx] |= 1;
|
|
}
|
|
|
|
value = sgot->output_offset + off;
|
|
}
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
(bfd_vma) 0);
|
|
|
|
case R_ARM_PLT32:
|
|
/* Relocation is to the entry for this symbol in the
|
|
procedure linkage table. */
|
|
|
|
/* Resolve a PLT32 reloc against a local symbol directly,
|
|
without using the procedure linkage table. */
|
|
if (h == NULL)
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
(bfd_vma) 0);
|
|
|
|
if (h->plt.offset == (bfd_vma) -1)
|
|
/* We didn't make a PLT entry for this symbol. This
|
|
happens when statically linking PIC code, or when
|
|
using -Bsymbolic. */
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
(bfd_vma) 0);
|
|
|
|
BFD_ASSERT(splt != NULL);
|
|
if (splt == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
value = (splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ h->plt.offset);
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
(bfd_vma) 0);
|
|
|
|
case R_ARM_SBREL32:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_AMP_VCALL9:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_RSBREL32:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_THM_RPC22:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_RREL32:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_RABS32:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_RPC24:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_RBASE:
|
|
return bfd_reloc_notsupported;
|
|
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
}
|
|
|
|
#ifdef USE_REL
|
|
/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
|
|
static void
|
|
arm_add_to_rel (abfd, address, howto, increment)
|
|
bfd * abfd;
|
|
bfd_byte * address;
|
|
reloc_howto_type * howto;
|
|
bfd_signed_vma increment;
|
|
{
|
|
bfd_signed_vma addend;
|
|
|
|
if (howto->type == R_ARM_THM_PC22)
|
|
{
|
|
int upper_insn, lower_insn;
|
|
int upper, lower;
|
|
|
|
upper_insn = bfd_get_16 (abfd, address);
|
|
lower_insn = bfd_get_16 (abfd, address + 2);
|
|
upper = upper_insn & 0x7ff;
|
|
lower = lower_insn & 0x7ff;
|
|
|
|
addend = (upper << 12) | (lower << 1);
|
|
addend += increment;
|
|
addend >>= 1;
|
|
|
|
upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
|
|
lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
|
|
|
|
bfd_put_16 (abfd, upper_insn, address);
|
|
bfd_put_16 (abfd, lower_insn, address + 2);
|
|
}
|
|
else
|
|
{
|
|
bfd_vma contents;
|
|
|
|
contents = bfd_get_32 (abfd, address);
|
|
|
|
/* Get the (signed) value from the instruction. */
|
|
addend = contents & howto->src_mask;
|
|
if (addend & ((howto->src_mask + 1) >> 1))
|
|
{
|
|
bfd_signed_vma mask;
|
|
|
|
mask = -1;
|
|
mask &= ~ howto->src_mask;
|
|
addend |= mask;
|
|
}
|
|
|
|
/* Add in the increment, (which is a byte value). */
|
|
switch (howto->type)
|
|
{
|
|
default:
|
|
addend += increment;
|
|
break;
|
|
|
|
case R_ARM_PC24:
|
|
addend <<= howto->size;
|
|
addend += increment;
|
|
|
|
/* Should we check for overflow here ? */
|
|
|
|
/* Drop any undesired bits. */
|
|
addend >>= howto->rightshift;
|
|
break;
|
|
}
|
|
|
|
contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
|
|
|
|
bfd_put_32 (abfd, contents, address);
|
|
}
|
|
}
|
|
#endif /* USE_REL */
|
|
|
|
/* Relocate an ARM ELF section. */
|
|
static boolean
|
|
elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
|
|
contents, relocs, local_syms, local_sections)
|
|
bfd * output_bfd;
|
|
struct bfd_link_info * info;
|
|
bfd * input_bfd;
|
|
asection * input_section;
|
|
bfd_byte * contents;
|
|
Elf_Internal_Rela * relocs;
|
|
Elf_Internal_Sym * local_syms;
|
|
asection ** local_sections;
|
|
{
|
|
Elf_Internal_Shdr * symtab_hdr;
|
|
struct elf_link_hash_entry ** sym_hashes;
|
|
Elf_Internal_Rela * rel;
|
|
Elf_Internal_Rela * relend;
|
|
const char * name;
|
|
|
|
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
|
|
|
rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
int r_type;
|
|
reloc_howto_type * howto;
|
|
unsigned long r_symndx;
|
|
Elf_Internal_Sym * sym;
|
|
asection * sec;
|
|
struct elf_link_hash_entry * h;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r;
|
|
arelent bfd_reloc;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
|
|
if ( r_type == R_ARM_GNU_VTENTRY
|
|
|| r_type == R_ARM_GNU_VTINHERIT)
|
|
continue;
|
|
|
|
elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
|
|
howto = bfd_reloc.howto;
|
|
|
|
if (info->relocateable)
|
|
{
|
|
/* This is a relocateable link. We don't have to change
|
|
anything, unless the reloc is against a section symbol,
|
|
in which case we have to adjust according to where the
|
|
section symbol winds up in the output section. */
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
|
{
|
|
sec = local_sections[r_symndx];
|
|
#ifdef USE_REL
|
|
arm_add_to_rel (input_bfd, contents + rel->r_offset,
|
|
howto, sec->output_offset + sym->st_value);
|
|
#else
|
|
rel->r_addend += (sec->output_offset + sym->st_value)
|
|
>> howto->rightshift;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
/* This is a final link. */
|
|
h = NULL;
|
|
sym = NULL;
|
|
sec = NULL;
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
sec = local_sections[r_symndx];
|
|
relocation = (sec->output_section->vma
|
|
+ sec->output_offset
|
|
+ sym->st_value);
|
|
}
|
|
else
|
|
{
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
|
|
while ( h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
if ( h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
{
|
|
int relocation_needed = 1;
|
|
|
|
sec = h->root.u.def.section;
|
|
|
|
/* In these cases, we don't need the relocation value.
