freebsd-skq/sys/dev/altera/atse/if_atse.c
br 44efacb064 o Fix style.
o Remove set but not used variable.

Sponsored by:	DARPA, AFRL
2016-12-28 14:10:33 +00:00

2098 lines
57 KiB
C

/*-
* Copyright (c) 2012, 2013 Bjoern A. Zeeb
* Copyright (c) 2014 Robert N. M. Watson
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-11-C-0249)
* ("MRC2"), as part of the DARPA MRC research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Altera Triple-Speed Ethernet MegaCore, Function User Guide
* UG-01008-3.0, Software Version: 12.0, June 2012.
* Available at the time of writing at:
* http://www.altera.com/literature/ug/ug_ethernet.pdf
*
* We are using an Marvell E1111 (Alaska) PHY on the DE4. See mii/e1000phy.c.
*/
/*
* XXX-BZ NOTES:
* - ifOutBroadcastPkts are only counted if both ether dst and src are all-1s;
* seems an IP core bug, they count ether broadcasts as multicast. Is this
* still the case?
* - figure out why the TX FIFO fill status and intr did not work as expected.
* - test 100Mbit/s and 10Mbit/s
* - blacklist the one special factory programmed ethernet address (for now
* hardcoded, later from loader?)
* - resolve all XXX, left as reminders to shake out details later
* - Jumbo frame support
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_device_polling.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/jail.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/types.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/altera/atse/if_atsereg.h>
#include <dev/altera/atse/a_api.h>
MODULE_DEPEND(atse, ether, 1, 1, 1);
MODULE_DEPEND(atse, miibus, 1, 1, 1);
#define ATSE_WATCHDOG_TIME 5
#ifdef DEVICE_POLLING
static poll_handler_t atse_poll;
#endif
/* XXX once we'd do parallel attach, we need a global lock for this. */
#define ATSE_ETHERNET_OPTION_BITS_UNDEF 0
#define ATSE_ETHERNET_OPTION_BITS_READ 1
static int atse_ethernet_option_bits_flag = ATSE_ETHERNET_OPTION_BITS_UNDEF;
static uint8_t atse_ethernet_option_bits[ALTERA_ETHERNET_OPTION_BITS_LEN];
static int atse_intr_debug_enable = 0;
SYSCTL_INT(_debug, OID_AUTO, atse_intr_debug_enable, CTLFLAG_RW,
&atse_intr_debug_enable, 0,
"Extra debugging output for atse interrupts");
/*
* Softc and critical resource locking.
*/
#define ATSE_LOCK(_sc) mtx_lock(&(_sc)->atse_mtx)
#define ATSE_UNLOCK(_sc) mtx_unlock(&(_sc)->atse_mtx)
#define ATSE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->atse_mtx, MA_OWNED)
#define ATSE_TX_PENDING(sc) (sc->atse_tx_m != NULL || \
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
#ifdef DEBUG
#define DPRINTF(format, ...) printf(format, __VA_ARGS__)
#else
#define DPRINTF(format, ...)
#endif
/* a_api.c functions; factor out? */
static inline void
a_onchip_fifo_mem_core_write(struct resource *res, uint32_t off,
uint32_t val4, const char *desc, const char *f, const int l)
{
val4 = htole32(val4);
DPRINTF("[%s:%d] FIFOW %s 0x%08x = 0x%08x\n", f, l, desc, off, val4);
bus_write_4(res, off, val4);
}
static inline uint32_t
a_onchip_fifo_mem_core_read(struct resource *res, uint32_t off,
const char *desc, const char *f, const int l)
{
uint32_t val4;
val4 = le32toh(bus_read_4(res, off));
DPRINTF("[%s:%d] FIFOR %s 0x%08x = 0x%08x\n", f, l, desc, off, val4);
return (val4);
}
/* The FIFO does an endian conversion, so we must not do it as well. */
/* XXX-BZ in fact we should do a htobe32 so le would be fine as well? */
#define ATSE_TX_DATA_WRITE(sc, val4) \
bus_write_4((sc)->atse_tx_mem_res, A_ONCHIP_FIFO_MEM_CORE_DATA, val4)
#define ATSE_TX_META_WRITE(sc, val4) \
a_onchip_fifo_mem_core_write((sc)->atse_tx_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_METADATA, \
(val4), "TXM", __func__, __LINE__)
#define ATSE_TX_META_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_tx_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_METADATA, \
"TXM", __func__, __LINE__)
#define ATSE_TX_READ_FILL_LEVEL(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_FILL_LEVEL, \
"TX_FILL", __func__, __LINE__)
#define ATSE_RX_READ_FILL_LEVEL(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_FILL_LEVEL, \
"RX_FILL", __func__, __LINE__)
/* The FIFO does an endian conversion, so we must not do it as well. */
/* XXX-BZ in fact we should do a htobe32 so le would be fine as well? */
#define ATSE_RX_DATA_READ(sc) \
bus_read_4((sc)->atse_rx_mem_res, A_ONCHIP_FIFO_MEM_CORE_DATA)
#define ATSE_RX_META_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_rx_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_METADATA, \
"RXM", __func__, __LINE__)
#define ATSE_RX_STATUS_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_I_STATUS, \
"RX_EVENT", __func__, __LINE__)
#define ATSE_TX_STATUS_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_I_STATUS, \
"TX_EVENT", __func__, __LINE__)
#define ATSE_RX_EVENT_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
"RX_EVENT", __func__, __LINE__)
#define ATSE_TX_EVENT_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
"TX_EVENT", __func__, __LINE__)
#define ATSE_RX_EVENT_CLEAR(sc) \
do { \
uint32_t val4; \
\
val4 = a_onchip_fifo_mem_core_read( \
(sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
"RX_EVENT", __func__, __LINE__); \
if (val4 != 0x00) \
a_onchip_fifo_mem_core_write( \
(sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
val4, "RX_EVENT", __func__, __LINE__); \
} while(0)
#define ATSE_TX_EVENT_CLEAR(sc) \
do { \
uint32_t val4; \
\
val4 = a_onchip_fifo_mem_core_read( \
(sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
"TX_EVENT", __func__, __LINE__); \
if (val4 != 0x00) \
a_onchip_fifo_mem_core_write( \
(sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
val4, "TX_EVENT", __func__, __LINE__); \
} while(0)
#define ATSE_RX_EVENTS (A_ONCHIP_FIFO_MEM_CORE_INTR_FULL | \
A_ONCHIP_FIFO_MEM_CORE_INTR_OVERFLOW | \
A_ONCHIP_FIFO_MEM_CORE_INTR_UNDERFLOW)
#define ATSE_RX_INTR_ENABLE(sc) \
a_onchip_fifo_mem_core_write((sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_INT_ENABLE, \
ATSE_RX_EVENTS, \
"RX_INTR", __func__, __LINE__) /* XXX-BZ review later. */
#define ATSE_RX_INTR_DISABLE(sc) \
a_onchip_fifo_mem_core_write((sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_INT_ENABLE, 0, \
"RX_INTR", __func__, __LINE__)
#define ATSE_RX_INTR_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_INT_ENABLE, \
"RX_INTR", __func__, __LINE__)
#define ATSE_TX_EVENTS (A_ONCHIP_FIFO_MEM_CORE_INTR_EMPTY | \
A_ONCHIP_FIFO_MEM_CORE_INTR_OVERFLOW | \
A_ONCHIP_FIFO_MEM_CORE_INTR_UNDERFLOW)
#define ATSE_TX_INTR_ENABLE(sc) \
a_onchip_fifo_mem_core_write((sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_INT_ENABLE, \
ATSE_TX_EVENTS, \
"TX_INTR", __func__, __LINE__) /* XXX-BZ review later. */
#define ATSE_TX_INTR_DISABLE(sc) \
a_onchip_fifo_mem_core_write((sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_INT_ENABLE, 0, \
"TX_INTR", __func__, __LINE__)
#define ATSE_TX_INTR_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_INT_ENABLE, \
"TX_INTR", __func__, __LINE__)
static int atse_rx_locked(struct atse_softc *sc);
/*
* Register space access macros.
