freebsd-skq/sys/kern/kern_fork.c
julian a488bebcd2 When calling scheduler entrypoints for creating new threads and processes,
specify "us" as the thread not the process/ksegrp/kse.
You can always find the others from the thread but the converse is not true.
Theorotically this would lead to runtime being allocated to the wrong
entity in some cases though it is not clear how often this actually happenned.
(would only affect threaded processes and would probably be pretty benign,
but it WAS a bug..)

Reviewed by: peter
2004-07-18 23:36:13 +00:00

855 lines
21 KiB
C

/*
* Copyright (c) 1982, 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ktrace.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/eventhandler.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/pioctl.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/syscall.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <sys/acct.h>
#include <sys/mac.h>
#include <sys/ktr.h>
#include <sys/ktrace.h>
#include <sys/unistd.h>
#include <sys/sx.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>
#include <sys/user.h>
#include <machine/critical.h>
#ifndef _SYS_SYSPROTO_H_
struct fork_args {
int dummy;
};
#endif
static int forksleep; /* Place for fork1() to sleep on. */
/*
* MPSAFE
*/
/* ARGSUSED */
int
fork(td, uap)
struct thread *td;
struct fork_args *uap;
{
int error;
struct proc *p2;
error = fork1(td, RFFDG | RFPROC, 0, &p2);
if (error == 0) {
td->td_retval[0] = p2->p_pid;
td->td_retval[1] = 0;
}
return (error);
}
/*
* MPSAFE
*/
/* ARGSUSED */
int
vfork(td, uap)
struct thread *td;
struct vfork_args *uap;
{
int error;
struct proc *p2;
error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
if (error == 0) {
td->td_retval[0] = p2->p_pid;
td->td_retval[1] = 0;
}
return (error);
}
/*
* MPSAFE
*/
int
rfork(td, uap)
struct thread *td;
struct rfork_args *uap;
{
struct proc *p2;
int error;
/* Don't allow kernel-only flags. */
if ((uap->flags & RFKERNELONLY) != 0)
return (EINVAL);
error = fork1(td, uap->flags, 0, &p2);
if (error == 0) {
td->td_retval[0] = p2 ? p2->p_pid : 0;
td->td_retval[1] = 0;
}
return (error);
}
int nprocs = 1; /* process 0 */
int lastpid = 0;
SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
"Last used PID");
/*
* Random component to lastpid generation. We mix in a random factor to make
* it a little harder to predict. We sanity check the modulus value to avoid
* doing it in critical paths. Don't let it be too small or we pointlessly
* waste randomness entropy, and don't let it be impossibly large. Using a
* modulus that is too big causes a LOT more process table scans and slows
* down fork processing as the pidchecked caching is defeated.
*/
static int randompid = 0;
static int
sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
{
int error, pid;
error = sysctl_wire_old_buffer(req, sizeof(int));
if (error != 0)
return(error);
sx_xlock(&allproc_lock);
pid = randompid;
error = sysctl_handle_int(oidp, &pid, 0, req);
if (error == 0 && req->newptr != NULL) {
if (pid < 0 || pid > PID_MAX - 100) /* out of range */
pid = PID_MAX - 100;
else if (pid < 2) /* NOP */
pid = 0;
else if (pid < 100) /* Make it reasonable */
pid = 100;
randompid = pid;
}
sx_xunlock(&allproc_lock);
return (error);
}
SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
int
fork1(td, flags, pages, procp)
struct thread *td;
int flags;
int pages;
struct proc **procp;
{
struct proc *p1, *p2, *pptr;
uid_t uid;
struct proc *newproc;
int ok, trypid;
static int curfail, pidchecked = 0;
static struct timeval lastfail;
struct filedesc *fd;
struct filedesc_to_leader *fdtol;
struct thread *td2;
struct kse *ke2;
struct ksegrp *kg2;
struct sigacts *newsigacts;
int error;
/* Can't copy and clear. */
if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
return (EINVAL);
p1 = td->td_proc;
/*
* Here we don't create a new process, but we divorce
* certain parts of a process from itself.
*/
if ((flags & RFPROC) == 0) {
mtx_lock(&Giant);
vm_forkproc(td, NULL, NULL, flags);
mtx_unlock(&Giant);
/*
* Close all file descriptors.
*/
if (flags & RFCFDG) {
struct filedesc *fdtmp;
FILEDESC_LOCK(td->td_proc->p_fd);
fdtmp = fdinit(td->td_proc->p_fd);
FILEDESC_UNLOCK(td->td_proc->p_fd);
fdfree(td);
p1->p_fd = fdtmp;
}
/*
* Unshare file descriptors (from parent).