|
|
We check specially because in some obscure cases
|
|
sec->output_section will be NULL. */
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_PC24:
|
|
case R_ARM_ABS32:
|
|
if (info->shared
|
|
&& (
|
|
(!info->symbolic && h->dynindx != -1)
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
|
|
)
|
|
&& ((input_section->flags & SEC_ALLOC) != 0
|
|
/* DWARF will emit R_ARM_ABS32 relocations in its
|
|
sections against symbols defined externally
|
|
in shared libraries. We can't do anything
|
|
with them here. */
|
|
|| ((input_section->flags & SEC_DEBUGGING) != 0
|
|
&& (h->elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_DYNAMIC) != 0))
|
|
)
|
|
relocation_needed = 0;
|
|
break;
|
|
|
|
case R_ARM_GOTPC:
|
|
relocation_needed = 0;
|
|
break;
|
|
|
|
case R_ARM_GOT32:
|
|
if (elf_hash_table(info)->dynamic_sections_created
|
|
&& (!info->shared
|
|
|| (!info->symbolic && h->dynindx != -1)
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
|
|
)
|
|
)
|
|
relocation_needed = 0;
|
|
break;
|
|
|
|
case R_ARM_PLT32:
|
|
if (h->plt.offset != (bfd_vma)-1)
|
|
relocation_needed = 0;
|
|
break;
|
|
|
|
default:
|
|
if (sec->output_section == NULL)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
|
|
bfd_get_filename (input_bfd), h->root.root.string,
|
|
bfd_get_section_name (input_bfd, input_section));
|
|
relocation_needed = 0;
|
|
}
|
|
}
|
|
|
|
if (relocation_needed)
|
|
relocation = h->root.u.def.value
|
|
+ sec->output_section->vma
|
|
+ sec->output_offset;
|
|
else
|
|
relocation = 0;
|
|
}
|
|
else if (h->root.type == bfd_link_hash_undefweak)
|
|
relocation = 0;
|
|
else if (info->shared && !info->symbolic
|
|
&& !info->no_undefined
|
|
&& ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
|
|
relocation = 0;
|
|
else
|
|
{
|
|
if (!((*info->callbacks->undefined_symbol)
|
|
(info, h->root.root.string, input_bfd,
|
|
input_section, rel->r_offset,
|
|
(!info->shared || info->no_undefined
|
|
|| ELF_ST_VISIBILITY (h->other)))))
|
|
return false;
|
|
relocation = 0;
|
|
}
|
|
}
|
|
|
|
if (h != NULL)
|
|
name = h->root.root.string;
|
|
else
|
|
{
|
|
name = (bfd_elf_string_from_elf_section
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
|
if (name == NULL || *name == '\0')
|
|
name = bfd_section_name (input_bfd, sec);
|
|
}
|
|
|
|
r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
|
|
input_section, contents, rel,
|
|
relocation, info, sec, name,
|
|
(h ? ELF_ST_TYPE (h->type) :
|
|
ELF_ST_TYPE (sym->st_info)), h);
|
|
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
const char * msg = (const char *) 0;
|
|
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_overflow:
|
|
/* If the overflowing reloc was to an undefined symbol,
|
|
we have already printed one error message and there
|
|
is no point complaining again. */
|
|
if ((! h ||
|
|
h->root.type != bfd_link_hash_undefined)
|
|
&& (!((*info->callbacks->reloc_overflow)
|
|
(info, name, howto->name, (bfd_vma) 0,
|
|
input_bfd, input_section, rel->r_offset))))
|
|
return false;
|
|
break;
|
|
|
|
case bfd_reloc_undefined:
|
|
if (!((*info->callbacks->undefined_symbol)
|
|
(info, name, input_bfd, input_section,
|
|
rel->r_offset, true)))
|
|
return false;
|
|
break;
|
|
|
|
case bfd_reloc_outofrange:
|
|
msg = _("internal error: out of range error");
|
|
goto common_error;
|
|
|
|
case bfd_reloc_notsupported:
|
|
msg = _("internal error: unsupported relocation error");
|
|
goto common_error;
|
|
|
|
case bfd_reloc_dangerous:
|
|
msg = _("internal error: dangerous error");
|
|
goto common_error;
|
|
|
|
default:
|
|
msg = _("internal error: unknown error");
|
|
/* fall through */
|
|
|
|
common_error:
|
|
if (!((*info->callbacks->warning)
|
|
(info, msg, name, input_bfd, input_section,
|
|
rel->r_offset)))
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function to keep ARM specific flags in the ELF header. */
|
|
static boolean
|
|
elf32_arm_set_private_flags (abfd, flags)
|
|
bfd *abfd;
|
|
flagword flags;
|
|
{
|
|
if (elf_flags_init (abfd)
|
|
&& elf_elfheader (abfd)->e_flags != flags)
|
|
{
|
|
if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
|
|
{
|
|
if (flags & EF_INTERWORK)
|
|
_bfd_error_handler (_("\
|
|
Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
|
|
bfd_get_filename (abfd));
|
|
else
|
|
_bfd_error_handler (_("\
|
|
Warning: Clearing the interwork flag of %s due to outside request"),
|
|
bfd_get_filename (abfd));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
elf_elfheader (abfd)->e_flags = flags;
|
|
elf_flags_init (abfd) = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Copy backend specific data from one object module to another. */
|
|
|
|
static boolean
|
|
elf32_arm_copy_private_bfd_data (ibfd, obfd)
|
|
bfd *ibfd;
|
|
bfd *obfd;
|
|
{
|
|
flagword in_flags;
|
|
flagword out_flags;
|
|
|
|
if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
|
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
|
return true;
|
|
|
|
in_flags = elf_elfheader (ibfd)->e_flags;
|
|
out_flags = elf_elfheader (obfd)->e_flags;
|
|
|
|
if (elf_flags_init (obfd)
|
|
&& EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
|
|
&& in_flags != out_flags)
|
|
{
|
|
/* Cannot mix APCS26 and APCS32 code. */
|
|
if ((in_flags & EF_APCS_26) != (out_flags & EF_APCS_26))
|
|
return false;
|
|
|
|
/* Cannot mix float APCS and non-float APCS code. */
|
|
if ((in_flags & EF_APCS_FLOAT) != (out_flags & EF_APCS_FLOAT))
|
|
return false;
|
|
|
|
/* If the src and dest have different interworking flags
|
|
then turn off the interworking bit. */
|
|
if ((in_flags & EF_INTERWORK) != (out_flags & EF_INTERWORK))
|
|
{
|
|
if (out_flags & EF_INTERWORK)
|
|
_bfd_error_handler (_("\
|
|
Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
|
|
bfd_get_filename (obfd), bfd_get_filename (ibfd));
|
|
|
|
in_flags &= ~EF_INTERWORK;
|
|
}
|
|
|
|
/* Likewise for PIC, though don't warn for this case. */
|
|
if ((in_flags & EF_PIC) != (out_flags & EF_PIC))
|
|
in_flags &= ~EF_PIC;
|
|
}
|
|
|
|
elf_elfheader (obfd)->e_flags = in_flags;
|
|
elf_flags_init (obfd) = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Merge backend specific data from an object file to the output
|
|
object file when linking. */
|
|
|
|
static boolean
|
|
elf32_arm_merge_private_bfd_data (ibfd, obfd)
|
|
bfd * ibfd;
|
|
bfd * obfd;
|
|
{
|
|
flagword out_flags;
|
|
flagword in_flags;
|
|
boolean flags_compatible = true;
|
|
boolean null_input_bfd = true;
|
|
asection *sec;
|
|
|
|
/* Check if we have the same endianess. */
|
|
if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
|
|
return false;
|
|
|
|
if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
|
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
|
return true;
|
|
|
|
/* The input BFD must have had its flags initialised. */
|
|
/* The following seems bogus to me -- The flags are initialized in
|
|
the assembler but I don't think an elf_flags_init field is
|
|
written into the object. */
|
|
/* BFD_ASSERT (elf_flags_init (ibfd)); */
|
|
|
|
in_flags = elf_elfheader (ibfd)->e_flags;
|
|
out_flags = elf_elfheader (obfd)->e_flags;
|
|
|
|
if (!elf_flags_init (obfd))
|
|
{
|
|
/* If the input is the default architecture and had the default
|
|
flags then do not bother setting the flags for the output
|
|
architecture, instead allow future merges to do this. If no
|
|
future merges ever set these flags then they will retain their
|
|
uninitialised values, which surprise surprise, correspond
|
|
to the default values. */
|
|
if (bfd_get_arch_info (ibfd)->the_default
|
|
&& elf_elfheader (ibfd)->e_flags == 0)
|
|
return true;
|
|
|
|
elf_flags_init (obfd) = true;
|
|
elf_elfheader (obfd)->e_flags = in_flags;
|
|
|
|
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
|
&& bfd_get_arch_info (obfd)->the_default)
|
|
return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Identical flags must be compatible. */
|
|
if (in_flags == out_flags)
|
|
return true;
|
|
|
|
/* Check to see if the input BFD actually contains any sections.
