freebsd-skq/sys/dev/usb/wlan/if_rsu.c
adrian df1d1cd220 [rsu] add support for the "green" rsu NICs.
They're still a 1T2R NIC, so reuse the same rfconfig and
nstream configuration.

Submitted by:	Idwer Vollering <vidwer@gmail.com>
2017-01-09 21:46:24 +00:00

3801 lines
96 KiB
C

/* $OpenBSD: if_rsu.c,v 1.17 2013/04/15 09:23:01 mglocker Exp $ */
/*-
* Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for Realtek RTL8188SU/RTL8191SU/RTL8192SU.
*
* TODO:
* o tx a-mpdu
* o hostap / ibss / mesh
* o power-save operation
*/
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/sockio.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/firmware.h>
#include <sys/module.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include "usbdevs.h"
#include <dev/usb/wlan/if_rsureg.h>
#ifdef USB_DEBUG
static int rsu_debug = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, rsu, CTLFLAG_RW, 0, "USB rsu");
SYSCTL_INT(_hw_usb_rsu, OID_AUTO, debug, CTLFLAG_RWTUN, &rsu_debug, 0,
"Debug level");
#define RSU_DPRINTF(_sc, _flg, ...) \
do \
if (((_flg) == (RSU_DEBUG_ANY)) || (rsu_debug & (_flg))) \
device_printf((_sc)->sc_dev, __VA_ARGS__); \
while (0)
#else
#define RSU_DPRINTF(_sc, _flg, ...)
#endif
static int rsu_enable_11n = 1;
TUNABLE_INT("hw.usb.rsu.enable_11n", &rsu_enable_11n);
#define RSU_DEBUG_ANY 0xffffffff
#define RSU_DEBUG_TX 0x00000001
#define RSU_DEBUG_RX 0x00000002
#define RSU_DEBUG_RESET 0x00000004
#define RSU_DEBUG_CALIB 0x00000008
#define RSU_DEBUG_STATE 0x00000010
#define RSU_DEBUG_SCAN 0x00000020
#define RSU_DEBUG_FWCMD 0x00000040
#define RSU_DEBUG_TXDONE 0x00000080
#define RSU_DEBUG_FW 0x00000100
#define RSU_DEBUG_FWDBG 0x00000200
#define RSU_DEBUG_AMPDU 0x00000400
#define RSU_DEBUG_KEY 0x00000800
#define RSU_DEBUG_USB 0x00001000
static const STRUCT_USB_HOST_ID rsu_devs[] = {
#define RSU_HT_NOT_SUPPORTED 0
#define RSU_HT_SUPPORTED 1
#define RSU_DEV_HT(v,p) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, \
RSU_HT_SUPPORTED) }
#define RSU_DEV(v,p) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, \
RSU_HT_NOT_SUPPORTED) }
RSU_DEV(ASUS, RTL8192SU),
RSU_DEV(AZUREWAVE, RTL8192SU_4),
RSU_DEV_HT(ACCTON, RTL8192SU),
RSU_DEV_HT(ASUS, USBN10),
RSU_DEV_HT(AZUREWAVE, RTL8192SU_1),
RSU_DEV_HT(AZUREWAVE, RTL8192SU_2),
RSU_DEV_HT(AZUREWAVE, RTL8192SU_3),
RSU_DEV_HT(AZUREWAVE, RTL8192SU_5),
RSU_DEV_HT(BELKIN, RTL8192SU_1),
RSU_DEV_HT(BELKIN, RTL8192SU_2),
RSU_DEV_HT(BELKIN, RTL8192SU_3),
RSU_DEV_HT(CONCEPTRONIC2, RTL8192SU_1),
RSU_DEV_HT(CONCEPTRONIC2, RTL8192SU_2),
RSU_DEV_HT(CONCEPTRONIC2, RTL8192SU_3),
RSU_DEV_HT(COREGA, RTL8192SU),
RSU_DEV_HT(DLINK2, DWA131A1),
RSU_DEV_HT(DLINK2, RTL8192SU_1),
RSU_DEV_HT(DLINK2, RTL8192SU_2),
RSU_DEV_HT(EDIMAX, RTL8192SU_1),
RSU_DEV_HT(EDIMAX, RTL8192SU_2),
RSU_DEV_HT(EDIMAX, EW7622UMN),
RSU_DEV_HT(GUILLEMOT, HWGUN54),
RSU_DEV_HT(GUILLEMOT, HWNUM300),
RSU_DEV_HT(HAWKING, RTL8192SU_1),
RSU_DEV_HT(HAWKING, RTL8192SU_2),
RSU_DEV_HT(PLANEX2, GWUSNANO),
RSU_DEV_HT(REALTEK, RTL8171),
RSU_DEV_HT(REALTEK, RTL8172),
RSU_DEV_HT(REALTEK, RTL8173),
RSU_DEV_HT(REALTEK, RTL8174),
RSU_DEV_HT(REALTEK, RTL8192SU),
RSU_DEV_HT(REALTEK, RTL8712),
RSU_DEV_HT(REALTEK, RTL8713),
RSU_DEV_HT(SENAO, RTL8192SU_1),
RSU_DEV_HT(SENAO, RTL8192SU_2),
RSU_DEV_HT(SITECOMEU, WL349V1),
RSU_DEV_HT(SITECOMEU, WL353),
RSU_DEV_HT(SWEEX2, LW154),
RSU_DEV_HT(TRENDNET, TEW646UBH),
#undef RSU_DEV_HT
#undef RSU_DEV
};
static device_probe_t rsu_match;
static device_attach_t rsu_attach;
static device_detach_t rsu_detach;
static usb_callback_t rsu_bulk_tx_callback_be_bk;
static usb_callback_t rsu_bulk_tx_callback_vi_vo;
static usb_callback_t rsu_bulk_tx_callback_h2c;
static usb_callback_t rsu_bulk_rx_callback;
static usb_error_t rsu_do_request(struct rsu_softc *,
struct usb_device_request *, void *);
static struct ieee80211vap *
rsu_vap_create(struct ieee80211com *, const char name[],
int, enum ieee80211_opmode, int, const uint8_t bssid[],
const uint8_t mac[]);
static void rsu_vap_delete(struct ieee80211vap *);
static void rsu_scan_start(struct ieee80211com *);
static void rsu_scan_end(struct ieee80211com *);
static void rsu_getradiocaps(struct ieee80211com *, int, int *,
struct ieee80211_channel[]);
static void rsu_set_channel(struct ieee80211com *);
static void rsu_scan_curchan(struct ieee80211_scan_state *, unsigned long);
static void rsu_scan_mindwell(struct ieee80211_scan_state *);
static void rsu_update_promisc(struct ieee80211com *);
static uint8_t rsu_get_multi_pos(const uint8_t[]);
static void rsu_set_multi(struct rsu_softc *);
static void rsu_update_mcast(struct ieee80211com *);
static int rsu_alloc_rx_list(struct rsu_softc *);
static void rsu_free_rx_list(struct rsu_softc *);
static int rsu_alloc_tx_list(struct rsu_softc *);
static void rsu_free_tx_list(struct rsu_softc *);
static void rsu_free_list(struct rsu_softc *, struct rsu_data [], int);
static struct rsu_data *_rsu_getbuf(struct rsu_softc *);
static struct rsu_data *rsu_getbuf(struct rsu_softc *);
static void rsu_freebuf(struct rsu_softc *, struct rsu_data *);
static int rsu_write_region_1(struct rsu_softc *, uint16_t, uint8_t *,
int);
static void rsu_write_1(struct rsu_softc *, uint16_t, uint8_t);
static void rsu_write_2(struct rsu_softc *, uint16_t, uint16_t);
static void rsu_write_4(struct rsu_softc *, uint16_t, uint32_t);
static int rsu_read_region_1(struct rsu_softc *, uint16_t, uint8_t *,
int);
static uint8_t rsu_read_1(struct rsu_softc *, uint16_t);
static uint16_t rsu_read_2(struct rsu_softc *, uint16_t);
static uint32_t rsu_read_4(struct rsu_softc *, uint16_t);
static int rsu_fw_iocmd(struct rsu_softc *, uint32_t);
static uint8_t rsu_efuse_read_1(struct rsu_softc *, uint16_t);
static int rsu_read_rom(struct rsu_softc *);
static int rsu_fw_cmd(struct rsu_softc *, uint8_t, void *, int);
static void rsu_calib_task(void *, int);
static void rsu_tx_task(void *, int);
static void rsu_set_led(struct rsu_softc *, int);
static int rsu_monitor_newstate(struct ieee80211vap *,
enum ieee80211_state, int);
static int rsu_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static int rsu_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
ieee80211_keyix *, ieee80211_keyix *);
static int rsu_process_key(struct ieee80211vap *,
const struct ieee80211_key *, int);
static int rsu_key_set(struct ieee80211vap *,
const struct ieee80211_key *);
static int rsu_key_delete(struct ieee80211vap *,
const struct ieee80211_key *);
static int rsu_cam_read(struct rsu_softc *, uint8_t, uint32_t *);
static void rsu_cam_write(struct rsu_softc *, uint8_t, uint32_t);
static int rsu_key_check(struct rsu_softc *, ieee80211_keyix, int);
static uint8_t rsu_crypto_mode(struct rsu_softc *, u_int, int);
static int rsu_set_key_group(struct rsu_softc *,
const struct ieee80211_key *);
static int rsu_set_key_pair(struct rsu_softc *,
const struct ieee80211_key *);
static int rsu_reinit_static_keys(struct rsu_softc *);
static int rsu_delete_key(struct rsu_softc *sc, ieee80211_keyix);
static void rsu_delete_key_pair_cb(void *, int);
static int rsu_site_survey(struct rsu_softc *,
struct ieee80211_scan_ssid *);
static int rsu_join_bss(struct rsu_softc *, struct ieee80211_node *);
static int rsu_disconnect(struct rsu_softc *);
static int rsu_hwrssi_to_rssi(struct rsu_softc *, int hw_rssi);
static void rsu_event_survey(struct rsu_softc *, uint8_t *, int);
static void rsu_event_join_bss(struct rsu_softc *, uint8_t *, int);
static void rsu_rx_event(struct rsu_softc *, uint8_t, uint8_t *, int);
static void rsu_rx_multi_event(struct rsu_softc *, uint8_t *, int);
static int8_t rsu_get_rssi(struct rsu_softc *, int, void *);
static struct mbuf * rsu_rx_copy_to_mbuf(struct rsu_softc *,
struct r92s_rx_stat *, int);
static uint32_t rsu_get_tsf_low(struct rsu_softc *);
static uint32_t rsu_get_tsf_high(struct rsu_softc *);
static struct ieee80211_node * rsu_rx_frame(struct rsu_softc *, struct mbuf *);
static struct mbuf * rsu_rx_multi_frame(struct rsu_softc *, uint8_t *, int);
static struct mbuf *
rsu_rxeof(struct usb_xfer *, struct rsu_data *);
static void rsu_txeof(struct usb_xfer *, struct rsu_data *);
static int rsu_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void rsu_rxfilter_init(struct rsu_softc *);
static void rsu_rxfilter_set(struct rsu_softc *, uint32_t, uint32_t);
static void rsu_rxfilter_refresh(struct rsu_softc *);
static int rsu_init(struct rsu_softc *);
static int rsu_tx_start(struct rsu_softc *, struct ieee80211_node *,
struct mbuf *, struct rsu_data *);
static int rsu_transmit(struct ieee80211com *, struct mbuf *);
static void rsu_start(struct rsu_softc *);
static void _rsu_start(struct rsu_softc *);
static int rsu_ioctl_net(struct ieee80211com *, u_long, void *);
static void rsu_parent(struct ieee80211com *);
static void rsu_stop(struct rsu_softc *);
static void rsu_ms_delay(struct rsu_softc *, int);
static device_method_t rsu_methods[] = {
DEVMETHOD(device_probe, rsu_match),
DEVMETHOD(device_attach, rsu_attach),
DEVMETHOD(device_detach, rsu_detach),
DEVMETHOD_END
};
static driver_t rsu_driver = {
.name = "rsu",
.methods = rsu_methods,
.size = sizeof(struct rsu_softc)
};
static devclass_t rsu_devclass;
DRIVER_MODULE(rsu, uhub, rsu_driver, rsu_devclass, NULL, 0);
MODULE_DEPEND(rsu, wlan, 1, 1, 1);
MODULE_DEPEND(rsu, usb, 1, 1, 1);
MODULE_DEPEND(rsu, firmware, 1, 1, 1);
MODULE_VERSION(rsu, 1);
USB_PNP_HOST_INFO(rsu_devs);
static const uint8_t rsu_chan_2ghz[] =
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
static uint8_t rsu_wme_ac_xfer_map[4] = {
[WME_AC_BE] = RSU_BULK_TX_BE_BK,
[WME_AC_BK] = RSU_BULK_TX_BE_BK,
[WME_AC_VI] = RSU_BULK_TX_VI_VO,
[WME_AC_VO] = RSU_BULK_TX_VI_VO,
};
/* XXX hard-coded */
#define RSU_H2C_ENDPOINT 3
static const struct usb_config rsu_config[RSU_N_TRANSFER] = {
[RSU_BULK_RX] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = RSU_RXBUFSZ,
.flags = {
.pipe_bof = 1,
.short_xfer_ok = 1
},
.callback = rsu_bulk_rx_callback
},
[RSU_BULK_TX_BE_BK] = {
.type = UE_BULK,
.endpoint = 0x06,
.direction = UE_DIR_OUT,
.bufsize = RSU_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.force_short_xfer = 1
},
.callback = rsu_bulk_tx_callback_be_bk,
.timeout = RSU_TX_TIMEOUT
},
[RSU_BULK_TX_VI_VO] = {
.type = UE_BULK,
.endpoint = 0x04,
.direction = UE_DIR_OUT,
.bufsize = RSU_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.force_short_xfer = 1
},
.callback = rsu_bulk_tx_callback_vi_vo,
.timeout = RSU_TX_TIMEOUT
},
[RSU_BULK_TX_H2C] = {
.type = UE_BULK,
.endpoint = 0x0d,
.direction = UE_DIR_OUT,
.bufsize = RSU_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.short_xfer_ok = 1
},
.callback = rsu_bulk_tx_callback_h2c,
.timeout = RSU_TX_TIMEOUT
},
};
static int
rsu_match(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
if (uaa->usb_mode != USB_MODE_HOST ||
uaa->info.bIfaceIndex != 0 ||
uaa->info.bConfigIndex != 0)
return (ENXIO);
return (usbd_lookup_id_by_uaa(rsu_devs, sizeof(rsu_devs), uaa));
}
static int
rsu_send_mgmt(struct ieee80211_node *ni, int type, int arg)
{
return (ENOTSUP);
}
static void
rsu_update_chw(struct ieee80211com *ic)
{
}
/*
* notification from net80211 that it'd like to do A-MPDU on the given TID.
*
* Note: this actually hangs traffic at the present moment, so don't use it.
* The firmware debug does indiciate it's sending and establishing a TX AMPDU
* session, but then no traffic flows.
