freebsd-skq/sys/dev/mrsas/mrsas_cam.c
Alfredo Dal'Ava Junior e34a057ca6 [POWERPC64BE] mrsas: add big-endian support
Add endiannes conversions in order to support big-endian platforms

Submitted by:	Andre Fernando da Silva <andre.silva@eldorado.org.br>
Reviewed by:	luporl, alfredo, kadesai (on email)
Sponsored by:	Eldorado Research Institute (eldorado.org.br)
Differential Revision:	https://reviews.freebsd.org/D26531
2021-02-03 22:06:21 -03:00

2145 lines
65 KiB
C

/*
* Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
* Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
* Support: freebsdraid@avagotech.com
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer. 2. Redistributions
* in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution. 3. Neither the name of the
* <ORGANIZATION> nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "dev/mrsas/mrsas.h"
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt_periph.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <sys/taskqueue.h>
#include <sys/kernel.h>
#include <sys/time.h> /* XXX for pcpu.h */
#include <sys/pcpu.h> /* XXX for PCPU_GET */
#define smp_processor_id() PCPU_GET(cpuid)
/*
* Function prototypes
*/
int mrsas_cam_attach(struct mrsas_softc *sc);
int mrsas_find_io_type(struct cam_sim *sim, union ccb *ccb);
int mrsas_bus_scan(struct mrsas_softc *sc);
int mrsas_bus_scan_sim(struct mrsas_softc *sc, struct cam_sim *sim);
int
mrsas_map_request(struct mrsas_softc *sc,
struct mrsas_mpt_cmd *cmd, union ccb *ccb);
int
mrsas_build_ldio_rw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
union ccb *ccb);
int
mrsas_build_ldio_nonrw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
union ccb *ccb);
int
mrsas_build_syspdio(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
union ccb *ccb, struct cam_sim *sim, u_int8_t fp_possible);
int
mrsas_setup_io(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
union ccb *ccb, u_int32_t device_id,
MRSAS_RAID_SCSI_IO_REQUEST * io_request);
void mrsas_xpt_freeze(struct mrsas_softc *sc);
void mrsas_xpt_release(struct mrsas_softc *sc);
void mrsas_cam_detach(struct mrsas_softc *sc);
void mrsas_release_mpt_cmd(struct mrsas_mpt_cmd *cmd);
void mrsas_unmap_request(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd);
void mrsas_cmd_done(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd);
void
mrsas_fire_cmd(struct mrsas_softc *sc, u_int32_t req_desc_lo,
u_int32_t req_desc_hi);
void
mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
u_int32_t ld_block_size);
static void mrsas_freeze_simq(struct mrsas_mpt_cmd *cmd, struct cam_sim *sim);
static void mrsas_cam_poll(struct cam_sim *sim);
static void mrsas_action(struct cam_sim *sim, union ccb *ccb);
static void mrsas_scsiio_timeout(void *data);
static int mrsas_track_scsiio(struct mrsas_softc *sc, target_id_t id, u_int32_t bus_id);
static void mrsas_tm_response_code(struct mrsas_softc *sc,
MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply);
static int mrsas_issue_tm(struct mrsas_softc *sc,
MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc);
static void
mrsas_data_load_cb(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static int32_t
mrsas_startio(struct mrsas_softc *sc, struct cam_sim *sim,
union ccb *ccb);
static boolean_t mrsas_is_prp_possible(struct mrsas_mpt_cmd *cmd,
bus_dma_segment_t *segs, int nsegs);
static void mrsas_build_ieee_sgl(struct mrsas_mpt_cmd *cmd,
bus_dma_segment_t *segs, int nseg);
static void mrsas_build_prp_nvme(struct mrsas_mpt_cmd *cmd,
bus_dma_segment_t *segs, int nseg);
struct mrsas_mpt_cmd *mrsas_get_mpt_cmd(struct mrsas_softc *sc);
MRSAS_REQUEST_DESCRIPTOR_UNION *
mrsas_get_request_desc(struct mrsas_softc *sc, u_int16_t index);
extern int mrsas_reset_targets(struct mrsas_softc *sc);
extern u_int16_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
extern u_int32_t
MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
extern void mrsas_isr(void *arg);
extern void mrsas_aen_handler(struct mrsas_softc *sc);
extern u_int8_t
MR_BuildRaidContext(struct mrsas_softc *sc,
struct IO_REQUEST_INFO *io_info, RAID_CONTEXT * pRAID_Context,
MR_DRV_RAID_MAP_ALL * map);
extern u_int16_t
MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
MR_DRV_RAID_MAP_ALL * map);
extern u_int16_t
mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
extern int mrsas_complete_cmd(struct mrsas_softc *sc, u_int32_t MSIxIndex);
extern MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
extern void mrsas_disable_intr(struct mrsas_softc *sc);
extern void mrsas_enable_intr(struct mrsas_softc *sc);
void mrsas_prepare_secondRaid1_IO(struct mrsas_softc *sc,
struct mrsas_mpt_cmd *cmd);
/*
* mrsas_cam_attach: Main entry to CAM subsystem
* input: Adapter instance soft state
*
* This function is called from mrsas_attach() during initialization to perform
* SIM allocations and XPT bus registration. If the kernel version is 7.4 or
* earlier, it would also initiate a bus scan.