|
|
If not, its flags may not have been initialised either, but it cannot
|
|
actually cause any incompatibility. */
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
/* Ignore synthetic glue sections. */
|
|
if (strcmp (sec->name, ".glue_7")
|
|
&& strcmp (sec->name, ".glue_7t"))
|
|
{
|
|
null_input_bfd = false;
|
|
break;
|
|
}
|
|
}
|
|
if (null_input_bfd)
|
|
return true;
|
|
|
|
/* Complain about various flag mismatches. */
|
|
if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
|
|
{
|
|
_bfd_error_handler (_("\
|
|
Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
|
|
bfd_get_filename (ibfd),
|
|
(in_flags & EF_ARM_EABIMASK) >> 24,
|
|
bfd_get_filename (obfd),
|
|
(out_flags & EF_ARM_EABIMASK) >> 24);
|
|
return false;
|
|
}
|
|
|
|
/* Not sure what needs to be checked for EABI versions >= 1. */
|
|
if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
|
|
{
|
|
if ((in_flags & EF_APCS_26) != (out_flags & EF_APCS_26))
|
|
{
|
|
_bfd_error_handler (_("\
|
|
Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
|
|
bfd_get_filename (ibfd),
|
|
in_flags & EF_APCS_26 ? 26 : 32,
|
|
bfd_get_filename (obfd),
|
|
out_flags & EF_APCS_26 ? 26 : 32);
|
|
flags_compatible = false;
|
|
}
|
|
|
|
if ((in_flags & EF_APCS_FLOAT) != (out_flags & EF_APCS_FLOAT))
|
|
{
|
|
_bfd_error_handler (_("\
|
|
Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
|
|
bfd_get_filename (ibfd),
|
|
in_flags & EF_APCS_FLOAT ? _("float") : _("integer"),
|
|
bfd_get_filename (obfd),
|
|
out_flags & EF_APCS_26 ? _("float") : _("integer"));
|
|
flags_compatible = false;
|
|
}
|
|
|
|
#ifdef EF_SOFT_FLOAT
|
|
if ((in_flags & EF_SOFT_FLOAT) != (out_flags & EF_SOFT_FLOAT))
|
|
{
|
|
_bfd_error_handler (_ ("\
|
|
Error: %s uses %s floating point, whereas %s uses %s floating point"),
|
|
bfd_get_filename (ibfd),
|
|
in_flags & EF_SOFT_FLOAT ? _("soft") : _("hard"),
|
|
bfd_get_filename (obfd),
|
|
out_flags & EF_SOFT_FLOAT ? _("soft") : _("hard"));
|
|
flags_compatible = false;
|
|
}
|
|
#endif
|
|
|
|
/* Interworking mismatch is only a warning. */
|
|
if ((in_flags & EF_INTERWORK) != (out_flags & EF_INTERWORK))
|
|
_bfd_error_handler (_("\
|
|
Warning: %s %s interworking, whereas %s %s"),
|
|
bfd_get_filename (ibfd),
|
|
in_flags & EF_INTERWORK ? _("supports") : _("does not support"),
|
|
bfd_get_filename (obfd),
|
|
out_flags & EF_INTERWORK ? _("does") : _("does not"));
|
|
}
|
|
|
|
return flags_compatible;
|
|
}
|
|
|
|
/* Display the flags field. */
|
|
|
|
static boolean
|
|
elf32_arm_print_private_bfd_data (abfd, ptr)
|
|
bfd *abfd;
|
|
PTR ptr;
|
|
{
|
|
FILE * file = (FILE *) ptr;
|
|
unsigned long flags;
|
|
|
|
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
|
|
|
/* Print normal ELF private data. */
|
|
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
|
|
|
flags = elf_elfheader (abfd)->e_flags;
|
|
/* Ignore init flag - it may not be set, despite the flags field
|
|
containing valid data. */
|
|
|
|
/* xgettext:c-format */
|
|
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
|
|
|
|
switch (EF_ARM_EABI_VERSION (flags))
|
|
{
|
|
case EF_ARM_EABI_UNKNOWN:
|
|
/* The following flag bits are GNU extenstions and not part of the
|
|
official ARM ELF extended ABI. Hence they are only decoded if
|
|
the EABI version is not set. */
|
|
if (flags & EF_INTERWORK)
|
|
fprintf (file, _(" [interworking enabled]"));
|
|
|
|
if (flags & EF_APCS_26)
|
|
fprintf (file, _(" [APCS-26]"));
|
|
else
|
|
fprintf (file, _(" [APCS-32]"));
|
|
|
|
if (flags & EF_APCS_FLOAT)
|
|
fprintf (file, _(" [floats passed in float registers]"));
|
|
|
|
if (flags & EF_PIC)
|
|
fprintf (file, _(" [position independent]"));
|
|
|
|
if (flags & EF_NEW_ABI)
|
|
fprintf (file, _(" [new ABI]"));
|
|
|
|
if (flags & EF_OLD_ABI)
|
|
fprintf (file, _(" [old ABI]"));
|
|
|
|
if (flags & EF_SOFT_FLOAT)
|
|
fprintf (file, _(" [software FP]"));
|
|
|
|
flags &= ~(EF_INTERWORK | EF_APCS_26 | EF_APCS_FLOAT | EF_PIC
|
|
| EF_NEW_ABI | EF_OLD_ABI | EF_SOFT_FLOAT);
|
|
break;
|
|
|
|
case EF_ARM_EABI_VER1:
|
|
fprintf (file, _(" [Version1 EABI]"));
|
|
|
|
if (flags & EF_ARM_SYMSARESORTED)
|
|
fprintf (file, _(" [sorted symbol table]"));
|
|
else
|
|
fprintf (file, _(" [unsorted symbol table]"));
|
|
|
|
flags &= ~ EF_ARM_SYMSARESORTED;
|
|
break;
|
|
|
|
default:
|
|
fprintf (file, _(" <EABI version unrecognised>"));
|
|
break;
|
|
}
|
|
|
|
flags &= ~ EF_ARM_EABIMASK;
|
|
|
|
if (flags & EF_ARM_RELEXEC)
|
|
fprintf (file, _(" [relocatable executable]"));
|
|
|
|
if (flags & EF_ARM_HASENTRY)
|
|
fprintf (file, _(" [has entry point]"));
|
|
|
|
flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
|
|
|
|
if (flags)
|
|
fprintf (file, _("<Unrecognised flag bits set>"));
|
|
|
|
fputc ('\n', file);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
elf32_arm_get_symbol_type (elf_sym, type)
|
|
Elf_Internal_Sym * elf_sym;
|
|
int type;
|
|
{
|
|
switch (ELF_ST_TYPE (elf_sym->st_info))
|
|
{
|
|
case STT_ARM_TFUNC:
|
|
return ELF_ST_TYPE (elf_sym->st_info);
|
|
|
|
case STT_ARM_16BIT:
|
|
/* If the symbol is not an object, return the STT_ARM_16BIT flag.