*/
static int
rsu_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
{
#if 0
struct rsu_softc *sc = ni->ni_ic->ic_softc;
struct r92s_add_ba_req req;
/* Don't enable if it's requested or running */
if (IEEE80211_AMPDU_REQUESTED(tap))
return (0);
if (IEEE80211_AMPDU_RUNNING(tap))
return (0);
/* We've decided to send addba; so send it */
req.tid = htole32(tap->txa_tid);
/* Attempt net80211 state */
if (ieee80211_ampdu_tx_request_ext(ni, tap->txa_tid) != 1)
return (0);
/* Send the firmware command */
RSU_DPRINTF(sc, RSU_DEBUG_AMPDU, "%s: establishing AMPDU TX for TID %d\n",
__func__,
tap->txa_tid);
RSU_LOCK(sc);
if (rsu_fw_cmd(sc, R92S_CMD_ADDBA_REQ, &req, sizeof(req)) != 1) {
RSU_UNLOCK(sc);
/* Mark failure */
(void) ieee80211_ampdu_tx_request_active_ext(ni, tap->txa_tid, 0);
return (0);
}
RSU_UNLOCK(sc);
/* Mark success; we don't get any further notifications */
(void) ieee80211_ampdu_tx_request_active_ext(ni, tap->txa_tid, 1);
#endif
/* Return 0, we're driving this ourselves */
return (0);
}
static int
rsu_wme_update(struct ieee80211com *ic)
{
/* Firmware handles this; not our problem */
return (0);
}
static int
rsu_attach(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
struct rsu_softc *sc = device_get_softc(self);
struct ieee80211com *ic = &sc->sc_ic;
int error;
uint8_t iface_index;
struct usb_interface *iface;
const char *rft;
device_set_usb_desc(self);
sc->sc_udev = uaa->device;
sc->sc_dev = self;
sc->sc_rx_checksum_enable = 1;
if (rsu_enable_11n)
sc->sc_ht = !! (USB_GET_DRIVER_INFO(uaa) & RSU_HT_SUPPORTED);
/* Get number of endpoints */
iface = usbd_get_iface(sc->sc_udev, 0);
sc->sc_nendpoints = iface->idesc->bNumEndpoints;
/* Endpoints are hard-coded for now, so enforce 4-endpoint only */
if (sc->sc_nendpoints != 4) {
device_printf(sc->sc_dev,
"the driver currently only supports 4-endpoint devices\n");
return (ENXIO);
}
mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK,
MTX_DEF);
RSU_DELKEY_BMAP_LOCK_INIT(sc);
TIMEOUT_TASK_INIT(taskqueue_thread, &sc->calib_task, 0,
rsu_calib_task, sc);
TASK_INIT(&sc->del_key_task, 0, rsu_delete_key_pair_cb, sc);
TASK_INIT(&sc->tx_task, 0, rsu_tx_task, sc);
mbufq_init(&sc->sc_snd, ifqmaxlen);
/* Allocate Tx/Rx buffers. */
error = rsu_alloc_rx_list(sc);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Rx buffers\n");
goto fail_usb;
}
error = rsu_alloc_tx_list(sc);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Tx buffers\n");
rsu_free_rx_list(sc);
goto fail_usb;
}
iface_index = 0;
error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
rsu_config, RSU_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(sc->sc_dev,
"could not allocate USB transfers, err=%s\n",
usbd_errstr(error));
goto fail_usb;
}
RSU_LOCK(sc);
/* Read chip revision. */
sc->cut = MS(rsu_read_4(sc, R92S_PMC_FSM), R92S_PMC_FSM_CUT);
if (sc->cut != 3)
sc->cut = (sc->cut >> 1) + 1;
error = rsu_read_rom(sc);
RSU_UNLOCK(sc);
if (error != 0) {
device_printf(self, "could not read ROM\n");
goto fail_rom;
}
/* Figure out TX/RX streams */
switch (sc->rom[84]) {
case 0x0:
sc->sc_rftype = RTL8712_RFCONFIG_1T1R;
sc->sc_nrxstream = 1;
sc->sc_ntxstream = 1;
rft = "1T1R";
break;
case 0x1:
sc->sc_rftype = RTL8712_RFCONFIG_1T2R;
sc->sc_nrxstream = 2;
sc->sc_ntxstream = 1;
rft = "1T2R";
break;
case 0x2:
sc->sc_rftype = RTL8712_RFCONFIG_2T2R;
sc->sc_nrxstream = 2;
sc->sc_ntxstream = 2;
rft = "2T2R";
break;
case 0x3: /* "green" NIC */
sc->sc_rftype = RTL8712_RFCONFIG_1T2R;
sc->sc_nrxstream = 2;
sc->sc_ntxstream = 1;
rft = "1T2R ('green')";
break;
default:
device_printf(sc->sc_dev,
"%s: unknown board type (rfconfig=0x%02x)\n",
__func__,
sc->rom[84]);
goto fail_rom;
}
IEEE80211_ADDR_COPY(ic->ic_macaddr, &sc->rom[0x12]);
device_printf(self, "MAC/BB RTL8712 cut %d %s\n", sc->cut, rft);
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(self);
ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */
ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_STA | /* station mode */
IEEE80211_C_MONITOR | /* monitor mode supported */
#if 0
IEEE80211_C_BGSCAN | /* Background scan. */
#endif
IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
IEEE80211_C_WME | /* WME/QoS */
IEEE80211_C_SHSLOT | /* Short slot time supported. */
IEEE80211_C_WPA; /* WPA/RSN. */
ic->ic_cryptocaps =
IEEE80211_CRYPTO_WEP |
IEEE80211_CRYPTO_TKIP |
IEEE80211_CRYPTO_AES_CCM;
/* Check if HT support is present. */
if (sc->sc_ht) {
device_printf(sc->sc_dev, "%s: enabling 11n\n", __func__);
/* Enable basic HT */
ic->ic_htcaps = IEEE80211_HTC_HT |
#if 0
IEEE80211_HTC_AMPDU |
#endif
IEEE80211_HTC_AMSDU |
IEEE80211_HTCAP_MAXAMSDU_3839 |
IEEE80211_HTCAP_SMPS_OFF;
ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40;
/* set number of spatial streams */
ic->ic_txstream = sc->sc_ntxstream;
ic->ic_rxstream = sc->sc_nrxstream;
}
ic->ic_flags_ext |= IEEE80211_FEXT_SCAN_OFFLOAD;
rsu_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
ic->ic_channels);
ieee80211_ifattach(ic);
ic->ic_raw_xmit = rsu_raw_xmit;
ic->ic_scan_start = rsu_scan_start;
ic->ic_scan_end = rsu_scan_end;
ic->ic_getradiocaps = rsu_getradiocaps;
ic->ic_set_channel = rsu_set_channel;
ic->ic_scan_curchan = rsu_scan_curchan;
ic->ic_scan_mindwell = rsu_scan_mindwell;
ic->ic_vap_create = rsu_vap_create;
ic->ic_vap_delete = rsu_vap_delete;
ic->ic_update_promisc = rsu_update_promisc;
ic->ic_update_mcast = rsu_update_mcast;
ic->ic_ioctl = rsu_ioctl_net;
ic->ic_parent = rsu_parent;
ic->ic_transmit = rsu_transmit;
ic->ic_send_mgmt = rsu_send_mgmt;
ic->ic_update_chw = rsu_update_chw;
ic->ic_ampdu_enable = rsu_ampdu_enable;
ic->ic_wme.wme_update = rsu_wme_update;
ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr,
sizeof(sc->sc_txtap), RSU_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
RSU_RX_RADIOTAP_PRESENT);
if (bootverbose)
ieee80211_announce(ic);
return (0);
fail_rom:
usbd_transfer_unsetup(sc->sc_xfer, RSU_N_TRANSFER);
fail_usb:
mtx_destroy(&sc->sc_mtx);
return (ENXIO);
}
static int
rsu_detach(device_t self)
{
struct rsu_softc *sc = device_get_softc(self);
struct ieee80211com *ic = &sc->sc_ic;
rsu_stop(sc);
usbd_transfer_unsetup(sc->sc_xfer, RSU_N_TRANSFER);
/*
* Free buffers /before/ we detach from net80211, else node
* references to destroyed vaps will lead to a panic.
*/
/* Free Tx/Rx buffers. */
RSU_LOCK(sc);
rsu_free_tx_list(sc);
rsu_free_rx_list(sc);
RSU_UNLOCK(sc);
/* Frames are freed; detach from net80211 */
ieee80211_ifdetach(ic);
taskqueue_drain_timeout(taskqueue_thread, &sc->calib_task);
taskqueue_drain(taskqueue_thread, &sc->del_key_task);
taskqueue_drain(taskqueue_thread, &sc->tx_task);
RSU_DELKEY_BMAP_LOCK_DESTROY(sc);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static usb_error_t
rsu_do_request(struct rsu_softc *sc, struct usb_device_request *req,
void *data)
{
usb_error_t err;
int ntries = 10;
RSU_ASSERT_LOCKED(sc);
while (ntries--) {
err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
req, data, 0, NULL, 250 /* ms */);
if (err == 0 || err == USB_ERR_NOT_CONFIGURED)
break;
RSU_DPRINTF(sc, RSU_DEBUG_USB,
"Control request failed, %s (retries left: %d)\n",
usbd_errstr(err), ntries);
rsu_ms_delay(sc, 10);
}
return (err);
}
static struct ieee80211vap *
rsu_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct rsu_softc *sc = ic->ic_softc;
struct rsu_vap *uvp;
struct ieee80211vap *vap;
struct ifnet *ifp;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return (NULL);
uvp = malloc(sizeof(struct rsu_vap), M_80211_VAP, M_WAITOK | M_ZERO);
vap = &uvp->vap;
if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags, bssid) != 0) {
/* out of memory */
free(uvp, M_80211_VAP);
return (NULL);
}
ifp = vap->iv_ifp;
ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6;
RSU_LOCK(sc);
if (sc->sc_rx_checksum_enable)
ifp->if_capenable |= IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6;
RSU_UNLOCK(sc);
/* override state transition machine */
uvp->newstate = vap->iv_newstate;
if (opmode == IEEE80211_M_MONITOR)
vap->iv_newstate = rsu_monitor_newstate;
else
vap->iv_newstate = rsu_newstate;
vap->iv_key_alloc = rsu_key_alloc;
vap->iv_key_set = rsu_key_set;
vap->iv_key_delete = rsu_key_delete;
/* Limits from the r92su driver */
vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_16;
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_32K;
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change,
ieee80211_media_status, mac);
ic->ic_opmode = opmode;
return (vap);
}
static void
rsu_vap_delete(struct ieee80211vap *vap)
{
struct rsu_vap *uvp = RSU_VAP(vap);
ieee80211_vap_detach(vap);
free(uvp, M_80211_VAP);
}
static void
rsu_scan_start(struct ieee80211com *ic)
{
struct rsu_softc *sc = ic->ic_softc;
struct ieee80211_scan_state *ss = ic->ic_scan;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
int error;
/* Scanning is done by the firmware. */
RSU_LOCK(sc);
sc->sc_active_scan = !!(ss->ss_flags & IEEE80211_SCAN_ACTIVE);
/* XXX TODO: force awake if in network-sleep? */
error = rsu_site_survey(sc, ss->ss_nssid > 0 ? &ss->ss_ssid[0] : NULL);
RSU_UNLOCK(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"could not send site survey command\n");
ieee80211_cancel_scan(vap);
}
}
static void
rsu_scan_end(struct ieee80211com *ic)
{
/* Nothing to do here. */
}
static void
rsu_getradiocaps(struct ieee80211com *ic,
int maxchans, int *nchans, struct ieee80211_channel chans[])
{
struct rsu_softc *sc = ic->ic_softc;
uint8_t bands[IEEE80211_MODE_BYTES];
/* Set supported .11b and .11g rates. */
memset(bands, 0, sizeof(bands));
setbit(bands, IEEE80211_MODE_11B);
setbit(bands, IEEE80211_MODE_11G);
if (sc->sc_ht)
setbit(bands, IEEE80211_MODE_11NG);
ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
rsu_chan_2ghz, nitems(rsu_chan_2ghz), bands,
(ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) != 0);
}
static void
rsu_set_channel(struct ieee80211com *ic)
{
struct rsu_softc *sc = ic->ic_softc;
/*
* Only need to set the channel in Monitor mode. AP scanning and auth
* are already taken care of by their respective firmware commands.
*/
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
struct r92s_set_channel cmd;
int error;
cmd.channel = IEEE80211_CHAN2IEEE(ic->ic_curchan);
RSU_LOCK(sc);
error = rsu_fw_cmd(sc, R92S_CMD_SET_CHANNEL, &cmd,
sizeof(cmd));
if (error != 0) {
device_printf(sc->sc_dev,
"%s: error %d setting channel\n", __func__,
error);
}
RSU_UNLOCK(sc);
}
}
static void
rsu_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
{
/* Scan is done in rsu_scan_start(). */
}
/**
* Called by the net80211 framework to indicate
* the minimum dwell time has been met, terminate the scan.
* We don't actually terminate the scan as the firmware will notify
* us when it's finished and we have no way to interrupt it.
*/
static void
rsu_scan_mindwell(struct ieee80211_scan_state *ss)
{
/* NB: don't try to abort scan; wait for firmware to finish */
}
static void
rsu_update_promisc(struct ieee80211com *ic)
{
struct rsu_softc *sc = ic->ic_softc;
RSU_LOCK(sc);
if (sc->sc_running)
rsu_rxfilter_refresh(sc);
RSU_UNLOCK(sc);
}
/*
* The same as rtwn_get_multi_pos() / rtwn_set_multi().
*/
static uint8_t
rsu_get_multi_pos(const uint8_t maddr[])
{
uint64_t mask = 0x00004d101df481b4;
uint8_t pos = 0x27; /* initial value */
int i, j;
for (i = 0; i < IEEE80211_ADDR_LEN; i++)
for (j = (i == 0) ? 1 : 0; j < 8; j++)
if ((maddr[i] >> j) & 1)
pos ^= (mask >> (i * 8 + j - 1));
pos &= 0x3f;
return (pos);
}
static void
rsu_set_multi(struct rsu_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t mfilt[2];
RSU_ASSERT_LOCKED(sc);
/* general structure was copied from ath(4). */
if (ic->ic_allmulti == 0) {
struct ieee80211vap *vap;
struct ifnet *ifp;
struct ifmultiaddr *ifma;
/*
* Merge multicast addresses to form the hardware filter.
