4101 lines
119 KiB
C
4101 lines
119 KiB
C
/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "insn-flags.h"
|
||
#include "insn-codes.h"
|
||
#include "expr.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "reload.h"
|
||
#include <ctype.h>
|
||
|
||
/* Each optab contains info on how this target machine
|
||
can perform a particular operation
|
||
for all sizes and kinds of operands.
|
||
|
||
The operation to be performed is often specified
|
||
by passing one of these optabs as an argument.
|
||
|
||
See expr.h for documentation of these optabs. */
|
||
|
||
optab add_optab;
|
||
optab sub_optab;
|
||
optab smul_optab;
|
||
optab smul_highpart_optab;
|
||
optab umul_highpart_optab;
|
||
optab smul_widen_optab;
|
||
optab umul_widen_optab;
|
||
optab sdiv_optab;
|
||
optab sdivmod_optab;
|
||
optab udiv_optab;
|
||
optab udivmod_optab;
|
||
optab smod_optab;
|
||
optab umod_optab;
|
||
optab flodiv_optab;
|
||
optab ftrunc_optab;
|
||
optab and_optab;
|
||
optab ior_optab;
|
||
optab xor_optab;
|
||
optab ashl_optab;
|
||
optab lshr_optab;
|
||
optab ashr_optab;
|
||
optab rotl_optab;
|
||
optab rotr_optab;
|
||
optab smin_optab;
|
||
optab smax_optab;
|
||
optab umin_optab;
|
||
optab umax_optab;
|
||
|
||
optab mov_optab;
|
||
optab movstrict_optab;
|
||
|
||
optab neg_optab;
|
||
optab abs_optab;
|
||
optab one_cmpl_optab;
|
||
optab ffs_optab;
|
||
optab sqrt_optab;
|
||
optab sin_optab;
|
||
optab cos_optab;
|
||
|
||
optab cmp_optab;
|
||
optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */
|
||
optab tst_optab;
|
||
|
||
optab strlen_optab;
|
||
|
||
/* Tables of patterns for extending one integer mode to another. */
|
||
enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
|
||
|
||
/* Tables of patterns for converting between fixed and floating point. */
|
||
enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
|
||
enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
|
||
enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
|
||
|
||
/* Contains the optab used for each rtx code. */
|
||
optab code_to_optab[NUM_RTX_CODE + 1];
|
||
|
||
/* SYMBOL_REF rtx's for the library functions that are called
|
||
implicitly and not via optabs. */
|
||
|
||
rtx extendsfdf2_libfunc;
|
||
rtx extendsfxf2_libfunc;
|
||
rtx extendsftf2_libfunc;
|
||
rtx extenddfxf2_libfunc;
|
||
rtx extenddftf2_libfunc;
|
||
|
||
rtx truncdfsf2_libfunc;
|
||
rtx truncxfsf2_libfunc;
|
||
rtx trunctfsf2_libfunc;
|
||
rtx truncxfdf2_libfunc;
|
||
rtx trunctfdf2_libfunc;
|
||
|
||
rtx memcpy_libfunc;
|
||
rtx bcopy_libfunc;
|
||
rtx memcmp_libfunc;
|
||
rtx bcmp_libfunc;
|
||
rtx memset_libfunc;
|
||
rtx bzero_libfunc;
|
||
|
||
rtx eqsf2_libfunc;
|
||
rtx nesf2_libfunc;
|
||
rtx gtsf2_libfunc;
|
||
rtx gesf2_libfunc;
|
||
rtx ltsf2_libfunc;
|
||
rtx lesf2_libfunc;
|
||
|
||
rtx eqdf2_libfunc;
|
||
rtx nedf2_libfunc;
|
||
rtx gtdf2_libfunc;
|
||
rtx gedf2_libfunc;
|
||
rtx ltdf2_libfunc;
|
||
rtx ledf2_libfunc;
|
||
|
||
rtx eqxf2_libfunc;
|
||
rtx nexf2_libfunc;
|
||
rtx gtxf2_libfunc;
|
||
rtx gexf2_libfunc;
|
||
rtx ltxf2_libfunc;
|
||
rtx lexf2_libfunc;
|
||
|
||
rtx eqtf2_libfunc;
|
||
rtx netf2_libfunc;
|
||
rtx gttf2_libfunc;
|
||
rtx getf2_libfunc;
|
||
rtx lttf2_libfunc;
|
||
rtx letf2_libfunc;
|
||
|
||
rtx floatsisf_libfunc;
|
||
rtx floatdisf_libfunc;
|
||
rtx floattisf_libfunc;
|
||
|
||
rtx floatsidf_libfunc;
|
||
rtx floatdidf_libfunc;
|
||
rtx floattidf_libfunc;
|
||
|
||
rtx floatsixf_libfunc;
|
||
rtx floatdixf_libfunc;
|
||
rtx floattixf_libfunc;
|
||
|
||
rtx floatsitf_libfunc;
|
||
rtx floatditf_libfunc;
|
||
rtx floattitf_libfunc;
|
||
|
||
rtx fixsfsi_libfunc;
|
||
rtx fixsfdi_libfunc;
|
||
rtx fixsfti_libfunc;
|
||
|
||
rtx fixdfsi_libfunc;
|
||
rtx fixdfdi_libfunc;
|
||
rtx fixdfti_libfunc;
|
||
|
||
rtx fixxfsi_libfunc;
|
||
rtx fixxfdi_libfunc;
|
||
rtx fixxfti_libfunc;
|
||
|
||
rtx fixtfsi_libfunc;
|
||
rtx fixtfdi_libfunc;
|
||
rtx fixtfti_libfunc;
|
||
|
||
rtx fixunssfsi_libfunc;
|
||
rtx fixunssfdi_libfunc;
|
||
rtx fixunssfti_libfunc;
|
||
|
||
rtx fixunsdfsi_libfunc;
|
||
rtx fixunsdfdi_libfunc;
|
||
rtx fixunsdfti_libfunc;
|
||
|
||
rtx fixunsxfsi_libfunc;
|
||
rtx fixunsxfdi_libfunc;
|
||
rtx fixunsxfti_libfunc;
|
||
|
||
rtx fixunstfsi_libfunc;
|
||
rtx fixunstfdi_libfunc;
|
||
rtx fixunstfti_libfunc;
|
||
|
||
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
|
||
gives the gen_function to make a branch to test that condition. */
|
||
|
||
rtxfun bcc_gen_fctn[NUM_RTX_CODE];
|
||
|
||
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
|
||
gives the insn code to make a store-condition insn
|
||
to test that condition. */
|
||
|
||
enum insn_code setcc_gen_code[NUM_RTX_CODE];
|
||
|
||
static int add_equal_note PROTO((rtx, rtx, enum rtx_code, rtx, rtx));
|
||
static rtx widen_operand PROTO((rtx, enum machine_mode,
|
||
enum machine_mode, int, int));
|
||
static enum insn_code can_fix_p PROTO((enum machine_mode, enum machine_mode,
|
||
int, int *));
|
||
static enum insn_code can_float_p PROTO((enum machine_mode, enum machine_mode,
|
||
int));
|
||
static rtx ftruncify PROTO((rtx));
|
||
static optab init_optab PROTO((enum rtx_code));
|
||
static void init_libfuncs PROTO((optab, int, int, char *, int));
|
||
static void init_integral_libfuncs PROTO((optab, char *, int));
|
||
static void init_floating_libfuncs PROTO((optab, char *, int));
|
||
static void init_complex_libfuncs PROTO((optab, char *, int));
|
||
|
||
/* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
|
||
the result of operation CODE applied to OP0 (and OP1 if it is a binary
|
||
operation).
|
||
|
||
If the last insn does not set TARGET, don't do anything, but return 1.
|
||
|
||
If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
|
||
don't add the REG_EQUAL note but return 0. Our caller can then try
|
||
again, ensuring that TARGET is not one of the operands. */
|
||
|
||
static int
|
||
add_equal_note (seq, target, code, op0, op1)
|
||
rtx seq;
|
||
rtx target;
|
||
enum rtx_code code;
|
||
rtx op0, op1;
|
||
{
|
||
rtx set;
|
||
int i;
|
||
rtx note;
|
||
|
||
if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
|
||
&& GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
|
||
|| GET_CODE (seq) != SEQUENCE
|
||
|| (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
|
||
|| GET_CODE (target) == ZERO_EXTRACT
|
||
|| (! rtx_equal_p (SET_DEST (set), target)
|
||
/* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
|
||
SUBREG. */
|
||
&& (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
|
||
|| ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
|
||
target))))
|
||
return 1;
|
||
|
||
/* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
|
||
besides the last insn. */
|
||
if (reg_overlap_mentioned_p (target, op0)
|
||
|| (op1 && reg_overlap_mentioned_p (target, op1)))
|
||
for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
|
||
if (reg_set_p (target, XVECEXP (seq, 0, i)))
|
||
return 0;
|
||
|
||
if (GET_RTX_CLASS (code) == '1')
|
||
note = gen_rtx (code, GET_MODE (target), copy_rtx (op0));
|
||
else
|
||
note = gen_rtx (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
|
||
|
||
REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))
|
||
= gen_rtx (EXPR_LIST, REG_EQUAL, note,
|
||
REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)));
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
|
||
says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
|
||
not actually do a sign-extend or zero-extend, but can leave the
|
||
higher-order bits of the result rtx undefined, for example, in the case
|
||
of logical operations, but not right shifts. */
|
||
|
||
static rtx
|
||
widen_operand (op, mode, oldmode, unsignedp, no_extend)
|
||
rtx op;
|
||
enum machine_mode mode, oldmode;
|
||
int unsignedp;
|
||
int no_extend;
|
||
{
|
||
rtx result;
|
||
|
||
/* If we must extend do so. If OP is either a constant or a SUBREG
|
||
for a promoted object, also extend since it will be more efficient to
|
||
do so. */
|
||
if (! no_extend
|
||
|| GET_MODE (op) == VOIDmode
|
||
|| (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)))
|
||
return convert_modes (mode, oldmode, op, unsignedp);
|
||
|
||
/* If MODE is no wider than a single word, we return a paradoxical
|
||
SUBREG. */
|
||
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
||
return gen_rtx (SUBREG, mode, force_reg (GET_MODE (op), op), 0);
|
||
|
||
/* Otherwise, get an object of MODE, clobber it, and set the low-order
|
||
part to OP. */
|
||
|
||
result = gen_reg_rtx (mode);
|
||
emit_insn (gen_rtx (CLOBBER, VOIDmode, result));
|
||
emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
|
||
return result;
|
||
}
|
||
|
||
/* Generate code to perform an operation specified by BINOPTAB
|
||
on operands OP0 and OP1, with result having machine-mode MODE.
|
||
|
||
UNSIGNEDP is for the case where we have to widen the operands
|
||
to perform the operation. It says to use zero-extension.
|
||
|
||
If TARGET is nonzero, the value
|
||
is generated there, if it is convenient to do so.
|
||
In all cases an rtx is returned for the locus of the value;
|
||
this may or may not be TARGET. */
|
||
|
||
rtx
|
||
expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
|
||
enum machine_mode mode;
|
||
optab binoptab;
|
||
rtx op0, op1;
|
||
rtx target;
|
||
int unsignedp;
|
||
enum optab_methods methods;
|
||
{
|
||
enum optab_methods next_methods
|
||
= (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
|
||
? OPTAB_WIDEN : methods);
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
register rtx temp;
|
||
int commutative_op = 0;
|
||
int shift_op = (binoptab->code == ASHIFT
|
||
|| binoptab->code == ASHIFTRT
|
||
|| binoptab->code == LSHIFTRT
|
||
|| binoptab->code == ROTATE
|
||
|| binoptab->code == ROTATERT);
|
||
rtx entry_last = get_last_insn ();
|
||
rtx last;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
op1 = protect_from_queue (op1, 0);
|
||
if (target)
|
||
target = protect_from_queue (target, 1);
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
op1 = force_not_mem (op1);
|
||
}
|
||
|
||
/* If subtracting an integer constant, convert this into an addition of
|
||
the negated constant. */
|
||
|
||
if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
|
||
{
|
||
op1 = negate_rtx (mode, op1);
|
||
binoptab = add_optab;
|
||
}
|
||
|
||
/* If we are inside an appropriately-short loop and one operand is an
|
||
expensive constant, force it into a register. */
|
||
if (CONSTANT_P (op0) && preserve_subexpressions_p ()
|
||
&& rtx_cost (op0, binoptab->code) > 2)
|
||
op0 = force_reg (mode, op0);
|
||
|
||
if (CONSTANT_P (op1) && preserve_subexpressions_p ()
|
||
&& rtx_cost (op1, binoptab->code) > 2)
|
||
op1 = force_reg (shift_op ? word_mode : mode, op1);
|
||
|
||
/* Record where to delete back to if we backtrack. */
|
||
last = get_last_insn ();
|
||
|
||
/* If operation is commutative,
|
||
try to make the first operand a register.
|
||
Even better, try to make it the same as the target.