*/
if (flags & RFFDG) {
FILEDESC_LOCK(p1->p_fd);
if (p1->p_fd->fd_refcnt > 1) {
struct filedesc *newfd;
newfd = fdcopy(td->td_proc->p_fd);
FILEDESC_UNLOCK(p1->p_fd);
fdfree(td);
p1->p_fd = newfd;
} else
FILEDESC_UNLOCK(p1->p_fd);
}
*procp = NULL;
return (0);
}
/*
* Note 1:1 allows for forking with one thread coming out on the
* other side with the expectation that the process is about to
* exec.
*/
if (p1->p_flag & P_SA) {
/*
* Idle the other threads for a second.
* Since the user space is copied, it must remain stable.
* In addition, all threads (from the user perspective)
* need to either be suspended or in the kernel,
* where they will try restart in the parent and will
* be aborted in the child.
*/
PROC_LOCK(p1);
if (thread_single(SINGLE_NO_EXIT)) {
/* Abort. Someone else is single threading before us. */
PROC_UNLOCK(p1);
return (ERESTART);
}
PROC_UNLOCK(p1);
/*
* All other activity in this process
* is now suspended at the user boundary,
* (or other safe places if we think of any).
*/
}
/* Allocate new proc. */
newproc = uma_zalloc(proc_zone, M_WAITOK);
#ifdef MAC
mac_init_proc(newproc);
#endif
/* We have to lock the process tree while we look for a pid. */
sx_slock(&proctree_lock);
/*
* Although process entries are dynamically created, we still keep
* a global limit on the maximum number we will create. Don't allow
* a nonprivileged user to use the last ten processes; don't let root
* exceed the limit. The variable nprocs is the current number of
* processes, maxproc is the limit.
*/
sx_xlock(&allproc_lock);
uid = td->td_ucred->cr_ruid;
if ((nprocs >= maxproc - 10 && suser(td) != 0) ||
nprocs >= maxproc) {
error = EAGAIN;
goto fail;
}
/*
* Increment the count of procs running with this uid. Don't allow
* a nonprivileged user to exceed their current limit.
*/
PROC_LOCK(p1);
ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
(uid != 0) ? lim_cur(p1, RLIMIT_NPROC) : 0);
PROC_UNLOCK(p1);
if (!ok) {
error = EAGAIN;
goto fail;
}
/*
* Increment the nprocs resource before blocking can occur. There
* are hard-limits as to the number of processes that can run.
*/
nprocs++;
/*
* Find an unused process ID. We remember a range of unused IDs
* ready to use (from lastpid+1 through pidchecked-1).
*
* If RFHIGHPID is set (used during system boot), do not allocate
* low-numbered pids.
*/
trypid = lastpid + 1;
if (flags & RFHIGHPID) {
if (trypid < 10)
trypid = 10;
} else {
if (randompid)
trypid += arc4random() % randompid;
}
retry:
/*
* If the process ID prototype has wrapped around,
* restart somewhat above 0, as the low-numbered procs
* tend to include daemons that don't exit.
*/
if (trypid >= PID_MAX) {
trypid = trypid % PID_MAX;
if (trypid < 100)
trypid += 100;
pidchecked = 0;
}
if (trypid >= pidchecked) {
int doingzomb = 0;
pidchecked = PID_MAX;
/*
* Scan the active and zombie procs to check whether this pid
* is in use. Remember the lowest pid that's greater
* than trypid, so we can avoid checking for a while.
*/
p2 = LIST_FIRST(&allproc);
again:
for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
PROC_LOCK(p2);
while (p2->p_pid == trypid ||
(p2->p_pgrp != NULL &&
(p2->p_pgrp->pg_id == trypid ||
(p2->p_session != NULL &&
p2->p_session->s_sid == trypid)))) {
trypid++;
if (trypid >= pidchecked) {
PROC_UNLOCK(p2);
goto retry;
}
}
if (p2->p_pid > trypid && pidchecked > p2->p_pid)
pidchecked = p2->p_pid;
if (p2->p_pgrp != NULL) {
if (p2->p_pgrp->pg_id > trypid &&
pidchecked > p2->p_pgrp->pg_id)
pidchecked = p2->p_pgrp->pg_id;
if (p2->p_session != NULL &&
p2->p_session->s_sid > trypid &&
pidchecked > p2->p_session->s_sid)
pidchecked = p2->p_session->s_sid;
}
PROC_UNLOCK(p2);
}
if (!doingzomb) {
doingzomb = 1;
p2 = LIST_FIRST(&zombproc);
goto again;
}
}
sx_sunlock(&proctree_lock);
/*
* RFHIGHPID does not mess with the lastpid counter during boot.