*/
mfilt[0] = mfilt[1] = 0;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
ifp = vap->iv_ifp;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
caddr_t dl;
uint8_t pos;
dl = LLADDR((struct sockaddr_dl *)
ifma->ifma_addr);
pos = rsu_get_multi_pos(dl);
mfilt[pos / 32] |= (1 << (pos % 32));
}
if_maddr_runlock(ifp);
}
} else
mfilt[0] = mfilt[1] = ~0;
rsu_write_4(sc, R92S_MAR + 0, mfilt[0]);
rsu_write_4(sc, R92S_MAR + 4, mfilt[1]);
RSU_DPRINTF(sc, RSU_DEBUG_STATE, "%s: MC filter %08x:%08x\n",
__func__, mfilt[0], mfilt[1]);
}
static void
rsu_update_mcast(struct ieee80211com *ic)
{
struct rsu_softc *sc = ic->ic_softc;
RSU_LOCK(sc);
if (sc->sc_running)
rsu_set_multi(sc);
RSU_UNLOCK(sc);
}
static int
rsu_alloc_list(struct rsu_softc *sc, struct rsu_data data[],
int ndata, int maxsz)
{
int i, error;
for (i = 0; i < ndata; i++) {
struct rsu_data *dp = &data[i];
dp->sc = sc;
dp->m = NULL;
dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT);
if (dp->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate buffer\n");
error = ENOMEM;
goto fail;
}
dp->ni = NULL;
}
return (0);
fail:
rsu_free_list(sc, data, ndata);
return (error);
}
static int
rsu_alloc_rx_list(struct rsu_softc *sc)
{
int error, i;
error = rsu_alloc_list(sc, sc->sc_rx, RSU_RX_LIST_COUNT,
RSU_RXBUFSZ);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_rx_active);
STAILQ_INIT(&sc->sc_rx_inactive);
for (i = 0; i < RSU_RX_LIST_COUNT; i++)
STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next);
return (0);
}
static int
rsu_alloc_tx_list(struct rsu_softc *sc)
{
int error, i;
error = rsu_alloc_list(sc, sc->sc_tx, RSU_TX_LIST_COUNT,
RSU_TXBUFSZ);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_tx_inactive);
for (i = 0; i != RSU_N_TRANSFER; i++) {
STAILQ_INIT(&sc->sc_tx_active[i]);
STAILQ_INIT(&sc->sc_tx_pending[i]);
}
for (i = 0; i < RSU_TX_LIST_COUNT; i++) {
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next);
}
return (0);
}
static void
rsu_free_tx_list(struct rsu_softc *sc)
{
int i;
/* prevent further allocations from TX list(s) */
STAILQ_INIT(&sc->sc_tx_inactive);
for (i = 0; i != RSU_N_TRANSFER; i++) {
STAILQ_INIT(&sc->sc_tx_active[i]);
STAILQ_INIT(&sc->sc_tx_pending[i]);
}
rsu_free_list(sc, sc->sc_tx, RSU_TX_LIST_COUNT);
}
static void
rsu_free_rx_list(struct rsu_softc *sc)
{
/* prevent further allocations from RX list(s) */
STAILQ_INIT(&sc->sc_rx_inactive);
STAILQ_INIT(&sc->sc_rx_active);
rsu_free_list(sc, sc->sc_rx, RSU_RX_LIST_COUNT);
}
static void
rsu_free_list(struct rsu_softc *sc, struct rsu_data data[], int ndata)
{
int i;
for (i = 0; i < ndata; i++) {
struct rsu_data *dp = &data[i];
if (dp->buf != NULL) {
free(dp->buf, M_USBDEV);
dp->buf = NULL;
}
if (dp->ni != NULL) {
ieee80211_free_node(dp->ni);
dp->ni = NULL;
}
}
}
static struct rsu_data *
_rsu_getbuf(struct rsu_softc *sc)
{
struct rsu_data *bf;
bf = STAILQ_FIRST(&sc->sc_tx_inactive);
if (bf != NULL)
STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
else
bf = NULL;
return (bf);
}
static struct rsu_data *
rsu_getbuf(struct rsu_softc *sc)
{
struct rsu_data *bf;
RSU_ASSERT_LOCKED(sc);
bf = _rsu_getbuf(sc);
if (bf == NULL) {
RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: no buffers\n", __func__);
}
return (bf);
}
static void
rsu_freebuf(struct rsu_softc *sc, struct rsu_data *bf)
{
RSU_ASSERT_LOCKED(sc);
STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, bf, next);
}
static int
rsu_write_region_1(struct rsu_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = R92S_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (rsu_do_request(sc, &req, buf));
}
static void
rsu_write_1(struct rsu_softc *sc, uint16_t addr, uint8_t val)
{
rsu_write_region_1(sc, addr, &val, 1);
}
static void
rsu_write_2(struct rsu_softc *sc, uint16_t addr, uint16_t val)
{
val = htole16(val);
rsu_write_region_1(sc, addr, (uint8_t *)&val, 2);
}
static void
rsu_write_4(struct rsu_softc *sc, uint16_t addr, uint32_t val)
{
val = htole32(val);
rsu_write_region_1(sc, addr, (uint8_t *)&val, 4);
}
static int
rsu_read_region_1(struct rsu_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = R92S_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (rsu_do_request(sc, &req, buf));
}
static uint8_t
rsu_read_1(struct rsu_softc *sc, uint16_t addr)
{
uint8_t val;
if (rsu_read_region_1(sc, addr, &val, 1) != 0)
return (0xff);
return (val);
}
static uint16_t
rsu_read_2(struct rsu_softc *sc, uint16_t addr)
{
uint16_t val;
if (rsu_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0)
return (0xffff);
return (le16toh(val));
}
static uint32_t
rsu_read_4(struct rsu_softc *sc, uint16_t addr)
{
uint32_t val;
if (rsu_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0)
return (0xffffffff);
return (le32toh(val));
}
static int
rsu_fw_iocmd(struct rsu_softc *sc, uint32_t iocmd)
{
int ntries;
rsu_write_4(sc, R92S_IOCMD_CTRL, iocmd);
rsu_ms_delay(sc, 1);
for (ntries = 0; ntries < 50; ntries++) {
if (rsu_read_4(sc, R92S_IOCMD_CTRL) == 0)
return (0);
rsu_ms_delay(sc, 1);
}
return (ETIMEDOUT);
}
static uint8_t
rsu_efuse_read_1(struct rsu_softc *sc, uint16_t addr)
{
uint32_t reg;
int ntries;
reg = rsu_read_4(sc, R92S_EFUSE_CTRL);
reg = RW(reg, R92S_EFUSE_CTRL_ADDR, addr);
reg &= ~R92S_EFUSE_CTRL_VALID;
rsu_write_4(sc, R92S_EFUSE_CTRL, reg);
/* Wait for read operation to complete. */
for (ntries = 0; ntries < 100; ntries++) {
reg = rsu_read_4(sc, R92S_EFUSE_CTRL);
if (reg & R92S_EFUSE_CTRL_VALID)
return (MS(reg, R92S_EFUSE_CTRL_DATA));
rsu_ms_delay(sc, 1);
}
device_printf(sc->sc_dev,
"could not read efuse byte at address 0x%x\n", addr);
return (0xff);
}
static int
rsu_read_rom(struct rsu_softc *sc)
{
uint8_t *rom = sc->rom;
uint16_t addr = 0;
uint32_t reg;
uint8_t off, msk;
int i;
/* Make sure that ROM type is eFuse and that autoload succeeded. */
reg = rsu_read_1(sc, R92S_EE_9346CR);
if ((reg & (R92S_9356SEL | R92S_EEPROM_EN)) != R92S_EEPROM_EN)
return (EIO);
/* Turn on 2.5V to prevent eFuse leakage. */
reg = rsu_read_1(sc, R92S_EFUSE_TEST + 3);
rsu_write_1(sc, R92S_EFUSE_TEST + 3, reg | 0x80);
rsu_ms_delay(sc, 1);
rsu_write_1(sc, R92S_EFUSE_TEST + 3, reg & ~0x80);
/* Read full ROM image. */
memset(&sc->rom, 0xff, sizeof(sc->rom));
while (addr < 512) {
reg = rsu_efuse_read_1(sc, addr);
if (reg == 0xff)
break;
addr++;
off = reg >> 4;
msk = reg & 0xf;
for (i = 0; i < 4; i++) {
if (msk & (1 << i))
continue;
rom[off * 8 + i * 2 + 0] =
rsu_efuse_read_1(sc, addr);
addr++;
rom[off * 8 + i * 2 + 1] =
rsu_efuse_read_1(sc, addr);
addr++;
}
}
#ifdef USB_DEBUG
if (rsu_debug & RSU_DEBUG_RESET) {
/* Dump ROM content. */
printf("\n");
for (i = 0; i < sizeof(sc->rom); i++)
printf("%02x:", rom[i]);
printf("\n");
}
#endif
return (0);
}
static int
rsu_fw_cmd(struct rsu_softc *sc, uint8_t code, void *buf, int len)
{
const uint8_t which = RSU_H2C_ENDPOINT;
struct rsu_data *data;
struct r92s_tx_desc *txd;
struct r92s_fw_cmd_hdr *cmd;
int cmdsz;
int xferlen;
RSU_ASSERT_LOCKED(sc);
data = rsu_getbuf(sc);
if (data == NULL)
return (ENOMEM);
/* Blank the entire payload, just to be safe */
memset(data->buf, '\0', RSU_TXBUFSZ);
/* Round-up command length to a multiple of 8 bytes. */
/* XXX TODO: is this required? */
cmdsz = (len + 7) & ~7;
xferlen = sizeof(*txd) + sizeof(*cmd) + cmdsz;
KASSERT(xferlen <= RSU_TXBUFSZ, ("%s: invalid length", __func__));
memset(data->buf, 0, xferlen);
/* Setup Tx descriptor. */
txd = (struct r92s_tx_desc *)data->buf;
txd->txdw0 = htole32(
SM(R92S_TXDW0_OFFSET, sizeof(*txd)) |
SM(R92S_TXDW0_PKTLEN, sizeof(*cmd) + cmdsz) |
R92S_TXDW0_OWN | R92S_TXDW0_FSG | R92S_TXDW0_LSG);
txd->txdw1 = htole32(SM(R92S_TXDW1_QSEL, R92S_TXDW1_QSEL_H2C));
/* Setup command header. */
cmd = (struct r92s_fw_cmd_hdr *)&txd[1];
cmd->len = htole16(cmdsz);
cmd->code = code;
cmd->seq = sc->cmd_seq;
sc->cmd_seq = (sc->cmd_seq + 1) & 0x7f;
/* Copy command payload. */
memcpy(&cmd[1], buf, len);
RSU_DPRINTF(sc, RSU_DEBUG_TX | RSU_DEBUG_FWCMD,
"%s: Tx cmd code=0x%x len=0x%x\n",
__func__, code, cmdsz);
data->buflen = xferlen;
STAILQ_INSERT_TAIL(&sc->sc_tx_pending[which], data, next);
usbd_transfer_start(sc->sc_xfer[which]);
return (0);
}
/* ARGSUSED */
static void
rsu_calib_task(void *arg, int pending __unused)
{
struct rsu_softc *sc = arg;
#ifdef notyet
uint32_t reg;
#endif
RSU_DPRINTF(sc, RSU_DEBUG_CALIB, "%s: running calibration task\n",
__func__);
RSU_LOCK(sc);
#ifdef notyet
/* Read WPS PBC status. */
rsu_write_1(sc, R92S_MAC_PINMUX_CTRL,
R92S_GPIOMUX_EN | SM(R92S_GPIOSEL_GPIO, R92S_GPIOSEL_GPIO_JTAG));
rsu_write_1(sc, R92S_GPIO_IO_SEL,
rsu_read_1(sc, R92S_GPIO_IO_SEL) & ~R92S_GPIO_WPS);
reg = rsu_read_1(sc, R92S_GPIO_CTRL);
if (reg != 0xff && (reg & R92S_GPIO_WPS))
RSU_DPRINTF(sc, RSU_DEBUG_CALIB, "WPS PBC is pushed\n");
#endif
/* Read current signal level. */
if (rsu_fw_iocmd(sc, 0xf4000001) == 0) {
sc->sc_currssi = rsu_read_4(sc, R92S_IOCMD_DATA);
RSU_DPRINTF(sc, RSU_DEBUG_CALIB, "%s: RSSI=%d (%d)\n",
__func__, sc->sc_currssi,
rsu_hwrssi_to_rssi(sc, sc->sc_currssi));
}
if (sc->sc_calibrating)
taskqueue_enqueue_timeout(taskqueue_thread, &sc->calib_task, hz);
RSU_UNLOCK(sc);
}
static void
rsu_tx_task(void *arg, int pending __unused)
{
struct rsu_softc *sc = arg;
RSU_LOCK(sc);
_rsu_start(sc);
RSU_UNLOCK(sc);
}
#define RSU_PWR_UNKNOWN 0x0
#define RSU_PWR_ACTIVE 0x1
#define RSU_PWR_OFF 0x2
#define RSU_PWR_SLEEP 0x3
/*
* Set the current power state.
*
* The rtlwifi code doesn't do this so aggressively; it
* waits for an idle period after association with
* no traffic before doing this.
*
* For now - it's on in all states except RUN, and
* in RUN it'll transition to allow sleep.