|
|
This allows us to distinguish between data used by Thumb instructions
|
|
and non-data (which is probably code) inside Thumb regions of an
|
|
executable. */
|
|
if (type != STT_OBJECT)
|
|
return ELF_ST_TYPE (elf_sym->st_info);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
static asection *
|
|
elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
|
Elf_Internal_Rela *rel;
|
|
struct elf_link_hash_entry *h;
|
|
Elf_Internal_Sym *sym;
|
|
{
|
|
if (h != NULL)
|
|
{
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_ARM_GNU_VTINHERIT:
|
|
case R_ARM_GNU_VTENTRY:
|
|
break;
|
|
|
|
default:
|
|
switch (h->root.type)
|
|
{
|
|
case bfd_link_hash_defined:
|
|
case bfd_link_hash_defweak:
|
|
return h->root.u.def.section;
|
|
|
|
case bfd_link_hash_common:
|
|
return h->root.u.c.p->section;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!(elf_bad_symtab (abfd)
|
|
&& ELF_ST_BIND (sym->st_info) != STB_LOCAL)
|
|
&& ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
|
|
&& sym->st_shndx != SHN_COMMON))
|
|
{
|
|
return bfd_section_from_elf_index (abfd, sym->st_shndx);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Update the got entry reference counts for the section being removed. */
|
|
|
|
static boolean
|
|
elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
|
asection *sec ATTRIBUTE_UNUSED;
|
|
const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
|
|
{
|
|
/* We don't support garbage collection of GOT and PLT relocs yet. */
|
|
return true;
|
|
}
|
|
|
|
/* Look through the relocs for a section during the first phase. */
|
|
|
|
static boolean
|
|
elf32_arm_check_relocs (abfd, info, sec, relocs)
|
|
bfd * abfd;
|
|
struct bfd_link_info * info;
|
|
asection * sec;
|
|
const Elf_Internal_Rela * relocs;
|
|
{
|
|
Elf_Internal_Shdr * symtab_hdr;
|
|
struct elf_link_hash_entry ** sym_hashes;
|
|
struct elf_link_hash_entry ** sym_hashes_end;
|
|
const Elf_Internal_Rela * rel;
|
|
const Elf_Internal_Rela * rel_end;
|
|
bfd * dynobj;
|
|
asection * sgot, *srelgot, *sreloc;
|
|
bfd_vma * local_got_offsets;
|
|
|
|
if (info->relocateable)
|
|
return true;
|
|
|
|
sgot = srelgot = sreloc = NULL;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
local_got_offsets = elf_local_got_offsets (abfd);
|
|
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
sym_hashes_end = sym_hashes
|
|
+ symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
|
|
|
|
if (!elf_bad_symtab (abfd))
|
|
sym_hashes_end -= symtab_hdr->sh_info;
|
|
|
|
rel_end = relocs + sec->reloc_count;
|
|
for (rel = relocs; rel < rel_end; rel++)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
unsigned long r_symndx;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
h = NULL;
|
|
else
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
|
|
/* Some relocs require a global offset table. */
|
|
if (dynobj == NULL)
|
|
{
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_ARM_GOT32:
|
|
case R_ARM_GOTOFF:
|
|
case R_ARM_GOTPC:
|
|
elf_hash_table (info)->dynobj = dynobj = abfd;
|
|
if (! _bfd_elf_create_got_section (dynobj, info))
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_ARM_GOT32:
|
|
/* This symbol requires a global offset table entry. */
|
|
if (sgot == NULL)
|
|
{
|
|
sgot = bfd_get_section_by_name (dynobj, ".got");
|
|
BFD_ASSERT (sgot != NULL);
|
|
}
|
|
|
|
/* Get the got relocation section if necessary. */
|
|
if (srelgot == NULL
|
|
&& (h != NULL || info->shared))
|
|
{
|
|
srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
|
|
|
|
/* If no got relocation section, make one and initialize. */
|
|
if (srelgot == NULL)
|
|
{
|
|
srelgot = bfd_make_section (dynobj, ".rel.got");
|
|
if (srelgot == NULL
|
|
|| ! bfd_set_section_flags (dynobj, srelgot,
|
|
(SEC_ALLOC
|
|
| SEC_LOAD
|
|
| SEC_HAS_CONTENTS
|
|
| SEC_IN_MEMORY
|
|
| SEC_LINKER_CREATED
|
|
| SEC_READONLY))
|
|
|| ! bfd_set_section_alignment (dynobj, srelgot, 2))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (h != NULL)
|
|
{
|
|
if (h->got.offset != (bfd_vma) -1)
|
|
/* We have already allocated space in the .got. */
|
|
break;
|
|
|
|
h->got.offset = sgot->_raw_size;
|
|
|
|
/* Make sure this symbol is output as a dynamic symbol. */
|
|
if (h->dynindx == -1)
|
|
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
|
|
srelgot->_raw_size += sizeof (Elf32_External_Rel);
|
|
}
|
|
else
|
|
{
|
|
/* This is a global offset table entry for a local
|
|
symbol. */
|
|
if (local_got_offsets == NULL)
|
|
{
|
|
size_t size;
|
|
register unsigned int i;
|
|
|
|
size = symtab_hdr->sh_info * sizeof (bfd_vma);
|
|
local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
|
|
if (local_got_offsets == NULL)
|
|
return false;
|
|
elf_local_got_offsets (abfd) = local_got_offsets;
|
|
for (i = 0; i < symtab_hdr->sh_info; i++)
|
|
local_got_offsets[i] = (bfd_vma) -1;
|
|
}
|
|
|
|
if (local_got_offsets[r_symndx] != (bfd_vma) -1)
|
|
/* We have already allocated space in the .got. */
|
|
break;
|
|
|
|
local_got_offsets[r_symndx] = sgot->_raw_size;
|
|
|
|
if (info->shared)
|
|
/* If we are generating a shared object, we need to
|
|
output a R_ARM_RELATIVE reloc so that the dynamic
|
|
linker can adjust this GOT entry. */
|
|
srelgot->_raw_size += sizeof (Elf32_External_Rel);
|
|
}
|
|
|
|
sgot->_raw_size += 4;
|
|
break;
|
|
|
|
case R_ARM_PLT32:
|
|
/* This symbol requires a procedure linkage table entry. We
|
|
actually build the entry in adjust_dynamic_symbol,
|
|
because this might be a case of linking PIC code which is
|
|
never referenced by a dynamic object, in which case we
|
|
don't need to generate a procedure linkage table entry
|
|
after all. */
|
|
|
|
/* If this is a local symbol, we resolve it directly without
|
|
creating a procedure linkage table entry. */
|
|
if (h == NULL)
|
|
continue;
|
|
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
|
break;
|
|
|
|
case R_ARM_ABS32:
|
|
case R_ARM_REL32:
|
|
case R_ARM_PC24:
|
|
/* If we are creating a shared library, and this is a reloc
|
|
against a global symbol, or a non PC relative reloc
|
|
against a local symbol, then we need to copy the reloc