*/
static inline void
csr_write_4(struct atse_softc *sc, uint32_t reg, uint32_t val4,
const char *f, const int l)
{
val4 = htole32(val4);
DPRINTF("[%s:%d] CSR W %s 0x%08x (0x%08x) = 0x%08x\n", f, l,
"atse_mem_res", reg, reg * 4, val4);
bus_write_4(sc->atse_mem_res, reg * 4, val4);
}
static inline uint32_t
csr_read_4(struct atse_softc *sc, uint32_t reg, const char *f, const int l)
{
uint32_t val4;
val4 = le32toh(bus_read_4(sc->atse_mem_res, reg * 4));
DPRINTF("[%s:%d] CSR R %s 0x%08x (0x%08x) = 0x%08x\n", f, l,
"atse_mem_res", reg, reg * 4, val4);
return (val4);
}
/*
* See page 5-2 that it's all dword offsets and the MS 16 bits need to be zero
* on write and ignored on read.
*/
static inline void
pxx_write_2(struct atse_softc *sc, bus_addr_t bmcr, uint32_t reg, uint16_t val,
const char *f, const int l, const char *s)
{
uint32_t val4;
val4 = htole32(val & 0x0000ffff);
DPRINTF("[%s:%d] %s W %s 0x%08x (0x%08jx) = 0x%08x\n", f, l, s,
"atse_mem_res", reg, (bmcr + reg) * 4, val4);
bus_write_4(sc->atse_mem_res, (bmcr + reg) * 4, val4);
}
static inline uint16_t
pxx_read_2(struct atse_softc *sc, bus_addr_t bmcr, uint32_t reg, const char *f,
const int l, const char *s)
{
uint32_t val4;
uint16_t val;
val4 = bus_read_4(sc->atse_mem_res, (bmcr + reg) * 4);
val = le32toh(val4) & 0x0000ffff;
DPRINTF("[%s:%d] %s R %s 0x%08x (0x%08jx) = 0x%04x\n", f, l, s,
"atse_mem_res", reg, (bmcr + reg) * 4, val);
return (val);
}
#define CSR_WRITE_4(sc, reg, val) \
csr_write_4((sc), (reg), (val), __func__, __LINE__)
#define CSR_READ_4(sc, reg) \
csr_read_4((sc), (reg), __func__, __LINE__)
#define PCS_WRITE_2(sc, reg, val) \
pxx_write_2((sc), sc->atse_bmcr0, (reg), (val), __func__, __LINE__, \
"PCS")
#define PCS_READ_2(sc, reg) \
pxx_read_2((sc), sc->atse_bmcr0, (reg), __func__, __LINE__, "PCS")
#define PHY_WRITE_2(sc, reg, val) \
pxx_write_2((sc), sc->atse_bmcr1, (reg), (val), __func__, __LINE__, \
"PHY")
#define PHY_READ_2(sc, reg) \
pxx_read_2((sc), sc->atse_bmcr1, (reg), __func__, __LINE__, "PHY")
static void atse_tick(void *);
static int atse_detach(device_t);
devclass_t atse_devclass;
static int
atse_tx_locked(struct atse_softc *sc, int *sent)
{
struct mbuf *m;
uint32_t val4, fill_level;
int leftm;
int c;
ATSE_LOCK_ASSERT(sc);
m = sc->atse_tx_m;
KASSERT(m != NULL, ("%s: m is null: sc=%p", __func__, sc));
KASSERT(m->m_flags & M_PKTHDR, ("%s: not a pkthdr: m=%p", __func__, m));
/*
* Copy to buffer to minimize our pain as we can only store
* double words which, after the first mbuf gets out of alignment
* quite quickly.
*/
if (sc->atse_tx_m_offset == 0) {
m_copydata(m, 0, m->m_pkthdr.len, sc->atse_tx_buf);
sc->atse_tx_buf_len = m->m_pkthdr.len;
}
fill_level = ATSE_TX_READ_FILL_LEVEL(sc);
#if 0 /* Returns 0xdeadc0de. */
val4 = ATSE_TX_META_READ(sc);
#endif
if (sc->atse_tx_m_offset == 0) {
/* Write start of packet. */
val4 = A_ONCHIP_FIFO_MEM_CORE_SOP;
val4 &= ~A_ONCHIP_FIFO_MEM_CORE_EOP;
ATSE_TX_META_WRITE(sc, val4);
}
/* TX FIFO is single clock mode, so we have the full FIFO. */
c = 0;
while ((sc->atse_tx_buf_len - sc->atse_tx_m_offset) > 4 &&
fill_level < AVALON_FIFO_TX_BASIC_OPTS_DEPTH) {
bcopy(&sc->atse_tx_buf[sc->atse_tx_m_offset], &val4,
sizeof(val4));
ATSE_TX_DATA_WRITE(sc, val4);
sc->atse_tx_m_offset += sizeof(val4);
c += sizeof(val4);
fill_level++;
if (fill_level == AVALON_FIFO_TX_BASIC_OPTS_DEPTH)
fill_level = ATSE_TX_READ_FILL_LEVEL(sc);
}
if (sent != NULL)
*sent += c;
/* Set EOP *before* writing the last symbol. */
if (sc->atse_tx_m_offset >= (sc->atse_tx_buf_len - 4) &&
fill_level < AVALON_FIFO_TX_BASIC_OPTS_DEPTH) {
/* Set EndOfPacket. */
val4 = A_ONCHIP_FIFO_MEM_CORE_EOP;
/* Set EMPTY. */
leftm = sc->atse_tx_buf_len - sc->atse_tx_m_offset;
val4 |= ((4 - leftm) << A_ONCHIP_FIFO_MEM_CORE_EMPTY_SHIFT);
ATSE_TX_META_WRITE(sc, val4);
/* Write last symbol. */
val4 = 0;
bcopy(sc->atse_tx_buf + sc->atse_tx_m_offset, &val4, leftm);
ATSE_TX_DATA_WRITE(sc, val4);
if (sent != NULL)
*sent += leftm;
/* OK, the packet is gone. */
sc->atse_tx_m = NULL;
sc->atse_tx_m_offset = 0;
/* If anyone is interested give them a copy. */
BPF_MTAP(sc->atse_ifp, m);
m_freem(m);
return (0);
}
return (EBUSY);
}
static void
atse_start_locked(struct ifnet *ifp)
{
struct atse_softc *sc;
int error, sent;
sc = ifp->if_softc;
ATSE_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->atse_flags & ATSE_FLAGS_LINK) == 0)
return;
#if 1
/*
* Disable the watchdog while sending, we are batching packets.
* Though we should never reach 5 seconds, and are holding the lock,
* but who knows.