*/
struct r92s_pwr_cmd {
uint8_t mode;
uint8_t smart_ps;
uint8_t bcn_pass_time;
};
static int
rsu_set_fw_power_state(struct rsu_softc *sc, int state)
{
struct r92s_set_pwr_mode cmd;
//struct r92s_pwr_cmd cmd;
int error;
RSU_ASSERT_LOCKED(sc);
/* only change state if required */
if (sc->sc_curpwrstate == state)
return (0);
memset(&cmd, 0, sizeof(cmd));
switch (state) {
case RSU_PWR_ACTIVE:
/* Force the hardware awake */
rsu_write_1(sc, R92S_USB_HRPWM,
R92S_USB_HRPWM_PS_ST_ACTIVE | R92S_USB_HRPWM_PS_ALL_ON);
cmd.mode = R92S_PS_MODE_ACTIVE;
break;
case RSU_PWR_SLEEP:
cmd.mode = R92S_PS_MODE_DTIM; /* XXX configurable? */
cmd.smart_ps = 1; /* XXX 2 if doing p2p */
cmd.bcn_pass_time = 5; /* in 100mS usb.c, linux/rtlwifi */
break;
case RSU_PWR_OFF:
cmd.mode = R92S_PS_MODE_RADIOOFF;
break;
default:
device_printf(sc->sc_dev, "%s: unknown ps mode (%d)\n",
__func__,
state);
return (ENXIO);
}
RSU_DPRINTF(sc, RSU_DEBUG_RESET,
"%s: setting ps mode to %d (mode %d)\n",
__func__, state, cmd.mode);
error = rsu_fw_cmd(sc, R92S_CMD_SET_PWR_MODE, &cmd, sizeof(cmd));
if (error == 0)
sc->sc_curpwrstate = state;
return (error);
}
static void
rsu_set_led(struct rsu_softc *sc, int on)
{
rsu_write_1(sc, R92S_LEDCFG,
(rsu_read_1(sc, R92S_LEDCFG) & 0xf0) | (!on << 3));
}
static int
rsu_monitor_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate,
int arg)
{
struct ieee80211com *ic = vap->iv_ic;
struct rsu_softc *sc = ic->ic_softc;
struct rsu_vap *uvp = RSU_VAP(vap);
if (vap->iv_state != nstate) {
IEEE80211_UNLOCK(ic);
RSU_LOCK(sc);
switch (nstate) {
case IEEE80211_S_INIT:
sc->sc_vap_is_running = 0;
rsu_set_led(sc, 0);
break;
case IEEE80211_S_RUN:
sc->sc_vap_is_running = 1;
rsu_set_led(sc, 1);
break;
default:
/* NOTREACHED */
break;
}
rsu_rxfilter_refresh(sc);
RSU_UNLOCK(sc);
IEEE80211_LOCK(ic);
}
return (uvp->newstate(vap, nstate, arg));
}
static int
rsu_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct rsu_vap *uvp = RSU_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct rsu_softc *sc = ic->ic_softc;
struct ieee80211_node *ni;
struct ieee80211_rateset *rs;
enum ieee80211_state ostate;
int error, startcal = 0;
ostate = vap->iv_state;
RSU_DPRINTF(sc, RSU_DEBUG_STATE, "%s: %s -> %s\n",
__func__,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
if (ostate == IEEE80211_S_RUN) {
RSU_LOCK(sc);
/* Stop calibration. */
sc->sc_calibrating = 0;
/* Pause Tx for AC queues. */
rsu_write_1(sc, R92S_TXPAUSE, R92S_TXPAUSE_AC);
usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(10));
RSU_UNLOCK(sc);
taskqueue_drain_timeout(taskqueue_thread, &sc->calib_task);
taskqueue_drain(taskqueue_thread, &sc->tx_task);
RSU_LOCK(sc);
/* Disassociate from our current BSS. */
rsu_disconnect(sc);
usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(10));
/* Refresh Rx filter (may be modified by firmware). */
sc->sc_vap_is_running = 0;
rsu_rxfilter_refresh(sc);
/* Reinstall static keys. */
if (sc->sc_running)
rsu_reinit_static_keys(sc);
} else
RSU_LOCK(sc);
switch (nstate) {
case IEEE80211_S_INIT:
(void) rsu_set_fw_power_state(sc, RSU_PWR_ACTIVE);
break;
case IEEE80211_S_AUTH:
ni = ieee80211_ref_node(vap->iv_bss);
(void) rsu_set_fw_power_state(sc, RSU_PWR_ACTIVE);
error = rsu_join_bss(sc, ni);
ieee80211_free_node(ni);
if (error != 0) {
device_printf(sc->sc_dev,
"could not send join command\n");
}
break;
case IEEE80211_S_RUN:
/* Flush all AC queues. */
rsu_write_1(sc, R92S_TXPAUSE, 0);
ni = ieee80211_ref_node(vap->iv_bss);
rs = &ni->ni_rates;
/* Indicate highest supported rate. */
ni->ni_txrate = rs->rs_rates[rs->rs_nrates - 1];
(void) rsu_set_fw_power_state(sc, RSU_PWR_SLEEP);
ieee80211_free_node(ni);
startcal = 1;
break;
default:
break;
}
if (startcal != 0) {
sc->sc_calibrating = 1;
/* Start periodic calibration. */
taskqueue_enqueue_timeout(taskqueue_thread, &sc->calib_task,
hz);
}
RSU_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (uvp->newstate(vap, nstate, arg));
}
static int
rsu_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
{
struct rsu_softc *sc = vap->iv_ic->ic_softc;
int is_checked = 0;
if (&vap->iv_nw_keys[0] <= k &&
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
*keyix = ieee80211_crypto_get_key_wepidx(vap, k);
} else {
if (vap->iv_opmode != IEEE80211_M_STA) {
*keyix = 0;
/* TODO: obtain keyix from node id */
is_checked = 1;
k->wk_flags |= IEEE80211_KEY_SWCRYPT;
} else
*keyix = R92S_MACID_BSS;
}
if (!is_checked) {
RSU_LOCK(sc);
if (isset(sc->keys_bmap, *keyix)) {
device_printf(sc->sc_dev,
"%s: key slot %d is already used!\n",
__func__, *keyix);
RSU_UNLOCK(sc);
return (0);
}
setbit(sc->keys_bmap, *keyix);
RSU_UNLOCK(sc);
}
*rxkeyix = *keyix;
return (1);
}
static int
rsu_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
int set)
{
struct rsu_softc *sc = vap->iv_ic->ic_softc;
int ret;
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
/* Not for us. */
return (1);
}
/* Handle group keys. */
if (&vap->iv_nw_keys[0] <= k &&
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
KASSERT(k->wk_keyix < nitems(sc->group_keys),
("keyix %u > %zu\n", k->wk_keyix, nitems(sc->group_keys)));
RSU_LOCK(sc);
sc->group_keys[k->wk_keyix] = (set ? k : NULL);
if (!sc->sc_running) {
/* Static keys will be set during device startup. */
RSU_UNLOCK(sc);
return (1);
}
if (set)
ret = rsu_set_key_group(sc, k);
else
ret = rsu_delete_key(sc, k->wk_keyix);
RSU_UNLOCK(sc);
return (!ret);
}
if (set) {
/* wait for pending key removal */
taskqueue_drain(taskqueue_thread, &sc->del_key_task);
RSU_LOCK(sc);
ret = rsu_set_key_pair(sc, k);
RSU_UNLOCK(sc);
} else {
RSU_DELKEY_BMAP_LOCK(sc);
setbit(sc->free_keys_bmap, k->wk_keyix);
RSU_DELKEY_BMAP_UNLOCK(sc);
/* workaround ieee80211_node_delucastkey() locking */
taskqueue_enqueue(taskqueue_thread, &sc->del_key_task);
ret = 0; /* fake success */
}
return (!ret);
}
static int
rsu_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
{
return (rsu_process_key(vap, k, 1));
}
static int
rsu_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
{
return (rsu_process_key(vap, k, 0));
}
static int
rsu_cam_read(struct rsu_softc *sc, uint8_t addr, uint32_t *val)
{
int ntries;
rsu_write_4(sc, R92S_CAMCMD,
R92S_CAMCMD_POLLING | SM(R92S_CAMCMD_ADDR, addr));
for (ntries = 0; ntries < 10; ntries++) {
if (!(rsu_read_4(sc, R92S_CAMCMD) & R92S_CAMCMD_POLLING))
break;
usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(1));
}
if (ntries == 10) {
device_printf(sc->sc_dev,
"%s: cannot read CAM entry at address %02X\n",
__func__, addr);
return (ETIMEDOUT);
}
*val = rsu_read_4(sc, R92S_CAMREAD);
return (0);
}
static void
rsu_cam_write(struct rsu_softc *sc, uint8_t addr, uint32_t data)
{
rsu_write_4(sc, R92S_CAMWRITE, data);
rsu_write_4(sc, R92S_CAMCMD,
R92S_CAMCMD_POLLING | R92S_CAMCMD_WRITE |
SM(R92S_CAMCMD_ADDR, addr));
}
static int
rsu_key_check(struct rsu_softc *sc, ieee80211_keyix keyix, int is_valid)
{
uint32_t val;
int error, ntries;
for (ntries = 0; ntries < 20; ntries++) {
usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(1));
error = rsu_cam_read(sc, R92S_CAM_CTL0(keyix), &val);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: cannot check key status!\n", __func__);
return (error);
}
if (((val & R92S_CAM_VALID) == 0) ^ is_valid)
break;
}
if (ntries == 20) {
device_printf(sc->sc_dev,
"%s: key %d is %s marked as valid, rejecting request\n",
__func__, keyix, is_valid ? "not" : "still");
return (EIO);
}
return (0);
}
/*
* Map net80211 cipher to RTL8712 security mode.
*/
static uint8_t
rsu_crypto_mode(struct rsu_softc *sc, u_int cipher, int keylen)
{
switch (cipher) {
case IEEE80211_CIPHER_WEP:
return keylen < 8 ? R92S_KEY_ALGO_WEP40 : R92S_KEY_ALGO_WEP104;
case IEEE80211_CIPHER_TKIP:
return R92S_KEY_ALGO_TKIP;
case IEEE80211_CIPHER_AES_CCM:
return R92S_KEY_ALGO_AES;
default:
device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
return R92S_KEY_ALGO_INVALID;
}
}
static int
rsu_set_key_group(struct rsu_softc *sc, const struct ieee80211_key *k)
{
struct r92s_fw_cmd_set_key key;
uint8_t algo;
int error;
RSU_ASSERT_LOCKED(sc);
/* Map net80211 cipher to HW crypto algorithm. */
algo = rsu_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
if (algo == R92S_KEY_ALGO_INVALID)
return (EINVAL);
memset(&key, 0, sizeof(key));
key.algo = algo;
key.cam_id = k->wk_keyix;
key.grpkey = (k->wk_flags & IEEE80211_KEY_GROUP) != 0;
memcpy(key.key, k->wk_key, MIN(k->wk_keylen, sizeof(key.key)));
RSU_DPRINTF(sc, RSU_DEBUG_KEY | RSU_DEBUG_FWCMD,
"%s: keyix %u, group %u, algo %u/%u, flags %04X, len %u, "
"macaddr %s\n", __func__, key.cam_id, key.grpkey,
k->wk_cipher->ic_cipher, key.algo, k->wk_flags, k->wk_keylen,
ether_sprintf(k->wk_macaddr));
error = rsu_fw_cmd(sc, R92S_CMD_SET_KEY, &key, sizeof(key));
if (error != 0) {
device_printf(sc->sc_dev,
"%s: cannot send firmware command, error %d\n",
__func__, error);
return (error);
}
return (rsu_key_check(sc, k->wk_keyix, 1));
}
static int
rsu_set_key_pair(struct rsu_softc *sc, const struct ieee80211_key *k)
{
struct r92s_fw_cmd_set_key_mac key;
uint8_t algo;
int error;
RSU_ASSERT_LOCKED(sc);
if (!sc->sc_running)
return (ESHUTDOWN);
/* Map net80211 cipher to HW crypto algorithm. */
algo = rsu_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
if (algo == R92S_KEY_ALGO_INVALID)
return (EINVAL);
memset(&key, 0, sizeof(key));
key.algo = algo;
memcpy(key.macaddr, k->wk_macaddr, sizeof(key.macaddr));
memcpy(key.key, k->wk_key, MIN(k->wk_keylen, sizeof(key.key)));
RSU_DPRINTF(sc, RSU_DEBUG_KEY | RSU_DEBUG_FWCMD,
"%s: keyix %u, algo %u/%u, flags %04X, len %u, macaddr %s\n",
__func__, k->wk_keyix, k->wk_cipher->ic_cipher, key.algo,
k->wk_flags, k->wk_keylen, ether_sprintf(key.macaddr));
error = rsu_fw_cmd(sc, R92S_CMD_SET_STA_KEY, &key, sizeof(key));
if (error != 0) {
device_printf(sc->sc_dev,
"%s: cannot send firmware command, error %d\n",
__func__, error);
return (error);
}
return (rsu_key_check(sc, k->wk_keyix, 1));
}
static int
rsu_reinit_static_keys(struct rsu_softc *sc)
{
int i, error;
for (i = 0; i < nitems(sc->group_keys); i++) {
if (sc->group_keys[i] != NULL) {
error = rsu_set_key_group(sc, sc->group_keys[i]);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: failed to set static key %d, "
"error %d\n", __func__, i, error);
return (error);
}
}
}
return (0);
}
static int
rsu_delete_key(struct rsu_softc *sc, ieee80211_keyix keyix)
{
struct r92s_fw_cmd_set_key key;
uint32_t val;
int error;
RSU_ASSERT_LOCKED(sc);
if (!sc->sc_running)
return (0);
/* check if it was automatically removed by firmware */
error = rsu_cam_read(sc, R92S_CAM_CTL0(keyix), &val);
if (error == 0 && (val & R92S_CAM_VALID) == 0) {
RSU_DPRINTF(sc, RSU_DEBUG_KEY,
"%s: key %u does not exist\n", __func__, keyix);
clrbit(sc->keys_bmap, keyix);
return (0);
}
memset(&key, 0, sizeof(key));
key.cam_id = keyix;
RSU_DPRINTF(sc, RSU_DEBUG_KEY | RSU_DEBUG_FWCMD,
"%s: removing key %u\n", __func__, key.cam_id);
error = rsu_fw_cmd(sc, R92S_CMD_SET_KEY, &key, sizeof(key));
if (error != 0) {
device_printf(sc->sc_dev,
"%s: cannot send firmware command, error %d\n",
__func__, error);
goto finish;
}
usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(5));
/*
* Clear 'valid' bit manually (cannot be done via firmware command).
* Used for key check + when firmware command cannot be sent.