*/
int
mrsas_cam_attach(struct mrsas_softc *sc)
{
struct cam_devq *devq;
int mrsas_cam_depth;
mrsas_cam_depth = sc->max_scsi_cmds;
if ((devq = cam_simq_alloc(mrsas_cam_depth)) == NULL) {
device_printf(sc->mrsas_dev, "Cannot allocate SIM queue\n");
return (ENOMEM);
}
/*
* Create SIM for bus 0 and register, also create path
*/
sc->sim_0 = cam_sim_alloc(mrsas_action, mrsas_cam_poll, "mrsas", sc,
device_get_unit(sc->mrsas_dev), &sc->sim_lock, mrsas_cam_depth,
mrsas_cam_depth, devq);
if (sc->sim_0 == NULL) {
cam_simq_free(devq);
device_printf(sc->mrsas_dev, "Cannot register SIM\n");
return (ENXIO);
}
/* Initialize taskqueue for Event Handling */
TASK_INIT(&sc->ev_task, 0, (void *)mrsas_aen_handler, sc);
sc->ev_tq = taskqueue_create("mrsas_taskq", M_NOWAIT | M_ZERO,
taskqueue_thread_enqueue, &sc->ev_tq);
/* Run the task queue with lowest priority */
taskqueue_start_threads(&sc->ev_tq, 1, 255, "%s taskq",
device_get_nameunit(sc->mrsas_dev));
mtx_lock(&sc->sim_lock);
if (xpt_bus_register(sc->sim_0, sc->mrsas_dev, 0) != CAM_SUCCESS) {
cam_sim_free(sc->sim_0, TRUE); /* passing true frees the devq */
mtx_unlock(&sc->sim_lock);
return (ENXIO);
}
if (xpt_create_path(&sc->path_0, NULL, cam_sim_path(sc->sim_0),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sc->sim_0));
cam_sim_free(sc->sim_0, TRUE); /* passing true will free the
* devq */
mtx_unlock(&sc->sim_lock);
return (ENXIO);
}
mtx_unlock(&sc->sim_lock);
/*
* Create SIM for bus 1 and register, also create path
*/
sc->sim_1 = cam_sim_alloc(mrsas_action, mrsas_cam_poll, "mrsas", sc,
device_get_unit(sc->mrsas_dev), &sc->sim_lock, mrsas_cam_depth,
mrsas_cam_depth, devq);
if (sc->sim_1 == NULL) {
cam_simq_free(devq);
device_printf(sc->mrsas_dev, "Cannot register SIM\n");
return (ENXIO);
}
mtx_lock(&sc->sim_lock);
if (xpt_bus_register(sc->sim_1, sc->mrsas_dev, 1) != CAM_SUCCESS) {
cam_sim_free(sc->sim_1, TRUE); /* passing true frees the devq */
mtx_unlock(&sc->sim_lock);
return (ENXIO);
}
if (xpt_create_path(&sc->path_1, NULL, cam_sim_path(sc->sim_1),
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sc->sim_1));
cam_sim_free(sc->sim_1, TRUE);
mtx_unlock(&sc->sim_lock);
return (ENXIO);
}
mtx_unlock(&sc->sim_lock);
#if (__FreeBSD_version <= 704000)
if (mrsas_bus_scan(sc)) {
device_printf(sc->mrsas_dev, "Error in bus scan.\n");
return (1);
}
#endif
return (0);
}
/*
* mrsas_cam_detach: De-allocates and teardown CAM
* input: Adapter instance soft state
*
* De-registers and frees the paths and SIMs.