|
||
Also try to make the last operand a constant. */
|
||
if (GET_RTX_CLASS (binoptab->code) == 'c'
|
||
|| binoptab == smul_widen_optab
|
||
|| binoptab == umul_widen_optab
|
||
|| binoptab == smul_highpart_optab
|
||
|| binoptab == umul_highpart_optab)
|
||
{
|
||
commutative_op = 1;
|
||
|
||
if (((target == 0 || GET_CODE (target) == REG)
|
||
? ((GET_CODE (op1) == REG
|
||
&& GET_CODE (op0) != REG)
|
||
|| target == op1)
|
||
: rtx_equal_p (op1, target))
|
||
|| GET_CODE (op0) == CONST_INT)
|
||
{
|
||
temp = op1;
|
||
op1 = op0;
|
||
op0 = temp;
|
||
}
|
||
}
|
||
|
||
/* If we can do it with a three-operand insn, do so. */
|
||
|
||
if (methods != OPTAB_MUST_WIDEN
|
||
&& binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) binoptab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_operand_mode[icode][1];
|
||
enum machine_mode mode1 = insn_operand_mode[icode][2];
|
||
rtx pat;
|
||
rtx xop0 = op0, xop1 = op1;
|
||
|
||
if (target)
|
||
temp = target;
|
||
else
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
/* If it is a commutative operator and the modes would match
|
||
if we would swap the operands, we can save the conversions. */
|
||
if (commutative_op)
|
||
{
|
||
if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
|
||
&& GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
|
||
{
|
||
register rtx tmp;
|
||
|
||
tmp = op0; op0 = op1; op1 = tmp;
|
||
tmp = xop0; xop0 = xop1; xop1 = tmp;
|
||
}
|
||
}
|
||
|
||
/* In case the insn wants input operands in modes different from
|
||
the result, convert the operands. */
|
||
|
||
if (GET_MODE (op0) != VOIDmode
|
||
&& GET_MODE (op0) != mode0)
|
||
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
||
|
||
if (GET_MODE (xop1) != VOIDmode
|
||
&& GET_MODE (xop1) != mode1)
|
||
xop1 = convert_to_mode (mode1, xop1, unsignedp);
|
||
|
||
/* Now, if insn's predicates don't allow our operands, put them into
|
||
pseudo regs. */
|
||
|
||
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
|
||
xop1 = copy_to_mode_reg (mode1, xop1);
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (temp, mode))
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
pat = GEN_FCN (icode) (temp, xop0, xop1);
|
||
if (pat)
|
||
{
|
||
/* If PAT is a multi-insn sequence, try to add an appropriate
|
||
REG_EQUAL note to it. If we can't because TEMP conflicts with an
|
||
operand, call ourselves again, this time without a target. */
|
||
if (GET_CODE (pat) == SEQUENCE
|
||
&& ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
|
||
{
|
||
delete_insns_since (last);
|
||
return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
|
||
unsignedp, methods);
|
||
}
|
||
|
||
emit_insn (pat);
|
||
return temp;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* If this is a multiply, see if we can do a widening operation that
|
||
takes operands of this mode and makes a wider mode. */
|
||
|
||
if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
|
||
&& (((unsignedp ? umul_widen_optab : smul_widen_optab)
|
||
->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
|
||
!= CODE_FOR_nothing))
|
||
{
|
||
temp = expand_binop (GET_MODE_WIDER_MODE (mode),
|
||
unsignedp ? umul_widen_optab : smul_widen_optab,
|
||
op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
|
||
|
||
if (temp != 0)
|
||
{
|
||
if (GET_MODE_CLASS (mode) == MODE_INT)
|
||
return gen_lowpart (mode, temp);
|
||
else
|
||
return convert_to_mode (mode, temp, unsignedp);
|
||
}
|
||
}
|
||
|
||
/* Look for a wider mode of the same class for which we think we
|
||
can open-code the operation. Check for a widening multiply at the
|
||
wider mode as well. */
|
||
|
||
if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
&& methods != OPTAB_DIRECT && methods != OPTAB_LIB)
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
|
||
|| (binoptab == smul_optab
|
||
&& GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
|
||
&& (((unsignedp ? umul_widen_optab : smul_widen_optab)
|
||
->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
|
||
!= CODE_FOR_nothing)))
|
||
{
|
||
rtx xop0 = op0, xop1 = op1;
|
||
int no_extend = 0;
|
||
|
||
/* For certain integer operations, we need not actually extend
|
||
the narrow operands, as long as we will truncate
|
||
the results to the same narrowness. */
|
||
|
||
if ((binoptab == ior_optab || binoptab == and_optab
|
||
|| binoptab == xor_optab
|
||
|| binoptab == add_optab || binoptab == sub_optab
|
||
|| binoptab == smul_optab || binoptab == ashl_optab)
|
||
&& class == MODE_INT)
|
||
no_extend = 1;
|
||
|
||
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
|
||
|
||
/* The second operand of a shift must always be extended. */
|
||
xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
|
||
no_extend && binoptab != ashl_optab);
|
||
|
||
temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
|
||
unsignedp, OPTAB_DIRECT);
|
||
if (temp)
|
||
{
|
||
if (class != MODE_INT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (mode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
/* These can be done a word at a time. */
|
||
if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
||
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int i;
|
||
rtx insns;
|
||
rtx equiv_value;
|
||
|
||
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
||
won't be accurate, so use a new target. */
|
||
if (target == 0 || target == op0 || target == op1)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
/* Do the actual arithmetic. */
|
||
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
|
||
{
|
||
rtx target_piece = operand_subword (target, i, 1, mode);
|
||
rtx x = expand_binop (word_mode, binoptab,
|
||
operand_subword_force (op0, i, mode),
|
||
operand_subword_force (op1, i, mode),
|
||
target_piece, unsignedp, next_methods);
|
||
|
||
if (x == 0)
|
||
break;
|
||
|
||
if (target_piece != x)
|
||
emit_move_insn (target_piece, x);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
|
||
{
|
||
if (binoptab->code != UNKNOWN)
|
||
equiv_value
|
||
= gen_rtx (binoptab->code, mode, copy_rtx (op0), copy_rtx (op1));
|
||
else
|
||
equiv_value = 0;
|
||
|
||
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
|
||
return target;
|
||
}
|
||
}
|
||
|
||
/* Synthesize double word shifts from single word shifts. */
|
||
if ((binoptab == lshr_optab || binoptab == ashl_optab
|
||
|| binoptab == ashr_optab)
|
||
&& class == MODE_INT
|
||
&& GET_CODE (op1) == CONST_INT
|
||
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
||
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
||
&& ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
||
&& lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
rtx insns, inter, equiv_value;
|
||
rtx into_target, outof_target;
|
||
rtx into_input, outof_input;
|
||
int shift_count, left_shift, outof_word;
|
||
|
||
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
||
won't be accurate, so use a new target. */
|
||
if (target == 0 || target == op0 || target == op1)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
shift_count = INTVAL (op1);
|
||
|
||
/* OUTOF_* is the word we are shifting bits away from, and
|
||
INTO_* is the word that we are shifting bits towards, thus
|
||
they differ depending on the direction of the shift and
|
||
WORDS_BIG_ENDIAN. */
|
||
|
||
left_shift = binoptab == ashl_optab;
|
||
outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
|
||
|
||
outof_target = operand_subword (target, outof_word, 1, mode);
|
||
into_target = operand_subword (target, 1 - outof_word, 1, mode);
|
||
|
||
outof_input = operand_subword_force (op0, outof_word, mode);
|
||
into_input = operand_subword_force (op0, 1 - outof_word, mode);
|
||
|
||
if (shift_count >= BITS_PER_WORD)
|
||
{
|
||
inter = expand_binop (word_mode, binoptab,
|
||
outof_input,
|
||
GEN_INT (shift_count - BITS_PER_WORD),
|
||
into_target, unsignedp, next_methods);
|
||
|
||
if (inter != 0 && inter != into_target)
|
||
emit_move_insn (into_target, inter);
|
||
|
||
/* For a signed right shift, we must fill the word we are shifting
|
||
out of with copies of the sign bit. Otherwise it is zeroed. */
|
||
if (inter != 0 && binoptab != ashr_optab)
|
||
inter = CONST0_RTX (word_mode);
|
||
else if (inter != 0)
|
||
inter = expand_binop (word_mode, binoptab,
|
||
outof_input,
|
||
GEN_INT (BITS_PER_WORD - 1),
|
||
outof_target, unsignedp, next_methods);
|
||
|
||
if (inter != 0 && inter != outof_target)
|
||
emit_move_insn (outof_target, inter);
|
||
}
|
||
else
|
||
{
|
||
rtx carries;
|
||
optab reverse_unsigned_shift, unsigned_shift;
|
||
|
||
/* For a shift of less then BITS_PER_WORD, to compute the carry,
|
||
we must do a logical shift in the opposite direction of the
|
||
desired shift. */
|
||
|
||
reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
|
||
|
||
/* For a shift of less than BITS_PER_WORD, to compute the word
|
||
shifted towards, we need to unsigned shift the orig value of
|
||
that word. */
|
||
|
||
unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
|
||
|
||
carries = expand_binop (word_mode, reverse_unsigned_shift,
|
||
outof_input,
|
||
GEN_INT (BITS_PER_WORD - shift_count),
|
||
0, unsignedp, next_methods);
|
||
|
||
if (carries == 0)
|
||
inter = 0;
|
||
else
|
||
inter = expand_binop (word_mode, binoptab, outof_input,
|
||
op1, outof_target, unsignedp, next_methods);
|
||
|
||
if (inter != 0 && inter != outof_target)
|
||
emit_move_insn (outof_target, inter);
|
||
|
||
if (inter != 0)
|
||
inter = expand_binop (word_mode, unsigned_shift, into_input,
|
||
op1, 0, unsignedp, next_methods);
|
||
|
||
if (inter != 0)
|
||
inter = expand_binop (word_mode, ior_optab, carries, inter,
|
||
into_target, unsignedp, next_methods);
|
||
|
||
if (inter != 0 && inter != into_target)
|
||
emit_move_insn (into_target, inter);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (inter != 0)
|
||
{
|
||
if (binoptab->code != UNKNOWN)
|
||
equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
|
||
else
|
||
equiv_value = 0;
|
||
|
||
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
|
||
return target;
|
||
}
|
||
}
|
||
|
||
/* Synthesize double word rotates from single word shifts. */
|
||
if ((binoptab == rotl_optab || binoptab == rotr_optab)
|
||
&& class == MODE_INT
|
||
&& GET_CODE (op1) == CONST_INT
|
||
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
||
&& ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
||
&& lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
rtx insns, equiv_value;
|
||
rtx into_target, outof_target;
|
||
rtx into_input, outof_input;
|
||
rtx inter;
|
||
int shift_count, left_shift, outof_word;
|
||
|
||
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
||
won't be accurate, so use a new target. */
|
||
if (target == 0 || target == op0 || target == op1)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
shift_count = INTVAL (op1);
|
||
|
||
/* OUTOF_* is the word we are shifting bits away from, and
|
||
INTO_* is the word that we are shifting bits towards, thus
|
||
they differ depending on the direction of the shift and
|
||
WORDS_BIG_ENDIAN. */
|
||
|
||
left_shift = (binoptab == rotl_optab);
|
||
outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
|
||
|
||
outof_target = operand_subword (target, outof_word, 1, mode);
|
||
into_target = operand_subword (target, 1 - outof_word, 1, mode);
|
||
|
||
outof_input = operand_subword_force (op0, outof_word, mode);
|
||
into_input = operand_subword_force (op0, 1 - outof_word, mode);
|
||
|
||
if (shift_count == BITS_PER_WORD)
|
||
{
|
||
/* This is just a word swap. */
|
||
emit_move_insn (outof_target, into_input);
|
||
emit_move_insn (into_target, outof_input);
|
||
inter = const0_rtx;
|
||
}
|
||
else
|
||
{
|
||
rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
|
||
rtx first_shift_count, second_shift_count;
|
||
optab reverse_unsigned_shift, unsigned_shift;
|
||
|
||
reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
|
||
? lshr_optab : ashl_optab);
|
||
|
||
unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
|
||
? ashl_optab : lshr_optab);
|
||
|
||
if (shift_count > BITS_PER_WORD)
|
||
{
|
||
first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
|
||
second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
|
||
}
|
||
else
|
||
{
|
||
first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
|
||
second_shift_count = GEN_INT (shift_count);
|
||
}
|
||
|
||
into_temp1 = expand_binop (word_mode, unsigned_shift,
|
||
outof_input, first_shift_count,
|
||
NULL_RTX, unsignedp, next_methods);
|
||
into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
|
||
into_input, second_shift_count,
|
||
into_target, unsignedp, next_methods);
|
||
|
||
if (into_temp1 != 0 && into_temp2 != 0)
|
||
inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
|
||
into_target, unsignedp, next_methods);
|
||
else
|
||
inter = 0;
|
||
|
||
if (inter != 0 && inter != into_target)
|
||
emit_move_insn (into_target, inter);
|
||
|
||
outof_temp1 = expand_binop (word_mode, unsigned_shift,
|
||
into_input, first_shift_count,
|
||
NULL_RTX, unsignedp, next_methods);
|
||
outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
|
||
outof_input, second_shift_count,
|
||
outof_target, unsignedp, next_methods);
|
||
|
||
if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
|
||
inter = expand_binop (word_mode, ior_optab,
|
||
outof_temp1, outof_temp2,
|
||
outof_target, unsignedp, next_methods);
|
||
|
||
if (inter != 0 && inter != outof_target)
|
||
emit_move_insn (outof_target, inter);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (inter != 0)
|
||
{
|
||
if (binoptab->code != UNKNOWN)
|
||
equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
|
||
else
|
||
equiv_value = 0;
|
||
|
||
/* We can't make this a no conflict block if this is a word swap,
|
||
because the word swap case fails if the input and output values
|
||
are in the same register. */
|
||
if (shift_count != BITS_PER_WORD)
|
||
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
|
||
else
|
||
emit_insns (insns);
|
||
|
||
|
||
return target;
|
||
}
|
||
}
|
||
|
||
/* These can be done a word at a time by propagating carries. */
|
||
if ((binoptab == add_optab || binoptab == sub_optab)
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
|
||
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int i;
|
||
rtx carry_tmp = gen_reg_rtx (word_mode);
|
||
optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
|
||
int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
|
||
rtx carry_in, carry_out;
|
||
rtx xop0, xop1;
|
||
|
||
/* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
|
||
value is one of those, use it. Otherwise, use 1 since it is the
|
||
one easiest to get. */
|
||
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
|
||
int normalizep = STORE_FLAG_VALUE;
|
||
#else
|
||
int normalizep = 1;
|
||
#endif
|
||
|
||
/* Prepare the operands. */
|
||
xop0 = force_reg (mode, op0);
|
||
xop1 = force_reg (mode, op1);
|
||
|
||
if (target == 0 || GET_CODE (target) != REG
|
||
|| target == xop0 || target == xop1)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
/* Indicate for flow that the entire target reg is being set. */
|
||
if (GET_CODE (target) == REG)
|
||
emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
|
||
|
||
/* Do the actual arithmetic. */
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
|
||
rtx target_piece = operand_subword (target, index, 1, mode);
|
||
rtx op0_piece = operand_subword_force (xop0, index, mode);
|
||
rtx op1_piece = operand_subword_force (xop1, index, mode);
|
||
rtx x;
|
||
|
||
/* Main add/subtract of the input operands. */
|
||
x = expand_binop (word_mode, binoptab,
|
||
op0_piece, op1_piece,
|
||
target_piece, unsignedp, next_methods);
|
||
if (x == 0)
|
||
break;
|
||
|
||
if (i + 1 < nwords)
|
||
{
|
||
/* Store carry from main add/subtract. */
|
||
carry_out = gen_reg_rtx (word_mode);
|
||
carry_out = emit_store_flag (carry_out,
|
||
binoptab == add_optab ? LTU : GTU,
|
||
x, op0_piece,
|
||
word_mode, 1, normalizep);
|
||
if (carry_out == 0)
|
||
break;
|
||
}
|
||
|
||
if (i > 0)
|
||
{
|
||
/* Add/subtract previous carry to main result. */
|
||
x = expand_binop (word_mode,
|
||
normalizep == 1 ? binoptab : otheroptab,
|
||
x, carry_in,
|
||
target_piece, 1, next_methods);
|
||
if (x == 0)
|
||
break;
|
||
else if (target_piece != x)
|
||
emit_move_insn (target_piece, x);
|
||
|
||
if (i + 1 < nwords)
|
||
{
|
||
/* THIS CODE HAS NOT BEEN TESTED. */
|
||
/* Get out carry from adding/subtracting carry in. */
|
||
carry_tmp = emit_store_flag (carry_tmp,
|
||
binoptab == add_optab
|
||
? LTU : GTU,
|
||
x, carry_in,
|
||
word_mode, 1, normalizep);
|
||
|
||
/* Logical-ior the two poss. carry together. */
|
||
carry_out = expand_binop (word_mode, ior_optab,
|
||
carry_out, carry_tmp,
|
||
carry_out, 0, next_methods);
|
||
if (carry_out == 0)
|
||
break;
|
||
}
|
||
}
|
||
|
||
carry_in = carry_out;
|
||
}
|
||
|
||
if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
|
||
{
|
||
rtx temp = emit_move_insn (target, target);
|
||
|
||
REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (binoptab->code, mode,
|
||
copy_rtx (xop0),
|
||
copy_rtx (xop1)),
|
||
REG_NOTES (temp));
|
||
return target;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* If we want to multiply two two-word values and have normal and widening
|
||
multiplies of single-word values, we can do this with three smaller
|
||
multiplications. Note that we do not make a REG_NO_CONFLICT block here
|
||
because we are not operating on one word at a time.
|
||
|
||
The multiplication proceeds as follows:
|
||
_______________________
|
||
[__op0_high_|__op0_low__]
|
||
_______________________
|
||
* [__op1_high_|__op1_low__]
|
||
_______________________________________________
|
||
_______________________
|
||
(1) [__op0_low__*__op1_low__]
|
||
_______________________
|
||
(2a) [__op0_low__*__op1_high_]
|
||
_______________________
|
||
(2b) [__op0_high_*__op1_low__]
|
||
_______________________
|
||
(3) [__op0_high_*__op1_high_]
|
||
|
||
|
||
This gives a 4-word result. Since we are only interested in the
|
||
lower 2 words, partial result (3) and the upper words of (2a) and
|
||
(2b) don't need to be calculated. Hence (2a) and (2b) can be
|
||
calculated using non-widening multiplication.