*/
if (flags & RFHIGHPID)
pidchecked = 0;
else
lastpid = trypid;
p2 = newproc;
p2->p_state = PRS_NEW; /* protect against others */
p2->p_pid = trypid;
LIST_INSERT_HEAD(&allproc, p2, p_list);
LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
sx_xunlock(&allproc_lock);
/*
* Malloc things while we don't hold any locks.
*/
if (flags & RFSIGSHARE)
newsigacts = NULL;
else
newsigacts = sigacts_alloc();
/*
* Copy filedesc.
*/
if (flags & RFCFDG) {
FILEDESC_LOCK(td->td_proc->p_fd);
fd = fdinit(td->td_proc->p_fd);
FILEDESC_UNLOCK(td->td_proc->p_fd);
fdtol = NULL;
} else if (flags & RFFDG) {
FILEDESC_LOCK(p1->p_fd);
fd = fdcopy(td->td_proc->p_fd);
FILEDESC_UNLOCK(p1->p_fd);
fdtol = NULL;
} else {
fd = fdshare(p1->p_fd);
if (p1->p_fdtol == NULL)
p1->p_fdtol =
filedesc_to_leader_alloc(NULL,
NULL,
p1->p_leader);
if ((flags & RFTHREAD) != 0) {
/*
* Shared file descriptor table and
* shared process leaders.
*/
fdtol = p1->p_fdtol;
FILEDESC_LOCK(p1->p_fd);
fdtol->fdl_refcount++;
FILEDESC_UNLOCK(p1->p_fd);
} else {
/*
* Shared file descriptor table, and
* different process leaders
*/
fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
p1->p_fd,
p2);
}
}
/*
* Make a proc table entry for the new process.
* Start by zeroing the section of proc that is zero-initialized,
* then copy the section that is copied directly from the parent.
*/
td2 = FIRST_THREAD_IN_PROC(p2);
kg2 = FIRST_KSEGRP_IN_PROC(p2);
ke2 = FIRST_KSE_IN_KSEGRP(kg2);
/* Allocate and switch to an alternate kstack if specified. */
if (pages != 0)
vm_thread_new_altkstack(td2, pages);
PROC_LOCK(p2);
PROC_LOCK(p1);
#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
bzero(&p2->p_startzero,
(unsigned) RANGEOF(struct proc, p_startzero, p_endzero));
bzero(&ke2->ke_startzero,
(unsigned) RANGEOF(struct kse, ke_startzero, ke_endzero));
bzero(&td2->td_startzero,
(unsigned) RANGEOF(struct thread, td_startzero, td_endzero));
bzero(&kg2->kg_startzero,
(unsigned) RANGEOF(struct ksegrp, kg_startzero, kg_endzero));
bcopy(&p1->p_startcopy, &p2->p_startcopy,
(unsigned) RANGEOF(struct proc, p_startcopy, p_endcopy));
bcopy(&td->td_startcopy, &td2->td_startcopy,
(unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
(unsigned) RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
#undef RANGEOF
td2->td_sigstk = td->td_sigstk;
/* Set up the thread as an active thread (as if runnable). */
ke2->ke_state = KES_THREAD;
ke2->ke_thread = td2;
td2->td_kse = ke2;
/*
* Duplicate sub-structures as needed.
* Increase reference counts on shared objects.
* The p_stats substruct is set in vm_forkproc.
*/
p2->p_flag = 0;
if (p1->p_flag & P_PROFIL)
startprofclock(p2);
mtx_lock_spin(&sched_lock);
p2->p_sflag = PS_INMEM;
/*
* Allow the scheduler to adjust the priority of the child and
* parent while we hold the sched_lock.
*/
sched_fork(td, p2);
mtx_unlock_spin(&sched_lock);
p2->p_ucred = crhold(td->td_ucred);
td2->td_ucred = crhold(p2->p_ucred); /* XXXKSE */
pargs_hold(p2->p_args);
if (flags & RFSIGSHARE) {
p2->p_sigacts = sigacts_hold(p1->p_sigacts);
} else {
sigacts_copy(newsigacts, p1->p_sigacts);
p2->p_sigacts = newsigacts;
}
if (flags & RFLINUXTHPN)
p2->p_sigparent = SIGUSR1;
else
p2->p_sigparent = SIGCHLD;
p2->p_textvp = p1->p_textvp;
p2->p_fd = fd;
p2->p_fdtol = fdtol;
/*
* p_limit is copy-on-write. Bump its refcount.