|
|
into the shared library. However, if we are linking with
|
|
-Bsymbolic, we do not need to copy a reloc against a
|
|
global symbol which is defined in an object we are
|
|
including in the link (i.e., DEF_REGULAR is set). At
|
|
this point we have not seen all the input files, so it is
|
|
possible that DEF_REGULAR is not set now but will be set
|
|
later (it is never cleared). We account for that
|
|
possibility below by storing information in the
|
|
pcrel_relocs_copied field of the hash table entry. */
|
|
if (info->shared
|
|
&& (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
|
|
|| (h != NULL
|
|
&& (! info->symbolic
|
|
|| (h->elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|
|
{
|
|
/* When creating a shared object, we must copy these
|
|
reloc types into the output file. We create a reloc
|
|
section in dynobj and make room for this reloc. */
|
|
if (sreloc == NULL)
|
|
{
|
|
const char * name;
|
|
|
|
name = (bfd_elf_string_from_elf_section
|
|
(abfd,
|
|
elf_elfheader (abfd)->e_shstrndx,
|
|
elf_section_data (sec)->rel_hdr.sh_name));
|
|
if (name == NULL)
|
|
return false;
|
|
|
|
BFD_ASSERT (strncmp (name, ".rel", 4) == 0
|
|
&& strcmp (bfd_get_section_name (abfd, sec),
|
|
name + 4) == 0);
|
|
|
|
sreloc = bfd_get_section_by_name (dynobj, name);
|
|
if (sreloc == NULL)
|
|
{
|
|
flagword flags;
|
|
|
|
sreloc = bfd_make_section (dynobj, name);
|
|
flags = (SEC_HAS_CONTENTS | SEC_READONLY
|
|
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
|
|
if ((sec->flags & SEC_ALLOC) != 0)
|
|
flags |= SEC_ALLOC | SEC_LOAD;
|
|
if (sreloc == NULL
|
|
|| ! bfd_set_section_flags (dynobj, sreloc, flags)
|
|
|| ! bfd_set_section_alignment (dynobj, sreloc, 2))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
sreloc->_raw_size += sizeof (Elf32_External_Rel);
|
|
/* If we are linking with -Bsymbolic, and this is a
|
|
global symbol, we count the number of PC relative
|
|
relocations we have entered for this symbol, so that
|
|
we can discard them again if the symbol is later
|
|
defined by a regular object. Note that this function
|
|
is only called if we are using an elf_i386 linker
|
|
hash table, which means that h is really a pointer to
|
|
an elf_i386_link_hash_entry. */
|
|
if (h != NULL && info->symbolic
|
|
&& ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
|
|
{
|
|
struct elf32_arm_link_hash_entry * eh;
|
|
struct elf32_arm_pcrel_relocs_copied * p;
|
|
|
|
eh = (struct elf32_arm_link_hash_entry *) h;
|
|
|
|
for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
|
|
if (p->section == sreloc)
|
|
break;
|
|
|
|
if (p == NULL)
|
|
{
|
|
p = ((struct elf32_arm_pcrel_relocs_copied *)
|
|
bfd_alloc (dynobj, sizeof * p));
|
|
|
|
if (p == NULL)
|
|
return false;
|
|
p->next = eh->pcrel_relocs_copied;
|
|
eh->pcrel_relocs_copied = p;
|
|
p->section = sreloc;
|
|
p->count = 0;
|
|
}
|
|
|
|
++p->count;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
|
Reconstruct it for later use during GC. */
|
|
case R_ARM_GNU_VTINHERIT:
|
|
if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
|
return false;
|
|
break;
|
|
|
|
/* This relocation describes which C++ vtable entries are actually
|
|
used. Record for later use during GC. */
|
|
case R_ARM_GNU_VTENTRY:
|
|
if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Find the nearest line to a particular section and offset, for error
|
|
reporting. This code is a duplicate of the code in elf.c, except
|
|
that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
|
|
|
|
static boolean
|
|
elf32_arm_find_nearest_line
|
|
(abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
|
|
bfd * abfd;
|
|
asection * section;
|
|
asymbol ** symbols;
|
|
bfd_vma offset;
|
|
CONST char ** filename_ptr;
|
|
CONST char ** functionname_ptr;
|
|
unsigned int * line_ptr;
|
|
{
|
|
boolean found;
|
|
const char * filename;
|
|
asymbol * func;
|
|
bfd_vma low_func;
|
|
asymbol ** p;
|
|
|
|
if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
|
|
filename_ptr, functionname_ptr,
|
|
line_ptr, 0,
|
|
&elf_tdata (abfd)->dwarf2_find_line_info))
|
|
return true;
|
|
|
|
if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
|
|
&found, filename_ptr,
|
|
functionname_ptr, line_ptr,
|
|
&elf_tdata (abfd)->line_info))
|
|
return false;
|
|
|
|
if (found)
|
|
return true;
|
|
|
|
if (symbols == NULL)
|
|
return false;
|
|
|
|
filename = NULL;
|
|
func = NULL;
|
|
low_func = 0;
|
|
|
|
for (p = symbols; *p != NULL; p++)
|
|
{
|
|
elf_symbol_type *q;
|
|
|
|
q = (elf_symbol_type *) *p;
|
|
|
|
if (bfd_get_section (&q->symbol) != section)
|
|
continue;
|
|
|
|
switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
|
|
{
|
|
default:
|
|
break;
|
|
case STT_FILE:
|
|
filename = bfd_asymbol_name (&q->symbol);
|
|
break;
|
|
case STT_NOTYPE:
|
|
case STT_FUNC:
|
|
case STT_ARM_TFUNC:
|
|
if (q->symbol.section == section
|
|
&& q->symbol.value >= low_func
|
|
&& q->symbol.value <= offset)
|
|
{
|
|
func = (asymbol *) q;
|
|
low_func = q->symbol.value;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (func == NULL)
|
|
return false;
|
|
|
|
*filename_ptr = filename;
|
|
*functionname_ptr = bfd_asymbol_name (func);
|
|
*line_ptr = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
|
regular object. The current definition is in some section of the
|
|
dynamic object, but we're not including those sections. We have to
|
|
change the definition to something the rest of the link can
|
|
understand. */
|
|
|
|
static boolean
|
|
elf32_arm_adjust_dynamic_symbol (info, h)
|
|
struct bfd_link_info * info;
|
|
struct elf_link_hash_entry * h;
|
|
{
|
|
bfd * dynobj;
|
|
asection * s;
|
|
unsigned int power_of_two;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
|
|
/* Make sure we know what is going on here. */
|
|
BFD_ASSERT (dynobj != NULL
|
|
&& ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
|
|
|| h->weakdef != NULL
|
|
|| ((h->elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
|
&& (h->elf_link_hash_flags
|
|
& ELF_LINK_HASH_REF_REGULAR) != 0
|
|
&& (h->elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0)));