*/
void
mrsas_cam_detach(struct mrsas_softc *sc)
{
if (sc->ev_tq != NULL)
taskqueue_free(sc->ev_tq);
mtx_lock(&sc->sim_lock);
if (sc->path_0)
xpt_free_path(sc->path_0);
if (sc->sim_0) {
xpt_bus_deregister(cam_sim_path(sc->sim_0));
cam_sim_free(sc->sim_0, FALSE);
}
if (sc->path_1)
xpt_free_path(sc->path_1);
if (sc->sim_1) {
xpt_bus_deregister(cam_sim_path(sc->sim_1));
cam_sim_free(sc->sim_1, TRUE);
}
mtx_unlock(&sc->sim_lock);
}
/*
* mrsas_action: SIM callback entry point
* input: pointer to SIM pointer to CAM Control Block
*
* This function processes CAM subsystem requests. The type of request is stored
* in ccb->ccb_h.func_code. The preprocessor #ifdef is necessary because
* ccb->cpi.maxio is not supported for FreeBSD version 7.4 or earlier.
*/
static void
mrsas_action(struct cam_sim *sim, union ccb *ccb)
{
struct mrsas_softc *sc = (struct mrsas_softc *)cam_sim_softc(sim);
struct ccb_hdr *ccb_h = &(ccb->ccb_h);
u_int32_t device_id;
/*
* Check if the system going down
* or the adapter is in unrecoverable critical error
*/
if (sc->remove_in_progress ||
(sc->adprecovery == MRSAS_HW_CRITICAL_ERROR)) {
ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
xpt_done(ccb);
return;
}
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
{
device_id = ccb_h->target_id;
/*
* bus 0 is LD, bus 1 is for system-PD
*/
if (cam_sim_bus(sim) == 1 &&
sc->pd_list[device_id].driveState != MR_PD_STATE_SYSTEM) {
ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
xpt_done(ccb);
} else {
if (mrsas_startio(sc, sim, ccb)) {
ccb->ccb_h.status |= CAM_REQ_INVALID;
xpt_done(ccb);
}
}
break;
}
case XPT_ABORT:
{
ccb->ccb_h.status = CAM_UA_ABORT;
xpt_done(ccb);
break;
}
case XPT_RESET_BUS:
{
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
{
ccb->cts.protocol = PROTO_SCSI;
ccb->cts.protocol_version = SCSI_REV_2;
ccb->cts.transport = XPORT_SPI;
ccb->cts.transport_version = 2;
ccb->cts.xport_specific.spi.valid = CTS_SPI_VALID_DISC;
ccb->cts.xport_specific.spi.flags = CTS_SPI_FLAGS_DISC_ENB;
ccb->cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
ccb->cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_SET_TRAN_SETTINGS:
{
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
cam_calc_geometry(&ccb->ccg, 1);
xpt_done(ccb);
break;
}
case XPT_PATH_INQ:
{
ccb->cpi.version_num = 1;
ccb->cpi.hba_inquiry = 0;
ccb->cpi.target_sprt = 0;
#if (__FreeBSD_version >= 902001)
ccb->cpi.hba_misc = PIM_UNMAPPED;
#else
ccb->cpi.hba_misc = 0;
#endif
ccb->cpi.hba_eng_cnt = 0;
ccb->cpi.max_lun = MRSAS_SCSI_MAX_LUNS;
ccb->cpi.unit_number = cam_sim_unit(sim);
ccb->cpi.bus_id = cam_sim_bus(sim);
ccb->cpi.initiator_id = MRSAS_SCSI_INITIATOR_ID;
ccb->cpi.base_transfer_speed = 150000;
strlcpy(ccb->cpi.sim_vid, "FreeBSD", SIM_IDLEN);
strlcpy(ccb->cpi.hba_vid, "AVAGO", HBA_IDLEN);
strlcpy(ccb->cpi.dev_name, cam_sim_name(sim), DEV_IDLEN);
ccb->cpi.transport = XPORT_SPI;
ccb->cpi.transport_version = 2;
ccb->cpi.protocol = PROTO_SCSI;
ccb->cpi.protocol_version = SCSI_REV_2;
if (ccb->cpi.bus_id == 0)
ccb->cpi.max_target = MRSAS_MAX_PD - 1;
else
ccb->cpi.max_target = MRSAS_MAX_LD_IDS - 1;
#if (__FreeBSD_version > 704000)
ccb->cpi.maxio = sc->max_num_sge * MRSAS_PAGE_SIZE;
#endif