*/
finish:
rsu_cam_write(sc, R92S_CAM_CTL0(keyix), 0);
clrbit(sc->keys_bmap, keyix);
return (rsu_key_check(sc, keyix, 0));
}
static void
rsu_delete_key_pair_cb(void *arg, int pending __unused)
{
struct rsu_softc *sc = arg;
int i;
RSU_DELKEY_BMAP_LOCK(sc);
for (i = IEEE80211_WEP_NKID; i < R92S_CAM_ENTRY_LIMIT; i++) {
if (isset(sc->free_keys_bmap, i)) {
RSU_DELKEY_BMAP_UNLOCK(sc);
RSU_LOCK(sc);
RSU_DPRINTF(sc, RSU_DEBUG_KEY,
"%s: calling rsu_delete_key() with keyix = %d\n",
__func__, i);
(void) rsu_delete_key(sc, i);
RSU_UNLOCK(sc);
RSU_DELKEY_BMAP_LOCK(sc);
clrbit(sc->free_keys_bmap, i);
/* bmap can be changed */
i = IEEE80211_WEP_NKID - 1;
continue;
}
}
RSU_DELKEY_BMAP_UNLOCK(sc);
}
static int
rsu_site_survey(struct rsu_softc *sc, struct ieee80211_scan_ssid *ssid)
{
struct r92s_fw_cmd_sitesurvey cmd;
RSU_ASSERT_LOCKED(sc);
memset(&cmd, 0, sizeof(cmd));
/* TODO: passive channels? */
if (sc->sc_active_scan)
cmd.active = htole32(1);
cmd.limit = htole32(48);
if (ssid != NULL) {
sc->sc_extra_scan = 1;
cmd.ssidlen = htole32(ssid->len);
memcpy(cmd.ssid, ssid->ssid, ssid->len);
}
#ifdef USB_DEBUG
if (rsu_debug & (RSU_DEBUG_SCAN | RSU_DEBUG_FWCMD)) {
device_printf(sc->sc_dev,
"sending site survey command, active %d",
le32toh(cmd.active));
if (ssid != NULL) {
printf(", ssid: ");
ieee80211_print_essid(cmd.ssid, le32toh(cmd.ssidlen));
}
printf("\n");
}
#endif
return (rsu_fw_cmd(sc, R92S_CMD_SITE_SURVEY, &cmd, sizeof(cmd)));
}
static int
rsu_join_bss(struct rsu_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = ni->ni_vap;
struct ndis_wlan_bssid_ex *bss;
struct ndis_802_11_fixed_ies *fixed;
struct r92s_fw_cmd_auth auth;
uint8_t buf[sizeof(*bss) + 128] __aligned(4);
uint8_t *frm;
uint8_t opmode;
int error;
RSU_ASSERT_LOCKED(sc);
/* Let the FW decide the opmode based on the capinfo field. */
opmode = NDIS802_11AUTOUNKNOWN;
RSU_DPRINTF(sc, RSU_DEBUG_RESET,
"%s: setting operating mode to %d\n",
__func__, opmode);
error = rsu_fw_cmd(sc, R92S_CMD_SET_OPMODE, &opmode, sizeof(opmode));
if (error != 0)
return (error);
memset(&auth, 0, sizeof(auth));
if (vap->iv_flags & IEEE80211_F_WPA) {
auth.mode = R92S_AUTHMODE_WPA;
auth.dot1x = (ni->ni_authmode == IEEE80211_AUTH_8021X);
} else
auth.mode = R92S_AUTHMODE_OPEN;
RSU_DPRINTF(sc, RSU_DEBUG_RESET,
"%s: setting auth mode to %d\n",
__func__, auth.mode);
error = rsu_fw_cmd(sc, R92S_CMD_SET_AUTH, &auth, sizeof(auth));
if (error != 0)
return (error);
memset(buf, 0, sizeof(buf));
bss = (struct ndis_wlan_bssid_ex *)buf;
IEEE80211_ADDR_COPY(bss->macaddr, ni->ni_bssid);
bss->ssid.ssidlen = htole32(ni->ni_esslen);
memcpy(bss->ssid.ssid, ni->ni_essid, ni->ni_esslen);
if (vap->iv_flags & (IEEE80211_F_PRIVACY | IEEE80211_F_WPA))
bss->privacy = htole32(1);
bss->rssi = htole32(ni->ni_avgrssi);
if (ic->ic_curmode == IEEE80211_MODE_11B)
bss->networktype = htole32(NDIS802_11DS);
else
bss->networktype = htole32(NDIS802_11OFDM24);
bss->config.len = htole32(sizeof(bss->config));
bss->config.bintval = htole32(ni->ni_intval);
bss->config.dsconfig = htole32(ieee80211_chan2ieee(ic, ni->ni_chan));
bss->inframode = htole32(NDIS802_11INFRASTRUCTURE);
/* XXX verify how this is supposed to look! */
memcpy(bss->supprates, ni->ni_rates.rs_rates,
ni->ni_rates.rs_nrates);
/* Write the fixed fields of the beacon frame. */
fixed = (struct ndis_802_11_fixed_ies *)&bss[1];
memcpy(&fixed->tstamp, ni->ni_tstamp.data, 8);
fixed->bintval = htole16(ni->ni_intval);
fixed->capabilities = htole16(ni->ni_capinfo);
/* Write IEs to be included in the association request. */
frm = (uint8_t *)&fixed[1];
frm = ieee80211_add_rsn(frm, vap);
frm = ieee80211_add_wpa(frm, vap);
frm = ieee80211_add_qos(frm, ni);
if ((ic->ic_flags & IEEE80211_F_WME) &&
(ni->ni_ies.wme_ie != NULL))
frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
if (ni->ni_flags & IEEE80211_NODE_HT) {
frm = ieee80211_add_htcap(frm, ni);
frm = ieee80211_add_htinfo(frm, ni);
}
bss->ieslen = htole32(frm - (uint8_t *)fixed);
bss->len = htole32(((frm - buf) + 3) & ~3);
RSU_DPRINTF(sc, RSU_DEBUG_RESET | RSU_DEBUG_FWCMD,
"%s: sending join bss command to %s chan %d\n",
__func__,
ether_sprintf(bss->macaddr), le32toh(bss->config.dsconfig));
return (rsu_fw_cmd(sc, R92S_CMD_JOIN_BSS, buf, sizeof(buf)));
}
static int
rsu_disconnect(struct rsu_softc *sc)
{
uint32_t zero = 0; /* :-) */
/* Disassociate from our current BSS. */
RSU_DPRINTF(sc, RSU_DEBUG_STATE | RSU_DEBUG_FWCMD,
"%s: sending disconnect command\n", __func__);
return (rsu_fw_cmd(sc, R92S_CMD_DISCONNECT, &zero, sizeof(zero)));
}
/*
* Map the hardware provided RSSI value to a signal level.
* For the most part it's just something we divide by and cap
* so it doesn't overflow the representation by net80211.
*/
static int
rsu_hwrssi_to_rssi(struct rsu_softc *sc, int hw_rssi)
{
int v;
if (hw_rssi == 0)
return (0);
v = hw_rssi >> 4;
if (v > 80)
v = 80;
return (v);
}
static void
rsu_event_survey(struct rsu_softc *sc, uint8_t *buf, int len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ndis_wlan_bssid_ex *bss;
struct ieee80211_rx_stats rxs;
struct mbuf *m;
int pktlen;
if (__predict_false(len < sizeof(*bss)))
return;
bss = (struct ndis_wlan_bssid_ex *)buf;
if (__predict_false(len < sizeof(*bss) + le32toh(bss->ieslen)))
return;
RSU_DPRINTF(sc, RSU_DEBUG_SCAN,
"%s: found BSS %s: len=%d chan=%d inframode=%d "
"networktype=%d privacy=%d, RSSI=%d\n",
__func__,
ether_sprintf(bss->macaddr), le32toh(bss->len),
le32toh(bss->config.dsconfig), le32toh(bss->inframode),
le32toh(bss->networktype), le32toh(bss->privacy),
le32toh(bss->rssi));
/* Build a fake beacon frame to let net80211 do all the parsing. */
/* XXX TODO: just call the new scan API methods! */
pktlen = sizeof(*wh) + le32toh(bss->ieslen);
if (__predict_false(pktlen > MCLBYTES))
return;
m = m_get2(pktlen, M_NOWAIT, MT_DATA, M_PKTHDR);
if (__predict_false(m == NULL))
return;
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_BEACON;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
USETW(wh->i_dur, 0);
IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, bss->macaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, bss->macaddr);
*(uint16_t *)wh->i_seq = 0;
memcpy(&wh[1], (uint8_t *)&bss[1], le32toh(bss->ieslen));
/* Finalize mbuf. */
m->m_pkthdr.len = m->m_len = pktlen;
/* Set channel flags for input path */
bzero(&rxs, sizeof(rxs));
rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
rxs.c_ieee = le32toh(bss->config.dsconfig);
rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
/* This is a number from 0..100; so let's just divide it down a bit */
rxs.c_rssi = le32toh(bss->rssi) / 2;
rxs.c_nf = -96;
if (ieee80211_add_rx_params(m, &rxs) == 0)
return;
/* XXX avoid a LOR */
RSU_UNLOCK(sc);
ieee80211_input_mimo_all(ic, m);
RSU_LOCK(sc);
}
static void
rsu_event_join_bss(struct rsu_softc *sc, uint8_t *buf, int len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ieee80211_node *ni = vap->iv_bss;
struct r92s_event_join_bss *rsp;
uint32_t tmp;
int res;
if (__predict_false(len < sizeof(*rsp)))
return;
rsp = (struct r92s_event_join_bss *)buf;
res = (int)le32toh(rsp->join_res);
RSU_DPRINTF(sc, RSU_DEBUG_STATE | RSU_DEBUG_FWCMD,
"%s: Rx join BSS event len=%d res=%d\n",
__func__, len, res);
/*
* XXX Don't do this; there's likely a better way to tell
* the caller we failed.
*/
if (res <= 0) {
RSU_UNLOCK(sc);
ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
RSU_LOCK(sc);
return;
}
tmp = le32toh(rsp->associd);
if (tmp >= vap->iv_max_aid) {
RSU_DPRINTF(sc, RSU_DEBUG_ANY, "Assoc ID overflow\n");
tmp = 1;
}
RSU_DPRINTF(sc, RSU_DEBUG_STATE | RSU_DEBUG_FWCMD,
"%s: associated with %s associd=%d\n",
__func__, ether_sprintf(rsp->bss.macaddr), tmp);
/* XXX is this required? What's the top two bits for again? */
ni->ni_associd = tmp | 0xc000;
/* Refresh Rx filter (was changed by firmware). */
sc->sc_vap_is_running = 1;
rsu_rxfilter_refresh(sc);
RSU_UNLOCK(sc);
ieee80211_new_state(vap, IEEE80211_S_RUN,
IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
RSU_LOCK(sc);
}
static void
rsu_event_addba_req_report(struct rsu_softc *sc, uint8_t *buf, int len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct r92s_add_ba_event *ba = (void *) buf;
struct ieee80211_node *ni;
if (len < sizeof(*ba)) {
device_printf(sc->sc_dev, "%s: short read (%d)\n", __func__, len);
return;
}
if (vap == NULL)
return;
RSU_DPRINTF(sc, RSU_DEBUG_AMPDU, "%s: mac=%s, tid=%d, ssn=%d\n",
__func__,
ether_sprintf(ba->mac_addr),
(int) ba->tid,
(int) le16toh(ba->ssn));
/* XXX do node lookup; this is STA specific */
ni = ieee80211_ref_node(vap->iv_bss);
ieee80211_ampdu_rx_start_ext(ni, ba->tid, le16toh(ba->ssn) >> 4, 32);
ieee80211_free_node(ni);
}
static void
rsu_rx_event(struct rsu_softc *sc, uint8_t code, uint8_t *buf, int len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
RSU_DPRINTF(sc, RSU_DEBUG_RX | RSU_DEBUG_FWCMD,
"%s: Rx event code=%d len=%d\n", __func__, code, len);
switch (code) {
case R92S_EVT_SURVEY:
rsu_event_survey(sc, buf, len);
break;
case R92S_EVT_SURVEY_DONE:
RSU_DPRINTF(sc, RSU_DEBUG_SCAN,
"%s: %s scan done, found %d BSS\n",
__func__, sc->sc_extra_scan ? "direct" : "broadcast",
le32toh(*(uint32_t *)buf));
if (sc->sc_extra_scan == 1) {
/* Send broadcast probe request. */
sc->sc_extra_scan = 0;
if (vap != NULL && rsu_site_survey(sc, NULL) != 0) {
RSU_UNLOCK(sc);
ieee80211_cancel_scan(vap);
RSU_LOCK(sc);
}
break;
}
if (vap != NULL) {
RSU_UNLOCK(sc);
ieee80211_scan_done(vap);
RSU_LOCK(sc);
}
break;
case R92S_EVT_JOIN_BSS:
if (vap->iv_state == IEEE80211_S_AUTH)
rsu_event_join_bss(sc, buf, len);
break;
case R92S_EVT_DEL_STA:
RSU_DPRINTF(sc, RSU_DEBUG_FWCMD | RSU_DEBUG_STATE,
"%s: disassociated from %s\n", __func__,
ether_sprintf(buf));
if (vap->iv_state == IEEE80211_S_RUN &&
IEEE80211_ADDR_EQ(vap->iv_bss->ni_bssid, buf)) {
RSU_UNLOCK(sc);
ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
RSU_LOCK(sc);
}
break;
case R92S_EVT_WPS_PBC:
RSU_DPRINTF(sc, RSU_DEBUG_RX | RSU_DEBUG_FWCMD,
"%s: WPS PBC pushed.\n", __func__);
break;
case R92S_EVT_FWDBG:
buf[60] = '\0';
RSU_DPRINTF(sc, RSU_DEBUG_FWDBG, "FWDBG: %s\n", (char *)buf);
break;
case R92S_EVT_ADDBA_REQ_REPORT:
rsu_event_addba_req_report(sc, buf, len);
break;
default:
device_printf(sc->sc_dev, "%s: unhandled code (%d)\n", __func__, code);
break;
}
}
static void
rsu_rx_multi_event(struct rsu_softc *sc, uint8_t *buf, int len)
{
struct r92s_fw_cmd_hdr *cmd;
int cmdsz;
RSU_DPRINTF(sc, RSU_DEBUG_RX, "%s: Rx events len=%d\n", __func__, len);
/* Skip Rx status. */
buf += sizeof(struct r92s_rx_stat);
len -= sizeof(struct r92s_rx_stat);
/* Process all events. */
for (;;) {
/* Check that command header fits. */
if (__predict_false(len < sizeof(*cmd)))
break;
cmd = (struct r92s_fw_cmd_hdr *)buf;
/* Check that command payload fits. */
cmdsz = le16toh(cmd->len);
if (__predict_false(len < sizeof(*cmd) + cmdsz))
break;
/* Process firmware event. */
rsu_rx_event(sc, cmd->code, (uint8_t *)&cmd[1], cmdsz);
if (!(cmd->seq & R92S_FW_CMD_MORE))
break;
buf += sizeof(*cmd) + cmdsz;
len -= sizeof(*cmd) + cmdsz;
}
}
static int8_t
rsu_get_rssi(struct rsu_softc *sc, int rate, void *physt)
{
static const int8_t cckoff[] = { 14, -2, -20, -40 };
struct r92s_rx_phystat *phy;
struct r92s_rx_cck *cck;
uint8_t rpt;
int8_t rssi;
if (rate <= 3) {
cck = (struct r92s_rx_cck *)physt;
rpt = (cck->agc_rpt >> 6) & 0x3;
rssi = cck->agc_rpt & 0x3e;
rssi = cckoff[rpt] - rssi;
} else { /* OFDM/HT. */
phy = (struct r92s_rx_phystat *)physt;
rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 106;
}
return (rssi);
}
static struct mbuf *
rsu_rx_copy_to_mbuf(struct rsu_softc *sc, struct r92s_rx_stat *stat,
int totlen)
{
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m;
uint32_t rxdw0;
int pktlen;
rxdw0 = le32toh(stat->rxdw0);
if (__predict_false(rxdw0 & (R92S_RXDW0_CRCERR | R92S_RXDW0_ICVERR))) {
RSU_DPRINTF(sc, RSU_DEBUG_RX,
"%s: RX flags error (%s)\n", __func__,
rxdw0 & R92S_RXDW0_CRCERR ? "CRC" : "ICV");
goto fail;
}
pktlen = MS(rxdw0, R92S_RXDW0_PKTLEN);
if (__predict_false(pktlen < sizeof (struct ieee80211_frame_ack))) {
RSU_DPRINTF(sc, RSU_DEBUG_RX,
"%s: frame is too short: %d\n", __func__, pktlen);
goto fail;
}
m = m_get2(totlen, M_NOWAIT, MT_DATA, M_PKTHDR);
if (__predict_false(m == NULL)) {
device_printf(sc->sc_dev,
"%s: could not allocate RX mbuf, totlen %d\n",
__func__, totlen);
goto fail;
}
/* Finalize mbuf. */
memcpy(mtod(m, uint8_t *), (uint8_t *)stat, totlen);
m->m_pkthdr.len = m->m_len = totlen;
return (m);
fail:
counter_u64_add(ic->ic_ierrors, 1);
return (NULL);
}
static uint32_t
rsu_get_tsf_low(struct rsu_softc *sc)
{
return (rsu_read_4(sc, R92S_TSFTR));
}
static uint32_t
rsu_get_tsf_high(struct rsu_softc *sc)
{
return (rsu_read_4(sc, R92S_TSFTR + 4));
}
static struct ieee80211_node *
rsu_rx_frame(struct rsu_softc *sc, struct mbuf *m)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame_min *wh;
struct ieee80211_rx_stats rxs;
struct r92s_rx_stat *stat;
uint32_t rxdw0, rxdw3;
uint8_t cipher, rate;
int infosz;
int rssi;
stat = mtod(m, struct r92s_rx_stat *);
rxdw0 = le32toh(stat->rxdw0);
rxdw3 = le32toh(stat->rxdw3);
rate = MS(rxdw3, R92S_RXDW3_RATE);
cipher = MS(rxdw0, R92S_RXDW0_CIPHER);
infosz = MS(rxdw0, R92S_RXDW0_INFOSZ) * 8;
/* Get RSSI from PHY status descriptor if present. */
if (infosz != 0 && (rxdw0 & R92S_RXDW0_PHYST))
rssi = rsu_get_rssi(sc, rate, &stat[1]);
else {
/* Cheat and get the last calibrated RSSI */
rssi = rsu_hwrssi_to_rssi(sc, sc->sc_currssi);
}
if (ieee80211_radiotap_active(ic)) {
struct rsu_rx_radiotap_header *tap = &sc->sc_rxtap;
/* Map HW rate index to 802.11 rate. */
tap->wr_flags = 0; /* TODO */
tap->wr_tsft = rsu_get_tsf_high(sc);
if (le32toh(stat->tsf_low) > rsu_get_tsf_low(sc))
tap->wr_tsft--;
tap->wr_tsft = (uint64_t)htole32(tap->wr_tsft) << 32;
tap->wr_tsft += stat->tsf_low;
if (rate < 12) {
switch (rate) {
/* CCK. */
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
/* OFDM. */
case 4: tap->wr_rate = 12; break;
case 5: tap->wr_rate = 18; break;
case 6: tap->wr_rate = 24; break;
case 7: tap->wr_rate = 36; break;
case 8: tap->wr_rate = 48; break;
case 9: tap->wr_rate = 72; break;
case 10: tap->wr_rate = 96; break;
case 11: tap->wr_rate = 108; break;
}
} else { /* MCS0~15. */
/* Bit 7 set means HT MCS instead of rate. */
tap->wr_rate = 0x80 | (rate - 12);
}
tap->wr_dbm_antsignal = rssi;
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
};
/* Hardware does Rx TCP checksum offload. */
/*
* This flag can be set for some other
* (e.g., EAPOL) frame types, so don't rely on it.