|
|
|
|
/* If this is a function, put it in the procedure linkage table. We
|
|
will fill in the contents of the procedure linkage table later,
|
|
when we know the address of the .got section. */
|
|
if (h->type == STT_FUNC
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
|
|
{
|
|
if (! info->shared
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
|
|
{
|
|
/* This case can occur if we saw a PLT32 reloc in an input
|
|
file, but the symbol was never referred to by a dynamic
|
|
object. In such a case, we don't actually need to build
|
|
a procedure linkage table, and we can just do a PC32
|
|
reloc instead. */
|
|
BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
|
|
return true;
|
|
}
|
|
|
|
/* Make sure this symbol is output as a dynamic symbol. */
|
|
if (h->dynindx == -1)
|
|
{
|
|
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".plt");
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
/* If this is the first .plt entry, make room for the special
|
|
first entry. */
|
|
if (s->_raw_size == 0)
|
|
s->_raw_size += PLT_ENTRY_SIZE;
|
|
|
|
/* If this symbol is not defined in a regular file, and we are
|
|
not generating a shared library, then set the symbol to this
|
|
location in the .plt. This is required to make function
|
|
pointers compare as equal between the normal executable and
|
|
the shared library. */
|
|
if (! info->shared
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
|
{
|
|
h->root.u.def.section = s;
|
|
h->root.u.def.value = s->_raw_size;
|
|
}
|
|
|
|
h->plt.offset = s->_raw_size;
|
|
|
|
/* Make room for this entry. */
|
|
s->_raw_size += PLT_ENTRY_SIZE;
|
|
|
|
/* We also need to make an entry in the .got.plt section, which
|
|
will be placed in the .got section by the linker script. */
|
|
s = bfd_get_section_by_name (dynobj, ".got.plt");
|
|
BFD_ASSERT (s != NULL);
|
|
s->_raw_size += 4;
|
|
|
|
/* We also need to make an entry in the .rel.plt section. */
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".rel.plt");
|
|
BFD_ASSERT (s != NULL);
|
|
s->_raw_size += sizeof (Elf32_External_Rel);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
|
processor independent code will have arranged for us to see the
|
|
real definition first, and we can just use the same value. */
|
|
if (h->weakdef != NULL)
|
|
{
|
|
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
|
|
|| h->weakdef->root.type == bfd_link_hash_defweak);
|
|
h->root.u.def.section = h->weakdef->root.u.def.section;
|
|
h->root.u.def.value = h->weakdef->root.u.def.value;
|
|
return true;
|
|
}
|
|
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
|
is not a function. */
|
|
|
|
/* If we are creating a shared library, we must presume that the
|
|
only references to the symbol are via the global offset table.
|
|
For such cases we need not do anything here; the relocations will
|
|
be handled correctly by relocate_section. */
|
|
if (info->shared)
|
|
return true;
|
|
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
|
become part of the .bss section of the executable. There will be
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
|
object will contain position independent code, so all references
|
|
from the dynamic object to this symbol will go through the global
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
|
determine the address it must put in the global offset table, so
|
|
both the dynamic object and the regular object will refer to the
|
|
same memory location for the variable. */
|
|
s = bfd_get_section_by_name (dynobj, ".dynbss");
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
/* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
|
|
copy the initial value out of the dynamic object and into the
|
|
runtime process image. We need to remember the offset into the
|
|
.rel.bss section we are going to use. */
|
|
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
|
|
{
|
|
asection *srel;
|
|
|
|
srel = bfd_get_section_by_name (dynobj, ".rel.bss");
|
|
BFD_ASSERT (srel != NULL);
|
|
srel->_raw_size += sizeof (Elf32_External_Rel);
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
|
|
}
|
|
|
|
/* We need to figure out the alignment required for this symbol. I
|
|
have no idea how ELF linkers handle this. */
|
|
power_of_two = bfd_log2 (h->size);
|
|
if (power_of_two > 3)
|
|
power_of_two = 3;
|
|
|
|
/* Apply the required alignment. */
|
|
s->_raw_size = BFD_ALIGN (s->_raw_size,
|
|
(bfd_size_type) (1 << power_of_two));
|
|
if (power_of_two > bfd_get_section_alignment (dynobj, s))
|
|
{
|
|
if (! bfd_set_section_alignment (dynobj, s, power_of_two))
|
|
return false;
|
|
}
|
|
|
|
/* Define the symbol as being at this point in the section. */
|
|
h->root.u.def.section = s;
|
|
h->root.u.def.value = s->_raw_size;
|
|
|
|
/* Increment the section size to make room for the symbol. */
|
|
s->_raw_size += h->size;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Set the sizes of the dynamic sections. */
|
|
|
|
static boolean
|
|
elf32_arm_size_dynamic_sections (output_bfd, info)
|
|
bfd * output_bfd;
|
|
struct bfd_link_info * info;
|
|
{
|
|
bfd * dynobj;
|
|
asection * s;
|
|
boolean plt;
|
|
boolean relocs;
|
|
boolean reltext;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
BFD_ASSERT (dynobj != NULL);
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
/* Set the contents of the .interp section to the interpreter. */
|
|
if (! info->shared)
|
|
{
|
|
s = bfd_get_section_by_name (dynobj, ".interp");
|
|
BFD_ASSERT (s != NULL);
|
|
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We may have created entries in the .rel.got section.
|
|
However, if we are not creating the dynamic sections, we will
|
|
not actually use these entries. Reset the size of .rel.got,
|
|
which will cause it to get stripped from the output file
|
|
below. */
|
|
s = bfd_get_section_by_name (dynobj, ".rel.got");
|
|
if (s != NULL)
|
|
s->_raw_size = 0;
|
|
}
|
|
|
|
/* If this is a -Bsymbolic shared link, then we need to discard all
|
|
PC relative relocs against symbols defined in a regular object.