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
{
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
}
/*
* mrsas_scsiio_timeout: Callback function for IO timed out
* input: mpt command context
*
* This function will execute after timeout value provided by ccb header from
* CAM layer, if timer expires. Driver will run timer for all DCDM and LDIO
* coming from CAM layer. This function is callback function for IO timeout
* and it runs in no-sleep context. Set do_timedout_reset in Adapter context
* so that it will execute OCR/Kill adpter from ocr_thread context.
*/
static void
mrsas_scsiio_timeout(void *data)
{
struct mrsas_mpt_cmd *cmd;
struct mrsas_softc *sc;
u_int32_t target_id;
if (!data)
return;
cmd = (struct mrsas_mpt_cmd *)data;
sc = cmd->sc;
if (cmd->ccb_ptr == NULL) {
printf("command timeout with NULL ccb\n");
return;
}
/*
* Below callout is dummy entry so that it will be cancelled from
* mrsas_cmd_done(). Now Controller will go to OCR/Kill Adapter based
* on OCR enable/disable property of Controller from ocr_thread
* context.
*/
#if (__FreeBSD_version >= 1000510)
callout_reset_sbt(&cmd->cm_callout, SBT_1S * 180, 0,
mrsas_scsiio_timeout, cmd, 0);
#else
callout_reset(&cmd->cm_callout, (180000 * hz) / 1000,
mrsas_scsiio_timeout, cmd);
#endif
if (cmd->ccb_ptr->cpi.bus_id == 0)
target_id = cmd->ccb_ptr->ccb_h.target_id;
else
target_id = (cmd->ccb_ptr->ccb_h.target_id + (MRSAS_MAX_PD - 1));
/* Save the cmd to be processed for TM, if it is not there in the array */
if (sc->target_reset_pool[target_id] == NULL) {
sc->target_reset_pool[target_id] = cmd;
mrsas_atomic_inc(&sc->target_reset_outstanding);
}
return;
}
/*
* mrsas_startio: SCSI IO entry point
* input: Adapter instance soft state
* pointer to CAM Control Block
*
* This function is the SCSI IO entry point and it initiates IO processing. It
* copies the IO and depending if the IO is read/write or inquiry, it would
* call mrsas_build_ldio() or mrsas_build_dcdb(), respectively. It returns 0
* if the command is sent to firmware successfully, otherwise it returns 1.
*/
static int32_t
mrsas_startio(struct mrsas_softc *sc, struct cam_sim *sim,
union ccb *ccb)
{
struct mrsas_mpt_cmd *cmd, *r1_cmd = NULL;
struct ccb_hdr *ccb_h = &(ccb->ccb_h);
struct ccb_scsiio *csio = &(ccb->csio);
MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
u_int8_t cmd_type;
if ((csio->cdb_io.cdb_bytes[0]) == SYNCHRONIZE_CACHE &&
(!sc->fw_sync_cache_support)) {
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return (0);
}
ccb_h->status |= CAM_SIM_QUEUED;
if (mrsas_atomic_inc_return(&sc->fw_outstanding) > sc->max_scsi_cmds) {
ccb_h->status |= CAM_REQUEUE_REQ;
xpt_done(ccb);
mrsas_atomic_dec(&sc->fw_outstanding);
return (0);
}
cmd = mrsas_get_mpt_cmd(sc);
if (!cmd) {
ccb_h->status |= CAM_REQUEUE_REQ;
xpt_done(ccb);
mrsas_atomic_dec(&sc->fw_outstanding);
return (0);
}
if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if (ccb_h->flags & CAM_DIR_IN)
cmd->flags |= MRSAS_DIR_IN;
if (ccb_h->flags & CAM_DIR_OUT)
cmd->flags |= MRSAS_DIR_OUT;
} else
cmd->flags = MRSAS_DIR_NONE; /* no data */
/* For FreeBSD 9.2 and higher */
#if (__FreeBSD_version >= 902001)
/*
* XXX We don't yet support physical addresses here.