*/
if (rxdw3 & R92S_RXDW3_TCPCHKVALID) {
RSU_DPRINTF(sc, RSU_DEBUG_RX,
"%s: TCP/IP checksums: %schecked / %schecked\n",
__func__,
(rxdw3 & R92S_RXDW3_TCPCHKRPT) ? "" : "not ",
(rxdw3 & R92S_RXDW3_IPCHKRPT) ? "" : "not ");
/*
* 'IP header checksum valid' bit will not be set if
* the frame was not checked / has incorrect checksum /
* does not have checksum (IPv6).
*
* NB: if DF bit is not set then frame will not be checked.
*/
if (rxdw3 & R92S_RXDW3_IPCHKRPT) {
m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
/*
* This is independent of the above check.
*/
if (rxdw3 & R92S_RXDW3_TCPCHKRPT) {
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
m->m_pkthdr.csum_flags |= CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/* RX flags */
/* Set channel flags for input path */
bzero(&rxs, sizeof(rxs));
/* normal RSSI */
rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
rxs.c_rssi = rssi;
rxs.c_nf = -96;
/* Rate */
if (!(rxdw3 & R92S_RXDW3_HTC)) {
switch (rate) {
/* CCK. */
case 0:
rxs.c_rate = 2;
rxs.c_pktflags |= IEEE80211_RX_F_CCK;
break;
case 1:
rxs.c_rate = 4;
rxs.c_pktflags |= IEEE80211_RX_F_CCK;
break;
case 2:
rxs.c_rate = 11;
rxs.c_pktflags |= IEEE80211_RX_F_CCK;
break;
case 3:
rxs.c_rate = 22;
rxs.c_pktflags |= IEEE80211_RX_F_CCK;
break;
/* OFDM. */
case 4:
rxs.c_rate = 12;
rxs.c_pktflags |= IEEE80211_RX_F_OFDM;
break;
case 5:
rxs.c_rate = 18;
rxs.c_pktflags |= IEEE80211_RX_F_OFDM;
break;
case 6:
rxs.c_rate = 24;
rxs.c_pktflags |= IEEE80211_RX_F_OFDM;
break;
case 7:
rxs.c_rate = 36;
rxs.c_pktflags |= IEEE80211_RX_F_OFDM;
break;
case 8:
rxs.c_rate = 48;
rxs.c_pktflags |= IEEE80211_RX_F_OFDM;
break;
case 9:
rxs.c_rate = 72;
rxs.c_pktflags |= IEEE80211_RX_F_OFDM;
break;
case 10:
rxs.c_rate = 96;
rxs.c_pktflags |= IEEE80211_RX_F_OFDM;
break;
case 11:
rxs.c_rate = 108;
rxs.c_pktflags |= IEEE80211_RX_F_OFDM;
break;
}
} else if (rate >= 12) { /* MCS0~15. */
/* Bit 7 set means HT MCS instead of rate. */
rxs.c_rate = (rate - 12);
rxs.c_pktflags |= IEEE80211_RX_F_HT;
}
(void) ieee80211_add_rx_params(m, &rxs);
/* Drop descriptor. */
m_adj(m, sizeof(*stat) + infosz);
wh = mtod(m, struct ieee80211_frame_min *);
if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
cipher != R92S_KEY_ALGO_NONE) {
m->m_flags |= M_WEP;
}
RSU_DPRINTF(sc, RSU_DEBUG_RX,
"%s: Rx frame len %d, rate %d, infosz %d\n",
__func__, m->m_len, rate, infosz);
if (m->m_len >= sizeof(*wh))
return (ieee80211_find_rxnode(ic, wh));
return (NULL);
}
static struct mbuf *
rsu_rx_multi_frame(struct rsu_softc *sc, uint8_t *buf, int len)
{
struct r92s_rx_stat *stat;
uint32_t rxdw0;
int totlen, pktlen, infosz, npkts;
struct mbuf *m, *m0 = NULL, *prevm = NULL;
/*
* don't pass packets to the ieee80211 framework if the driver isn't
* RUNNING.
*/
if (!sc->sc_running)
return (NULL);
/* Get the number of encapsulated frames. */
stat = (struct r92s_rx_stat *)buf;
npkts = MS(le32toh(stat->rxdw2), R92S_RXDW2_PKTCNT);
RSU_DPRINTF(sc, RSU_DEBUG_RX,
"%s: Rx %d frames in one chunk\n", __func__, npkts);
/* Process all of them. */
while (npkts-- > 0) {
if (__predict_false(len < sizeof(*stat)))
break;
stat = (struct r92s_rx_stat *)buf;
rxdw0 = le32toh(stat->rxdw0);
pktlen = MS(rxdw0, R92S_RXDW0_PKTLEN);
if (__predict_false(pktlen == 0))
break;
infosz = MS(rxdw0, R92S_RXDW0_INFOSZ) * 8;
/* Make sure everything fits in xfer. */
totlen = sizeof(*stat) + infosz + pktlen;
if (__predict_false(totlen > len))
break;
/* Process 802.11 frame. */
m = rsu_rx_copy_to_mbuf(sc, stat, totlen);
if (m0 == NULL)
m0 = m;
if (prevm == NULL)
prevm = m;
else {
prevm->m_next = m;
prevm = m;
}
/* Next chunk is 128-byte aligned. */
totlen = (totlen + 127) & ~127;
buf += totlen;
len -= totlen;
}
return (m0);
}
static struct mbuf *
rsu_rxeof(struct usb_xfer *xfer, struct rsu_data *data)
{
struct rsu_softc *sc = data->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct r92s_rx_stat *stat;
int len;
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
if (__predict_false(len < sizeof(*stat))) {
RSU_DPRINTF(sc, RSU_DEBUG_RX, "xfer too short %d\n", len);
counter_u64_add(ic->ic_ierrors, 1);
return (NULL);
}
/* Determine if it is a firmware C2H event or an 802.11 frame. */
stat = (struct r92s_rx_stat *)data->buf;
if ((le32toh(stat->rxdw1) & 0x1ff) == 0x1ff) {
rsu_rx_multi_event(sc, data->buf, len);
/* No packets to process. */
return (NULL);
} else
return (rsu_rx_multi_frame(sc, data->buf, len));
}
static void
rsu_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct rsu_softc *sc = usbd_xfer_softc(xfer);
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct mbuf *m = NULL, *next;
struct rsu_data *data;
RSU_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data == NULL)
goto tr_setup;
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
m = rsu_rxeof(xfer, data);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&sc->sc_rx_inactive);
if (data == NULL) {
KASSERT(m == NULL, ("mbuf isn't NULL"));
return;
}
STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
usbd_xfer_set_frame_data(xfer, 0, data->buf,
usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
/*
* To avoid LOR we should unlock our private mutex here to call
* ieee80211_input() because here is at the end of a USB
* callback and safe to unlock.
*/
while (m != NULL) {
next = m->m_next;
m->m_next = NULL;
ni = rsu_rx_frame(sc, m);
RSU_UNLOCK(sc);
if (ni != NULL) {
if (ni->ni_flags & IEEE80211_NODE_HT)
m->m_flags |= M_AMPDU;
(void)ieee80211_input_mimo(ni, m);
ieee80211_free_node(ni);
} else
(void)ieee80211_input_mimo_all(ic, m);
RSU_LOCK(sc);
m = next;
}
break;
default:
/* needs it to the inactive queue due to a error. */
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
}
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
counter_u64_add(ic->ic_ierrors, 1);
goto tr_setup;
}
break;
}
}
static void
rsu_txeof(struct usb_xfer *xfer, struct rsu_data *data)
{
#ifdef USB_DEBUG
struct rsu_softc *sc = usbd_xfer_softc(xfer);
#endif
RSU_DPRINTF(sc, RSU_DEBUG_TXDONE, "%s: called; data=%p\n",
__func__,
data);
if (data->m) {
/* XXX status? */
ieee80211_tx_complete(data->ni, data->m, 0);
data->m = NULL;
data->ni = NULL;
}
}
static void
rsu_bulk_tx_callback_sub(struct usb_xfer *xfer, usb_error_t error,
uint8_t which)
{
struct rsu_softc *sc = usbd_xfer_softc(xfer);
struct ieee80211com *ic = &sc->sc_ic;
struct rsu_data *data;
RSU_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_tx_active[which]);
if (data == NULL)
goto tr_setup;
RSU_DPRINTF(sc, RSU_DEBUG_TXDONE, "%s: transfer done %p\n",
__func__, data);
STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next);
rsu_txeof(xfer, data);
rsu_freebuf(sc, data);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&sc->sc_tx_pending[which]);
if (data == NULL) {
RSU_DPRINTF(sc, RSU_DEBUG_TXDONE,
"%s: empty pending queue sc %p\n", __func__, sc);
return;
}
STAILQ_REMOVE_HEAD(&sc->sc_tx_pending[which], next);
STAILQ_INSERT_TAIL(&sc->sc_tx_active[which], data, next);
usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
RSU_DPRINTF(sc, RSU_DEBUG_TXDONE,
"%s: submitting transfer %p\n",
__func__,
data);
usbd_transfer_submit(xfer);
break;
default:
data = STAILQ_FIRST(&sc->sc_tx_active[which]);
if (data != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next);
rsu_txeof(xfer, data);
rsu_freebuf(sc, data);
}
counter_u64_add(ic->ic_oerrors, 1);
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
/*
* XXX TODO: if the queue is low, flush out FF TX frames.
* Remember to unlock the driver for now; net80211 doesn't
* defer it for us.
*/
}
static void
rsu_bulk_tx_callback_be_bk(struct usb_xfer *xfer, usb_error_t error)
{
struct rsu_softc *sc = usbd_xfer_softc(xfer);
rsu_bulk_tx_callback_sub(xfer, error, RSU_BULK_TX_BE_BK);
/* This kicks the TX taskqueue */
rsu_start(sc);
}
static void
rsu_bulk_tx_callback_vi_vo(struct usb_xfer *xfer, usb_error_t error)
{
struct rsu_softc *sc = usbd_xfer_softc(xfer);
rsu_bulk_tx_callback_sub(xfer, error, RSU_BULK_TX_VI_VO);
/* This kicks the TX taskqueue */
rsu_start(sc);
}
static void
rsu_bulk_tx_callback_h2c(struct usb_xfer *xfer, usb_error_t error)
{
struct rsu_softc *sc = usbd_xfer_softc(xfer);
rsu_bulk_tx_callback_sub(xfer, error, RSU_BULK_TX_H2C);
/* This kicks the TX taskqueue */
rsu_start(sc);
}
/*
* Transmit the given frame.
*
* This doesn't free the node or mbuf upon failure.
*/
static int
rsu_tx_start(struct rsu_softc *sc, struct ieee80211_node *ni,
struct mbuf *m0, struct rsu_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
struct r92s_tx_desc *txd;
uint8_t type, cipher;
int prio = 0;
uint8_t which;
int hasqos;
int xferlen;
int qid;
RSU_ASSERT_LOCKED(sc);
wh = mtod(m0, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: data=%p, m=%p\n",
__func__, data, m0);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
device_printf(sc->sc_dev,
"ieee80211_crypto_encap returns NULL.\n");
/* XXX we don't expect the fragmented frames */
return (ENOBUFS);
}
wh = mtod(m0, struct ieee80211_frame *);
}
/* If we have QoS then use it */
/* XXX TODO: mbuf WME/PRI versus TID? */
if (IEEE80211_QOS_HAS_SEQ(wh)) {
/* Has QoS */
prio = M_WME_GETAC(m0);
which = rsu_wme_ac_xfer_map[prio];
hasqos = 1;
} else {
/* Non-QoS TID */
/* XXX TODO: tid=0 for non-qos TID? */
which = rsu_wme_ac_xfer_map[WME_AC_BE];
hasqos = 0;
prio = 0;
}
qid = rsu_ac2qid[prio];
#if 0
switch (type) {
case IEEE80211_FC0_TYPE_CTL:
case IEEE80211_FC0_TYPE_MGT:
which = rsu_wme_ac_xfer_map[WME_AC_VO];
break;
default:
which = rsu_wme_ac_xfer_map[M_WME_GETAC(m0)];
break;
}
hasqos = 0;
#endif
RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: pri=%d, which=%d, hasqos=%d\n",
__func__,
prio,
which,
hasqos);
/* Fill Tx descriptor. */
txd = (struct r92s_tx_desc *)data->buf;
memset(txd, 0, sizeof(*txd));
txd->txdw0 |= htole32(
SM(R92S_TXDW0_PKTLEN, m0->m_pkthdr.len) |
SM(R92S_TXDW0_OFFSET, sizeof(*txd)) |
R92S_TXDW0_OWN | R92S_TXDW0_FSG | R92S_TXDW0_LSG);
txd->txdw1 |= htole32(
SM(R92S_TXDW1_MACID, R92S_MACID_BSS) | SM(R92S_TXDW1_QSEL, qid));
if (!hasqos)
txd->txdw1 |= htole32(R92S_TXDW1_NONQOS);
if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWENCRYPT)) {
switch (k->wk_cipher->ic_cipher) {
case IEEE80211_CIPHER_WEP:
cipher = R92S_TXDW1_CIPHER_WEP;
break;
case IEEE80211_CIPHER_TKIP:
cipher = R92S_TXDW1_CIPHER_TKIP;
break;
case IEEE80211_CIPHER_AES_CCM:
cipher = R92S_TXDW1_CIPHER_AES;
break;
default:
cipher = R92S_TXDW1_CIPHER_NONE;
}
txd->txdw1 |= htole32(
SM(R92S_TXDW1_CIPHER, cipher) |
SM(R92S_TXDW1_KEYIDX, k->wk_keyix));
}
/* XXX todo: set AGGEN bit if appropriate? */
txd->txdw2 |= htole32(R92S_TXDW2_BK);
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
txd->txdw2 |= htole32(R92S_TXDW2_BMCAST);
/*
* Firmware will use and increment the sequence number for the
* specified priority.