|
|
We allocated space for them in the check_relocs routine, but we
|
|
will not fill them in in the relocate_section routine. */
|
|
if (info->shared && info->symbolic)
|
|
elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
|
|
elf32_arm_discard_copies,
|
|
(PTR) NULL);
|
|
|
|
/* The check_relocs and adjust_dynamic_symbol entry points have
|
|
determined the sizes of the various dynamic sections. Allocate
|
|
memory for them. */
|
|
plt = false;
|
|
relocs = false;
|
|
reltext = false;
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
|
{
|
|
const char * name;
|
|
boolean strip;
|
|
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
|
continue;
|
|
|
|
/* It's OK to base decisions on the section name, because none
|
|
of the dynobj section names depend upon the input files. */
|
|
name = bfd_get_section_name (dynobj, s);
|
|
|
|
strip = false;
|
|
|
|
if (strcmp (name, ".plt") == 0)
|
|
{
|
|
if (s->_raw_size == 0)
|
|
{
|
|
/* Strip this section if we don't need it; see the
|
|
comment below. */
|
|
strip = true;
|
|
}
|
|
else
|
|
{
|
|
/* Remember whether there is a PLT. */
|
|
plt = true;
|
|
}
|
|
}
|
|
else if (strncmp (name, ".rel", 4) == 0)
|
|
{
|
|
if (s->_raw_size == 0)
|
|
{
|
|
/* If we don't need this section, strip it from the
|
|
output file. This is mostly to handle .rel.bss and
|
|
.rel.plt. We must create both sections in
|
|
create_dynamic_sections, because they must be created
|
|
before the linker maps input sections to output
|
|
sections. The linker does that before
|
|
adjust_dynamic_symbol is called, and it is that
|
|
function which decides whether anything needs to go
|
|
into these sections. */
|
|
strip = true;
|
|
}
|
|
else
|
|
{
|
|
asection * target;
|
|
|
|
/* Remember whether there are any reloc sections other
|
|
than .rel.plt. */
|
|
if (strcmp (name, ".rel.plt") != 0)
|
|
{
|
|
const char *outname;
|
|
|
|
relocs = true;
|
|
|
|
/* If this relocation section applies to a read only
|
|
section, then we probably need a DT_TEXTREL
|
|
entry. The entries in the .rel.plt section
|
|
really apply to the .got section, which we
|
|
created ourselves and so know is not readonly. */
|
|
outname = bfd_get_section_name (output_bfd,
|
|
s->output_section);
|
|
target = bfd_get_section_by_name (output_bfd, outname + 4);
|
|
|
|
if (target != NULL
|
|
&& (target->flags & SEC_READONLY) != 0
|
|
&& (target->flags & SEC_ALLOC) != 0)
|
|
reltext = true;
|
|
}
|
|
|
|
/* We use the reloc_count field as a counter if we need
|
|
to copy relocs into the output file. */
|
|
s->reloc_count = 0;
|
|
}
|
|
}
|
|
else if (strncmp (name, ".got", 4) != 0)
|
|
{
|
|
/* It's not one of our sections, so don't allocate space. */
|
|
continue;
|
|
}
|
|
|
|
if (strip)
|
|
{
|
|
asection ** spp;
|
|
|
|
for (spp = &s->output_section->owner->sections;
|
|
*spp != s->output_section;
|
|
spp = &(*spp)->next)
|
|
;
|
|
*spp = s->output_section->next;
|
|
--s->output_section->owner->section_count;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Allocate memory for the section contents. */
|
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
|
|
if (s->contents == NULL && s->_raw_size != 0)
|
|
return false;
|
|
}
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
/* Add some entries to the .dynamic section. We fill in the
|
|
values later, in elf32_arm_finish_dynamic_sections, but we
|
|
must add the entries now so that we get the correct size for
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
|
dynamic linker and used by the debugger. */
|
|
if (! info->shared)
|
|
{
|
|
if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
|
|
return false;
|
|
}
|
|
|
|
if (plt)
|
|
{
|
|
if ( ! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
|
|
|| ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
|
|
|| ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
|
|
|| ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
|
|
return false;
|
|
}
|
|
|
|
if (relocs)
|
|
{
|
|
if ( ! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
|
|
|| ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
|
|
|| ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
|
|
sizeof (Elf32_External_Rel)))
|
|
return false;
|
|
}
|
|
|
|
if (reltext)
|
|
{
|
|
if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
|
|
return false;
|
|
info->flags |= DF_TEXTREL;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This function is called via elf32_arm_link_hash_traverse if we are
|
|
creating a shared object with -Bsymbolic. It discards the space
|
|
allocated to copy PC relative relocs against symbols which are
|
|
defined in regular objects. We allocated space for them in the
|
|
check_relocs routine, but we won't fill them in in the
|
|
relocate_section routine. */
|
|
|
|
static boolean
|
|
elf32_arm_discard_copies (h, ignore)
|
|
struct elf32_arm_link_hash_entry * h;
|
|
PTR ignore ATTRIBUTE_UNUSED;
|
|
{
|
|
struct elf32_arm_pcrel_relocs_copied * s;
|
|
|
|
/* We only discard relocs for symbols defined in a regular object. */
|
|
if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
|
return true;
|
|
|
|
for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
|
|
s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
|
dynamic sections here. */
|
|
|
|
static boolean
|
|
elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
|
|
bfd * output_bfd;
|
|
struct bfd_link_info * info;
|
|
struct elf_link_hash_entry * h;
|
|
Elf_Internal_Sym * sym;
|
|
{
|
|
bfd * dynobj;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
|
|
if (h->plt.offset != (bfd_vma) -1)
|
|
{
|
|
asection * splt;
|
|
asection * sgot;
|
|
asection * srel;
|
|
bfd_vma plt_index;
|
|
bfd_vma got_offset;
|
|
Elf_Internal_Rel rel;
|
|
|
|
/* This symbol has an entry in the procedure linkage table. Set
|
|
it up. */
|
|
|
|
BFD_ASSERT (h->dynindx != -1);
|
|
|
|
splt = bfd_get_section_by_name (dynobj, ".plt");
|
|
sgot = bfd_get_section_by_name (dynobj, ".got.plt");
|
|
srel = bfd_get_section_by_name (dynobj, ".rel.plt");
|
|
BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
|
|
|
|
/* Get the index in the procedure linkage table which
|
|
corresponds to this symbol. This is the index of this symbol
|
|
in all the symbols for which we are making plt entries. The
|
|
first entry in the procedure linkage table is reserved. */
|
|
plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
|
|
|
|
/* Get the offset into the .got table of the entry that
|
|
corresponds to this function. Each .got entry is 4 bytes.
|
|
The first three are reserved. */
|
|
got_offset = (plt_index + 3) * 4;
|
|
|
|
/* Fill in the entry in the procedure linkage table. */
|
|
bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
|
|
splt->contents + h->plt.offset + 0);
|
|
bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
|
|
splt->contents + h->plt.offset + 4);
|
|
bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
|
|
splt->contents + h->plt.offset + 8);
|
|
bfd_put_32 (output_bfd,
|
|
(sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ got_offset
|
|
- splt->output_section->vma
|
|
- splt->output_offset
|
|
- h->plt.offset - 12),
|
|
splt->contents + h->plt.offset + 12);
|
|
|
|
/* Fill in the entry in the global offset table. */
|
|
bfd_put_32 (output_bfd,
|
|
(splt->output_section->vma
|
|
+ splt->output_offset),
|
|
sgot->contents + got_offset);
|
|
|
|
/* Fill in the entry in the .rel.plt section. */
|
|
rel.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ got_offset);
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
|
|
bfd_elf32_swap_reloc_out (output_bfd, &rel,
|
|
((Elf32_External_Rel *) srel->contents
|
|
+ plt_index));
|
|
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
|
{
|
|
/* Mark the symbol as undefined, rather than as defined in
|
|
the .plt section. Leave the value alone. */
|
|
sym->st_shndx = SHN_UNDEF;
|
|
/* If the symbol is weak, we do need to clear the value.