*/
sc->atse_watchdog_timer = 0;
#endif
if (sc->atse_tx_m != NULL) {
error = atse_tx_locked(sc, &sent);
if (error != 0)
goto done;
}
/* We have more space to send so continue ... */
for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, sc->atse_tx_m);
sc->atse_tx_m_offset = 0;
if (sc->atse_tx_m == NULL)
break;
error = atse_tx_locked(sc, &sent);
if (error != 0)
goto done;
}
done:
/* If the IP core walks into Nekromanteion try to bail out. */
if (sent > 0)
sc->atse_watchdog_timer = ATSE_WATCHDOG_TIME;
}
static void
atse_start(struct ifnet *ifp)
{
struct atse_softc *sc;
sc = ifp->if_softc;
ATSE_LOCK(sc);
atse_start_locked(ifp);
ATSE_UNLOCK(sc);
}
static int
atse_stop_locked(struct atse_softc *sc)
{
uint32_t mask, val4;
struct ifnet *ifp;
int i;
ATSE_LOCK_ASSERT(sc);
sc->atse_watchdog_timer = 0;
callout_stop(&sc->atse_tick);
ifp = sc->atse_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
ATSE_RX_INTR_DISABLE(sc);
ATSE_TX_INTR_DISABLE(sc);
ATSE_RX_EVENT_CLEAR(sc);
ATSE_TX_EVENT_CLEAR(sc);
/* Disable MAC transmit and receive datapath. */
mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 &= ~mask;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & mask) == 0)
break;
DELAY(10);
}
if ((val4 & mask) != 0)
device_printf(sc->atse_dev, "Disabling MAC TX/RX timed out.\n");
/* Punt. */
sc->atse_flags &= ~ATSE_FLAGS_LINK;
/* XXX-BZ free the RX/TX rings. */
return (0);
}
static uint8_t
atse_mchash(struct atse_softc *sc __unused, const uint8_t *addr)
{
uint8_t x, y;
int i, j;
x = 0;
for (i = 0; i < ETHER_ADDR_LEN; i++) {
y = addr[i] & 0x01;
for (j = 1; j < 8; j++)
y ^= (addr[i] >> j) & 0x01;
x |= (y << i);
}
return (x);
}
static int
atse_rxfilter_locked(struct atse_softc *sc)
{
struct ifmultiaddr *ifma;
struct ifnet *ifp;
uint32_t val4;
int i;
/* XXX-BZ can we find out if we have the MHASH synthesized? */
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
/* For simplicity always hash full 48 bits of addresses. */
if ((val4 & BASE_CFG_COMMAND_CONFIG_MHASH_SEL) != 0)
val4 &= ~BASE_CFG_COMMAND_CONFIG_MHASH_SEL;
ifp = sc->atse_ifp;
if (ifp->if_flags & IFF_PROMISC)
val4 |= BASE_CFG_COMMAND_CONFIG_PROMIS_EN;
else
val4 &= ~BASE_CFG_COMMAND_CONFIG_PROMIS_EN;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
if (ifp->if_flags & IFF_ALLMULTI) {
/* Accept all multicast addresses. */
for (i = 0; i <= MHASH_LEN; i++)
CSR_WRITE_4(sc, MHASH_START + i, 0x1);
} else {
/*
* Can hold MHASH_LEN entries.
* XXX-BZ bitstring.h would be more general.
*/
uint64_t h;
h = 0;
/*
* Re-build and re-program hash table. First build the
* bit-field "yes" or "no" for each slot per address, then
* do all the programming afterwards.
*/
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h |= (1 << atse_mchash(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr)));
}
if_maddr_runlock(ifp);
for (i = 0; i <= MHASH_LEN; i++)
CSR_WRITE_4(sc, MHASH_START + i,
(h & (1 << i)) ? 0x01 : 0x00);
}
return (0);
}
static int
atse_ethernet_option_bits_read_fdt(device_t dev)
{
struct resource *res;
device_t fdev;
int i, rid;
if (atse_ethernet_option_bits_flag & ATSE_ETHERNET_OPTION_BITS_READ)
return (0);
fdev = device_find_child(device_get_parent(dev), "cfi", 0);
if (fdev == NULL)
return (ENOENT);
rid = 0;
res = bus_alloc_resource_any(fdev, SYS_RES_MEMORY, &rid,
RF_ACTIVE | RF_SHAREABLE);
if (res == NULL)
return (ENXIO);
for (i = 0; i < ALTERA_ETHERNET_OPTION_BITS_LEN; i++)
atse_ethernet_option_bits[i] = bus_read_1(res,
ALTERA_ETHERNET_OPTION_BITS_OFF + i);
bus_release_resource(fdev, SYS_RES_MEMORY, rid, res);
atse_ethernet_option_bits_flag |= ATSE_ETHERNET_OPTION_BITS_READ;
return (0);
}
static int
atse_ethernet_option_bits_read(device_t dev)
{
int error;
error = atse_ethernet_option_bits_read_fdt(dev);
if (error == 0)
return (0);
device_printf(dev, "Cannot read Ethernet addresses from flash.\n");
return (error);
}
static int
atse_get_eth_address(struct atse_softc *sc)
{
unsigned long hostid;
uint32_t val4;
int unit;
/*
* Make sure to only ever do this once. Otherwise a reset would
* possibly change our ethernet address, which is not good at all.
*/
if (sc->atse_eth_addr[0] != 0x00 || sc->atse_eth_addr[1] != 0x00 ||
sc->atse_eth_addr[2] != 0x00)
return (0);
if ((atse_ethernet_option_bits_flag &
ATSE_ETHERNET_OPTION_BITS_READ) == 0)
goto get_random;
val4 = atse_ethernet_option_bits[0] << 24;
val4 |= atse_ethernet_option_bits[1] << 16;
val4 |= atse_ethernet_option_bits[2] << 8;
val4 |= atse_ethernet_option_bits[3];
/* They chose "safe". */
if (val4 != le32toh(0x00005afe)) {
device_printf(sc->atse_dev, "Magic '5afe' is not safe: 0x%08x. "
"Falling back to random numbers for hardware address.\n",
val4);
goto get_random;
}
sc->atse_eth_addr[0] = atse_ethernet_option_bits[4];
sc->atse_eth_addr[1] = atse_ethernet_option_bits[5];
sc->atse_eth_addr[2] = atse_ethernet_option_bits[6];
sc->atse_eth_addr[3] = atse_ethernet_option_bits[7];
sc->atse_eth_addr[4] = atse_ethernet_option_bits[8];
sc->atse_eth_addr[5] = atse_ethernet_option_bits[9];
/* Handle factory default ethernet addresss: 00:07:ed:ff:ed:15 */
if (sc->atse_eth_addr[0] == 0x00 && sc->atse_eth_addr[1] == 0x07 &&
sc->atse_eth_addr[2] == 0xed && sc->atse_eth_addr[3] == 0xff &&
sc->atse_eth_addr[4] == 0xed && sc->atse_eth_addr[5] == 0x15) {
device_printf(sc->atse_dev, "Factory programmed Ethernet "
"hardware address blacklisted. Falling back to random "
"address to avoid collisions.\n");
device_printf(sc->atse_dev, "Please re-program your flash.\n");
goto get_random;
}
if (sc->atse_eth_addr[0] == 0x00 && sc->atse_eth_addr[1] == 0x00 &&
sc->atse_eth_addr[2] == 0x00 && sc->atse_eth_addr[3] == 0x00 &&
sc->atse_eth_addr[4] == 0x00 && sc->atse_eth_addr[5] == 0x00) {
device_printf(sc->atse_dev, "All zero's Ethernet hardware "
"address blacklisted. Falling back to random address.\n");
device_printf(sc->atse_dev, "Please re-program your flash.\n");
goto get_random;
}
if (ETHER_IS_MULTICAST(sc->atse_eth_addr)) {
device_printf(sc->atse_dev, "Multicast Ethernet hardware "
"address blacklisted. Falling back to random address.\n");
device_printf(sc->atse_dev, "Please re-program your flash.\n");
goto get_random;
}
/*
* If we find an Altera prefixed address with a 0x0 ending
* adjust by device unit. If not and this is not the first
* Ethernet, go to random.
*/
unit = device_get_unit(sc->atse_dev);
if (unit == 0x00)
return (0);
if (unit > 0x0f) {
device_printf(sc->atse_dev, "We do not support Ethernet "
"addresses for more than 16 MACs. Falling back to "
"random hadware address.\n");
goto get_random;
}
if ((sc->atse_eth_addr[0] & ~0x2) != 0 ||
sc->atse_eth_addr[1] != 0x07 || sc->atse_eth_addr[2] != 0xed ||
(sc->atse_eth_addr[5] & 0x0f) != 0x0) {
device_printf(sc->atse_dev, "Ethernet address not meeting our "
"multi-MAC standards. Falling back to random hadware "
"address.\n");
goto get_random;
}
sc->atse_eth_addr[5] |= (unit & 0x0f);
return (0);
get_random:
/*
* Fall back to random code we also use on bridge(4).