*/
txd->txdw3 |= htole32(SM(R92S_TXDW3_SEQ, prio));
if (ieee80211_radiotap_active_vap(vap)) {
struct rsu_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
ieee80211_radiotap_tx(vap, m0);
}
xferlen = sizeof(*txd) + m0->m_pkthdr.len;
m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&txd[1]);
data->buflen = xferlen;
data->ni = ni;
data->m = m0;
STAILQ_INSERT_TAIL(&sc->sc_tx_pending[which], data, next);
/* start transfer, if any */
usbd_transfer_start(sc->sc_xfer[which]);
return (0);
}
static int
rsu_transmit(struct ieee80211com *ic, struct mbuf *m)
{
struct rsu_softc *sc = ic->ic_softc;
int error;
RSU_LOCK(sc);
if (!sc->sc_running) {
RSU_UNLOCK(sc);
return (ENXIO);
}
/*
* XXX TODO: ensure that we treat 'm' as a list of frames
* to transmit!
*/
error = mbufq_enqueue(&sc->sc_snd, m);
if (error) {
RSU_DPRINTF(sc, RSU_DEBUG_TX,
"%s: mbufq_enable: failed (%d)\n",
__func__,
error);
RSU_UNLOCK(sc);
return (error);
}
RSU_UNLOCK(sc);
/* This kicks the TX taskqueue */
rsu_start(sc);
return (0);
}
static void
rsu_drain_mbufq(struct rsu_softc *sc)
{
struct mbuf *m;
struct ieee80211_node *ni;
RSU_ASSERT_LOCKED(sc);
while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
ieee80211_free_node(ni);
m_freem(m);
}
}
static void
_rsu_start(struct rsu_softc *sc)
{
struct ieee80211_node *ni;
struct rsu_data *bf;
struct mbuf *m;
RSU_ASSERT_LOCKED(sc);
while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
bf = rsu_getbuf(sc);
if (bf == NULL) {
RSU_DPRINTF(sc, RSU_DEBUG_TX,
"%s: failed to get buffer\n", __func__);
mbufq_prepend(&sc->sc_snd, m);
break;
}
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
if (rsu_tx_start(sc, ni, m, bf) != 0) {
RSU_DPRINTF(sc, RSU_DEBUG_TX,
"%s: failed to transmit\n", __func__);
if_inc_counter(ni->ni_vap->iv_ifp,
IFCOUNTER_OERRORS, 1);
rsu_freebuf(sc, bf);
ieee80211_free_node(ni);
m_freem(m);
break;
}
}
}
static void
rsu_start(struct rsu_softc *sc)
{
taskqueue_enqueue(taskqueue_thread, &sc->tx_task);
}
static int
rsu_ioctl_net(struct ieee80211com *ic, u_long cmd, void *data)
{
struct rsu_softc *sc = ic->ic_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error;
error = 0;
switch (cmd) {
case SIOCSIFCAP:
{
struct ieee80211vap *vap;
int rxmask;
rxmask = ifr->ifr_reqcap & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6);
RSU_LOCK(sc);
/* Both RXCSUM bits must be set (or unset). */
if (sc->sc_rx_checksum_enable &&
rxmask != (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) {
rxmask = 0;
sc->sc_rx_checksum_enable = 0;
rsu_rxfilter_set(sc, R92S_RCR_TCP_OFFLD_EN, 0);
} else if (!sc->sc_rx_checksum_enable && rxmask != 0) {
rxmask = IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6;
sc->sc_rx_checksum_enable = 1;
rsu_rxfilter_set(sc, 0, R92S_RCR_TCP_OFFLD_EN);
} else {
/* Nothing to do. */
RSU_UNLOCK(sc);
break;
}
RSU_UNLOCK(sc);
IEEE80211_LOCK(ic); /* XXX */
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
struct ifnet *ifp = vap->iv_ifp;
ifp->if_capenable &=
~(IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6);
ifp->if_capenable |= rxmask;
}
IEEE80211_UNLOCK(ic);
break;
}
default:
error = ENOTTY; /* for net80211 */
break;
}
return (error);
}
static void
rsu_parent(struct ieee80211com *ic)
{
struct rsu_softc *sc = ic->ic_softc;
if (ic->ic_nrunning > 0) {
if (rsu_init(sc) == 0)
ieee80211_start_all(ic);
else {
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
if (vap != NULL)
ieee80211_stop(vap);
}
} else
rsu_stop(sc);
}
/*
* Power on sequence for A-cut adapters.
*/
static void
rsu_power_on_acut(struct rsu_softc *sc)
{
uint32_t reg;
rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x53);
rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x57);
/* Enable AFE macro block's bandgap and Mbias. */
rsu_write_1(sc, R92S_AFE_MISC,
rsu_read_1(sc, R92S_AFE_MISC) |
R92S_AFE_MISC_BGEN | R92S_AFE_MISC_MBEN);
/* Enable LDOA15 block. */
rsu_write_1(sc, R92S_LDOA15_CTRL,
rsu_read_1(sc, R92S_LDOA15_CTRL) | R92S_LDA15_EN);
rsu_write_1(sc, R92S_SPS1_CTRL,
rsu_read_1(sc, R92S_SPS1_CTRL) | R92S_SPS1_LDEN);
rsu_ms_delay(sc, 2000);
/* Enable switch regulator block. */
rsu_write_1(sc, R92S_SPS1_CTRL,
rsu_read_1(sc, R92S_SPS1_CTRL) | R92S_SPS1_SWEN);
rsu_write_4(sc, R92S_SPS1_CTRL, 0x00a7b267);
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1,
rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) | 0x08);
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x20);
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1,
rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) & ~0x90);
/* Enable AFE clock. */
rsu_write_1(sc, R92S_AFE_XTAL_CTRL + 1,
rsu_read_1(sc, R92S_AFE_XTAL_CTRL + 1) & ~0x04);
/* Enable AFE PLL macro block. */
rsu_write_1(sc, R92S_AFE_PLL_CTRL,
rsu_read_1(sc, R92S_AFE_PLL_CTRL) | 0x11);
/* Attach AFE PLL to MACTOP/BB. */
rsu_write_1(sc, R92S_SYS_ISO_CTRL,
rsu_read_1(sc, R92S_SYS_ISO_CTRL) & ~0x11);
/* Switch to 40MHz clock instead of 80MHz. */
rsu_write_2(sc, R92S_SYS_CLKR,
rsu_read_2(sc, R92S_SYS_CLKR) & ~R92S_SYS_CLKSEL);
/* Enable MAC clock. */
rsu_write_2(sc, R92S_SYS_CLKR,
rsu_read_2(sc, R92S_SYS_CLKR) |
R92S_MAC_CLK_EN | R92S_SYS_CLK_EN);
rsu_write_1(sc, R92S_PMC_FSM, 0x02);
/* Enable digital core and IOREG R/W. */
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x08);
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x80);
/* Switch the control path to firmware. */
reg = rsu_read_2(sc, R92S_SYS_CLKR);
reg = (reg & ~R92S_SWHW_SEL) | R92S_FWHW_SEL;
rsu_write_2(sc, R92S_SYS_CLKR, reg);
rsu_write_2(sc, R92S_CR, 0x37fc);
/* Fix USB RX FIFO issue. */
rsu_write_1(sc, 0xfe5c,
rsu_read_1(sc, 0xfe5c) | 0x80);
rsu_write_1(sc, 0x00ab,
rsu_read_1(sc, 0x00ab) | 0xc0);
rsu_write_1(sc, R92S_SYS_CLKR,
rsu_read_1(sc, R92S_SYS_CLKR) & ~R92S_SYS_CPU_CLKSEL);
}
/*
* Power on sequence for B-cut and C-cut adapters.
*/
static void
rsu_power_on_bcut(struct rsu_softc *sc)
{
uint32_t reg;
int ntries;
/* Prevent eFuse leakage. */
rsu_write_1(sc, 0x37, 0xb0);
rsu_ms_delay(sc, 10);
rsu_write_1(sc, 0x37, 0x30);
/* Switch the control path to hardware. */
reg = rsu_read_2(sc, R92S_SYS_CLKR);
if (reg & R92S_FWHW_SEL) {
rsu_write_2(sc, R92S_SYS_CLKR,
reg & ~(R92S_SWHW_SEL | R92S_FWHW_SEL));
}
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) & ~0x8c);
rsu_ms_delay(sc, 1);
rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x53);
rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x57);
reg = rsu_read_1(sc, R92S_AFE_MISC);
rsu_write_1(sc, R92S_AFE_MISC, reg | R92S_AFE_MISC_BGEN);
rsu_write_1(sc, R92S_AFE_MISC, reg | R92S_AFE_MISC_BGEN |
R92S_AFE_MISC_MBEN | R92S_AFE_MISC_I32_EN);
/* Enable PLL. */
rsu_write_1(sc, R92S_LDOA15_CTRL,
rsu_read_1(sc, R92S_LDOA15_CTRL) | R92S_LDA15_EN);
rsu_write_1(sc, R92S_LDOV12D_CTRL,
rsu_read_1(sc, R92S_LDOV12D_CTRL) | R92S_LDV12_EN);
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1,
rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) | 0x08);
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x20);
/* Support 64KB IMEM. */
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1,
rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) & ~0x97);
/* Enable AFE clock. */
rsu_write_1(sc, R92S_AFE_XTAL_CTRL + 1,
rsu_read_1(sc, R92S_AFE_XTAL_CTRL + 1) & ~0x04);
/* Enable AFE PLL macro block. */
reg = rsu_read_1(sc, R92S_AFE_PLL_CTRL);
rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x11);
rsu_ms_delay(sc, 1);
rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x51);
rsu_ms_delay(sc, 1);
rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x11);
rsu_ms_delay(sc, 1);
/* Attach AFE PLL to MACTOP/BB. */
rsu_write_1(sc, R92S_SYS_ISO_CTRL,
rsu_read_1(sc, R92S_SYS_ISO_CTRL) & ~0x11);
/* Switch to 40MHz clock. */
rsu_write_1(sc, R92S_SYS_CLKR, 0x00);
/* Disable CPU clock and 80MHz SSC. */
rsu_write_1(sc, R92S_SYS_CLKR,
rsu_read_1(sc, R92S_SYS_CLKR) | 0xa0);
/* Enable MAC clock. */
rsu_write_2(sc, R92S_SYS_CLKR,
rsu_read_2(sc, R92S_SYS_CLKR) |
R92S_MAC_CLK_EN | R92S_SYS_CLK_EN);
rsu_write_1(sc, R92S_PMC_FSM, 0x02);
/* Enable digital core and IOREG R/W. */
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x08);
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x80);
/* Switch the control path to firmware. */
reg = rsu_read_2(sc, R92S_SYS_CLKR);
reg = (reg & ~R92S_SWHW_SEL) | R92S_FWHW_SEL;
rsu_write_2(sc, R92S_SYS_CLKR, reg);
rsu_write_2(sc, R92S_CR, 0x37fc);
/* Fix USB RX FIFO issue. */
rsu_write_1(sc, 0xfe5c,
rsu_read_1(sc, 0xfe5c) | 0x80);
rsu_write_1(sc, R92S_SYS_CLKR,
rsu_read_1(sc, R92S_SYS_CLKR) & ~R92S_SYS_CPU_CLKSEL);
rsu_write_1(sc, 0xfe1c, 0x80);
/* Make sure TxDMA is ready to download firmware. */
for (ntries = 0; ntries < 20; ntries++) {
reg = rsu_read_1(sc, R92S_TCR);
if ((reg & (R92S_TCR_IMEM_CHK_RPT | R92S_TCR_EMEM_CHK_RPT)) ==
(R92S_TCR_IMEM_CHK_RPT | R92S_TCR_EMEM_CHK_RPT))
break;
rsu_ms_delay(sc, 1);
}
if (ntries == 20) {
RSU_DPRINTF(sc, RSU_DEBUG_RESET | RSU_DEBUG_TX,
"%s: TxDMA is not ready\n",
__func__);
/* Reset TxDMA. */
reg = rsu_read_1(sc, R92S_CR);
rsu_write_1(sc, R92S_CR, reg & ~R92S_CR_TXDMA_EN);
rsu_ms_delay(sc, 1);
rsu_write_1(sc, R92S_CR, reg | R92S_CR_TXDMA_EN);
}
}
static void
rsu_power_off(struct rsu_softc *sc)
{
/* Turn RF off. */
rsu_write_1(sc, R92S_RF_CTRL, 0x00);
rsu_ms_delay(sc, 5);
/* Turn MAC off. */
/* Switch control path. */
rsu_write_1(sc, R92S_SYS_CLKR + 1, 0x38);
/* Reset MACTOP. */
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, 0x70);
rsu_write_1(sc, R92S_PMC_FSM, 0x06);
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 0, 0xf9);
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, 0xe8);
/* Disable AFE PLL. */
rsu_write_1(sc, R92S_AFE_PLL_CTRL, 0x00);
/* Disable A15V. */
rsu_write_1(sc, R92S_LDOA15_CTRL, 0x54);
/* Disable eFuse 1.2V. */
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, 0x50);
rsu_write_1(sc, R92S_LDOV12D_CTRL, 0x24);
/* Enable AFE macro block's bandgap and Mbias. */
rsu_write_1(sc, R92S_AFE_MISC, 0x30);
/* Disable 1.6V LDO. */
rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x56);
rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x43);
/* Firmware - tell it to switch things off */
(void) rsu_set_fw_power_state(sc, RSU_PWR_OFF);
}
static int
rsu_fw_loadsection(struct rsu_softc *sc, const uint8_t *buf, int len)
{
const uint8_t which = rsu_wme_ac_xfer_map[WME_AC_VO];
struct rsu_data *data;
struct r92s_tx_desc *txd;
int mlen;
while (len > 0) {
data = rsu_getbuf(sc);
if (data == NULL)