*/
switch ((ccb->ccb_h.flags & CAM_DATA_MASK)) {
case CAM_DATA_PADDR:
case CAM_DATA_SG_PADDR:
device_printf(sc->mrsas_dev, "%s: physical addresses not supported\n",
__func__);
mrsas_release_mpt_cmd(cmd);
ccb_h->status = CAM_REQ_INVALID;
ccb_h->status &= ~CAM_SIM_QUEUED;
goto done;
case CAM_DATA_SG:
device_printf(sc->mrsas_dev, "%s: scatter gather is not supported\n",
__func__);
mrsas_release_mpt_cmd(cmd);
ccb_h->status = CAM_REQ_INVALID;
goto done;
case CAM_DATA_VADDR:
if (csio->dxfer_len > (sc->max_num_sge * MRSAS_PAGE_SIZE)) {
mrsas_release_mpt_cmd(cmd);
ccb_h->status = CAM_REQ_TOO_BIG;
goto done;
}
cmd->length = csio->dxfer_len;
if (cmd->length)
cmd->data = csio->data_ptr;
break;
case CAM_DATA_BIO:
if (csio->dxfer_len > (sc->max_num_sge * MRSAS_PAGE_SIZE)) {
mrsas_release_mpt_cmd(cmd);
ccb_h->status = CAM_REQ_TOO_BIG;
goto done;
}
cmd->length = csio->dxfer_len;
if (cmd->length)
cmd->data = csio->data_ptr;
break;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
goto done;
}
#else
if (!(ccb_h->flags & CAM_DATA_PHYS)) { /* Virtual data address */
if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
if (csio->dxfer_len > (sc->max_num_sge * MRSAS_PAGE_SIZE)) {
mrsas_release_mpt_cmd(cmd);
ccb_h->status = CAM_REQ_TOO_BIG;
goto done;
}
cmd->length = csio->dxfer_len;
if (cmd->length)
cmd->data = csio->data_ptr;
} else {
mrsas_release_mpt_cmd(cmd);
ccb_h->status = CAM_REQ_INVALID;
goto done;
}
} else { /* Data addresses are physical. */
mrsas_release_mpt_cmd(cmd);
ccb_h->status = CAM_REQ_INVALID;
ccb_h->status &= ~CAM_SIM_QUEUED;
goto done;
}
#endif
/* save ccb ptr */
cmd->ccb_ptr = ccb;
req_desc = mrsas_get_request_desc(sc, (cmd->index) - 1);
if (!req_desc) {
device_printf(sc->mrsas_dev, "Cannot get request_descriptor.\n");
return (FAIL);
}
memset(req_desc, 0, sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION));
cmd->request_desc = req_desc;
if (ccb_h->flags & CAM_CDB_POINTER)
bcopy(csio->cdb_io.cdb_ptr, cmd->io_request->CDB.CDB32, csio->cdb_len);
else
bcopy(csio->cdb_io.cdb_bytes, cmd->io_request->CDB.CDB32, csio->cdb_len);
mtx_lock(&sc->raidmap_lock);
/* Check for IO type READ-WRITE targeted for Logical Volume */
cmd_type = mrsas_find_io_type(sim, ccb);
switch (cmd_type) {
case READ_WRITE_LDIO:
/* Build READ-WRITE IO for Logical Volume */
if (mrsas_build_ldio_rw(sc, cmd, ccb)) {
device_printf(sc->mrsas_dev, "Build RW LDIO failed.\n");
mtx_unlock(&sc->raidmap_lock);
mrsas_release_mpt_cmd(cmd);
return (1);
}
break;
case NON_READ_WRITE_LDIO:
/* Build NON READ-WRITE IO for Logical Volume */
if (mrsas_build_ldio_nonrw(sc, cmd, ccb)) {
device_printf(sc->mrsas_dev, "Build NON-RW LDIO failed.\n");