*/
getcredhostid(curthread->td_ucred, &hostid);
if (hostid == 0) {
arc4rand(sc->atse_eth_addr, ETHER_ADDR_LEN, 1);
sc->atse_eth_addr[0] &= ~1;/* clear multicast bit */
sc->atse_eth_addr[0] |= 2; /* set the LAA bit */
} else {
sc->atse_eth_addr[0] = 0x2;
sc->atse_eth_addr[1] = (hostid >> 24) & 0xff;
sc->atse_eth_addr[2] = (hostid >> 16) & 0xff;
sc->atse_eth_addr[3] = (hostid >> 8 ) & 0xff;
sc->atse_eth_addr[4] = hostid & 0xff;
sc->atse_eth_addr[5] = sc->atse_unit & 0xff;
}
return (0);
}
static int
atse_set_eth_address(struct atse_softc *sc, int n)
{
uint32_t v0, v1;
v0 = (sc->atse_eth_addr[3] << 24) | (sc->atse_eth_addr[2] << 16) |
(sc->atse_eth_addr[1] << 8) | sc->atse_eth_addr[0];
v1 = (sc->atse_eth_addr[5] << 8) | sc->atse_eth_addr[4];
if (n & ATSE_ETH_ADDR_DEF) {
CSR_WRITE_4(sc, BASE_CFG_MAC_0, v0);
CSR_WRITE_4(sc, BASE_CFG_MAC_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP1) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_0_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_0_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP2) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_1_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_1_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP3) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_2_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_2_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP4) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_3_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_3_1, v1);
}
return (0);
}
static int
atse_reset(struct atse_softc *sc)
{
uint32_t val4, mask;
uint16_t val;
int i;
/* 1. External PHY Initialization using MDIO. */
/*
* We select the right MDIO space in atse_attach() and let MII do
* anything else.
*/
/* 2. PCS Configuration Register Initialization. */
/* a. Set auto negotiation link timer to 1.6ms for SGMII. */
PCS_WRITE_2(sc, PCS_EXT_LINK_TIMER_0, 0x0D40);
PCS_WRITE_2(sc, PCS_EXT_LINK_TIMER_1, 0x0003);
/* b. Configure SGMII. */
val = PCS_EXT_IF_MODE_SGMII_ENA|PCS_EXT_IF_MODE_USE_SGMII_AN;
PCS_WRITE_2(sc, PCS_EXT_IF_MODE, val);
/* c. Enable auto negotiation. */
/* Ignore Bits 6,8,13; should be set,set,unset. */
val = PCS_READ_2(sc, PCS_CONTROL);
val &= ~(PCS_CONTROL_ISOLATE|PCS_CONTROL_POWERDOWN);
val &= ~PCS_CONTROL_LOOPBACK; /* Make this a -link1 option? */
val |= PCS_CONTROL_AUTO_NEGOTIATION_ENABLE;
PCS_WRITE_2(sc, PCS_CONTROL, val);
/* d. PCS reset. */
val = PCS_READ_2(sc, PCS_CONTROL);
val |= PCS_CONTROL_RESET;
PCS_WRITE_2(sc, PCS_CONTROL, val);
/* Wait for reset bit to clear; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val = PCS_READ_2(sc, PCS_CONTROL);
if ((val & PCS_CONTROL_RESET) == 0)
break;
DELAY(10);
}
if ((val & PCS_CONTROL_RESET) != 0) {
device_printf(sc->atse_dev, "PCS reset timed out.\n");
return (ENXIO);
}
/* 3. MAC Configuration Register Initialization. */
/* a. Disable MAC transmit and receive datapath. */
mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 &= ~mask;
/* Samples in the manual do have the SW_RESET bit set here, why? */
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & mask) == 0)
break;
DELAY(10);
}
if ((val4 & mask) != 0) {
device_printf(sc->atse_dev, "Disabling MAC TX/RX timed out.\n");
return (ENXIO);
}
/* b. MAC FIFO configuration. */
CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_EMPTY, FIFO_DEPTH_TX - 16);
CSR_WRITE_4(sc, BASE_CFG_TX_ALMOST_FULL, 3);
CSR_WRITE_4(sc, BASE_CFG_TX_ALMOST_EMPTY, 8);
CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_EMPTY, FIFO_DEPTH_RX - 16);
CSR_WRITE_4(sc, BASE_CFG_RX_ALMOST_FULL, 8);
CSR_WRITE_4(sc, BASE_CFG_RX_ALMOST_EMPTY, 8);
#if 0
CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_FULL, 16);
CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_FULL, 16);
#else
/* For store-and-forward mode, set this threshold to 0. */
CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_FULL, 0);
CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_FULL, 0);
#endif
/* c. MAC address configuration. */
/* Also intialize supplementary addresses to our primary one. */
/* XXX-BZ FreeBSD really needs to grow and API for using these. */
atse_get_eth_address(sc);
atse_set_eth_address(sc, ATSE_ETH_ADDR_ALL);
/* d. MAC function configuration. */
CSR_WRITE_4(sc, BASE_CFG_FRM_LENGTH, 1518); /* Default. */
CSR_WRITE_4(sc, BASE_CFG_TX_IPG_LENGTH, 12);
CSR_WRITE_4(sc, BASE_CFG_PAUSE_QUANT, 0xFFFF);
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
/*
* If 1000BASE-X/SGMII PCS is initialized, set the ETH_SPEED (bit 3)
* and ENA_10 (bit 25) in command_config register to 0. If half duplex
* is reported in the PHY/PCS status register, set the HD_ENA (bit 10)
* to 1 in command_config register.
* BZ: We shoot for 1000 instead.
*/
#if 0
val4 |= BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
#else
val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
#endif
val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10;
#if 0
/*
* We do not want to set this, otherwise, we could not even send
* random raw ethernet frames for various other research. By default
* FreeBSD will use the right ether source address.
*/
val4 |= BASE_CFG_COMMAND_CONFIG_TX_ADDR_INS;
#endif
val4 |= BASE_CFG_COMMAND_CONFIG_PAD_EN;
val4 &= ~BASE_CFG_COMMAND_CONFIG_CRC_FWD;
#if 0
val4 |= BASE_CFG_COMMAND_CONFIG_CNTL_FRM_ENA;
#endif
#if 1
val4 |= BASE_CFG_COMMAND_CONFIG_RX_ERR_DISC;
#endif
val &= ~BASE_CFG_COMMAND_CONFIG_LOOP_ENA; /* link0? */
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/*
* Make sure we do not enable 32bit alignment; FreeBSD cannot
* cope with the additional padding (though we should!?).
* Also make sure we get the CRC appended.
*/
val4 = CSR_READ_4(sc, TX_CMD_STAT);
val4 &= ~(TX_CMD_STAT_OMIT_CRC|TX_CMD_STAT_TX_SHIFT16);
CSR_WRITE_4(sc, TX_CMD_STAT, val4);
val4 = CSR_READ_4(sc, RX_CMD_STAT);
val4 &= ~RX_CMD_STAT_RX_SHIFT16;
CSR_WRITE_4(sc, RX_CMD_STAT, val4);
/* e. Reset MAC. */
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 |= BASE_CFG_COMMAND_CONFIG_SW_RESET;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & BASE_CFG_COMMAND_CONFIG_SW_RESET) == 0)
break;
DELAY(10);
}
if ((val4 & BASE_CFG_COMMAND_CONFIG_SW_RESET) != 0) {
device_printf(sc->atse_dev, "MAC reset timed out.\n");
return (ENXIO);
}
/* f. Enable MAC transmit and receive datapath. */
mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 |= mask;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & mask) == mask)
break;
DELAY(10);
}
if ((val4 & mask) != mask) {
device_printf(sc->atse_dev, "Enabling MAC TX/RX timed out.\n");
return (ENXIO);
}
return (0);
}
static void
atse_init_locked(struct atse_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t *eaddr;
ATSE_LOCK_ASSERT(sc);
ifp = sc->atse_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Must update the ether address if changed. Given we do not handle
* in atse_ioctl() but it's in the general framework, just always
* do it here before atse_reset().