|
||
|
||
(1), however, needs to be calculated with an unsigned widening
|
||
multiplication. If this operation is not directly supported we
|
||
try using a signed widening multiplication and adjust the result.
|
||
This adjustment works as follows:
|
||
|
||
If both operands are positive then no adjustment is needed.
|
||
|
||
If the operands have different signs, for example op0_low < 0 and
|
||
op1_low >= 0, the instruction treats the most significant bit of
|
||
op0_low as a sign bit instead of a bit with significance
|
||
2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
|
||
with 2**BITS_PER_WORD - op0_low, and two's complements the
|
||
result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
|
||
the result.
|
||
|
||
Similarly, if both operands are negative, we need to add
|
||
(op0_low + op1_low) * 2**BITS_PER_WORD.
|
||
|
||
We use a trick to adjust quickly. We logically shift op0_low right
|
||
(op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
|
||
op0_high (op1_high) before it is used to calculate 2b (2a). If no
|
||
logical shift exists, we do an arithmetic right shift and subtract
|
||
the 0 or -1. */
|
||
|
||
if (binoptab == smul_optab
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
||
&& smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
||
&& add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
||
&& ((umul_widen_optab->handlers[(int) mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| (smul_widen_optab->handlers[(int) mode].insn_code
|
||
!= CODE_FOR_nothing)))
|
||
{
|
||
int low = (WORDS_BIG_ENDIAN ? 1 : 0);
|
||
int high = (WORDS_BIG_ENDIAN ? 0 : 1);
|
||
rtx op0_high = operand_subword_force (op0, high, mode);
|
||
rtx op0_low = operand_subword_force (op0, low, mode);
|
||
rtx op1_high = operand_subword_force (op1, high, mode);
|
||
rtx op1_low = operand_subword_force (op1, low, mode);
|
||
rtx product = 0;
|
||
rtx op0_xhigh;
|
||
rtx op1_xhigh;
|
||
|
||
/* If the target is the same as one of the inputs, don't use it. This
|
||
prevents problems with the REG_EQUAL note. */
|
||
if (target == op0 || target == op1)
|
||
target = 0;
|
||
|
||
/* Multiply the two lower words to get a double-word product.
|
||
If unsigned widening multiplication is available, use that;
|
||
otherwise use the signed form and compensate. */
|
||
|
||
if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
|
||
target, 1, OPTAB_DIRECT);
|
||
|
||
/* If we didn't succeed, delete everything we did so far. */
|
||
if (product == 0)
|
||
delete_insns_since (last);
|
||
else
|
||
op0_xhigh = op0_high, op1_xhigh = op1_high;
|
||
}
|
||
|
||
if (product == 0
|
||
&& smul_widen_optab->handlers[(int) mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
|
||
product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
|
||
target, 1, OPTAB_DIRECT);
|
||
op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
|
||
NULL_RTX, 1, next_methods);
|
||
if (op0_xhigh)
|
||
op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
|
||
op0_xhigh, op0_xhigh, 0, next_methods);
|
||
else
|
||
{
|
||
op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
|
||
NULL_RTX, 0, next_methods);
|
||
if (op0_xhigh)
|
||
op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
|
||
op0_xhigh, op0_xhigh, 0,
|
||
next_methods);
|
||
}
|
||
|
||
op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
|
||
NULL_RTX, 1, next_methods);
|
||
if (op1_xhigh)
|
||
op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
|
||
op1_xhigh, op1_xhigh, 0, next_methods);
|
||
else
|
||
{
|
||
op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
|
||
NULL_RTX, 0, next_methods);
|
||
if (op1_xhigh)
|
||
op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
|
||
op1_xhigh, op1_xhigh, 0,
|
||
next_methods);
|
||
}
|
||
}
|
||
|
||
/* If we have been able to directly compute the product of the
|
||
low-order words of the operands and perform any required adjustments
|
||
of the operands, we proceed by trying two more multiplications
|
||
and then computing the appropriate sum.
|
||
|
||
We have checked above that the required addition is provided.
|
||
Full-word addition will normally always succeed, especially if
|
||
it is provided at all, so we don't worry about its failure. The
|
||
multiplication may well fail, however, so we do handle that. */
|
||
|
||
if (product && op0_xhigh && op1_xhigh)
|
||
{
|
||
rtx product_high = operand_subword (product, high, 1, mode);
|
||
rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
|
||
NULL_RTX, 0, OPTAB_DIRECT);
|
||
|
||
if (temp != 0)
|
||
temp = expand_binop (word_mode, add_optab, temp, product_high,
|
||
product_high, 0, next_methods);
|
||
|
||
if (temp != 0 && temp != product_high)
|
||
emit_move_insn (product_high, temp);
|
||
|
||
if (temp != 0)
|
||
temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
|
||
NULL_RTX, 0, OPTAB_DIRECT);
|
||
|
||
if (temp != 0)
|
||
temp = expand_binop (word_mode, add_optab, temp,
|
||
product_high, product_high,
|
||
0, next_methods);
|
||
|
||
if (temp != 0 && temp != product_high)
|
||
emit_move_insn (product_high, temp);
|
||
|
||
if (temp != 0)
|
||
{
|
||
temp = emit_move_insn (product, product);
|
||
REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (MULT, mode, copy_rtx (op0),
|
||
copy_rtx (op1)),
|
||
REG_NOTES (temp));
|
||
|
||
return product;
|
||
}
|
||
}
|
||
|
||
/* If we get here, we couldn't do it for some reason even though we
|
||
originally thought we could. Delete anything we've emitted in
|
||
trying to do it. */
|
||
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* We need to open-code the complex type operations: '+, -, * and /' */
|
||
|
||
/* At this point we allow operations between two similar complex
|
||
numbers, and also if one of the operands is not a complex number
|
||
but rather of MODE_FLOAT or MODE_INT. However, the caller
|
||
must make sure that the MODE of the non-complex operand matches
|
||
the SUBMODE of the complex operand. */
|
||
|
||
if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
|
||
{
|
||
rtx real0 = 0, imag0 = 0;
|
||
rtx real1 = 0, imag1 = 0;
|
||
rtx realr, imagr, res;
|
||
rtx seq;
|
||
rtx equiv_value;
|
||
int ok = 0;
|
||
|
||
/* Find the correct mode for the real and imaginary parts */
|
||
enum machine_mode submode
|
||
= mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
|
||
class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
|
||
0);
|
||
|
||
if (submode == BLKmode)
|
||
abort ();
|
||
|
||
if (! target)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
realr = gen_realpart (submode, target);
|
||
imagr = gen_imagpart (submode, target);
|
||
|
||
if (GET_MODE (op0) == mode)
|
||
{
|
||
real0 = gen_realpart (submode, op0);
|
||
imag0 = gen_imagpart (submode, op0);
|
||
}
|
||
else
|
||
real0 = op0;
|
||
|
||
if (GET_MODE (op1) == mode)
|
||
{
|
||
real1 = gen_realpart (submode, op1);
|
||
imag1 = gen_imagpart (submode, op1);
|
||
}
|
||
else
|
||
real1 = op1;
|
||
|
||
if (real0 == 0 || real1 == 0 || ! (imag0 != 0|| imag1 != 0))
|
||
abort ();
|
||
|
||
switch (binoptab->code)
|
||
{
|
||
case PLUS:
|
||
/* (a+ib) + (c+id) = (a+c) + i(b+d) */
|
||
case MINUS:
|
||
/* (a+ib) - (c+id) = (a-c) + i(b-d) */
|
||
res = expand_binop (submode, binoptab, real0, real1,
|
||
realr, unsignedp, methods);
|
||
|
||
if (res == 0)
|
||
break;
|
||
else if (res != realr)
|
||
emit_move_insn (realr, res);
|
||
|
||
if (imag0 && imag1)
|
||
res = expand_binop (submode, binoptab, imag0, imag1,
|
||
imagr, unsignedp, methods);
|
||
else if (imag0)
|
||
res = imag0;
|
||
else if (binoptab->code == MINUS)
|
||
res = expand_unop (submode, neg_optab, imag1, imagr, unsignedp);
|
||
else
|
||
res = imag1;
|
||
|
||
if (res == 0)
|
||
break;
|
||
else if (res != imagr)
|
||
emit_move_insn (imagr, res);
|
||
|
||
ok = 1;
|
||
break;
|
||
|
||
case MULT:
|
||
/* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
|
||
|
||
if (imag0 && imag1)
|
||
{
|
||
rtx temp1, temp2;
|
||
|
||
/* Don't fetch these from memory more than once. */
|
||
real0 = force_reg (submode, real0);
|
||
real1 = force_reg (submode, real1);
|
||
imag0 = force_reg (submode, imag0);
|
||
imag1 = force_reg (submode, imag1);
|
||
|
||
temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
|
||
unsignedp, methods);
|
||
|
||
temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
|
||
unsignedp, methods);
|
||
|
||
if (temp1 == 0 || temp2 == 0)
|
||
break;
|
||
|
||
res = expand_binop (submode, sub_optab, temp1, temp2,
|
||
realr, unsignedp, methods);
|
||
|
||
if (res == 0)
|
||
break;
|
||
else if (res != realr)
|
||
emit_move_insn (realr, res);
|
||
|
||
temp1 = expand_binop (submode, binoptab, real0, imag1,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
temp2 = expand_binop (submode, binoptab, real1, imag0,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
if (temp1 == 0 || temp2 == 0)
|
||
res = expand_binop (submode, add_optab, temp1, temp2,
|
||
imagr, unsignedp, methods);
|
||
|
||
if (res == 0)
|
||
break;
|
||
else if (res != imagr)
|
||
emit_move_insn (imagr, res);
|
||
|
||
ok = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Don't fetch these from memory more than once. */
|
||
real0 = force_reg (submode, real0);
|
||
real1 = force_reg (submode, real1);
|
||
|
||
res = expand_binop (submode, binoptab, real0, real1,
|
||
realr, unsignedp, methods);
|
||
if (res == 0)
|
||
break;
|
||
else if (res != realr)
|
||
emit_move_insn (realr, res);
|
||
|
||
if (imag0 != 0)
|
||
res = expand_binop (submode, binoptab,
|
||
real1, imag0, imagr, unsignedp, methods);
|
||
else
|
||
res = expand_binop (submode, binoptab,
|
||
real0, imag1, imagr, unsignedp, methods);
|
||
|
||
if (res == 0)
|
||
break;
|
||
else if (res != imagr)
|
||
emit_move_insn (imagr, res);
|
||
|
||
ok = 1;
|
||
}
|
||
break;
|
||
|
||
case DIV:
|
||
/* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
|
||
|
||
if (imag1 == 0)
|
||
{
|
||
/* (a+ib) / (c+i0) = (a/c) + i(b/c) */
|
||
|
||
/* Don't fetch these from memory more than once. */
|
||
real1 = force_reg (submode, real1);
|
||
|
||
/* Simply divide the real and imaginary parts by `c' */
|
||
if (class == MODE_COMPLEX_FLOAT)
|
||
res = expand_binop (submode, binoptab, real0, real1,
|
||
realr, unsignedp, methods);
|
||
else
|
||
res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
|
||
real0, real1, realr, unsignedp);
|
||
|
||
if (res == 0)
|
||
break;
|
||
else if (res != realr)
|
||
emit_move_insn (realr, res);
|
||
|
||
if (class == MODE_COMPLEX_FLOAT)
|
||
res = expand_binop (submode, binoptab, imag0, real1,
|
||
imagr, unsignedp, methods);
|
||
else
|
||
res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
|
||
imag0, real1, imagr, unsignedp);
|
||
|
||
if (res == 0)
|
||
break;
|
||
else if (res != imagr)
|
||
emit_move_insn (imagr, res);
|
||
|
||
ok = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Divisor is of complex type:
|
||
X/(a+ib) */
|
||
rtx divisor;
|
||
rtx real_t, imag_t;
|
||
rtx lhs, rhs;
|
||
rtx temp1, temp2;
|
||
|
||
/* Don't fetch these from memory more than once. */
|
||
real0 = force_reg (submode, real0);
|
||
real1 = force_reg (submode, real1);
|
||
|
||
if (imag0 != 0)
|
||
imag0 = force_reg (submode, imag0);
|
||
|
||
imag1 = force_reg (submode, imag1);
|
||
|
||
/* Divisor: c*c + d*d */
|
||
temp1 = expand_binop (submode, smul_optab, real1, real1,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
temp2 = expand_binop (submode, smul_optab, imag1, imag1,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
if (temp1 == 0 || temp2 == 0)
|
||
break;
|
||
|
||
divisor = expand_binop (submode, add_optab, temp1, temp2,
|
||
NULL_RTX, unsignedp, methods);
|
||
if (divisor == 0)
|
||
break;
|
||
|
||
if (imag0 == 0)
|
||
{
|
||
/* ((a)(c-id))/divisor */
|
||
/* (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)) */
|
||
|
||
/* Calculate the dividend */
|
||
real_t = expand_binop (submode, smul_optab, real0, real1,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
imag_t = expand_binop (submode, smul_optab, real0, imag1,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
if (real_t == 0 || imag_t == 0)
|
||
break;
|
||
|
||
imag_t = expand_unop (submode, neg_optab, imag_t,
|
||
NULL_RTX, unsignedp);
|
||
}
|
||
else
|
||
{
|
||
/* ((a+ib)(c-id))/divider */
|
||
/* Calculate the dividend */
|
||
temp1 = expand_binop (submode, smul_optab, real0, real1,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
temp2 = expand_binop (submode, smul_optab, imag0, imag1,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
if (temp1 == 0 || temp2 == 0)
|
||
break;
|
||
|
||
real_t = expand_binop (submode, add_optab, temp1, temp2,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
temp1 = expand_binop (submode, smul_optab, imag0, real1,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
temp2 = expand_binop (submode, smul_optab, real0, imag1,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
if (temp1 == 0 || temp2 == 0)
|
||
break;
|
||
|
||
imag_t = expand_binop (submode, sub_optab, temp1, temp2,
|
||
NULL_RTX, unsignedp, methods);
|
||
|
||
if (real_t == 0 || imag_t == 0)
|
||
break;
|
||
}
|
||
|
||
if (class == MODE_COMPLEX_FLOAT)
|
||
res = expand_binop (submode, binoptab, real_t, divisor,
|
||
realr, unsignedp, methods);
|
||
else
|
||
res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
|
||
real_t, divisor, realr, unsignedp);
|
||
|
||
if (res == 0)
|
||
break;
|
||
else if (res != realr)
|
||
emit_move_insn (realr, res);
|
||
|
||
if (class == MODE_COMPLEX_FLOAT)
|
||
res = expand_binop (submode, binoptab, imag_t, divisor,
|
||
imagr, unsignedp, methods);
|
||
else
|
||
res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
|
||
imag_t, divisor, imagr, unsignedp);
|
||
|
||
if (res == 0)
|
||
break;
|
||
else if (res != imagr)
|
||
emit_move_insn (imagr, res);
|
||
|
||
ok = 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (ok)
|
||
{
|
||
if (binoptab->code != UNKNOWN)
|
||
equiv_value
|
||
= gen_rtx (binoptab->code, mode, copy_rtx (op0), copy_rtx (op1));
|
||
else
|
||
equiv_value = 0;
|
||
|
||
emit_no_conflict_block (seq, target, op0, op1, equiv_value);
|
||
|
||
return target;
|
||
}
|
||
}
|
||
|
||
/* It can't be open-coded in this mode.