return (ENOMEM);
txd = (struct r92s_tx_desc *)data->buf;
memset(txd, 0, sizeof(*txd));
if (len <= RSU_TXBUFSZ - sizeof(*txd)) {
/* Last chunk. */
txd->txdw0 |= htole32(R92S_TXDW0_LINIP);
mlen = len;
} else
mlen = RSU_TXBUFSZ - sizeof(*txd);
txd->txdw0 |= htole32(SM(R92S_TXDW0_PKTLEN, mlen));
memcpy(&txd[1], buf, mlen);
data->buflen = sizeof(*txd) + mlen;
RSU_DPRINTF(sc, RSU_DEBUG_TX | RSU_DEBUG_FW | RSU_DEBUG_RESET,
"%s: starting transfer %p\n",
__func__, data);
STAILQ_INSERT_TAIL(&sc->sc_tx_pending[which], data, next);
buf += mlen;
len -= mlen;
}
usbd_transfer_start(sc->sc_xfer[which]);
return (0);
}
static int
rsu_load_firmware(struct rsu_softc *sc)
{
const struct r92s_fw_hdr *hdr;
struct r92s_fw_priv *dmem;
struct ieee80211com *ic = &sc->sc_ic;
const uint8_t *imem, *emem;
int imemsz, ememsz;
const struct firmware *fw;
size_t size;
uint32_t reg;
int ntries, error;
if (rsu_read_1(sc, R92S_TCR) & R92S_TCR_FWRDY) {
RSU_DPRINTF(sc, RSU_DEBUG_ANY,
"%s: Firmware already loaded\n",
__func__);
return (0);
}
RSU_UNLOCK(sc);
/* Read firmware image from the filesystem. */
if ((fw = firmware_get("rsu-rtl8712fw")) == NULL) {
device_printf(sc->sc_dev,
"%s: failed load firmware of file rsu-rtl8712fw\n",
__func__);
RSU_LOCK(sc);
return (ENXIO);
}
RSU_LOCK(sc);
size = fw->datasize;
if (size < sizeof(*hdr)) {
device_printf(sc->sc_dev, "firmware too short\n");
error = EINVAL;
goto fail;
}
hdr = (const struct r92s_fw_hdr *)fw->data;
if (hdr->signature != htole16(0x8712) &&
hdr->signature != htole16(0x8192)) {
device_printf(sc->sc_dev,
"invalid firmware signature 0x%x\n",
le16toh(hdr->signature));
error = EINVAL;
goto fail;
}
RSU_DPRINTF(sc, RSU_DEBUG_FW, "FW V%d %02x-%02x %02x:%02x\n",
le16toh(hdr->version), hdr->month, hdr->day, hdr->hour,
hdr->minute);
/* Make sure that driver and firmware are in sync. */
if (hdr->privsz != htole32(sizeof(*dmem))) {
device_printf(sc->sc_dev, "unsupported firmware image\n");
error = EINVAL;
goto fail;
}
/* Get FW sections sizes. */
imemsz = le32toh(hdr->imemsz);
ememsz = le32toh(hdr->sramsz);
/* Check that all FW sections fit in image. */
if (size < sizeof(*hdr) + imemsz + ememsz) {
device_printf(sc->sc_dev, "firmware too short\n");
error = EINVAL;
goto fail;
}
imem = (const uint8_t *)&hdr[1];
emem = imem + imemsz;
/* Load IMEM section. */
error = rsu_fw_loadsection(sc, imem, imemsz);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load firmware section %s\n", "IMEM");
goto fail;
}
/* Wait for load to complete. */
for (ntries = 0; ntries != 50; ntries++) {
rsu_ms_delay(sc, 10);
reg = rsu_read_1(sc, R92S_TCR);
if (reg & R92S_TCR_IMEM_CODE_DONE)
break;
}
if (ntries == 50) {
device_printf(sc->sc_dev, "timeout waiting for IMEM transfer\n");
error = ETIMEDOUT;
goto fail;
}
/* Load EMEM section. */
error = rsu_fw_loadsection(sc, emem, ememsz);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load firmware section %s\n", "EMEM");
goto fail;
}
/* Wait for load to complete. */
for (ntries = 0; ntries != 50; ntries++) {
rsu_ms_delay(sc, 10);
reg = rsu_read_2(sc, R92S_TCR);
if (reg & R92S_TCR_EMEM_CODE_DONE)
break;
}
if (ntries == 50) {
device_printf(sc->sc_dev, "timeout waiting for EMEM transfer\n");
error = ETIMEDOUT;
goto fail;
}
/* Enable CPU. */
rsu_write_1(sc, R92S_SYS_CLKR,
rsu_read_1(sc, R92S_SYS_CLKR) | R92S_SYS_CPU_CLKSEL);
if (!(rsu_read_1(sc, R92S_SYS_CLKR) & R92S_SYS_CPU_CLKSEL)) {
device_printf(sc->sc_dev, "could not enable system clock\n");
error = EIO;
goto fail;
}
rsu_write_2(sc, R92S_SYS_FUNC_EN,
rsu_read_2(sc, R92S_SYS_FUNC_EN) | R92S_FEN_CPUEN);
if (!(rsu_read_2(sc, R92S_SYS_FUNC_EN) & R92S_FEN_CPUEN)) {
device_printf(sc->sc_dev,
"could not enable microcontroller\n");
error = EIO;
goto fail;
}
/* Wait for CPU to initialize. */
for (ntries = 0; ntries < 100; ntries++) {
if (rsu_read_1(sc, R92S_TCR) & R92S_TCR_IMEM_RDY)
break;
rsu_ms_delay(sc, 1);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"timeout waiting for microcontroller\n");
error = ETIMEDOUT;
goto fail;
}
/* Update DMEM section before loading. */
dmem = __DECONST(struct r92s_fw_priv *, &hdr->priv);
memset(dmem, 0, sizeof(*dmem));
dmem->hci_sel = R92S_HCI_SEL_USB | R92S_HCI_SEL_8172;
dmem->nendpoints = sc->sc_nendpoints;
dmem->chip_version = sc->cut;
dmem->rf_config = sc->sc_rftype;
dmem->vcs_type = R92S_VCS_TYPE_AUTO;
dmem->vcs_mode = R92S_VCS_MODE_RTS_CTS;
dmem->turbo_mode = 0;
dmem->bw40_en = !! (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40);
dmem->amsdu2ampdu_en = !! (sc->sc_ht);
dmem->ampdu_en = !! (sc->sc_ht);
dmem->agg_offload = !! (sc->sc_ht);
dmem->qos_en = 1;
dmem->ps_offload = 1;
dmem->lowpower_mode = 1; /* XXX TODO: configurable? */
/* Load DMEM section. */
error = rsu_fw_loadsection(sc, (uint8_t *)dmem, sizeof(*dmem));
if (error != 0) {
device_printf(sc->sc_dev,
"could not load firmware section %s\n", "DMEM");
goto fail;
}
/* Wait for load to complete. */
for (ntries = 0; ntries < 100; ntries++) {
if (rsu_read_1(sc, R92S_TCR) & R92S_TCR_DMEM_CODE_DONE)
break;
rsu_ms_delay(sc, 1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for %s transfer\n",
"DMEM");
error = ETIMEDOUT;
goto fail;
}
/* Wait for firmware readiness. */
for (ntries = 0; ntries < 60; ntries++) {
if (!(rsu_read_1(sc, R92S_TCR) & R92S_TCR_FWRDY))
break;
rsu_ms_delay(sc, 1);
}
if (ntries == 60) {
device_printf(sc->sc_dev,
"timeout waiting for firmware readiness\n");
error = ETIMEDOUT;
goto fail;
}
fail:
firmware_put(fw, FIRMWARE_UNLOAD);
return (error);
}
static int
rsu_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct rsu_softc *sc = ic->ic_softc;
struct rsu_data *bf;
/* prevent management frames from being sent if we're not ready */
if (!sc->sc_running) {
m_freem(m);
return (ENETDOWN);
}
RSU_LOCK(sc);
bf = rsu_getbuf(sc);
if (bf == NULL) {
m_freem(m);
RSU_UNLOCK(sc);
return (ENOBUFS);
}
if (rsu_tx_start(sc, ni, m, bf) != 0) {
m_freem(m);
rsu_freebuf(sc, bf);
RSU_UNLOCK(sc);
return (EIO);
}
RSU_UNLOCK(sc);
return (0);
}
static void
rsu_rxfilter_init(struct rsu_softc *sc)
{
uint32_t reg;
RSU_ASSERT_LOCKED(sc);
/* Setup multicast filter. */
rsu_set_multi(sc);
/* Adjust Rx filter. */
reg = rsu_read_4(sc, R92S_RCR);
reg &= ~R92S_RCR_AICV;
reg |= R92S_RCR_APP_PHYSTS;
if (sc->sc_rx_checksum_enable)
reg |= R92S_RCR_TCP_OFFLD_EN;
rsu_write_4(sc, R92S_RCR, reg);
/* Update dynamic Rx filter parts. */
rsu_rxfilter_refresh(sc);
}
static void
rsu_rxfilter_set(struct rsu_softc *sc, uint32_t clear, uint32_t set)
{
/* NB: firmware can touch this register too. */
rsu_write_4(sc, R92S_RCR,
(rsu_read_4(sc, R92S_RCR) & ~clear) | set);
}
static void
rsu_rxfilter_refresh(struct rsu_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t mask_all, mask_min;
RSU_ASSERT_LOCKED(sc);
/* NB: RCR_AMF / RXFLTMAP_MGT are used by firmware. */
mask_all = R92S_RCR_ACF | R92S_RCR_AAP;
mask_min = R92S_RCR_APM;
if (sc->sc_vap_is_running)
mask_min |= R92S_RCR_CBSSID;
else
mask_all |= R92S_RCR_ADF;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
uint16_t rxfltmap;
if (sc->sc_vap_is_running)
rxfltmap = 0;
else
rxfltmap = R92S_RXFLTMAP_MGT_DEF;
rsu_write_2(sc, R92S_RXFLTMAP_MGT, rxfltmap);
}
if (ic->ic_promisc == 0 && ic->ic_opmode != IEEE80211_M_MONITOR)
rsu_rxfilter_set(sc, mask_all, mask_min);
else
rsu_rxfilter_set(sc, mask_min, mask_all);
}
static int
rsu_init(struct rsu_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint8_t macaddr[IEEE80211_ADDR_LEN];
int error;
int i;
RSU_LOCK(sc);
if (sc->sc_running) {
RSU_UNLOCK(sc);
return (0);
}
/* Ensure the mbuf queue is drained */
rsu_drain_mbufq(sc);
/* Reset power management state. */
rsu_write_1(sc, R92S_USB_HRPWM, 0);
/* Power on adapter. */
if (sc->cut == 1)
rsu_power_on_acut(sc);
else
rsu_power_on_bcut(sc);
/* Load firmware. */
error = rsu_load_firmware(sc);
if (error != 0)
goto fail;
rsu_write_4(sc, R92S_CR,
rsu_read_4(sc, R92S_CR) & ~0xff000000);
/* Use 128 bytes pages. */
rsu_write_1(sc, 0x00b5,
rsu_read_1(sc, 0x00b5) | 0x01);
/* Enable USB Rx aggregation. */
rsu_write_1(sc, 0x00bd,
rsu_read_1(sc, 0x00bd) | 0x80);
/* Set USB Rx aggregation threshold. */
rsu_write_1(sc, 0x00d9, 0x01);
/* Set USB Rx aggregation timeout (1.7ms/4). */
rsu_write_1(sc, 0xfe5b, 0x04);
/* Fix USB Rx FIFO issue. */
rsu_write_1(sc, 0xfe5c,
rsu_read_1(sc, 0xfe5c) | 0x80);
/* Set MAC address. */
IEEE80211_ADDR_COPY(macaddr, vap ? vap->iv_myaddr : ic->ic_macaddr);
rsu_write_region_1(sc, R92S_MACID, macaddr, IEEE80211_ADDR_LEN);
/* It really takes 1.5 seconds for the firmware to boot: */
usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(2000));
RSU_DPRINTF(sc, RSU_DEBUG_RESET, "%s: setting MAC address to %s\n",
__func__,
ether_sprintf(macaddr));
error = rsu_fw_cmd(sc, R92S_CMD_SET_MAC_ADDRESS, macaddr,
IEEE80211_ADDR_LEN);
if (error != 0) {
device_printf(sc->sc_dev, "could not set MAC address\n");
goto fail;
}
/* Initialize Rx filter. */
rsu_rxfilter_init(sc);
/* Set PS mode fully active */
error = rsu_set_fw_power_state(sc, RSU_PWR_ACTIVE);
if (error != 0) {
device_printf(sc->sc_dev, "could not set PS mode\n");
goto fail;
}
/* Install static keys (if any). */
error = rsu_reinit_static_keys(sc);
if (error != 0)
goto fail;
sc->sc_extra_scan = 0;
usbd_transfer_start(sc->sc_xfer[RSU_BULK_RX]);
/* We're ready to go. */
sc->sc_running = 1;
RSU_UNLOCK(sc);
return (0);
fail:
/* Need to stop all failed transfers, if any */
for (i = 0; i != RSU_N_TRANSFER; i++)
usbd_transfer_stop(sc->sc_xfer[i]);
RSU_UNLOCK(sc);
return (error);
}
static void
rsu_stop(struct rsu_softc *sc)
{
int i;
RSU_LOCK(sc);
if (!sc->sc_running) {
RSU_UNLOCK(sc);
return;
}
sc->sc_running = 0;
sc->sc_vap_is_running = 0;
sc->sc_calibrating = 0;
taskqueue_cancel_timeout(taskqueue_thread, &sc->calib_task, NULL);
taskqueue_cancel(taskqueue_thread, &sc->tx_task, NULL);
/* Power off adapter. */
rsu_power_off(sc);
/*
* CAM is not accessible after shutdown;
* all entries are marked (by firmware?) as invalid.
*/
memset(sc->free_keys_bmap, 0, sizeof(sc->free_keys_bmap));
memset(sc->keys_bmap, 0, sizeof(sc->keys_bmap));
for (i = 0; i < RSU_N_TRANSFER; i++)
usbd_transfer_stop(sc->sc_xfer[i]);
/* Ensure the mbuf queue is drained */
rsu_drain_mbufq(sc);
RSU_UNLOCK(sc);
}
/*
* Note: usb_pause_mtx() actually releases the mutex before calling pause(),
* which breaks any kind of driver serialisation.
*/
static void
rsu_ms_delay(struct rsu_softc *sc, int ms)
{
//usb_pause_mtx(&sc->sc_mtx, hz / 1000);
DELAY(ms * 1000);
}