*/
eaddr = IF_LLADDR(sc->atse_ifp);
bcopy(eaddr, &sc->atse_eth_addr, ETHER_ADDR_LEN);
/* Make things frind to halt, cleanup, ... */
atse_stop_locked(sc);
/* ... reset, ... */
atse_reset(sc);
/* ... and fire up the engine again. */
atse_rxfilter_locked(sc);
/* Memory rings? DMA engine? */
sc->atse_rx_buf_len = 0;
sc->atse_flags &= ATSE_FLAGS_LINK; /* Preserve. */
#ifdef DEVICE_POLLING
/* Only enable interrupts if we are not polling. */
if (ifp->if_capenable & IFCAP_POLLING) {
ATSE_RX_INTR_DISABLE(sc);
ATSE_TX_INTR_DISABLE(sc);
ATSE_RX_EVENT_CLEAR(sc);
ATSE_TX_EVENT_CLEAR(sc);
} else
#endif
{
ATSE_RX_INTR_ENABLE(sc);
ATSE_TX_INTR_ENABLE(sc);
}
mii = device_get_softc(sc->atse_miibus);
sc->atse_flags &= ~ATSE_FLAGS_LINK;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->atse_tick, hz, atse_tick, sc);
}
static void
atse_init(void *xsc)
{
struct atse_softc *sc;
/*
* XXXRW: There is some argument that we should immediately do RX
* processing after enabling interrupts, or one may not fire if there
* are buffered packets.
*/
sc = (struct atse_softc *)xsc;
ATSE_LOCK(sc);
atse_init_locked(sc);
ATSE_UNLOCK(sc);
}
static int
atse_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct atse_softc *sc;
struct ifreq *ifr;
int error, mask;
error = 0;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
switch (command) {
case SIOCSIFFLAGS:
ATSE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->atse_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
atse_rxfilter_locked(sc);
else
atse_init_locked(sc);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
atse_stop_locked(sc);
sc->atse_if_flags = ifp->if_flags;
ATSE_UNLOCK(sc);
break;
case SIOCSIFCAP:
ATSE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0 &&
(IFCAP_POLLING & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_POLLING;
if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
error = ether_poll_register(atse_poll, ifp);
if (error != 0) {
ATSE_UNLOCK(sc);
break;
}
/* Disable interrupts. */
ATSE_RX_INTR_DISABLE(sc);
ATSE_TX_INTR_DISABLE(sc);
ATSE_RX_EVENT_CLEAR(sc);
ATSE_TX_EVENT_CLEAR(sc);
/*
* Do not allow disabling of polling if we do
* not have interrupts.
*/
} else if (sc->atse_rx_irq_res != NULL ||
sc->atse_tx_irq_res != NULL) {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
ATSE_RX_INTR_ENABLE(sc);
ATSE_TX_INTR_ENABLE(sc);
} else {
ifp->if_capenable ^= IFCAP_POLLING;
error = EINVAL;
}
}
#endif /* DEVICE_POLLING */
ATSE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ATSE_LOCK(sc);
atse_rxfilter_locked(sc);
ATSE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
{
struct mii_data *mii;
struct ifreq *ifr;
mii = device_get_softc(sc->atse_miibus);
ifr = (struct ifreq *)data;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
}
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
atse_intr_debug(struct atse_softc *sc, const char *intrname)
{
uint32_t rxs, rxe, rxi, rxf, txs, txe, txi, txf;
if (!atse_intr_debug_enable)
return;
rxs = ATSE_RX_STATUS_READ(sc);
rxe = ATSE_RX_EVENT_READ(sc);
rxi = ATSE_RX_INTR_READ(sc);
rxf = ATSE_RX_READ_FILL_LEVEL(sc);
txs = ATSE_TX_STATUS_READ(sc);
txe = ATSE_TX_EVENT_READ(sc);
txi = ATSE_TX_INTR_READ(sc);
txf = ATSE_TX_READ_FILL_LEVEL(sc);
printf(
"%s - %s: "
"rxs 0x%x rxe 0x%x rxi 0x%x rxf 0x%x "
"txs 0x%x txe 0x%x txi 0x%x txf 0x%x\n",
__func__, intrname,
rxs, rxe, rxi, rxf,
txs, txe, txi, txf);
}
static void
atse_watchdog(struct atse_softc *sc)
{
ATSE_LOCK_ASSERT(sc);
if (sc->atse_watchdog_timer == 0 || --sc->atse_watchdog_timer > 0)
return;
device_printf(sc->atse_dev, "watchdog timeout\n");
if_inc_counter(sc->atse_ifp, IFCOUNTER_OERRORS, 1);
atse_intr_debug(sc, "poll");
sc->atse_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
atse_init_locked(sc);
atse_rx_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&sc->atse_ifp->if_snd))
atse_start_locked(sc->atse_ifp);
}
static void
atse_tick(void *xsc)
{
struct atse_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = (struct atse_softc *)xsc;
ATSE_LOCK_ASSERT(sc);
ifp = sc->atse_ifp;
mii = device_get_softc(sc->atse_miibus);
mii_tick(mii);
atse_watchdog(sc);
if ((sc->atse_flags & ATSE_FLAGS_LINK) == 0)
atse_miibus_statchg(sc->atse_dev);
callout_reset(&sc->atse_tick, hz, atse_tick, sc);
}
/*
* Set media options.
*/
static int
atse_ifmedia_upd(struct ifnet *ifp)
{
struct atse_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
ATSE_LOCK(sc);
mii = device_get_softc(sc->atse_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
ATSE_UNLOCK(sc);
return (error);
}
static void
atse_update_rx_err(struct atse_softc *sc, uint32_t mask)
{
int i;
/* RX error are 6 bits, we only know 4 of them. */
for (i = 0; i < ATSE_RX_ERR_MAX; i++)
if ((mask & (1 << i)) != 0)
sc->atse_rx_err[i]++;
}
static int
atse_rx_locked(struct atse_softc *sc)
{
uint32_t fill, i, j;
uint32_t data, meta;
struct ifnet *ifp;
struct mbuf *m;
int rx_npkts;
ATSE_LOCK_ASSERT(sc);
ifp = sc->atse_ifp;
rx_npkts = 0;
j = 0;
meta = 0;
do {
outer:
if (sc->atse_rx_m == NULL) {
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (rx_npkts);
m->m_len = m->m_pkthdr.len = MCLBYTES;
/* Make sure upper layers will be aligned. */
m_adj(m, ETHER_ALIGN);
sc->atse_rx_m = m;
}
fill = ATSE_RX_READ_FILL_LEVEL(sc);
for (i = 0; i < fill; i++) {
/*
* XXX-BZ for whatever reason the FIFO requires the
* the data read before we can access the meta data.
*/
data = ATSE_RX_DATA_READ(sc);
meta = ATSE_RX_META_READ(sc);
if (meta & A_ONCHIP_FIFO_MEM_CORE_ERROR_MASK) {
/* XXX-BZ evaluate error. */
atse_update_rx_err(sc, ((meta &
A_ONCHIP_FIFO_MEM_CORE_ERROR_MASK) >>
A_ONCHIP_FIFO_MEM_CORE_ERROR_SHIFT) & 0xff);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
sc->atse_rx_buf_len = 0;
/*
* Should still read till EOP or next SOP.
*
* XXX-BZ might also depend on
* BASE_CFG_COMMAND_CONFIG_RX_ERR_DISC
*/
sc->atse_flags |= ATSE_FLAGS_ERROR;
return (rx_npkts);
}
if ((meta & A_ONCHIP_FIFO_MEM_CORE_CHANNEL_MASK) != 0)
device_printf(sc->atse_dev, "%s: unexpected "
"channel %u\n", __func__, (meta &
A_ONCHIP_FIFO_MEM_CORE_CHANNEL_MASK) >>
A_ONCHIP_FIFO_MEM_CORE_CHANNEL_SHIFT);
if (meta & A_ONCHIP_FIFO_MEM_CORE_SOP) {
/*
* There is no need to clear SOP between 1st
* and subsequent packet data junks.