|
||
Use a library call if one is available and caller says that's ok. */
|
||
|
||
if (binoptab->handlers[(int) mode].libfunc
|
||
&& (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
|
||
{
|
||
rtx insns;
|
||
rtx funexp = binoptab->handlers[(int) mode].libfunc;
|
||
rtx op1x = op1;
|
||
enum machine_mode op1_mode = mode;
|
||
rtx value;
|
||
|
||
start_sequence ();
|
||
|
||
if (shift_op)
|
||
{
|
||
op1_mode = word_mode;
|
||
/* Specify unsigned here,
|
||
since negative shift counts are meaningless. */
|
||
op1x = convert_to_mode (word_mode, op1, 1);
|
||
}
|
||
|
||
if (GET_MODE (op0) != mode)
|
||
op0 = convert_to_mode (mode, op0, unsignedp);
|
||
|
||
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
||
if the libcall is cse'd or moved. */
|
||
value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
|
||
NULL_RTX, 1, mode, 2,
|
||
op0, mode, op1x, op1_mode);
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
target = gen_reg_rtx (mode);
|
||
emit_libcall_block (insns, target, value,
|
||
gen_rtx (binoptab->code, mode, op0, op1));
|
||
|
||
return target;
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
|
||
|| methods == OPTAB_MUST_WIDEN))
|
||
{
|
||
/* Caller says, don't even try. */
|
||
delete_insns_since (entry_last);
|
||
return 0;
|
||
}
|
||
|
||
/* Compute the value of METHODS to pass to recursive calls.
|
||
Don't allow widening to be tried recursively. */
|
||
|
||
methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
|
||
|
||
/* Look for a wider mode of the same class for which it appears we can do
|
||
the operation. */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if ((binoptab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| (methods == OPTAB_LIB
|
||
&& binoptab->handlers[(int) wider_mode].libfunc))
|
||
{
|
||
rtx xop0 = op0, xop1 = op1;
|
||
int no_extend = 0;
|
||
|
||
/* For certain integer operations, we need not actually extend
|
||
the narrow operands, as long as we will truncate
|
||
the results to the same narrowness. */
|
||
|
||
if ((binoptab == ior_optab || binoptab == and_optab
|
||
|| binoptab == xor_optab
|
||
|| binoptab == add_optab || binoptab == sub_optab
|
||
|| binoptab == smul_optab || binoptab == ashl_optab)
|
||
&& class == MODE_INT)
|
||
no_extend = 1;
|
||
|
||
xop0 = widen_operand (xop0, wider_mode, mode,
|
||
unsignedp, no_extend);
|
||
|
||
/* The second operand of a shift must always be extended. */
|
||
xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
|
||
no_extend && binoptab != ashl_optab);
|
||
|
||
temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
|
||
unsignedp, methods);
|
||
if (temp)
|
||
{
|
||
if (class != MODE_INT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (mode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
}
|
||
|
||
delete_insns_since (entry_last);
|
||
return 0;
|
||
}
|
||
|
||
/* Expand a binary operator which has both signed and unsigned forms.
|
||
UOPTAB is the optab for unsigned operations, and SOPTAB is for
|
||
signed operations.
|
||
|
||
If we widen unsigned operands, we may use a signed wider operation instead
|
||
of an unsigned wider operation, since the result would be the same. */
|
||
|
||
rtx
|
||
sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
|
||
enum machine_mode mode;
|
||
optab uoptab, soptab;
|
||
rtx op0, op1, target;
|
||
int unsignedp;
|
||
enum optab_methods methods;
|
||
{
|
||
register rtx temp;
|
||
optab direct_optab = unsignedp ? uoptab : soptab;
|
||
struct optab wide_soptab;
|
||
|
||
/* Do it without widening, if possible. */
|
||
temp = expand_binop (mode, direct_optab, op0, op1, target,
|
||
unsignedp, OPTAB_DIRECT);
|
||
if (temp || methods == OPTAB_DIRECT)
|
||
return temp;
|
||
|
||
/* Try widening to a signed int. Make a fake signed optab that
|
||
hides any signed insn for direct use. */
|
||
wide_soptab = *soptab;
|
||
wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
|
||
wide_soptab.handlers[(int) mode].libfunc = 0;
|
||
|
||
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
|
||
unsignedp, OPTAB_WIDEN);
|
||
|
||
/* For unsigned operands, try widening to an unsigned int. */
|
||
if (temp == 0 && unsignedp)
|
||
temp = expand_binop (mode, uoptab, op0, op1, target,
|
||
unsignedp, OPTAB_WIDEN);
|
||
if (temp || methods == OPTAB_WIDEN)
|
||
return temp;
|
||
|
||
/* Use the right width lib call if that exists. */
|
||
temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
|
||
if (temp || methods == OPTAB_LIB)
|
||
return temp;
|
||
|
||
/* Must widen and use a lib call, use either signed or unsigned. */
|
||
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
|
||
unsignedp, methods);
|
||
if (temp != 0)
|
||
return temp;
|
||
if (unsignedp)
|
||
return expand_binop (mode, uoptab, op0, op1, target,
|
||
unsignedp, methods);
|
||
return 0;
|
||
}
|
||
|
||
/* Generate code to perform an operation specified by BINOPTAB
|
||
on operands OP0 and OP1, with two results to TARG1 and TARG2.
|
||
We assume that the order of the operands for the instruction
|
||
is TARG0, OP0, OP1, TARG1, which would fit a pattern like
|
||
[(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
|
||
|
||
Either TARG0 or TARG1 may be zero, but what that means is that
|
||
that result is not actually wanted. We will generate it into
|
||
a dummy pseudo-reg and discard it. They may not both be zero.
|
||
|
||
Returns 1 if this operation can be performed; 0 if not. */
|
||
|
||
int
|
||
expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
|
||
optab binoptab;
|
||
rtx op0, op1;
|
||
rtx targ0, targ1;
|
||
int unsignedp;
|
||
{
|
||
enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
rtx entry_last = get_last_insn ();
|
||
rtx last;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
op1 = protect_from_queue (op1, 0);
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
op1 = force_not_mem (op1);
|
||
}
|
||
|
||
/* If we are inside an appropriately-short loop and one operand is an
|
||
expensive constant, force it into a register. */
|
||
if (CONSTANT_P (op0) && preserve_subexpressions_p ()
|
||
&& rtx_cost (op0, binoptab->code) > 2)
|
||
op0 = force_reg (mode, op0);
|
||
|
||
if (CONSTANT_P (op1) && preserve_subexpressions_p ()
|
||
&& rtx_cost (op1, binoptab->code) > 2)
|
||
op1 = force_reg (mode, op1);
|
||
|
||
if (targ0)
|
||
targ0 = protect_from_queue (targ0, 1);
|
||
else
|
||
targ0 = gen_reg_rtx (mode);
|
||
if (targ1)
|
||
targ1 = protect_from_queue (targ1, 1);
|
||
else
|
||
targ1 = gen_reg_rtx (mode);
|
||
|
||
/* Record where to go back to if we fail. */
|
||
last = get_last_insn ();
|
||
|
||
if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) binoptab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_operand_mode[icode][1];
|
||
enum machine_mode mode1 = insn_operand_mode[icode][2];
|
||
rtx pat;
|
||
rtx xop0 = op0, xop1 = op1;
|
||
|
||
/* In case this insn wants input operands in modes different from the
|
||
result, convert the operands. */
|
||
if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
|
||
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
||
|
||
if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
|
||
xop1 = convert_to_mode (mode1, xop1, unsignedp);
|
||
|
||
/* Now, if insn doesn't accept these operands, put them into pseudos. */
|
||
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
|
||
xop1 = copy_to_mode_reg (mode1, xop1);
|
||
|
||
/* We could handle this, but we should always be called with a pseudo
|
||
for our targets and all insns should take them as outputs. */
|
||
if (! (*insn_operand_predicate[icode][0]) (targ0, mode)
|
||
|| ! (*insn_operand_predicate[icode][3]) (targ1, mode))
|
||
abort ();
|
||
|
||
pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return 1;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (binoptab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
register rtx t0 = gen_reg_rtx (wider_mode);
|
||
register rtx t1 = gen_reg_rtx (wider_mode);
|
||
|
||
if (expand_twoval_binop (binoptab,
|
||
convert_modes (wider_mode, mode, op0,
|
||
unsignedp),
|
||
convert_modes (wider_mode, mode, op1,
|
||
unsignedp),
|
||
t0, t1, unsignedp))
|
||
{
|
||
convert_move (targ0, t0, unsignedp);
|
||
convert_move (targ1, t1, unsignedp);
|
||
return 1;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
}
|
||
|
||
delete_insns_since (entry_last);
|
||
return 0;
|
||
}
|
||
|
||
/* Generate code to perform an operation specified by UNOPTAB
|
||
on operand OP0, with result having machine-mode MODE.
|
||
|
||
UNSIGNEDP is for the case where we have to widen the operands
|
||
to perform the operation. It says to use zero-extension.
|
||
|
||
If TARGET is nonzero, the value
|
||
is generated there, if it is convenient to do so.
|
||
In all cases an rtx is returned for the locus of the value;
|
||
this may or may not be TARGET. */
|
||
|
||
rtx
|
||
expand_unop (mode, unoptab, op0, target, unsignedp)
|
||
enum machine_mode mode;
|
||
optab unoptab;
|
||
rtx op0;
|
||
rtx target;
|
||
int unsignedp;
|
||
{
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
register rtx temp;
|
||
rtx last = get_last_insn ();
|
||
rtx pat;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
}
|
||
|
||
if (target)
|
||
target = protect_from_queue (target, 1);
|
||
|
||
if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) unoptab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_operand_mode[icode][1];
|
||
rtx xop0 = op0;
|
||
|
||
if (target)
|
||
temp = target;
|
||
else
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
if (GET_MODE (xop0) != VOIDmode
|
||
&& GET_MODE (xop0) != mode0)
|
||
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
||
|
||
/* Now, if insn doesn't accept our operand, put it into a pseudo. */
|
||
|
||
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (temp, mode))
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
pat = GEN_FCN (icode) (temp, xop0);
|
||
if (pat)
|
||
{
|
||
if (GET_CODE (pat) == SEQUENCE
|
||
&& ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
|
||
{
|
||
delete_insns_since (last);
|
||
return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
|
||
}
|
||
|
||
emit_insn (pat);
|
||
|
||
return temp;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we open-code it in a wider mode? */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
rtx xop0 = op0;
|
||
|
||
/* For certain operations, we need not actually extend
|
||
the narrow operand, as long as we will truncate the
|
||
results to the same narrowness. */
|
||
|
||
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
|
||
(unoptab == neg_optab
|
||
|| unoptab == one_cmpl_optab)
|
||
&& class == MODE_INT);
|
||
|
||
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
|
||
unsignedp);
|
||
|
||
if (temp)
|
||
{
|
||
if (class != MODE_INT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (mode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
/* These can be done a word at a time. */
|
||
if (unoptab == one_cmpl_optab
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
||
&& unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int i;
|
||
rtx insns;
|
||
|
||
if (target == 0 || target == op0)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
/* Do the actual arithmetic. */
|
||
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
|
||
{
|
||
rtx target_piece = operand_subword (target, i, 1, mode);
|
||
rtx x = expand_unop (word_mode, unoptab,
|
||
operand_subword_force (op0, i, mode),
|
||
target_piece, unsignedp);
|
||
if (target_piece != x)
|
||
emit_move_insn (target_piece, x);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_no_conflict_block (insns, target, op0, NULL_RTX,
|
||
gen_rtx (unoptab->code, mode, copy_rtx (op0)));
|
||
return target;
|
||
}
|
||
|
||
/* Open-code the complex negation operation. */
|
||
else if (unoptab == neg_optab
|
||
&& (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
|
||
{
|
||
rtx target_piece;
|
||
rtx x;
|
||
rtx seq;
|
||
|
||
/* Find the correct mode for the real and imaginary parts */
|
||
enum machine_mode submode
|
||
= mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
|
||
class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
|
||
0);
|
||
|
||
if (submode == BLKmode)
|
||
abort ();
|
||
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
target_piece = gen_imagpart (submode, target);
|
||
x = expand_unop (submode, unoptab,
|
||
gen_imagpart (submode, op0),
|
||
target_piece, unsignedp);
|
||
if (target_piece != x)
|
||
emit_move_insn (target_piece, x);
|
||
|
||
target_piece = gen_realpart (submode, target);
|
||
x = expand_unop (submode, unoptab,
|
||
gen_realpart (submode, op0),
|
||
target_piece, unsignedp);
|
||
if (target_piece != x)
|
||
emit_move_insn (target_piece, x);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_no_conflict_block (seq, target, op0, 0,
|
||
gen_rtx (unoptab->code, mode, copy_rtx (op0)));
|
||
return target;
|
||
}
|
||
|
||
/* Now try a library call in this mode. */
|
||
if (unoptab->handlers[(int) mode].libfunc)
|
||
{
|
||
rtx insns;
|
||
rtx funexp = unoptab->handlers[(int) mode].libfunc;
|
||
rtx value;
|
||
|
||
start_sequence ();
|
||
|
||
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
||
if the libcall is cse'd or moved. */
|
||
value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
|
||
NULL_RTX, 1, mode, 1, op0, mode);
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
target = gen_reg_rtx (mode);
|
||
emit_libcall_block (insns, target, value,
|
||
gen_rtx (unoptab->code, mode, op0));
|
||
|
||
return target;
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if ((unoptab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| unoptab->handlers[(int) wider_mode].libfunc)
|
||
{
|
||
rtx xop0 = op0;
|
||
|
||
/* For certain operations, we need not actually extend
|
||
the narrow operand, as long as we will truncate the
|
||
results to the same narrowness. */
|
||
|
||
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
|
||
(unoptab == neg_optab
|
||
|| unoptab == one_cmpl_optab)
|
||
&& class == MODE_INT);
|
||
|
||
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
|
||
unsignedp);
|
||
|
||
if (temp)
|
||
{
|
||
if (class != MODE_INT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (mode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Emit code to compute the absolute value of OP0, with result to
|
||
TARGET if convenient. (TARGET may be 0.) The return value says
|
||
where the result actually is to be found.
|
||
|
||
MODE is the mode of the operand; the mode of the result is
|
||
different but can be deduced from MODE.