mtx_unlock(&sc->raidmap_lock);
mrsas_release_mpt_cmd(cmd);
return (1);
}
break;
case READ_WRITE_SYSPDIO:
case NON_READ_WRITE_SYSPDIO:
if (sc->secure_jbod_support &&
(cmd_type == NON_READ_WRITE_SYSPDIO)) {
/* Build NON-RW IO for JBOD */
if (mrsas_build_syspdio(sc, cmd, ccb, sim, 0)) {
device_printf(sc->mrsas_dev,
"Build SYSPDIO failed.\n");
mtx_unlock(&sc->raidmap_lock);
mrsas_release_mpt_cmd(cmd);
return (1);
}
} else {
/* Build RW IO for JBOD */
if (mrsas_build_syspdio(sc, cmd, ccb, sim, 1)) {
device_printf(sc->mrsas_dev,
"Build SYSPDIO failed.\n");
mtx_unlock(&sc->raidmap_lock);
mrsas_release_mpt_cmd(cmd);
return (1);
}
}
}
mtx_unlock(&sc->raidmap_lock);
if (cmd->flags == MRSAS_DIR_IN) /* from device */
cmd->io_request->Control |= htole32(MPI2_SCSIIO_CONTROL_READ);
else if (cmd->flags == MRSAS_DIR_OUT) /* to device */
cmd->io_request->Control |= htole32(MPI2_SCSIIO_CONTROL_WRITE);
cmd->io_request->SGLFlags = htole16(MPI2_SGE_FLAGS_64_BIT_ADDRESSING);
cmd->io_request->SGLOffset0 = offsetof(MRSAS_RAID_SCSI_IO_REQUEST, SGL) / 4;
cmd->io_request->SenseBufferLowAddress = htole32(cmd->sense_phys_addr & 0xFFFFFFFF);
cmd->io_request->SenseBufferLength = MRSAS_SCSI_SENSE_BUFFERSIZE;
req_desc = cmd->request_desc;
req_desc->SCSIIO.SMID = htole16(cmd->index);
/*
* Start timer for IO timeout. Default timeout value is 90 second.
*/
cmd->callout_owner = true;
#if (__FreeBSD_version >= 1000510)
callout_reset_sbt(&cmd->cm_callout, SBT_1S * 180, 0,
mrsas_scsiio_timeout, cmd, 0);
#else
callout_reset(&cmd->cm_callout, (180000 * hz) / 1000,
mrsas_scsiio_timeout, cmd);
#endif
if (mrsas_atomic_read(&sc->fw_outstanding) > sc->io_cmds_highwater)
sc->io_cmds_highwater++;
/*
* if it is raid 1/10 fp write capable.
* try to get second command from pool and construct it.
* From FW, it has confirmed that lba values of two PDs corresponds to
* single R1/10 LD are always same
*
*/
/*
* driver side count always should be less than max_fw_cmds to get
* new command
*/
if (cmd->r1_alt_dev_handle != MR_DEVHANDLE_INVALID) {
mrsas_prepare_secondRaid1_IO(sc, cmd);
mrsas_fire_cmd(sc, req_desc->addr.u.low,
req_desc->addr.u.high);
r1_cmd = cmd->peer_cmd;
mrsas_fire_cmd(sc, r1_cmd->request_desc->addr.u.low,
r1_cmd->request_desc->addr.u.high);
} else {
mrsas_fire_cmd(sc, req_desc->addr.u.low,
req_desc->addr.u.high);
}
return (0);
done:
xpt_done(ccb);
mrsas_atomic_dec(&sc->fw_outstanding);
return (0);
}
/*
* mrsas_find_io_type: Determines if IO is read/write or inquiry
* input: pointer to CAM Control Block
*
* This function determines if the IO is read/write or inquiry. It returns a 1
* if the IO is read/write and 0 if it is inquiry.
