freebsd-skq/sys/crypto/siphash/siphash.c
Conrad Meyer 571ebf7685 crypto routines: Hint minimum buffer sizes to the compiler
Use the C99 'static' keyword to hint to the compiler IVs and output digest
sizes.  The keyword informs the compiler of the minimum valid size for a given
array.  Obviously not every pointer can be validated (i.e., the compiler can
produce false negative but not false positive reports).

No functional change.  No ABI change.

Sponsored by:	EMC / Isilon Storage Division
2016-05-26 19:29:29 +00:00

243 lines
6.1 KiB
C

/*-
* Copyright (c) 2013 Andre Oppermann <andre@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* SipHash is a family of PRFs SipHash-c-d where the integer parameters c and d
* are the number of compression rounds and the number of finalization rounds.
* A compression round is identical to a finalization round and this round
* function is called SipRound. Given a 128-bit key k and a (possibly empty)
* byte string m, SipHash-c-d returns a 64-bit value SipHash-c-d(k; m).
*
* Implemented from the paper "SipHash: a fast short-input PRF", 2012.09.18,
* by Jean-Philippe Aumasson and Daniel J. Bernstein,
* Permanent Document ID b9a943a805fbfc6fde808af9fc0ecdfa
* https://131002.net/siphash/siphash.pdf
* https://131002.net/siphash/
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/libkern.h>
#include <sys/endian.h>
#include <crypto/siphash/siphash.h>
static void SipRounds(SIPHASH_CTX *ctx, int final);
void
SipHash_InitX(SIPHASH_CTX *ctx, int rc, int rf)
{
ctx->v[0] = 0x736f6d6570736575ull;
ctx->v[1] = 0x646f72616e646f6dull;
ctx->v[2] = 0x6c7967656e657261ull;
ctx->v[3] = 0x7465646279746573ull;
ctx->buf.b64 = 0;
ctx->bytes = 0;
ctx->buflen = 0;
ctx->rounds_compr = rc;
ctx->rounds_final = rf;
ctx->initialized = 1;
}
void
SipHash_SetKey(SIPHASH_CTX *ctx, const uint8_t key[static SIPHASH_KEY_LENGTH])
{
uint64_t k[2];
KASSERT(ctx->v[0] == 0x736f6d6570736575ull &&
ctx->initialized == 1,
("%s: context %p not properly initialized", __func__, ctx));
k[0] = le64dec(&key[0]);
k[1] = le64dec(&key[8]);
ctx->v[0] ^= k[0];
ctx->v[1] ^= k[1];
ctx->v[2] ^= k[0];
ctx->v[3] ^= k[1];
ctx->initialized = 2;
}
static size_t
SipBuf(SIPHASH_CTX *ctx, const uint8_t **src, size_t len, int final)
{
size_t x = 0;
KASSERT((!final && len > 0) || (final && len == 0),
("%s: invalid parameters", __func__));
if (!final) {
x = MIN(len, sizeof(ctx->buf.b64) - ctx->buflen);
bcopy(*src, &ctx->buf.b8[ctx->buflen], x);
ctx->buflen += x;
*src += x;
} else
ctx->buf.b8[7] = (uint8_t)ctx->bytes;
if (ctx->buflen == 8 || final) {
ctx->v[3] ^= le64toh(ctx->buf.b64);
SipRounds(ctx, 0);
ctx->v[0] ^= le64toh(ctx->buf.b64);
ctx->buf.b64 = 0;
ctx->buflen = 0;
}
return (x);
}
void
SipHash_Update(SIPHASH_CTX *ctx, const void *src, size_t len)
{
uint64_t m;
const uint64_t *p;
const uint8_t *s;
size_t rem;
KASSERT(ctx->initialized == 2,
("%s: context %p not properly initialized", __func__, ctx));
s = src;
ctx->bytes += len;
/*
* Push length smaller than block size into buffer or
* fill up the buffer if there is already something
* in it.
*/
if (ctx->buflen > 0 || len < 8)
len -= SipBuf(ctx, &s, len, 0);
if (len == 0)
return;
rem = len & 0x7;
len >>= 3;
/* Optimze for 64bit aligned/unaligned access. */
if (((uintptr_t)s & 0x7) == 0) {
for (p = (const uint64_t *)s; len > 0; len--, p++) {
m = le64toh(*p);
ctx->v[3] ^= m;
SipRounds(ctx, 0);
ctx->v[0] ^= m;
}
s = (const uint8_t *)p;
} else {
for (; len > 0; len--, s += 8) {
m = le64dec(s);
ctx->v[3] ^= m;
SipRounds(ctx, 0);
ctx->v[0] ^= m;
}
}
/* Push remainder into buffer. */
if (rem > 0)
(void)SipBuf(ctx, &s, rem, 0);
}
void
SipHash_Final(uint8_t dst[static SIPHASH_DIGEST_LENGTH], SIPHASH_CTX *ctx)
{
uint64_t r;
KASSERT(ctx->initialized == 2,
("%s: context %p not properly initialized", __func__, ctx));
r = SipHash_End(ctx);
le64enc(dst, r);
}
uint64_t
SipHash_End(SIPHASH_CTX *ctx)
{
uint64_t r;
KASSERT(ctx->initialized == 2,
("%s: context %p not properly initialized", __func__, ctx));
SipBuf(ctx, NULL, 0, 1);
ctx->v[2] ^= 0xff;
SipRounds(ctx, 1);
r = (ctx->v[0] ^ ctx->v[1]) ^ (ctx->v[2] ^ ctx->v[3]);
bzero(ctx, sizeof(*ctx));
return (r);
}
uint64_t
SipHashX(SIPHASH_CTX *ctx, int rc, int rf,
const uint8_t key[static SIPHASH_KEY_LENGTH], const void *src, size_t len)
{
SipHash_InitX(ctx, rc, rf);
SipHash_SetKey(ctx, key);
SipHash_Update(ctx, src, len);
return (SipHash_End(ctx));
}
#define SIP_ROTL(x, b) (uint64_t)(((x) << (b)) | ( (x) >> (64 - (b))))
static void
SipRounds(SIPHASH_CTX *ctx, int final)
{
int rounds;
if (!final)
rounds = ctx->rounds_compr;
else
rounds = ctx->rounds_final;
while (rounds--) {
ctx->v[0] += ctx->v[1];
ctx->v[2] += ctx->v[3];
ctx->v[1] = SIP_ROTL(ctx->v[1], 13);
ctx->v[3] = SIP_ROTL(ctx->v[3], 16);
ctx->v[1] ^= ctx->v[0];
ctx->v[3] ^= ctx->v[2];
ctx->v[0] = SIP_ROTL(ctx->v[0], 32);
ctx->v[2] += ctx->v[1];
ctx->v[0] += ctx->v[3];
ctx->v[1] = SIP_ROTL(ctx->v[1], 17);
ctx->v[3] = SIP_ROTL(ctx->v[3], 21);
ctx->v[1] ^= ctx->v[2];
ctx->v[3] ^= ctx->v[0];
ctx->v[2] = SIP_ROTL(ctx->v[2], 32);
}
}