|
||
|
||
UNSIGNEDP is relevant for complex integer modes. */
|
||
|
||
rtx
|
||
expand_complex_abs (mode, op0, target, unsignedp)
|
||
enum machine_mode mode;
|
||
rtx op0;
|
||
rtx target;
|
||
int unsignedp;
|
||
{
|
||
enum mode_class class = GET_MODE_CLASS (mode);
|
||
enum machine_mode wider_mode;
|
||
register rtx temp;
|
||
rtx entry_last = get_last_insn ();
|
||
rtx last;
|
||
rtx pat;
|
||
|
||
/* Find the correct mode for the real and imaginary parts. */
|
||
enum machine_mode submode
|
||
= mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
|
||
class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
|
||
0);
|
||
|
||
if (submode == BLKmode)
|
||
abort ();
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
}
|
||
|
||
last = get_last_insn ();
|
||
|
||
if (target)
|
||
target = protect_from_queue (target, 1);
|
||
|
||
if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) abs_optab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_operand_mode[icode][1];
|
||
rtx xop0 = op0;
|
||
|
||
if (target)
|
||
temp = target;
|
||
else
|
||
temp = gen_reg_rtx (submode);
|
||
|
||
if (GET_MODE (xop0) != VOIDmode
|
||
&& GET_MODE (xop0) != mode0)
|
||
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
||
|
||
/* Now, if insn doesn't accept our operand, put it into a pseudo. */
|
||
|
||
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (temp, submode))
|
||
temp = gen_reg_rtx (submode);
|
||
|
||
pat = GEN_FCN (icode) (temp, xop0);
|
||
if (pat)
|
||
{
|
||
if (GET_CODE (pat) == SEQUENCE
|
||
&& ! add_equal_note (pat, temp, abs_optab->code, xop0, NULL_RTX))
|
||
{
|
||
delete_insns_since (last);
|
||
return expand_unop (mode, abs_optab, op0, NULL_RTX, unsignedp);
|
||
}
|
||
|
||
emit_insn (pat);
|
||
|
||
return temp;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we open-code it in a wider mode? */
|
||
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (abs_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
rtx xop0 = op0;
|
||
|
||
xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
|
||
temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
|
||
|
||
if (temp)
|
||
{
|
||
if (class != MODE_COMPLEX_INT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (submode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (submode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
/* Open-code the complex absolute-value operation
|
||
if we can open-code sqrt. Otherwise it's not worth while. */
|
||
if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
rtx real, imag, total;
|
||
|
||
real = gen_realpart (submode, op0);
|
||
imag = gen_imagpart (submode, op0);
|
||
|
||
/* Square both parts. */
|
||
real = expand_mult (submode, real, real, NULL_RTX, 0);
|
||
imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
|
||
|
||
/* Sum the parts. */
|
||
total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
|
||
0, OPTAB_LIB_WIDEN);
|
||
|
||
/* Get sqrt in TARGET. Set TARGET to where the result is. */
|
||
target = expand_unop (submode, sqrt_optab, total, target, 0);
|
||
if (target == 0)
|
||
delete_insns_since (last);
|
||
else
|
||
return target;
|
||
}
|
||
|
||
/* Now try a library call in this mode. */
|
||
if (abs_optab->handlers[(int) mode].libfunc)
|
||
{
|
||
rtx insns;
|
||
rtx funexp = abs_optab->handlers[(int) mode].libfunc;
|
||
rtx value;
|
||
|
||
start_sequence ();
|
||
|
||
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
||
if the libcall is cse'd or moved. */
|
||
value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
|
||
NULL_RTX, 1, submode, 1, op0, mode);
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
target = gen_reg_rtx (submode);
|
||
emit_libcall_block (insns, target, value,
|
||
gen_rtx (abs_optab->code, mode, op0));
|
||
|
||
return target;
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if ((abs_optab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| abs_optab->handlers[(int) wider_mode].libfunc)
|
||
{
|
||
rtx xop0 = op0;
|
||
|
||
xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
|
||
|
||
temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
|
||
|
||
if (temp)
|
||
{
|
||
if (class != MODE_COMPLEX_INT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (submode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (submode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
delete_insns_since (entry_last);
|
||
return 0;
|
||
}
|
||
|
||
/* Generate an instruction whose insn-code is INSN_CODE,
|
||
with two operands: an output TARGET and an input OP0.
|
||
TARGET *must* be nonzero, and the output is always stored there.
|
||
CODE is an rtx code such that (CODE OP0) is an rtx that describes
|
||
the value that is stored into TARGET. */
|
||
|
||
void
|
||
emit_unop_insn (icode, target, op0, code)
|
||
int icode;
|
||
rtx target;
|
||
rtx op0;
|
||
enum rtx_code code;
|
||
{
|
||
register rtx temp;
|
||
enum machine_mode mode0 = insn_operand_mode[icode][1];
|
||
rtx pat;
|
||
|
||
temp = target = protect_from_queue (target, 1);
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
|
||
if (flag_force_mem)
|
||
op0 = force_not_mem (op0);
|
||
|
||
/* Now, if insn does not accept our operands, put them into pseudos. */
|
||
|
||
if (! (*insn_operand_predicate[icode][1]) (op0, mode0))
|
||
op0 = copy_to_mode_reg (mode0, op0);
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp))
|
||
|| (flag_force_mem && GET_CODE (temp) == MEM))
|
||
temp = gen_reg_rtx (GET_MODE (temp));
|
||
|
||
pat = GEN_FCN (icode) (temp, op0);
|
||
|
||
if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
|
||
add_equal_note (pat, temp, code, op0, NULL_RTX);
|
||
|
||
emit_insn (pat);
|
||
|
||
if (temp != target)
|
||
emit_move_insn (target, temp);
|
||
}
|
||
|
||
/* Emit code to perform a series of operations on a multi-word quantity, one
|
||
word at a time.
|
||
|
||
Such a block is preceded by a CLOBBER of the output, consists of multiple
|
||
insns, each setting one word of the output, and followed by a SET copying
|
||
the output to itself.
|
||
|
||
Each of the insns setting words of the output receives a REG_NO_CONFLICT
|
||
note indicating that it doesn't conflict with the (also multi-word)
|
||
inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
|
||
notes.
|
||
|
||
INSNS is a block of code generated to perform the operation, not including
|
||
the CLOBBER and final copy. All insns that compute intermediate values
|
||
are first emitted, followed by the block as described above. Only
|
||
INSNs are allowed in the block; no library calls or jumps may be
|
||
present.
|
||
|
||
TARGET, OP0, and OP1 are the output and inputs of the operations,
|
||
respectively. OP1 may be zero for a unary operation.
|
||
|
||
EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
|
||
on the last insn.
|
||
|
||
If TARGET is not a register, INSNS is simply emitted with no special
|
||
processing.
|
||
|
||
The final insn emitted is returned. */
|
||
|
||
rtx
|
||
emit_no_conflict_block (insns, target, op0, op1, equiv)
|
||
rtx insns;
|
||
rtx target;
|
||
rtx op0, op1;
|
||
rtx equiv;
|
||
{
|
||
rtx prev, next, first, last, insn;
|
||
|
||
if (GET_CODE (target) != REG || reload_in_progress)
|
||
return emit_insns (insns);
|
||
|
||
/* First emit all insns that do not store into words of the output and remove
|
||
these from the list. */
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
rtx set = 0;
|
||
int i;
|
||
|
||
next = NEXT_INSN (insn);
|
||
|
||
if (GET_CODE (insn) != INSN)
|
||
abort ();
|
||
|
||
if (GET_CODE (PATTERN (insn)) == SET)
|
||
set = PATTERN (insn);
|
||
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
||
{
|
||
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
|
||
{
|
||
set = XVECEXP (PATTERN (insn), 0, i);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (set == 0)
|
||
abort ();
|
||
|
||
if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
|
||
{
|
||
if (PREV_INSN (insn))
|
||
NEXT_INSN (PREV_INSN (insn)) = next;
|
||
else
|
||
insns = next;
|
||
|
||
if (next)
|
||
PREV_INSN (next) = PREV_INSN (insn);
|
||
|
||
add_insn (insn);
|
||
}
|
||
}
|
||
|
||
prev = get_last_insn ();
|
||
|
||
/* Now write the CLOBBER of the output, followed by the setting of each
|
||
of the words, followed by the final copy. */
|
||
if (target != op0 && target != op1)
|
||
emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
|
||
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
add_insn (insn);
|
||
|
||
if (op1 && GET_CODE (op1) == REG)
|
||
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1,
|
||
REG_NOTES (insn));
|
||
|
||
if (op0 && GET_CODE (op0) == REG)
|
||
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0,
|
||
REG_NOTES (insn));
|
||
}
|
||
|
||
if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
last = emit_move_insn (target, target);
|
||
if (equiv)
|
||
REG_NOTES (last)
|
||
= gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last));
|
||
}
|
||
else
|
||
last = get_last_insn ();
|
||
|
||
if (prev == 0)
|
||
first = get_insns ();
|
||
else
|
||
first = NEXT_INSN (prev);
|
||
|
||
/* Encapsulate the block so it gets manipulated as a unit. */
|
||
REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
|
||
REG_NOTES (first));
|
||
REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
|
||
|
||
return last;
|
||
}
|
||
|
||
/* Emit code to make a call to a constant function or a library call.
|
||
|
||
INSNS is a list containing all insns emitted in the call.
|
||
These insns leave the result in RESULT. Our block is to copy RESULT
|
||
to TARGET, which is logically equivalent to EQUIV.
|
||
|
||
We first emit any insns that set a pseudo on the assumption that these are
|
||
loading constants into registers; doing so allows them to be safely cse'ed
|
||
between blocks. Then we emit all the other insns in the block, followed by
|
||
an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
|
||
note with an operand of EQUIV.
|
||
|
||
Moving assignments to pseudos outside of the block is done to improve
|
||
the generated code, but is not required to generate correct code,
|
||
hence being unable to move an assignment is not grounds for not making
|
||
a libcall block. There are two reasons why it is safe to leave these
|
||
insns inside the block: First, we know that these pseudos cannot be
|
||
used in generated RTL outside the block since they are created for
|
||
temporary purposes within the block. Second, CSE will not record the
|
||
values of anything set inside a libcall block, so we know they must
|
||
be dead at the end of the block.
|
||
|
||
Except for the first group of insns (the ones setting pseudos), the
|
||
block is delimited by REG_RETVAL and REG_LIBCALL notes. */
|
||
|
||
void
|
||
emit_libcall_block (insns, target, result, equiv)
|
||
rtx insns;
|
||
rtx target;
|
||
rtx result;
|
||
rtx equiv;
|
||
{
|
||
rtx prev, next, first, last, insn;
|
||
|
||
/* First emit all insns that set pseudos. Remove them from the list as
|
||
we go. Avoid insns that set pseudos which were referenced in previous
|
||
insns. These can be generated by move_by_pieces, for example,
|
||
to update an address. Similarly, avoid insns that reference things
|
||
set in previous insns. */
|
||
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
next = NEXT_INSN (insn);
|
||
|
||
if (set != 0 && GET_CODE (SET_DEST (set)) == REG
|
||
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
|
||
&& (insn == insns
|
||
|| (! reg_mentioned_p (SET_DEST (set), PATTERN (insns))
|
||
&& ! reg_used_between_p (SET_DEST (set), insns, insn)
|
||
&& ! modified_in_p (SET_SRC (set), insns)
|
||
&& ! modified_between_p (SET_SRC (set), insns, insn))))
|
||
{
|
||
if (PREV_INSN (insn))
|
||
NEXT_INSN (PREV_INSN (insn)) = next;
|
||
else
|
||
insns = next;
|
||
|
||
if (next)
|
||
PREV_INSN (next) = PREV_INSN (insn);
|
||
|
||
add_insn (insn);
|
||
}
|
||
}
|
||
|
||
prev = get_last_insn ();
|
||
|
||
/* Write the remaining insns followed by the final copy. */
|
||
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
|
||
add_insn (insn);
|
||
}
|
||
|
||
last = emit_move_insn (target, result);
|
||
REG_NOTES (last) = gen_rtx (EXPR_LIST,
|
||
REG_EQUAL, copy_rtx (equiv), REG_NOTES (last));
|
||
|
||
if (prev == 0)
|
||
first = get_insns ();
|
||
else
|
||
first = NEXT_INSN (prev);
|
||
|
||
/* Encapsulate the block so it gets manipulated as a unit. */
|
||
REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
|
||
REG_NOTES (first));
|
||
REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
|
||
}
|
||
|
||
/* Generate code to store zero in X. */
|
||
|
||
void
|
||
emit_clr_insn (x)
|
||
rtx x;
|
||
{
|
||
emit_move_insn (x, const0_rtx);
|
||
}
|
||
|
||
/* Generate code to store 1 in X
|
||
assuming it contains zero beforehand. */
|
||
|
||
void
|
||
emit_0_to_1_insn (x)
|
||
rtx x;
|
||
{
|
||
emit_move_insn (x, const1_rtx);
|
||
}
|
||
|
||
/* Generate code to compare X with Y
|
||
so that the condition codes are set.
|
||
|
||
MODE is the mode of the inputs (in case they are const_int).
|
||
UNSIGNEDP nonzero says that X and Y are unsigned;
|
||
this matters if they need to be widened.
|
||
|
||
If they have mode BLKmode, then SIZE specifies the size of both X and Y,
|
||
and ALIGN specifies the known shared alignment of X and Y.
|
||
|
||
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
|
||
It is ignored for fixed-point and block comparisons;
|
||
it is used only for floating-point comparisons. */
|
||
|
||
void
|
||
emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
|
||
rtx x, y;
|
||
enum rtx_code comparison;
|
||
rtx size;
|
||
enum machine_mode mode;
|
||
int unsignedp;
|
||
int align;
|
||
{
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
/* They could both be VOIDmode if both args are immediate constants,
|
||
but we should fold that at an earlier stage.