*/
p2->p_limit = lim_hold(p1->p_limit);
PROC_UNLOCK(p1);
PROC_UNLOCK(p2);
/* Bump references to the text vnode (for procfs) */
if (p2->p_textvp)
vref(p2->p_textvp);
/*
* Set up linkage for kernel based threading.
*/
if ((flags & RFTHREAD) != 0) {
mtx_lock(&ppeers_lock);
p2->p_peers = p1->p_peers;
p1->p_peers = p2;
p2->p_leader = p1->p_leader;
mtx_unlock(&ppeers_lock);
PROC_LOCK(p1->p_leader);
if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
PROC_UNLOCK(p1->p_leader);
/*
* The task leader is exiting, so process p1 is
* going to be killed shortly. Since p1 obviously
* isn't dead yet, we know that the leader is either
* sending SIGKILL's to all the processes in this
* task or is sleeping waiting for all the peers to
* exit. We let p1 complete the fork, but we need
* to go ahead and kill the new process p2 since
* the task leader may not get a chance to send
* SIGKILL to it. We leave it on the list so that
* the task leader will wait for this new process
* to commit suicide.
*/
PROC_LOCK(p2);
psignal(p2, SIGKILL);
PROC_UNLOCK(p2);
} else
PROC_UNLOCK(p1->p_leader);
} else {
p2->p_peers = NULL;
p2->p_leader = p2;
}
sx_xlock(&proctree_lock);
PGRP_LOCK(p1->p_pgrp);
PROC_LOCK(p2);
PROC_LOCK(p1);
/*
* Preserve some more flags in subprocess. P_PROFIL has already
* been preserved.
*/
p2->p_flag |= p1->p_flag & P_SUGID;
td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
SESS_LOCK(p1->p_session);
if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
p2->p_flag |= P_CONTROLT;
SESS_UNLOCK(p1->p_session);
if (flags & RFPPWAIT)
p2->p_flag |= P_PPWAIT;
p2->p_pgrp = p1->p_pgrp;
LIST_INSERT_AFTER(p1, p2, p_pglist);
PGRP_UNLOCK(p1->p_pgrp);
LIST_INIT(&p2->p_children);
callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
#ifdef KTRACE
/*
* Copy traceflag and tracefile if enabled.
*/
mtx_lock(&ktrace_mtx);
KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
if (p1->p_traceflag & KTRFAC_INHERIT) {
p2->p_traceflag = p1->p_traceflag;
if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
VREF(p2->p_tracevp);
KASSERT(p1->p_tracecred != NULL,
("ktrace vnode with no cred"));
p2->p_tracecred = crhold(p1->p_tracecred);
}
}
mtx_unlock(&ktrace_mtx);
#endif
/*
* If PF_FORK is set, the child process inherits the
* procfs ioctl flags from its parent.
*/
if (p1->p_pfsflags & PF_FORK) {
p2->p_stops = p1->p_stops;
p2->p_pfsflags = p1->p_pfsflags;
}
/*
* This begins the section where we must prevent the parent
* from being swapped.
*/
_PHOLD(p1);
PROC_UNLOCK(p1);
/*
* Attach the new process to its parent.
*
* If RFNOWAIT is set, the newly created process becomes a child
* of init. This effectively disassociates the child from the
* parent.
*/
if (flags & RFNOWAIT)
pptr = initproc;
else
pptr = p1;
p2->p_pptr = pptr;
LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
sx_xunlock(&proctree_lock);
/* Inform accounting that we have forked. */
p2->p_acflag = AFORK;
PROC_UNLOCK(p2);
/*
* Finish creating the child process. It will return via a different
* execution path later. (ie: directly into user mode)
*/
mtx_lock(&Giant);
vm_forkproc(td, p2, td2, flags);
if (flags == (RFFDG | RFPROC)) {
cnt.v_forks++;
cnt.v_forkpages += p2->p_vmspace->vm_dsize +
p2->p_vmspace->vm_ssize;
} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
cnt.v_vforks++;
cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
p2->p_vmspace->vm_ssize;
} else if (p1 == &proc0) {
cnt.v_kthreads++;
cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
p2->p_vmspace->vm_ssize;
} else {
cnt.v_rforks++;
cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
p2->p_vmspace->vm_ssize;
}
mtx_unlock(&Giant);
/*
* Both processes are set up, now check if any loadable modules want
* to adjust anything.