*/
if (sc->atse_rx_buf_len != 0 &&
(sc->atse_flags & ATSE_FLAGS_SOP_SEEN) == 0)
{
device_printf(sc->atse_dev, "%s: SOP "
"without empty buffer: %u\n",
__func__, sc->atse_rx_buf_len);
/* XXX-BZ any better counter? */
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
}
if ((sc->atse_flags & ATSE_FLAGS_SOP_SEEN) == 0)
{
sc->atse_flags |= ATSE_FLAGS_SOP_SEEN;
sc->atse_rx_buf_len = 0;
}
}
#if 0 /* We had to read the data before we could access meta data. See above. */
data = ATSE_RX_DATA_READ(sc);
#endif
/* Make sure to not overflow the mbuf data size. */
if (sc->atse_rx_buf_len >= sc->atse_rx_m->m_len -
sizeof(data)) {
/*
* XXX-BZ Error. We need more mbufs and are
* not setup for this yet.
*/
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
sc->atse_flags |= ATSE_FLAGS_ERROR;
}
if ((sc->atse_flags & ATSE_FLAGS_ERROR) == 0)
/*
* MUST keep this bcopy as m_data after m_adj
* for IP header aligment is on half-word
* and not word alignment.
*/
bcopy(&data, (uint8_t *)(sc->atse_rx_m->m_data +
sc->atse_rx_buf_len), sizeof(data));
if (meta & A_ONCHIP_FIFO_MEM_CORE_EOP) {
uint8_t empty;
empty = (meta &
A_ONCHIP_FIFO_MEM_CORE_EMPTY_MASK) >>
A_ONCHIP_FIFO_MEM_CORE_EMPTY_SHIFT;
sc->atse_rx_buf_len += (4 - empty);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
rx_npkts++;
m = sc->atse_rx_m;
m->m_pkthdr.len = m->m_len =
sc->atse_rx_buf_len;
sc->atse_rx_m = NULL;
sc->atse_rx_buf_len = 0;
sc->atse_flags &= ~ATSE_FLAGS_SOP_SEEN;
if (sc->atse_flags & ATSE_FLAGS_ERROR) {
sc->atse_flags &= ~ATSE_FLAGS_ERROR;
m_freem(m);
} else {
m->m_pkthdr.rcvif = ifp;
ATSE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
ATSE_LOCK(sc);
}
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->atse_rx_cycles <= 0)
return (rx_npkts);
sc->atse_rx_cycles--;
}
#endif
goto outer; /* Need a new mbuf. */
} else {
sc->atse_rx_buf_len += sizeof(data);
}
} /* for */
/* XXX-BZ could optimize in case of another packet waiting. */
} while (fill > 0);
return (rx_npkts);
}
/*
* Report current media status.
*/
static void
atse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct atse_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
ATSE_LOCK(sc);
mii = device_get_softc(sc->atse_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
ATSE_UNLOCK(sc);
}
static void
atse_rx_intr(void *arg)
{
struct atse_softc *sc;
struct ifnet *ifp;
uint32_t rxe;
sc = (struct atse_softc *)arg;
ifp = sc->atse_ifp;
ATSE_LOCK(sc);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
ATSE_UNLOCK(sc);
return;
}
#endif
atse_intr_debug(sc, "rx");
rxe = ATSE_RX_EVENT_READ(sc);
if (rxe & (A_ONCHIP_FIFO_MEM_CORE_EVENT_OVERFLOW|
A_ONCHIP_FIFO_MEM_CORE_EVENT_UNDERFLOW)) {
/* XXX-BZ ERROR HANDLING. */
atse_update_rx_err(sc, ((rxe &
A_ONCHIP_FIFO_MEM_CORE_ERROR_MASK) >>
A_ONCHIP_FIFO_MEM_CORE_ERROR_SHIFT) & 0xff);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
}
/*
* There is considerable subtlety in the race-free handling of rx
* interrupts: we must disable interrupts whenever we manipulate the
* FIFO to prevent further interrupts from firing before we are done;
* we must clear the event after processing to prevent the event from
* being immediately reposted due to data remaining; we must clear the
* event mask before reenabling interrupts or risk missing a positive
* edge; and we must recheck everything after completing in case the
* event posted between clearing events and reenabling interrupts. If
* a race is experienced, we must restart the whole mechanism.
*/
do {
ATSE_RX_INTR_DISABLE(sc);
#if 0
sc->atse_rx_cycles = RX_CYCLES_IN_INTR;
#endif
atse_rx_locked(sc);
ATSE_RX_EVENT_CLEAR(sc);
/* Disable interrupts if interface is down. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ATSE_RX_INTR_ENABLE(sc);
} while (!(ATSE_RX_STATUS_READ(sc) &
A_ONCHIP_FIFO_MEM_CORE_STATUS_EMPTY));
ATSE_UNLOCK(sc);
}
static void
atse_tx_intr(void *arg)
{
struct atse_softc *sc;
struct ifnet *ifp;
uint32_t txe;
sc = (struct atse_softc *)arg;
ifp = sc->atse_ifp;
ATSE_LOCK(sc);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
ATSE_UNLOCK(sc);
return;
}
#endif
/* XXX-BZ build histogram. */
atse_intr_debug(sc, "tx");
txe = ATSE_TX_EVENT_READ(sc);
if (txe & (A_ONCHIP_FIFO_MEM_CORE_EVENT_OVERFLOW|
A_ONCHIP_FIFO_MEM_CORE_EVENT_UNDERFLOW)) {
/* XXX-BZ ERROR HANDLING. */
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
}
/*
* There is also considerable subtlety in the race-free handling of
* tx interrupts: all processing occurs with interrupts disabled to
* prevent spurious refiring while transmit is in progress (which
* could occur if the FIFO drains while sending -- quite likely); we
* must not clear the event mask until after we've sent, also to
* prevent spurious refiring; once we've cleared the event mask we can
* reenable interrupts, but there is a possible race between clear and
* enable, so we must recheck and potentially repeat the whole process
* if it is detected.