|
||
With no special code here, this will call abort,
|
||
reminding the programmer to implement such folding. */
|
||
|
||
if (mode != BLKmode && flag_force_mem)
|
||
{
|
||
x = force_not_mem (x);
|
||
y = force_not_mem (y);
|
||
}
|
||
|
||
/* If we are inside an appropriately-short loop and one operand is an
|
||
expensive constant, force it into a register. */
|
||
if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2)
|
||
x = force_reg (mode, x);
|
||
|
||
if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2)
|
||
y = force_reg (mode, y);
|
||
|
||
/* Don't let both operands fail to indicate the mode. */
|
||
if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
|
||
x = force_reg (mode, x);
|
||
|
||
/* Handle all BLKmode compares. */
|
||
|
||
if (mode == BLKmode)
|
||
{
|
||
emit_queue ();
|
||
x = protect_from_queue (x, 0);
|
||
y = protect_from_queue (y, 0);
|
||
|
||
if (size == 0)
|
||
abort ();
|
||
#ifdef HAVE_cmpstrqi
|
||
if (HAVE_cmpstrqi
|
||
&& GET_CODE (size) == CONST_INT
|
||
&& INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
|
||
{
|
||
enum machine_mode result_mode
|
||
= insn_operand_mode[(int) CODE_FOR_cmpstrqi][0];
|
||
rtx result = gen_reg_rtx (result_mode);
|
||
emit_insn (gen_cmpstrqi (result, x, y, size, GEN_INT (align)));
|
||
emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
|
||
result_mode, 0, 0);
|
||
}
|
||
else
|
||
#endif
|
||
#ifdef HAVE_cmpstrhi
|
||
if (HAVE_cmpstrhi
|
||
&& GET_CODE (size) == CONST_INT
|
||
&& INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
|
||
{
|
||
enum machine_mode result_mode
|
||
= insn_operand_mode[(int) CODE_FOR_cmpstrhi][0];
|
||
rtx result = gen_reg_rtx (result_mode);
|
||
emit_insn (gen_cmpstrhi (result, x, y, size, GEN_INT (align)));
|
||
emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
|
||
result_mode, 0, 0);
|
||
}
|
||
else
|
||
#endif
|
||
#ifdef HAVE_cmpstrsi
|
||
if (HAVE_cmpstrsi)
|
||
{
|
||
enum machine_mode result_mode
|
||
= insn_operand_mode[(int) CODE_FOR_cmpstrsi][0];
|
||
rtx result = gen_reg_rtx (result_mode);
|
||
size = protect_from_queue (size, 0);
|
||
emit_insn (gen_cmpstrsi (result, x, y,
|
||
convert_to_mode (SImode, size, 1),
|
||
GEN_INT (align)));
|
||
emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
|
||
result_mode, 0, 0);
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
emit_library_call (memcmp_libfunc, 0,
|
||
TYPE_MODE (integer_type_node), 3,
|
||
XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
|
||
size, Pmode);
|
||
#else
|
||
emit_library_call (bcmp_libfunc, 0,
|
||
TYPE_MODE (integer_type_node), 3,
|
||
XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
|
||
size, Pmode);
|
||
#endif
|
||
emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)),
|
||
const0_rtx, comparison, NULL_RTX,
|
||
TYPE_MODE (integer_type_node), 0, 0);
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Handle some compares against zero. */
|
||
|
||
if (y == CONST0_RTX (mode)
|
||
&& tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) tst_optab->handlers[(int) mode].insn_code;
|
||
|
||
emit_queue ();
|
||
x = protect_from_queue (x, 0);
|
||
y = protect_from_queue (y, 0);
|
||
|
||
/* Now, if insn does accept these operands, put them into pseudos. */
|
||
if (! (*insn_operand_predicate[icode][0])
|
||
(x, insn_operand_mode[icode][0]))
|
||
x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
|
||
|
||
emit_insn (GEN_FCN (icode) (x));
|
||
return;
|
||
}
|
||
|
||
/* Handle compares for which there is a directly suitable insn. */
|
||
|
||
if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) cmp_optab->handlers[(int) mode].insn_code;
|
||
|
||
emit_queue ();
|
||
x = protect_from_queue (x, 0);
|
||
y = protect_from_queue (y, 0);
|
||
|
||
/* Now, if insn doesn't accept these operands, put them into pseudos. */
|
||
if (! (*insn_operand_predicate[icode][0])
|
||
(x, insn_operand_mode[icode][0]))
|
||
x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
|
||
|
||
if (! (*insn_operand_predicate[icode][1])
|
||
(y, insn_operand_mode[icode][1]))
|
||
y = copy_to_mode_reg (insn_operand_mode[icode][1], y);
|
||
|
||
emit_insn (GEN_FCN (icode) (x, y));
|
||
return;
|
||
}
|
||
|
||
/* Try widening if we can find a direct insn that way. */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (cmp_optab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
x = protect_from_queue (x, 0);
|
||
y = protect_from_queue (y, 0);
|
||
x = convert_modes (wider_mode, mode, x, unsignedp);
|
||
y = convert_modes (wider_mode, mode, y, unsignedp);
|
||
emit_cmp_insn (x, y, comparison, NULL_RTX,
|
||
wider_mode, unsignedp, align);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle a lib call just for the mode we are using. */
|
||
|
||
if (cmp_optab->handlers[(int) mode].libfunc
|
||
&& class != MODE_FLOAT)
|
||
{
|
||
rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
|
||
/* If we want unsigned, and this mode has a distinct unsigned
|
||
comparison routine, use that. */
|
||
if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
|
||
libfunc = ucmp_optab->handlers[(int) mode].libfunc;
|
||
|
||
emit_library_call (libfunc, 1,
|
||
word_mode, 2, x, mode, y, mode);
|
||
|
||
/* Integer comparison returns a result that must be compared against 1,
|
||
so that even if we do an unsigned compare afterward,
|
||
there is still a value that can represent the result "less than". */
|
||
|
||
emit_cmp_insn (hard_libcall_value (word_mode), const1_rtx,
|
||
comparison, NULL_RTX, word_mode, unsignedp, 0);
|
||
return;
|
||
}
|
||
|
||
if (class == MODE_FLOAT)
|
||
emit_float_lib_cmp (x, y, comparison);
|
||
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Nonzero if a compare of mode MODE can be done straightforwardly
|
||
(without splitting it into pieces). */
|
||
|
||
int
|
||
can_compare_p (mode)
|
||
enum machine_mode mode;
|
||
{
|
||
do
|
||
{
|
||
if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
|
||
return 1;
|
||
mode = GET_MODE_WIDER_MODE (mode);
|
||
} while (mode != VOIDmode);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Emit a library call comparison between floating point X and Y.
|
||
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
|
||
|
||
void
|
||
emit_float_lib_cmp (x, y, comparison)
|
||
rtx x, y;
|
||
enum rtx_code comparison;
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
rtx libfunc = 0;
|
||
|
||
if (mode == SFmode)
|
||
switch (comparison)
|
||
{
|
||
case EQ:
|
||
libfunc = eqsf2_libfunc;
|
||
break;
|
||
|
||
case NE:
|
||
libfunc = nesf2_libfunc;
|
||
break;
|
||
|
||
case GT:
|
||
libfunc = gtsf2_libfunc;
|
||
break;
|
||
|
||
case GE:
|
||
libfunc = gesf2_libfunc;
|
||
break;
|
||
|
||
case LT:
|
||
libfunc = ltsf2_libfunc;
|
||
break;
|
||
|
||
case LE:
|
||
libfunc = lesf2_libfunc;
|
||
break;
|
||
}
|
||
else if (mode == DFmode)
|
||
switch (comparison)
|
||
{
|
||
case EQ:
|
||
libfunc = eqdf2_libfunc;
|
||
break;
|
||
|
||
case NE:
|
||
libfunc = nedf2_libfunc;
|
||
break;
|
||
|
||
case GT:
|
||
libfunc = gtdf2_libfunc;
|
||
break;
|
||
|
||
case GE:
|
||
libfunc = gedf2_libfunc;
|
||
break;
|
||
|
||
case LT:
|
||
libfunc = ltdf2_libfunc;
|
||
break;
|
||
|
||
case LE:
|
||
libfunc = ledf2_libfunc;
|
||
break;
|
||
}
|
||
else if (mode == XFmode)
|
||
switch (comparison)
|
||
{
|
||
case EQ:
|
||
libfunc = eqxf2_libfunc;
|
||
break;
|
||
|
||
case NE:
|
||
libfunc = nexf2_libfunc;
|
||
break;
|
||
|
||
case GT:
|
||
libfunc = gtxf2_libfunc;
|
||
break;
|
||
|
||
case GE:
|
||
libfunc = gexf2_libfunc;
|
||
break;
|
||
|
||
case LT:
|
||
libfunc = ltxf2_libfunc;
|
||
break;
|
||
|
||
case LE:
|
||
libfunc = lexf2_libfunc;
|
||
break;
|
||
}
|
||
else if (mode == TFmode)
|
||
switch (comparison)
|
||
{
|
||
case EQ:
|
||
libfunc = eqtf2_libfunc;
|
||
break;
|
||
|
||
case NE:
|
||
libfunc = netf2_libfunc;
|
||
break;
|
||
|
||
case GT:
|
||
libfunc = gttf2_libfunc;
|
||
break;
|
||
|
||
case GE:
|
||
libfunc = getf2_libfunc;
|
||
break;
|
||
|
||
case LT:
|
||
libfunc = lttf2_libfunc;
|
||
break;
|
||
|
||
case LE:
|
||
libfunc = letf2_libfunc;
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
enum machine_mode wider_mode;
|
||
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if ((cmp_optab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
|
||
{
|
||
x = protect_from_queue (x, 0);
|
||
y = protect_from_queue (y, 0);
|
||
x = convert_to_mode (wider_mode, x, 0);
|
||
y = convert_to_mode (wider_mode, y, 0);
|
||
emit_float_lib_cmp (x, y, comparison);
|
||
return;
|
||
}
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
if (libfunc == 0)
|
||
abort ();
|
||
|
||
emit_library_call (libfunc, 1,
|
||
word_mode, 2, x, mode, y, mode);
|
||
|
||
emit_cmp_insn (hard_libcall_value (word_mode), const0_rtx, comparison,
|
||
NULL_RTX, word_mode, 0, 0);
|
||
}
|
||
|
||
/* Generate code to indirectly jump to a location given in the rtx LOC. */
|
||
|
||
void
|
||
emit_indirect_jump (loc)
|
||
rtx loc;
|
||
{
|
||
if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0])
|
||
(loc, Pmode)))
|
||
loc = copy_to_mode_reg (Pmode, loc);
|
||
|
||
emit_jump_insn (gen_indirect_jump (loc));
|
||
emit_barrier ();
|
||
}
|
||
|
||
/* These three functions generate an insn body and return it
|
||
rather than emitting the insn.
|
||
|
||
They do not protect from queued increments,
|
||
because they may be used 1) in protect_from_queue itself
|
||
and 2) in other passes where there is no queue. */
|
||
|
||
/* Generate and return an insn body to add Y to X. */
|
||
|
||
rtx
|
||
gen_add2_insn (x, y)
|
||
rtx x, y;
|
||
{
|
||
int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
|
||
|| ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
|
||
|| ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
|
||
abort ();
|
||
|
||
return (GEN_FCN (icode) (x, x, y));
|
||
}
|
||
|
||
int
|
||
have_add2_insn (mode)
|
||
enum machine_mode mode;
|
||
{
|
||
return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
|
||
}
|
||
|
||
/* Generate and return an insn body to subtract Y from X. */
|
||
|
||
rtx
|
||
gen_sub2_insn (x, y)
|
||
rtx x, y;
|
||
{
|
||
int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
|
||
|| ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
|
||
|| ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
|
||
abort ();
|
||
|
||
return (GEN_FCN (icode) (x, x, y));
|
||
}
|
||
|
||
int
|
||
have_sub2_insn (mode)
|
||
enum machine_mode mode;
|
||
{
|
||
return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
|
||
}
|
||
|
||
/* Generate the body of an instruction to copy Y into X.
|
||
It may be a SEQUENCE, if one insn isn't enough. */
|
||
|
||
rtx
|
||
gen_move_insn (x, y)
|
||
rtx x, y;
|
||
{
|
||
register enum machine_mode mode = GET_MODE (x);
|
||
enum insn_code insn_code;
|
||
rtx seq;
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (y);
|
||
|
||
insn_code = mov_optab->handlers[(int) mode].insn_code;
|
||
|
||
/* Handle MODE_CC modes: If we don't have a special move insn for this mode,
|
||
find a mode to do it in. If we have a movcc, use it. Otherwise,
|
||
find the MODE_INT mode of the same width. */
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
|
||
{
|
||
enum machine_mode tmode = VOIDmode;
|
||
rtx x1 = x, y1 = y;
|
||
|
||
if (mode != CCmode
|
||
&& mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
|
||
tmode = CCmode;
|
||
else
|
||
for (tmode = QImode; tmode != VOIDmode;
|
||
tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
|
||
break;
|
||
|
||
if (tmode == VOIDmode)
|
||
abort ();
|
||
|
||
/* Get X and Y in TMODE. We can't use gen_lowpart here because it
|
||
may call change_address which is not appropriate if we were
|
||
called when a reload was in progress. We don't have to worry
|
||
about changing the address since the size in bytes is supposed to
|
||
be the same. Copy the MEM to change the mode and move any
|
||
substitutions from the old MEM to the new one. */
|
||
|
||
if (reload_in_progress)
|
||
{
|
||
x = gen_lowpart_common (tmode, x1);
|
||
if (x == 0 && GET_CODE (x1) == MEM)
|
||
{
|
||
x = gen_rtx (MEM, tmode, XEXP (x1, 0));
|
||
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1);
|
||
MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1);
|
||
MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1);
|
||
copy_replacements (x1, x);
|
||
}
|
||
|
||
y = gen_lowpart_common (tmode, y1);
|
||
if (y == 0 && GET_CODE (y1) == MEM)
|
||
{
|
||
y = gen_rtx (MEM, tmode, XEXP (y1, 0));
|
||
RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1);
|
||
MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1);
|
||
MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1);
|
||
copy_replacements (y1, y);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
x = gen_lowpart (tmode, x);
|
||
y = gen_lowpart (tmode, y);
|
||
}
|
||
|
||
insn_code = mov_optab->handlers[(int) tmode].insn_code;
|
||
return (GEN_FCN (insn_code) (x, y));
|
||
}
|
||
|
||
start_sequence ();
|
||
emit_move_insn_1 (x, y);
|
||
seq = gen_sequence ();
|
||
end_sequence ();
|
||
return seq;
|
||
}
|
||
|
||
/* Return the insn code used to extend FROM_MODE to TO_MODE.
|
||
UNSIGNEDP specifies zero-extension instead of sign-extension. If
|
||
no such operation exists, CODE_FOR_nothing will be returned. */
|
||
|
||
enum insn_code
|
||
can_extend_p (to_mode, from_mode, unsignedp)
|
||
enum machine_mode to_mode, from_mode;
|
||
int unsignedp;
|
||
{
|
||
return extendtab[(int) to_mode][(int) from_mode][unsignedp];
|
||
}
|
||
|
||
/* Generate the body of an insn to extend Y (with mode MFROM)
|
||
into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
|
||
|
||
rtx
|
||
gen_extend_insn (x, y, mto, mfrom, unsignedp)
|
||
rtx x, y;
|
||
enum machine_mode mto, mfrom;
|
||
int unsignedp;
|
||
{
|
||
return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y));
|
||
}
|
||
|
||
/* can_fix_p and can_float_p say whether the target machine
|
||
can directly convert a given fixed point type to
|
||
a given floating point type, or vice versa.
|
||
The returned value is the CODE_FOR_... value to use,
|
||
or CODE_FOR_nothing if these modes cannot be directly converted.
|
||
|
||
*TRUNCP_PTR is set to 1 if it is necessary to output
|
||
an explicit FTRUNC insn before the fix insn; otherwise 0. */
|
||
|
||
static enum insn_code
|
||
can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
|
||
enum machine_mode fltmode, fixmode;
|
||
int unsignedp;
|
||
int *truncp_ptr;
|
||
{
|
||
*truncp_ptr = 0;
|
||
if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing)
|
||
return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp];
|
||
|
||
if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
*truncp_ptr = 1;
|
||
return fixtab[(int) fltmode][(int) fixmode][unsignedp];
|
||
}
|
||
return CODE_FOR_nothing;
|
||
}
|
||
|
||
static enum insn_code
|
||
can_float_p (fltmode, fixmode, unsignedp)
|
||
enum machine_mode fixmode, fltmode;
|
||
int unsignedp;
|
||
{
|
||
return floattab[(int) fltmode][(int) fixmode][unsignedp];
|
||
}
|
||
|
||
/* Generate code to convert FROM to floating point
|
||
and store in TO. FROM must be fixed point and not VOIDmode.
|
||
UNSIGNEDP nonzero means regard FROM as unsigned.
|
||
Normally this is done by correcting the final value
|
||
if it is negative. */
|
||
|
||
void
|
||
expand_float (to, from, unsignedp)
|
||
rtx to, from;
|
||
int unsignedp;
|
||
{
|
||
enum insn_code icode;
|
||
register rtx target = to;
|
||
enum machine_mode fmode, imode;
|
||
|
||
/* Crash now, because we won't be able to decide which mode to use. */
|
||
if (GET_MODE (from) == VOIDmode)
|
||
abort ();
|
||
|
||
/* Look for an insn to do the conversion. Do it in the specified
|
||
modes if possible; otherwise convert either input, output or both to
|
||
wider mode. If the integer mode is wider than the mode of FROM,
|
||
we can do the conversion signed even if the input is unsigned. */
|
||
|
||
for (imode = GET_MODE (from); imode != VOIDmode;
|
||
imode = GET_MODE_WIDER_MODE (imode))
|
||
for (fmode = GET_MODE (to); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
{
|
||
int doing_unsigned = unsignedp;
|
||
|
||
icode = can_float_p (fmode, imode, unsignedp);
|
||
if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
|
||
icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
|
||
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
to = protect_from_queue (to, 1);
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (imode != GET_MODE (from))
|
||
from = convert_to_mode (imode, from, unsignedp);
|
||
|
||
if (fmode != GET_MODE (to))
|
||
target = gen_reg_rtx (fmode);
|
||
|
||
emit_unop_insn (icode, target, from,
|
||
doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
|
||
|
||
if (target != to)
|
||
convert_move (to, target, 0);
|
||
return;
|
||
}
|
||
}
|
||
|
||
#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
|
||
/* Unsigned integer, and no way to convert directly.