|
|
Otherwise, the PLT entry would provide a definition for
|
|
the symbol even if the symbol wasn't defined anywhere,
|
|
and so the symbol would never be NULL. */
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
|
|
== 0)
|
|
sym->st_value = 0;
|
|
}
|
|
}
|
|
|
|
if (h->got.offset != (bfd_vma) -1)
|
|
{
|
|
asection * sgot;
|
|
asection * srel;
|
|
Elf_Internal_Rel rel;
|
|
|
|
/* This symbol has an entry in the global offset table. Set it
|
|
up. */
|
|
sgot = bfd_get_section_by_name (dynobj, ".got");
|
|
srel = bfd_get_section_by_name (dynobj, ".rel.got");
|
|
BFD_ASSERT (sgot != NULL && srel != NULL);
|
|
|
|
rel.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ (h->got.offset &~ 1));
|
|
|
|
/* If this is a -Bsymbolic link, and the symbol is defined
|
|
locally, we just want to emit a RELATIVE reloc. The entry in
|
|
the global offset table will already have been initialized in
|
|
the relocate_section function. */
|
|
if (info->shared
|
|
&& (info->symbolic || h->dynindx == -1)
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
|
|
rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
|
|
}
|
|
|
|
bfd_elf32_swap_reloc_out (output_bfd, &rel,
|
|
((Elf32_External_Rel *) srel->contents
|
|
+ srel->reloc_count));
|
|
++srel->reloc_count;
|
|
}
|
|
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
|
|
{
|
|
asection * s;
|
|
Elf_Internal_Rel rel;
|
|
|
|
/* This symbol needs a copy reloc. Set it up. */
|
|
BFD_ASSERT (h->dynindx != -1
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak));
|
|
|
|
s = bfd_get_section_by_name (h->root.u.def.section->owner,
|
|
".rel.bss");
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
rel.r_offset = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_section->vma
|
|
+ h->root.u.def.section->output_offset);
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
|
|
bfd_elf32_swap_reloc_out (output_bfd, &rel,
|
|
((Elf32_External_Rel *) s->contents
|
|
+ s->reloc_count));
|
|
++s->reloc_count;
|
|
}
|
|
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
|
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
|
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
|
|
sym->st_shndx = SHN_ABS;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Finish up the dynamic sections. */
|
|
|
|
static boolean
|
|
elf32_arm_finish_dynamic_sections (output_bfd, info)
|
|
bfd * output_bfd;
|
|
struct bfd_link_info * info;
|
|
{
|
|
bfd * dynobj;
|
|
asection * sgot;
|
|
asection * sdyn;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
|
|
sgot = bfd_get_section_by_name (dynobj, ".got.plt");
|
|
BFD_ASSERT (sgot != NULL);
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
asection *splt;
|
|
Elf32_External_Dyn *dyncon, *dynconend;
|
|
|
|
splt = bfd_get_section_by_name (dynobj, ".plt");
|
|
BFD_ASSERT (splt != NULL && sdyn != NULL);
|
|
|
|
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
|
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
|
|
|
|
for (; dyncon < dynconend; dyncon++)
|
|
{
|
|
Elf_Internal_Dyn dyn;
|
|
const char * name;
|
|
asection * s;
|
|
|
|
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
|
|
|
switch (dyn.d_tag)
|
|
{
|
|
default:
|
|
break;
|
|
|
|
case DT_PLTGOT:
|
|
name = ".got";
|
|
goto get_vma;
|
|
case DT_JMPREL:
|
|
name = ".rel.plt";
|
|
get_vma:
|
|
s = bfd_get_section_by_name (output_bfd, name);
|
|
BFD_ASSERT (s != NULL);
|
|
dyn.d_un.d_ptr = s->vma;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_PLTRELSZ:
|
|
s = bfd_get_section_by_name (output_bfd, ".rel.plt");
|
|
BFD_ASSERT (s != NULL);
|
|
if (s->_cooked_size != 0)
|
|
dyn.d_un.d_val = s->_cooked_size;
|
|
else
|
|
dyn.d_un.d_val = s->_raw_size;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_RELSZ:
|
|
/* My reading of the SVR4 ABI indicates that the
|
|
procedure linkage table relocs (DT_JMPREL) should be
|
|
included in the overall relocs (DT_REL). This is
|
|
what Solaris does. However, UnixWare can not handle
|
|
that case. Therefore, we override the DT_RELSZ entry
|
|
here to make it not include the JMPREL relocs. Since
|
|
the linker script arranges for .rel.plt to follow all
|
|
other relocation sections, we don't have to worry
|
|
about changing the DT_REL entry. */
|
|
s = bfd_get_section_by_name (output_bfd, ".rel.plt");
|
|
if (s != NULL)
|
|
{
|
|
if (s->_cooked_size != 0)
|
|
dyn.d_un.d_val -= s->_cooked_size;
|
|
else
|
|
dyn.d_un.d_val -= s->_raw_size;
|
|
}
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Fill in the first entry in the procedure linkage table. */
|
|
if (splt->_raw_size > 0)
|
|
{
|
|
bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
|
|
bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
|
|
bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
|
|
bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
|
|
}
|
|
|
|
/* UnixWare sets the entsize of .plt to 4, although that doesn't
|
|
really seem like the right value. */
|
|
elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
|
|
}
|
|
|
|
/* Fill in the first three entries in the global offset table. */
|
|
if (sgot->_raw_size > 0)
|
|
{
|
|
if (sdyn == NULL)
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
|
|
else
|
|
bfd_put_32 (output_bfd,
|
|
sdyn->output_section->vma + sdyn->output_offset,
|
|
sgot->contents);
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
|
|
}
|
|
|
|
elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
elf32_arm_post_process_headers (abfd, link_info)
|
|
bfd * abfd;
|
|
struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
|
|
{
|
|
Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
|
|
|
|
i_ehdrp = elf_elfheader (abfd);
|
|
|
|
i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
|
|
i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
|
|
}
|
|
|
|
#define ELF_ARCH bfd_arch_arm
|
|
#define ELF_MACHINE_CODE EM_ARM
|
|
#define ELF_MAXPAGESIZE 0x8000
|
|
|
|
#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
|
|
#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
|
|
#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
|
|
#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
|
|
#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
|
|
#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
|
|
#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
|
|
|
|
#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
|
|
#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
|
|
#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
|
|
#define elf_backend_check_relocs elf32_arm_check_relocs
|
|
#define elf_backend_relocate_section elf32_arm_relocate_section
|
|
#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
|
|
#define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
|
|
#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
|
|
#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
|
|
#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
|
|
#define elf_backend_post_process_headers elf32_arm_post_process_headers
|
|
|
|
#define elf_backend_can_gc_sections 1
|
|
#define elf_backend_plt_readonly 1
|
|
#define elf_backend_want_got_plt 1
|
|
#define elf_backend_want_plt_sym 0
|
|
|
|
#define elf_backend_got_header_size 12
|
|
#define elf_backend_plt_header_size PLT_ENTRY_SIZE
|
|
|
|
#include "elf32-target.h"
|