*/
do {
ATSE_TX_INTR_DISABLE(sc);
sc->atse_watchdog_timer = 0;
atse_start_locked(ifp);
ATSE_TX_EVENT_CLEAR(sc);
/* Disable interrupts if interface is down. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ATSE_TX_INTR_ENABLE(sc);
} while (ATSE_TX_PENDING(sc) &&
!(ATSE_TX_STATUS_READ(sc) & A_ONCHIP_FIFO_MEM_CORE_STATUS_FULL));
ATSE_UNLOCK(sc);
}
#ifdef DEVICE_POLLING
static int
atse_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct atse_softc *sc;
int rx_npkts = 0;
sc = ifp->if_softc;
ATSE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
ATSE_UNLOCK(sc);
return (rx_npkts);
}
sc->atse_rx_cycles = count;
rx_npkts = atse_rx_locked(sc);
atse_start_locked(ifp);
if (sc->atse_rx_cycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
uint32_t rx, tx;
rx = ATSE_RX_EVENT_READ(sc);
tx = ATSE_TX_EVENT_READ(sc);
if (rx & (A_ONCHIP_FIFO_MEM_CORE_EVENT_OVERFLOW|
A_ONCHIP_FIFO_MEM_CORE_EVENT_UNDERFLOW)) {
/* XXX-BZ ERROR HANDLING. */
atse_update_rx_err(sc, ((rx &
A_ONCHIP_FIFO_MEM_CORE_ERROR_MASK) >>
A_ONCHIP_FIFO_MEM_CORE_ERROR_SHIFT) & 0xff);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
}
if (tx & (A_ONCHIP_FIFO_MEM_CORE_EVENT_OVERFLOW|
A_ONCHIP_FIFO_MEM_CORE_EVENT_UNDERFLOW)) {
/* XXX-BZ ERROR HANDLING. */
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
}
if (ATSE_TX_READ_FILL_LEVEL(sc) == 0)
sc->atse_watchdog_timer = 0;
#if 0
if (/* Severe error; if only we could find out. */) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
atse_init_locked(sc);
}
#endif
}
ATSE_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static struct atse_mac_stats_regs {
const char *name;
const char *descr; /* Mostly copied from Altera datasheet. */
} atse_mac_stats_regs[] = {
[0x1a] =
{ "aFramesTransmittedOK",
"The number of frames that are successfully transmitted including "
"the pause frames." },
{ "aFramesReceivedOK",
"The number of frames that are successfully received including the "
"pause frames." },
{ "aFrameCheckSequenceErrors",
"The number of receive frames with CRC error." },
{ "aAlignmentErrors",
"The number of receive frames with alignment error." },
{ "aOctetsTransmittedOK",
"The lower 32 bits of the number of data and padding octets that "
"are successfully transmitted." },
{ "aOctetsReceivedOK",
"The lower 32 bits of the number of data and padding octets that "
" are successfully received." },
{ "aTxPAUSEMACCtrlFrames",
"The number of pause frames transmitted." },
{ "aRxPAUSEMACCtrlFrames",
"The number received pause frames received." },
{ "ifInErrors",
"The number of errored frames received." },
{ "ifOutErrors",
"The number of transmit frames with either a FIFO overflow error, "
"a FIFO underflow error, or a error defined by the user "
"application." },
{ "ifInUcastPkts",
"The number of valid unicast frames received." },
{ "ifInMulticastPkts",
"The number of valid multicast frames received. The count does "
"not include pause frames." },
{ "ifInBroadcastPkts",
"The number of valid broadcast frames received." },
{ "ifOutDiscards",
"This statistics counter is not in use. The MAC function does not "
"discard frames that are written to the FIFO buffer by the user "
"application." },
{ "ifOutUcastPkts",
"The number of valid unicast frames transmitted." },
{ "ifOutMulticastPkts",
"The number of valid multicast frames transmitted, excluding pause "
"frames." },
{ "ifOutBroadcastPkts",
"The number of valid broadcast frames transmitted." },
{ "etherStatsDropEvents",
"The number of frames that are dropped due to MAC internal errors "
"when FIFO buffer overflow persists." },
{ "etherStatsOctets",
"The lower 32 bits of the total number of octets received. This "
"count includes both good and errored frames." },
{ "etherStatsPkts",
"The total number of good and errored frames received." },
{ "etherStatsUndersizePkts",
"The number of frames received with length less than 64 bytes. "
"This count does not include errored frames." },
{ "etherStatsOversizePkts",
"The number of frames received that are longer than the value "
"configured in the frm_length register. This count does not "
"include errored frames." },
{ "etherStatsPkts64Octets",
"The number of 64-byte frames received. This count includes good "
"and errored frames." },
{ "etherStatsPkts65to127Octets",
"The number of received good and errored frames between the length "
"of 65 and 127 bytes." },
{ "etherStatsPkts128to255Octets",
"The number of received good and errored frames between the length "
"of 128 and 255 bytes." },
{ "etherStatsPkts256to511Octets",
"The number of received good and errored frames between the length "
"of 256 and 511 bytes." },
{ "etherStatsPkts512to1023Octets",
"The number of received good and errored frames between the length "
"of 512 and 1023 bytes." },
{ "etherStatsPkts1024to1518Octets",
"The number of received good and errored frames between the length "
"of 1024 and 1518 bytes." },
{ "etherStatsPkts1519toXOctets",
"The number of received good and errored frames between the length "
"of 1519 and the maximum frame length configured in the frm_length "
"register." },
{ "etherStatsJabbers",
"Too long frames with CRC error." },
{ "etherStatsFragments",
"Too short frames with CRC error." },
/* 0x39 unused, 0x3a/b non-stats. */
[0x3c] =
/* Extended Statistics Counters */
{ "msb_aOctetsTransmittedOK",
"Upper 32 bits of the number of data and padding octets that are "
"successfully transmitted." },
{ "msb_aOctetsReceivedOK",
"Upper 32 bits of the number of data and padding octets that are "
"successfully received." },
{ "msb_etherStatsOctets",
"Upper 32 bits of the total number of octets received. This count "
"includes both good and errored frames." }
};
static int
sysctl_atse_mac_stats_proc(SYSCTL_HANDLER_ARGS)
{
struct atse_softc *sc;
int error, offset, s;
sc = arg1;
offset = arg2;
s = CSR_READ_4(sc, offset);
error = sysctl_handle_int(oidp, &s, 0, req);
if (error || !req->newptr)
return (error);
return (0);
}
static struct atse_rx_err_stats_regs {
const char *name;
const char *descr;
} atse_rx_err_stats_regs[] = {
#define ATSE_RX_ERR_FIFO_THRES_EOP 0 /* FIFO threshold reached, on EOP. */
#define ATSE_RX_ERR_ELEN 1 /* Frame/payload length not valid. */
#define ATSE_RX_ERR_CRC32 2 /* CRC-32 error. */
#define ATSE_RX_ERR_FIFO_THRES_TRUNC 3 /* FIFO thresh., truncated frame. */
#define ATSE_RX_ERR_4 4 /* ? */
#define ATSE_RX_ERR_5 5 /* / */
{ "rx_err_fifo_thres_eop",
"FIFO threshold reached, reported on EOP." },
{ "rx_err_fifo_elen",
"Frame or payload length not valid." },
{ "rx_err_fifo_crc32",
"CRC-32 error." },
{ "rx_err_fifo_thres_trunc",
"FIFO threshold reached, truncated frame" },
{ "rx_err_4",
"?" },
{ "rx_err_5",
"?" },
};
static int
sysctl_atse_rx_err_stats_proc(SYSCTL_HANDLER_ARGS)
{
struct atse_softc *sc;
int error, offset, s;
sc = arg1;
offset = arg2;
s = sc->atse_rx_err[offset];
error = sysctl_handle_int(oidp, &s, 0, req);
if (error || !req->newptr)
return (error);
return (0);
}
static void
atse_sysctl_stats_attach(device_t dev)
{
struct sysctl_ctx_list *sctx;
struct sysctl_oid *soid;
struct atse_softc *sc;
int i;
sc = device_get_softc(dev);
sctx = device_get_sysctl_ctx(dev);
soid = device_get_sysctl_tree(dev);
/* MAC statistics. */
for (i = 0; i < nitems(atse_mac_stats_regs); i++) {
if (atse_mac_stats_regs[i].name == NULL ||
atse_mac_stats_regs[i].descr == NULL)
continue;
SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
atse_mac_stats_regs[i].name, CTLTYPE_UINT|CTLFLAG_RD,
sc, i, sysctl_atse_mac_stats_proc, "IU",
atse_mac_stats_regs[i].descr);
}
/* rx_err[]. */
for (i = 0; i < ATSE_RX_ERR_MAX; i++) {
if (atse_rx_err_stats_regs[i].name == NULL ||
atse_rx_err_stats_regs[i].descr == NULL)
continue;
SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
atse_rx_err_stats_regs[i].name, CTLTYPE_UINT|CTLFLAG_RD,
sc, i, sysctl_atse_rx_err_stats_proc, "IU",
atse_rx_err_stats_regs[i].descr);
}
}
/*
* Generic device handling routines.
*/
int
atse_attach(device_t dev)
{
struct atse_softc *sc;
struct ifnet *ifp;
int error;
sc = device_get_softc(dev);
atse_ethernet_option_bits_read(dev);
mtx_init(&sc->atse_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->atse_tick, &sc->atse_mtx, 0);
sc->atse_tx_buf = malloc(ETHER_MAX_LEN_JUMBO, M_DEVBUF, M_WAITOK);
/*
* We are only doing single-PHY with this driver currently. The
* defaults would be right so that BASE_CFG_MDIO_ADDR0 points to the
* 1st PHY address (0) apart from the fact that BMCR0 is always
* the PCS mapping, so we always use BMCR1. See Table 5-1 0xA0-0xBF.