* What if they have an error? XXX
*/
EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
/*
* Set the child start time and mark the process as being complete.
*/
microuptime(&p2->p_stats->p_start);
mtx_lock_spin(&sched_lock);
p2->p_state = PRS_NORMAL;
/*
* If RFSTOPPED not requested, make child runnable and add to
* run queue.
*/
if ((flags & RFSTOPPED) == 0) {
TD_SET_CAN_RUN(td2);
setrunqueue(td2);
}
mtx_unlock_spin(&sched_lock);
/*
* Now can be swapped.
*/
PROC_LOCK(p1);
_PRELE(p1);
/*
* Tell any interested parties about the new process.
*/
KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
PROC_UNLOCK(p1);
/*
* Preserve synchronization semantics of vfork. If waiting for
* child to exec or exit, set P_PPWAIT on child, and sleep on our
* proc (in case of exit).
*/
PROC_LOCK(p2);
while (p2->p_flag & P_PPWAIT)
msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
PROC_UNLOCK(p2);
/*
* If other threads are waiting, let them continue now.
*/
if (p1->p_flag & P_SA) {
PROC_LOCK(p1);
thread_single_end();
PROC_UNLOCK(p1);
}
/*
* Return child proc pointer to parent.
*/
*procp = p2;
return (0);
fail:
sx_sunlock(&proctree_lock);
if (ppsratecheck(&lastfail, &curfail, 1))
printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
uid);
sx_xunlock(&allproc_lock);
#ifdef MAC
mac_destroy_proc(newproc);
#endif
uma_zfree(proc_zone, newproc);
if (p1->p_flag & P_SA) {
PROC_LOCK(p1);
thread_single_end();
PROC_UNLOCK(p1);
}
tsleep(&forksleep, PUSER, "fork", hz / 2);
return (error);
}
/*
* Handle the return of a child process from fork1(). This function
* is called from the MD fork_trampoline() entry point.
*/
void
fork_exit(callout, arg, frame)
void (*callout)(void *, struct trapframe *);
void *arg;
struct trapframe *frame;
{
struct proc *p;
struct thread *td;
/*
* Processes normally resume in mi_switch() after being
* cpu_switch()'ed to, but when children start up they arrive here
* instead, so we must do much the same things as mi_switch() would.
*/
if ((td = PCPU_GET(deadthread))) {
PCPU_SET(deadthread, NULL);
thread_stash(td);
}
td = curthread;
p = td->td_proc;
td->td_oncpu = PCPU_GET(cpuid);
KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
/*
* Finish setting up thread glue so that it begins execution in a
* non-nested critical section with sched_lock held but not recursed.
*/
sched_lock.mtx_lock = (uintptr_t)td;
mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
cpu_critical_fork_exit();
CTR3(KTR_PROC, "fork_exit: new thread %p (pid %d, %s)", td, p->p_pid,
p->p_comm);
mtx_unlock_spin(&sched_lock);
/*
* cpu_set_fork_handler intercepts this function call to
* have this call a non-return function to stay in kernel mode.
* initproc has its own fork handler, but it does return.
*/
KASSERT(callout != NULL, ("NULL callout in fork_exit"));
callout(arg, frame);
/*
* Check if a kernel thread misbehaved and returned from its main
* function.
*/
PROC_LOCK(p);
if (p->p_flag & P_KTHREAD) {
PROC_UNLOCK(p);
printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
p->p_comm, p->p_pid);
kthread_exit(0);
}
PROC_UNLOCK(p);
#ifdef DIAGNOSTIC
cred_free_thread(td);
#endif
mtx_assert(&Giant, MA_NOTOWNED);
}
/*
* Simplified back end of syscall(), used when returning from fork()
* directly into user mode. Giant is not held on entry, and must not
* be held on return. This function is passed in to fork_exit() as the
* first parameter and is called when returning to a new userland process.
*/
void
fork_return(td, frame)
struct thread *td;
struct trapframe *frame;
{
userret(td, frame, 0);
#ifdef KTRACE
if (KTRPOINT(td, KTR_SYSRET))
ktrsysret(SYS_fork, 0, 0);
#endif
mtx_assert(&Giant, MA_NOTOWNED);
}