|
||
Convert as signed, then conditionally adjust the result. */
|
||
if (unsignedp)
|
||
{
|
||
rtx label = gen_label_rtx ();
|
||
rtx temp;
|
||
REAL_VALUE_TYPE offset;
|
||
|
||
emit_queue ();
|
||
|
||
to = protect_from_queue (to, 1);
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
/* Look for a usable floating mode FMODE wider than the source and at
|
||
least as wide as the target. Using FMODE will avoid rounding woes
|
||
with unsigned values greater than the signed maximum value. */
|
||
|
||
for (fmode = GET_MODE (to); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
|
||
&& can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
|
||
break;
|
||
|
||
if (fmode == VOIDmode)
|
||
{
|
||
/* There is no such mode. Pretend the target is wide enough. */
|
||
fmode = GET_MODE (to);
|
||
|
||
/* Avoid double-rounding when TO is narrower than FROM. */
|
||
if ((significand_size (fmode) + 1)
|
||
< GET_MODE_BITSIZE (GET_MODE (from)))
|
||
{
|
||
rtx temp1;
|
||
rtx neglabel = gen_label_rtx ();
|
||
|
||
/* Don't use TARGET if it isn't a register, is a hard register,
|
||
or is the wrong mode. */
|
||
if (GET_CODE (target) != REG
|
||
|| REGNO (target) < FIRST_PSEUDO_REGISTER
|
||
|| GET_MODE (target) != fmode)
|
||
target = gen_reg_rtx (fmode);
|
||
|
||
imode = GET_MODE (from);
|
||
do_pending_stack_adjust ();
|
||
|
||
/* Test whether the sign bit is set. */
|
||
emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, imode, 0, 0);
|
||
emit_jump_insn (gen_blt (neglabel));
|
||
|
||
/* The sign bit is not set. Convert as signed. */
|
||
expand_float (target, from, 0);
|
||
emit_jump_insn (gen_jump (label));
|
||
|
||
/* The sign bit is set.
|
||
Convert to a usable (positive signed) value by shifting right
|
||
one bit, while remembering if a nonzero bit was shifted
|
||
out; i.e., compute (from & 1) | (from >> 1). */
|
||
|
||
emit_label (neglabel);
|
||
temp = expand_binop (imode, and_optab, from, const1_rtx,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
|
||
NULL_RTX, 1);
|
||
temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
|
||
OPTAB_LIB_WIDEN);
|
||
expand_float (target, temp, 0);
|
||
|
||
/* Multiply by 2 to undo the shift above. */
|
||
target = expand_binop (fmode, add_optab, target, target,
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
do_pending_stack_adjust ();
|
||
emit_label (label);
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
/* If we are about to do some arithmetic to correct for an
|
||
unsigned operand, do it in a pseudo-register. */
|
||
|
||
if (GET_MODE (to) != fmode
|
||
|| GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
|
||
target = gen_reg_rtx (fmode);
|
||
|
||
/* Convert as signed integer to floating. */
|
||
expand_float (target, from, 0);
|
||
|
||
/* If FROM is negative (and therefore TO is negative),
|
||
correct its value by 2**bitwidth. */
|
||
|
||
do_pending_stack_adjust ();
|
||
emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, GET_MODE (from), 0, 0);
|
||
emit_jump_insn (gen_bge (label));
|
||
|
||
/* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
|
||
Rather than setting up a dconst_dot_5, let's hope SCO
|
||
fixes the bug. */
|
||
offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
|
||
temp = expand_binop (fmode, add_optab, target,
|
||
CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
if (temp != target)
|
||
emit_move_insn (target, temp);
|
||
|
||
do_pending_stack_adjust ();
|
||
emit_label (label);
|
||
goto done;
|
||
}
|
||
#endif
|
||
|
||
/* No hardware instruction available; call a library rotine to convert from
|
||
SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
|
||
{
|
||
rtx libfcn;
|
||
rtx insns;
|
||
rtx value;
|
||
|
||
to = protect_from_queue (to, 1);
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
|
||
from = convert_to_mode (SImode, from, unsignedp);
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
if (GET_MODE (to) == SFmode)
|
||
{
|
||
if (GET_MODE (from) == SImode)
|
||
libfcn = floatsisf_libfunc;
|
||
else if (GET_MODE (from) == DImode)
|
||
libfcn = floatdisf_libfunc;
|
||
else if (GET_MODE (from) == TImode)
|
||
libfcn = floattisf_libfunc;
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_MODE (to) == DFmode)
|
||
{
|
||
if (GET_MODE (from) == SImode)
|
||
libfcn = floatsidf_libfunc;
|
||
else if (GET_MODE (from) == DImode)
|
||
libfcn = floatdidf_libfunc;
|
||
else if (GET_MODE (from) == TImode)
|
||
libfcn = floattidf_libfunc;
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_MODE (to) == XFmode)
|
||
{
|
||
if (GET_MODE (from) == SImode)
|
||
libfcn = floatsixf_libfunc;
|
||
else if (GET_MODE (from) == DImode)
|
||
libfcn = floatdixf_libfunc;
|
||
else if (GET_MODE (from) == TImode)
|
||
libfcn = floattixf_libfunc;
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_MODE (to) == TFmode)
|
||
{
|
||
if (GET_MODE (from) == SImode)
|
||
libfcn = floatsitf_libfunc;
|
||
else if (GET_MODE (from) == DImode)
|
||
libfcn = floatditf_libfunc;
|
||
else if (GET_MODE (from) == TImode)
|
||
libfcn = floattitf_libfunc;
|
||
else
|
||
abort ();
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
start_sequence ();
|
||
|
||
value = emit_library_call_value (libfcn, NULL_RTX, 1,
|
||
GET_MODE (to),
|
||
1, from, GET_MODE (from));
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_libcall_block (insns, target, value,
|
||
gen_rtx (FLOAT, GET_MODE (to), from));
|
||
}
|
||
|
||
done:
|
||
|
||
/* Copy result to requested destination
|
||
if we have been computing in a temp location. */
|
||
|
||
if (target != to)
|
||
{
|
||
if (GET_MODE (target) == GET_MODE (to))
|
||
emit_move_insn (to, target);
|
||
else
|
||
convert_move (to, target, 0);
|
||
}
|
||
}
|
||
|
||
/* expand_fix: generate code to convert FROM to fixed point
|
||
and store in TO. FROM must be floating point. */
|
||
|
||
static rtx
|
||
ftruncify (x)
|
||
rtx x;
|
||
{
|
||
rtx temp = gen_reg_rtx (GET_MODE (x));
|
||
return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
|
||
}
|
||
|
||
void
|
||
expand_fix (to, from, unsignedp)
|
||
register rtx to, from;
|
||
int unsignedp;
|
||
{
|
||
enum insn_code icode;
|
||
register rtx target = to;
|
||
enum machine_mode fmode, imode;
|
||
int must_trunc = 0;
|
||
rtx libfcn = 0;
|
||
|
||
/* We first try to find a pair of modes, one real and one integer, at
|
||
least as wide as FROM and TO, respectively, in which we can open-code
|
||
this conversion. If the integer mode is wider than the mode of TO,
|
||
we can do the conversion either signed or unsigned. */
|
||
|
||
for (imode = GET_MODE (to); imode != VOIDmode;
|
||
imode = GET_MODE_WIDER_MODE (imode))
|
||
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
{
|
||
int doing_unsigned = unsignedp;
|
||
|
||
icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
|
||
if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
|
||
icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
|
||
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
to = protect_from_queue (to, 1);
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (fmode != GET_MODE (from))
|
||
from = convert_to_mode (fmode, from, 0);
|
||
|
||
if (must_trunc)
|
||
from = ftruncify (from);
|
||
|
||
if (imode != GET_MODE (to))
|
||
target = gen_reg_rtx (imode);
|
||
|
||
emit_unop_insn (icode, target, from,
|
||
doing_unsigned ? UNSIGNED_FIX : FIX);
|
||
if (target != to)
|
||
convert_move (to, target, unsignedp);
|
||
return;
|
||
}
|
||
}
|
||
|
||
#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
/* For an unsigned conversion, there is one more way to do it.
|
||
If we have a signed conversion, we generate code that compares
|
||
the real value to the largest representable positive number. If if
|
||
is smaller, the conversion is done normally. Otherwise, subtract
|
||
one plus the highest signed number, convert, and add it back.
|
||
|
||
We only need to check all real modes, since we know we didn't find
|
||
anything with a wider integer mode. */
|
||
|
||
if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
|
||
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
/* Make sure we won't lose significant bits doing this. */
|
||
if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
|
||
&& CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
|
||
&must_trunc))
|
||
{
|
||
int bitsize;
|
||
REAL_VALUE_TYPE offset;
|
||
rtx limit, lab1, lab2, insn;
|
||
|
||
bitsize = GET_MODE_BITSIZE (GET_MODE (to));
|
||
offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
|
||
limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
|
||
lab1 = gen_label_rtx ();
|
||
lab2 = gen_label_rtx ();
|
||
|
||
emit_queue ();
|
||
to = protect_from_queue (to, 1);
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
if (fmode != GET_MODE (from))
|
||
from = convert_to_mode (fmode, from, 0);
|
||
|
||
/* See if we need to do the subtraction. */
|
||
do_pending_stack_adjust ();
|
||
emit_cmp_insn (from, limit, GE, NULL_RTX, GET_MODE (from), 0, 0);
|
||
emit_jump_insn (gen_bge (lab1));
|
||
|
||
/* If not, do the signed "fix" and branch around fixup code. */
|
||
expand_fix (to, from, 0);
|
||
emit_jump_insn (gen_jump (lab2));
|
||
emit_barrier ();
|
||
|
||
/* Otherwise, subtract 2**(N-1), convert to signed number,
|
||
then add 2**(N-1). Do the addition using XOR since this
|
||
will often generate better code. */
|
||
emit_label (lab1);
|
||
target = expand_binop (GET_MODE (from), sub_optab, from, limit,
|
||
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
||
expand_fix (to, target, 0);
|
||
target = expand_binop (GET_MODE (to), xor_optab, to,
|
||
GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)),
|
||
to, 1, OPTAB_LIB_WIDEN);
|
||
|
||
if (target != to)
|
||
emit_move_insn (to, target);
|
||
|
||
emit_label (lab2);
|
||
|
||
/* Make a place for a REG_NOTE and add it. */
|
||
insn = emit_move_insn (to, to);
|
||
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (UNSIGNED_FIX, GET_MODE (to),
|
||
copy_rtx (from)),
|
||
REG_NOTES (insn));
|
||
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
/* We can't do it with an insn, so use a library call. But first ensure
|
||
that the mode of TO is at least as wide as SImode, since those are the
|
||
only library calls we know about. */
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
|
||
{
|
||
target = gen_reg_rtx (SImode);
|
||
|
||
expand_fix (target, from, unsignedp);
|
||
}
|
||
else if (GET_MODE (from) == SFmode)
|
||
{
|
||
if (GET_MODE (to) == SImode)
|
||
libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
|
||
else if (GET_MODE (to) == DImode)
|
||
libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
|
||
else if (GET_MODE (to) == TImode)
|
||
libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_MODE (from) == DFmode)
|
||
{
|
||
if (GET_MODE (to) == SImode)
|
||
libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
|
||
else if (GET_MODE (to) == DImode)
|
||
libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
|
||
else if (GET_MODE (to) == TImode)
|
||
libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_MODE (from) == XFmode)
|
||
{
|
||
if (GET_MODE (to) == SImode)
|
||
libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
|
||
else if (GET_MODE (to) == DImode)
|
||
libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
|
||
else if (GET_MODE (to) == TImode)
|
||
libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_MODE (from) == TFmode)
|
||
{
|
||
if (GET_MODE (to) == SImode)
|
||
libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
|
||
else if (GET_MODE (to) == DImode)
|
||
libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
|
||
else if (GET_MODE (to) == TImode)
|
||
libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
|
||
else
|
||
abort ();
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
if (libfcn)
|
||
{
|
||
rtx insns;
|
||
|
||
to = protect_from_queue (to, 1);
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
start_sequence ();
|
||
|
||
emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from));
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)),
|
||
gen_rtx (unsignedp ? FIX : UNSIGNED_FIX,
|
||
GET_MODE (to), from));
|
||
}
|
||
|
||
if (GET_MODE (to) == GET_MODE (target))
|
||
emit_move_insn (to, target);
|
||
else
|
||
convert_move (to, target, 0);
|
||
}
|
||
|
||
static optab
|
||
init_optab (code)
|
||
enum rtx_code code;
|
||
{
|
||
int i;
|
||
optab op = (optab) xmalloc (sizeof (struct optab));
|
||
op->code = code;
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
{
|
||
op->handlers[i].insn_code = CODE_FOR_nothing;
|
||
op->handlers[i].libfunc = 0;
|
||
}
|
||
|
||
if (code != UNKNOWN)
|
||
code_to_optab[(int) code] = op;
|
||
|
||
return op;
|
||
}
|
||
|
||
/* Initialize the libfunc fields of an entire group of entries in some
|
||
optab. Each entry is set equal to a string consisting of a leading
|
||
pair of underscores followed by a generic operation name followed by
|
||
a mode name (downshifted to lower case) followed by a single character
|
||
representing the number of operands for the given operation (which is
|
||
usually one of the characters '2', '3', or '4').
|
||
|
||
OPTABLE is the table in which libfunc fields are to be initialized.
|
||
FIRST_MODE is the first machine mode index in the given optab to
|
||
initialize.
|
||
LAST_MODE is the last machine mode index in the given optab to
|
||
initialize.
|
||
OPNAME is the generic (string) name of the operation.
|
||
SUFFIX is the character which specifies the number of operands for
|
||
the given generic operation.