*/
#if 0 /* Always PCS. */
sc->atse_bmcr0 = MDIO_0_START;
CSR_WRITE_4(sc, BASE_CFG_MDIO_ADDR0, 0x00);
#endif
/* Always use matching PHY for atse[0..]. */
sc->atse_phy_addr = device_get_unit(dev);
sc->atse_bmcr1 = MDIO_1_START;
CSR_WRITE_4(sc, BASE_CFG_MDIO_ADDR1, sc->atse_phy_addr);
/* Reset the adapter. */
atse_reset(sc);
/* Setup interface. */
ifp = sc->atse_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "if_alloc() failed\n");
error = ENOSPC;
goto err;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = atse_ioctl;
ifp->if_start = atse_start;
ifp->if_init = atse_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ATSE_TX_LIST_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = ATSE_TX_LIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
/* MII setup. */
error = mii_attach(dev, &sc->atse_miibus, ifp, atse_ifmedia_upd,
atse_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHY failed: %d\n", error);
goto err;
}
/* Call media-indepedent attach routine. */
ether_ifattach(ifp, sc->atse_eth_addr);
/* Tell the upper layer(s) about vlan mtu support. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
/* We will enable polling by default if no irqs available. See below. */
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* Hook up interrupts. */
if (sc->atse_rx_irq_res != NULL) {
error = bus_setup_intr(dev, sc->atse_rx_irq_res, INTR_TYPE_NET |
INTR_MPSAFE, NULL, atse_rx_intr, sc, &sc->atse_rx_intrhand);
if (error != 0) {
device_printf(dev, "enabling RX IRQ failed\n");
ether_ifdetach(ifp);
goto err;
}
}
if (sc->atse_tx_irq_res != NULL) {
error = bus_setup_intr(dev, sc->atse_tx_irq_res, INTR_TYPE_NET |
INTR_MPSAFE, NULL, atse_tx_intr, sc, &sc->atse_tx_intrhand);
if (error != 0) {
bus_teardown_intr(dev, sc->atse_rx_irq_res,
sc->atse_rx_intrhand);
device_printf(dev, "enabling TX IRQ failed\n");
ether_ifdetach(ifp);
goto err;
}
}
if ((ifp->if_capenable & IFCAP_POLLING) != 0 ||
(sc->atse_rx_irq_res == NULL && sc->atse_tx_irq_res == NULL)) {
#ifdef DEVICE_POLLING
/* If not on and no IRQs force it on. */
if (sc->atse_rx_irq_res == NULL && sc->atse_tx_irq_res == NULL){
ifp->if_capenable |= IFCAP_POLLING;
device_printf(dev, "forcing to polling due to no "
"interrupts\n");
}
error = ether_poll_register(atse_poll, ifp);
if (error != 0)
goto err;
#else
device_printf(dev, "no DEVICE_POLLING in kernel and no IRQs\n");
error = ENXIO;
#endif
} else {
ATSE_RX_INTR_ENABLE(sc);
ATSE_TX_INTR_ENABLE(sc);
}
err:
if (error != 0)
atse_detach(dev);
if (error == 0)
atse_sysctl_stats_attach(dev);
return (error);
}
static int
atse_detach(device_t dev)
{
struct atse_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->atse_mtx), ("%s: mutex not initialized",
device_get_nameunit(dev)));
ifp = sc->atse_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* Only cleanup if attach succeeded. */
if (device_is_attached(dev)) {
ATSE_LOCK(sc);
atse_stop_locked(sc);
ATSE_UNLOCK(sc);
callout_drain(&sc->atse_tick);
ether_ifdetach(ifp);
}
if (sc->atse_miibus != NULL)
device_delete_child(dev, sc->atse_miibus);
if (sc->atse_tx_intrhand)
bus_teardown_intr(dev, sc->atse_tx_irq_res,
sc->atse_tx_intrhand);
if (sc->atse_rx_intrhand)
bus_teardown_intr(dev, sc->atse_rx_irq_res,
sc->atse_rx_intrhand);
if (ifp != NULL)
if_free(ifp);
if (sc->atse_tx_buf != NULL)
free(sc->atse_tx_buf, M_DEVBUF);
mtx_destroy(&sc->atse_mtx);
return (0);
}
/* Shared between nexus and fdt implementation. */
void
atse_detach_resources(device_t dev)
{
struct atse_softc *sc;
sc = device_get_softc(dev);
if (sc->atse_txc_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_txc_mem_rid,
sc->atse_txc_mem_res);
sc->atse_txc_mem_res = NULL;
}
if (sc->atse_tx_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_tx_mem_rid,
sc->atse_tx_mem_res);
sc->atse_tx_mem_res = NULL;
}
if (sc->atse_tx_irq_res != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, sc->atse_tx_irq_rid,
sc->atse_tx_irq_res);
sc->atse_tx_irq_res = NULL;
}
if (sc->atse_rxc_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_rxc_mem_rid,
sc->atse_rxc_mem_res);
sc->atse_rxc_mem_res = NULL;
}
if (sc->atse_rx_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_rx_mem_rid,
sc->atse_rx_mem_res);
sc->atse_rx_mem_res = NULL;
}
if (sc->atse_rx_irq_res != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, sc->atse_rx_irq_rid,
sc->atse_rx_irq_res);
sc->atse_rx_irq_res = NULL;
}
if (sc->atse_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_mem_rid,
sc->atse_mem_res);
sc->atse_mem_res = NULL;
}
}
int
atse_detach_dev(device_t dev)
{
int error;
error = atse_detach(dev);
if (error) {
/* We are basically in undefined state now. */
device_printf(dev, "atse_detach() failed: %d\n", error);
return (error);
}
atse_detach_resources(dev);
return (0);
}
int
atse_miibus_readreg(device_t dev, int phy, int reg)
{
struct atse_softc *sc;
sc = device_get_softc(dev);
/*
* We currently do not support re-mapping of MDIO space on-the-fly
* but de-facto hard-code the phy#.
*/
if (phy != sc->atse_phy_addr)
return (0);
return (PHY_READ_2(sc, reg));
}
int
atse_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct atse_softc *sc;
sc = device_get_softc(dev);
/*
* We currently do not support re-mapping of MDIO space on-the-fly
* but de-facto hard-code the phy#.
*/
if (phy != sc->atse_phy_addr)
return (0);
PHY_WRITE_2(sc, reg, data);
return (0);
}
void
atse_miibus_statchg(device_t dev)
{
struct atse_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t val4;
sc = device_get_softc(dev);
ATSE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->atse_miibus);
ifp = sc->atse_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
/* Assume no link. */
sc->atse_flags &= ~ATSE_FLAGS_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
val4 |= BASE_CFG_COMMAND_CONFIG_ENA_10;
val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
sc->atse_flags |= ATSE_FLAGS_LINK;
break;
case IFM_100_TX:
val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10;
val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
sc->atse_flags |= ATSE_FLAGS_LINK;
break;
case IFM_1000_T:
val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10;
val4 |= BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
sc->atse_flags |= ATSE_FLAGS_LINK;
break;
default:
break;
}
}
if ((sc->atse_flags & ATSE_FLAGS_LINK) == 0) {
/* XXX-BZ need to stop the MAC? */
return;
}
if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0)
val4 &= ~BASE_CFG_COMMAND_CONFIG_HD_ENA;
else
val4 |= BASE_CFG_COMMAND_CONFIG_HD_ENA;
/* XXX-BZ flow control? */
/* Make sure the MAC is activated. */
val4 |= BASE_CFG_COMMAND_CONFIG_TX_ENA;
val4 |= BASE_CFG_COMMAND_CONFIG_RX_ENA;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
}
/* end */