|
||
*/
|
||
|
||
static void
|
||
init_libfuncs (optable, first_mode, last_mode, opname, suffix)
|
||
register optab optable;
|
||
register int first_mode;
|
||
register int last_mode;
|
||
register char *opname;
|
||
register char suffix;
|
||
{
|
||
register int mode;
|
||
register unsigned opname_len = strlen (opname);
|
||
|
||
for (mode = first_mode; (int) mode <= (int) last_mode;
|
||
mode = (enum machine_mode) ((int) mode + 1))
|
||
{
|
||
register char *mname = mode_name[(int) mode];
|
||
register unsigned mname_len = strlen (mname);
|
||
register char *libfunc_name
|
||
= (char *) xmalloc (2 + opname_len + mname_len + 1 + 1);
|
||
register char *p;
|
||
register char *q;
|
||
|
||
p = libfunc_name;
|
||
*p++ = '_';
|
||
*p++ = '_';
|
||
for (q = opname; *q; )
|
||
*p++ = *q++;
|
||
for (q = mname; *q; q++)
|
||
*p++ = tolower (*q);
|
||
*p++ = suffix;
|
||
*p++ = '\0';
|
||
optable->handlers[(int) mode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, libfunc_name);
|
||
}
|
||
}
|
||
|
||
/* Initialize the libfunc fields of an entire group of entries in some
|
||
optab which correspond to all integer mode operations. The parameters
|
||
have the same meaning as similarly named ones for the `init_libfuncs'
|
||
routine. (See above). */
|
||
|
||
static void
|
||
init_integral_libfuncs (optable, opname, suffix)
|
||
register optab optable;
|
||
register char *opname;
|
||
register char suffix;
|
||
{
|
||
init_libfuncs (optable, SImode, TImode, opname, suffix);
|
||
}
|
||
|
||
/* Initialize the libfunc fields of an entire group of entries in some
|
||
optab which correspond to all real mode operations. The parameters
|
||
have the same meaning as similarly named ones for the `init_libfuncs'
|
||
routine. (See above). */
|
||
|
||
static void
|
||
init_floating_libfuncs (optable, opname, suffix)
|
||
register optab optable;
|
||
register char *opname;
|
||
register char suffix;
|
||
{
|
||
init_libfuncs (optable, SFmode, TFmode, opname, suffix);
|
||
}
|
||
|
||
/* Initialize the libfunc fields of an entire group of entries in some
|
||
optab which correspond to all complex floating modes. The parameters
|
||
have the same meaning as similarly named ones for the `init_libfuncs'
|
||
routine. (See above). */
|
||
|
||
static void
|
||
init_complex_libfuncs (optable, opname, suffix)
|
||
register optab optable;
|
||
register char *opname;
|
||
register char suffix;
|
||
{
|
||
init_libfuncs (optable, SCmode, TCmode, opname, suffix);
|
||
}
|
||
|
||
/* Call this once to initialize the contents of the optabs
|
||
appropriately for the current target machine. */
|
||
|
||
void
|
||
init_optabs ()
|
||
{
|
||
int i, j;
|
||
enum insn_code *p;
|
||
|
||
/* Start by initializing all tables to contain CODE_FOR_nothing. */
|
||
|
||
for (p = fixtab[0][0];
|
||
p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]);
|
||
p++)
|
||
*p = CODE_FOR_nothing;
|
||
|
||
for (p = fixtrunctab[0][0];
|
||
p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]);
|
||
p++)
|
||
*p = CODE_FOR_nothing;
|
||
|
||
for (p = floattab[0][0];
|
||
p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]);
|
||
p++)
|
||
*p = CODE_FOR_nothing;
|
||
|
||
for (p = extendtab[0][0];
|
||
p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0];
|
||
p++)
|
||
*p = CODE_FOR_nothing;
|
||
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
setcc_gen_code[i] = CODE_FOR_nothing;
|
||
|
||
add_optab = init_optab (PLUS);
|
||
sub_optab = init_optab (MINUS);
|
||
smul_optab = init_optab (MULT);
|
||
smul_highpart_optab = init_optab (UNKNOWN);
|
||
umul_highpart_optab = init_optab (UNKNOWN);
|
||
smul_widen_optab = init_optab (UNKNOWN);
|
||
umul_widen_optab = init_optab (UNKNOWN);
|
||
sdiv_optab = init_optab (DIV);
|
||
sdivmod_optab = init_optab (UNKNOWN);
|
||
udiv_optab = init_optab (UDIV);
|
||
udivmod_optab = init_optab (UNKNOWN);
|
||
smod_optab = init_optab (MOD);
|
||
umod_optab = init_optab (UMOD);
|
||
flodiv_optab = init_optab (DIV);
|
||
ftrunc_optab = init_optab (UNKNOWN);
|
||
and_optab = init_optab (AND);
|
||
ior_optab = init_optab (IOR);
|
||
xor_optab = init_optab (XOR);
|
||
ashl_optab = init_optab (ASHIFT);
|
||
ashr_optab = init_optab (ASHIFTRT);
|
||
lshr_optab = init_optab (LSHIFTRT);
|
||
rotl_optab = init_optab (ROTATE);
|
||
rotr_optab = init_optab (ROTATERT);
|
||
smin_optab = init_optab (SMIN);
|
||
smax_optab = init_optab (SMAX);
|
||
umin_optab = init_optab (UMIN);
|
||
umax_optab = init_optab (UMAX);
|
||
mov_optab = init_optab (UNKNOWN);
|
||
movstrict_optab = init_optab (UNKNOWN);
|
||
cmp_optab = init_optab (UNKNOWN);
|
||
ucmp_optab = init_optab (UNKNOWN);
|
||
tst_optab = init_optab (UNKNOWN);
|
||
neg_optab = init_optab (NEG);
|
||
abs_optab = init_optab (ABS);
|
||
one_cmpl_optab = init_optab (NOT);
|
||
ffs_optab = init_optab (FFS);
|
||
sqrt_optab = init_optab (SQRT);
|
||
sin_optab = init_optab (UNKNOWN);
|
||
cos_optab = init_optab (UNKNOWN);
|
||
strlen_optab = init_optab (UNKNOWN);
|
||
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
{
|
||
movstr_optab[i] = CODE_FOR_nothing;
|
||
|
||
#ifdef HAVE_SECONDARY_RELOADS
|
||
reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
|
||
#endif
|
||
}
|
||
|
||
/* Fill in the optabs with the insns we support. */
|
||
init_all_optabs ();
|
||
|
||
#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
|
||
/* This flag says the same insns that convert to a signed fixnum
|
||
also convert validly to an unsigned one. */
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
||
fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
|
||
#endif
|
||
|
||
#ifdef EXTRA_CC_MODES
|
||
init_mov_optab ();
|
||
#endif
|
||
|
||
/* Initialize the optabs with the names of the library functions. */
|
||
init_integral_libfuncs (add_optab, "add", '3');
|
||
init_floating_libfuncs (add_optab, "add", '3');
|
||
init_integral_libfuncs (sub_optab, "sub", '3');
|
||
init_floating_libfuncs (sub_optab, "sub", '3');
|
||
init_integral_libfuncs (smul_optab, "mul", '3');
|
||
init_floating_libfuncs (smul_optab, "mul", '3');
|
||
init_integral_libfuncs (sdiv_optab, "div", '3');
|
||
init_integral_libfuncs (udiv_optab, "udiv", '3');
|
||
init_integral_libfuncs (sdivmod_optab, "divmod", '4');
|
||
init_integral_libfuncs (udivmod_optab, "udivmod", '4');
|
||
init_integral_libfuncs (smod_optab, "mod", '3');
|
||
init_integral_libfuncs (umod_optab, "umod", '3');
|
||
init_floating_libfuncs (flodiv_optab, "div", '3');
|
||
init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
|
||
init_integral_libfuncs (and_optab, "and", '3');
|
||
init_integral_libfuncs (ior_optab, "ior", '3');
|
||
init_integral_libfuncs (xor_optab, "xor", '3');
|
||
init_integral_libfuncs (ashl_optab, "ashl", '3');
|
||
init_integral_libfuncs (ashr_optab, "ashr", '3');
|
||
init_integral_libfuncs (lshr_optab, "lshr", '3');
|
||
init_integral_libfuncs (rotl_optab, "rotl", '3');
|
||
init_integral_libfuncs (rotr_optab, "rotr", '3');
|
||
init_integral_libfuncs (smin_optab, "min", '3');
|
||
init_floating_libfuncs (smin_optab, "min", '3');
|
||
init_integral_libfuncs (smax_optab, "max", '3');
|
||
init_floating_libfuncs (smax_optab, "max", '3');
|
||
init_integral_libfuncs (umin_optab, "umin", '3');
|
||
init_integral_libfuncs (umax_optab, "umax", '3');
|
||
init_integral_libfuncs (neg_optab, "neg", '2');
|
||
init_floating_libfuncs (neg_optab, "neg", '2');
|
||
init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
|
||
init_integral_libfuncs (ffs_optab, "ffs", '2');
|
||
|
||
/* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
|
||
init_integral_libfuncs (cmp_optab, "cmp", '2');
|
||
init_integral_libfuncs (ucmp_optab, "ucmp", '2');
|
||
init_floating_libfuncs (cmp_optab, "cmp", '2');
|
||
|
||
#ifdef MULSI3_LIBCALL
|
||
smul_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL);
|
||
#endif
|
||
#ifdef MULDI3_LIBCALL
|
||
smul_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL);
|
||
#endif
|
||
#ifdef MULTI3_LIBCALL
|
||
smul_optab->handlers[(int) TImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MULTI3_LIBCALL);
|
||
#endif
|
||
|
||
#ifdef DIVSI3_LIBCALL
|
||
sdiv_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL);
|
||
#endif
|
||
#ifdef DIVDI3_LIBCALL
|
||
sdiv_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL);
|
||
#endif
|
||
#ifdef DIVTI3_LIBCALL
|
||
sdiv_optab->handlers[(int) TImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, DIVTI3_LIBCALL);
|
||
#endif
|
||
|
||
#ifdef UDIVSI3_LIBCALL
|
||
udiv_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL);
|
||
#endif
|
||
#ifdef UDIVDI3_LIBCALL
|
||
udiv_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL);
|
||
#endif
|
||
#ifdef UDIVTI3_LIBCALL
|
||
udiv_optab->handlers[(int) TImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, UDIVTI3_LIBCALL);
|
||
#endif
|
||
|
||
|
||
#ifdef MODSI3_LIBCALL
|
||
smod_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL);
|
||
#endif
|
||
#ifdef MODDI3_LIBCALL
|
||
smod_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL);
|
||
#endif
|
||
#ifdef MODTI3_LIBCALL
|
||
smod_optab->handlers[(int) TImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MODTI3_LIBCALL);
|
||
#endif
|
||
|
||
|
||
#ifdef UMODSI3_LIBCALL
|
||
umod_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL);
|
||
#endif
|
||
#ifdef UMODDI3_LIBCALL
|
||
umod_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL);
|
||
#endif
|
||
#ifdef UMODTI3_LIBCALL
|
||
umod_optab->handlers[(int) TImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, UMODTI3_LIBCALL);
|
||
#endif
|
||
|
||
/* Define library calls for quad FP instructions */
|
||
#ifdef ADDTF3_LIBCALL
|
||
add_optab->handlers[(int) TFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, ADDTF3_LIBCALL);
|
||
#endif
|
||
#ifdef SUBTF3_LIBCALL
|
||
sub_optab->handlers[(int) TFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, SUBTF3_LIBCALL);
|
||
#endif
|
||
#ifdef MULTF3_LIBCALL
|
||
smul_optab->handlers[(int) TFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MULTF3_LIBCALL);
|
||
#endif
|
||
#ifdef DIVTF3_LIBCALL
|
||
flodiv_optab->handlers[(int) TFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, DIVTF3_LIBCALL);
|
||
#endif
|
||
#ifdef SQRTTF2_LIBCALL
|
||
sqrt_optab->handlers[(int) TFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, SQRTTF2_LIBCALL);
|
||
#endif
|
||
|
||
/* Use cabs for DC complex abs, since systems generally have cabs.
|
||
Don't define any libcall for SCmode, so that cabs will be used. */
|
||
abs_optab->handlers[(int) DCmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "cabs");
|
||
|
||
/* The ffs function operates on `int'. */
|
||
#ifndef INT_TYPE_SIZE
|
||
#define INT_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)] .libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "ffs");
|
||
|
||
extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2");
|
||
extendsfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfxf2");
|
||
extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsftf2");
|
||
extenddfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddfxf2");
|
||
extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddftf2");
|
||
|
||
truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2");
|
||
truncxfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfsf2");
|
||
trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfsf2");
|
||
truncxfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfdf2");
|
||
trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfdf2");
|
||
|
||
memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy");
|
||
bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy");
|
||
memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp");
|
||
bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gcc_bcmp");
|
||
memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset");
|
||
bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero");
|
||
|
||
eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2");
|
||
nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2");
|
||
gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2");
|
||
gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2");
|
||
ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2");
|
||
lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2");
|
||
|
||
eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2");
|
||
nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2");
|
||
gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2");
|
||
gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2");
|
||
ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2");
|
||
ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2");
|
||
|
||
eqxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqxf2");
|
||
nexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nexf2");
|
||
gtxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtxf2");
|
||
gexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gexf2");
|
||
ltxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltxf2");
|
||
lexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lexf2");
|
||
|
||
eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqtf2");
|
||
netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__netf2");
|
||
gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gttf2");
|
||
getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__getf2");
|
||
lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lttf2");
|
||
letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__letf2");
|
||
|
||
/* Define library calls for quad FP instructions */
|
||
#ifdef EQTF2_LIBCALL
|
||
eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EQTF2_LIBCALL);
|
||
#endif
|
||
#ifdef NETF2_LIBCALL
|
||
netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, NETF2_LIBCALL);
|
||
#endif
|
||
#ifdef GTTF2_LIBCALL
|
||
gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GTTF2_LIBCALL);
|
||
#endif
|
||
#ifdef GETF2_LIBCALL
|
||
getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GETF2_LIBCALL);
|
||
#endif
|
||
#ifdef LTTF2_LIBCALL
|
||
lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LTTF2_LIBCALL);
|
||
#endif
|
||
#ifdef LETF2_LIBCALL
|
||
letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LETF2_LIBCALL);
|
||
#endif
|
||
|
||
floatsisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsisf");
|
||
floatdisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdisf");
|
||
floattisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattisf");
|
||
|
||
floatsidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsidf");
|
||
floatdidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdidf");
|
||
floattidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattidf");
|
||
|
||
floatsixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsixf");
|
||
floatdixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdixf");
|
||
floattixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattixf");
|
||
|
||
floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsitf");
|
||
floatditf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatditf");
|
||
floattitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattitf");
|
||
|
||
fixsfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfsi");
|
||
fixsfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfdi");
|
||
fixsfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfti");
|
||
|
||
fixdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfsi");
|
||
fixdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfdi");
|
||
fixdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfti");
|
||
|
||
fixxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfsi");
|
||
fixxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfdi");
|
||
fixxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfti");
|
||
|
||
fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfsi");
|
||
fixtfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfdi");
|
||
fixtfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfti");
|
||
|
||
fixunssfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfsi");
|
||
fixunssfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfdi");
|
||
fixunssfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfti");
|
||
|
||
fixunsdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfsi");
|
||
fixunsdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfdi");
|
||
fixunsdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfti");
|
||
|
||
fixunsxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfsi");
|
||
fixunsxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfdi");
|
||
fixunsxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfti");
|
||
|
||
fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfsi");
|
||
fixunstfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfdi");
|
||
fixunstfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfti");
|
||
|
||
/* Define library calls for quad FP instructions */
|
||
#ifdef TRUNCTFSF2_LIBCALL
|
||
trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFSF2_LIBCALL);
|
||
#endif
|
||
#ifdef TRUNCTFDF2_LIBCALL
|
||
trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFDF2_LIBCALL);
|
||
#endif
|
||
#ifdef EXTENDSFTF2_LIBCALL
|
||
extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDSFTF2_LIBCALL);
|
||
#endif
|
||
#ifdef EXTENDDFTF2_LIBCALL
|
||
extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDDFTF2_LIBCALL);
|
||
#endif
|
||
#ifdef FLOATSITF2_LIBCALL
|
||
floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, FLOATSITF2_LIBCALL);
|
||
#endif
|
||
#ifdef FIX_TRUNCTFSI2_LIBCALL
|
||
fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, FIX_TRUNCTFSI2_LIBCALL);
|
||
#endif
|
||
#ifdef FIXUNS_TRUNCTFSI2_LIBCALL
|
||
fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, FIXUNS_TRUNCTFSI2_LIBCALL);
|
||
#endif
|
||
|
||
#ifdef INIT_TARGET_OPTABS
|
||
/* Allow the target to add more libcalls or rename some, etc. */
|
||
INIT_TARGET_OPTABS;
|
||
#endif
|
||
}
|
||
|
||
#ifdef BROKEN_LDEXP
|
||
|
||
/* SCO 3.2 apparently has a broken ldexp. */
|
||
|
||
double
|
||
ldexp(x,n)
|
||
double x;
|
||
int n;
|
||
{
|
||
if (n > 0)
|
||
while (n--)
|
||
x *= 2;
|
||
|
||
return x;
|
||
}
|
||
#endif /* BROKEN_LDEXP */
|