*/
int
mrsas_find_io_type(struct cam_sim *sim, union ccb *ccb)
{
struct ccb_scsiio *csio = &(ccb->csio);
switch (csio->cdb_io.cdb_bytes[0]) {
case READ_10:
case WRITE_10:
case READ_12:
case WRITE_12:
case READ_6:
case WRITE_6:
case READ_16:
case WRITE_16:
return (cam_sim_bus(sim) ?
READ_WRITE_SYSPDIO : READ_WRITE_LDIO);
default:
return (cam_sim_bus(sim) ?
NON_READ_WRITE_SYSPDIO : NON_READ_WRITE_LDIO);
}
}
/*
* mrsas_get_mpt_cmd: Get a cmd from free command pool
* input: Adapter instance soft state
*
* This function removes an MPT command from the command free list and
* initializes it.
*/
struct mrsas_mpt_cmd *
mrsas_get_mpt_cmd(struct mrsas_softc *sc)
{
struct mrsas_mpt_cmd *cmd = NULL;
mtx_lock(&sc->mpt_cmd_pool_lock);
if (!TAILQ_EMPTY(&sc->mrsas_mpt_cmd_list_head)) {
cmd = TAILQ_FIRST(&sc->mrsas_mpt_cmd_list_head);
TAILQ_REMOVE(&sc->mrsas_mpt_cmd_list_head, cmd, next);
} else {
goto out;
}
memset((uint8_t *)cmd->io_request, 0, MRSAS_MPI2_RAID_DEFAULT_IO_FRAME_SIZE);
cmd->data = NULL;
cmd->length = 0;
cmd->flags = 0;
cmd->error_code = 0;
cmd->load_balance = 0;
cmd->ccb_ptr = NULL;
out:
mtx_unlock(&sc->mpt_cmd_pool_lock);
return cmd;
}
/*
* mrsas_release_mpt_cmd: Return a cmd to free command pool
* input: Command packet for return to free command pool
*
* This function returns an MPT command to the free command list.
*/
void
mrsas_release_mpt_cmd(struct mrsas_mpt_cmd *cmd)
{
struct mrsas_softc *sc = cmd->sc;
mtx_lock(&sc->mpt_cmd_pool_lock);
cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
cmd->sync_cmd_idx = (u_int32_t)MRSAS_ULONG_MAX;
cmd->peer_cmd = NULL;
cmd->cmd_completed = 0;
memset((uint8_t *)cmd->io_request, 0,
sizeof(MRSAS_RAID_SCSI_IO_REQUEST));
TAILQ_INSERT_HEAD(&(sc->mrsas_mpt_cmd_list_head), cmd, next);
mtx_unlock(&sc->mpt_cmd_pool_lock);
return;
}
/*
* mrsas_get_request_desc: Get request descriptor from array
* input: Adapter instance soft state
* SMID index
*
* This function returns a pointer to the request descriptor.
*/
MRSAS_REQUEST_DESCRIPTOR_UNION *
mrsas_get_request_desc(struct mrsas_softc *sc, u_int16_t index)
{
u_int8_t *p;
KASSERT(index < sc->max_fw_cmds, ("req_desc is out of range"));
p = sc->req_desc + sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION) * index;
return (MRSAS_REQUEST_DESCRIPTOR_UNION *) p;
}
/* mrsas_prepare_secondRaid1_IO
* It prepares the raid 1 second IO
*/
void
mrsas_prepare_secondRaid1_IO(struct mrsas_softc *sc,
struct mrsas_mpt_cmd *cmd)
{
MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc, *req_desc2 = NULL;
struct mrsas_mpt_cmd *r1_cmd;
r1_cmd = cmd->peer_cmd;
req_desc = cmd->request_desc;
/*
* copy the io request frame as well as 8 SGEs data for r1
* command
*/
memcpy(r1_cmd->io_request, cmd->io_request,
(sizeof(MRSAS_RAID_SCSI_IO_REQUEST)));
memcpy(&r1_cmd->io_request->SGL, &cmd->io_request->SGL,
(sc->max_sge_in_main_msg * sizeof(MPI2_SGE_IO_UNION)));
/* sense buffer is different for r1 command */
r1_cmd->io_request->SenseBufferLowAddress = htole32(r1_cmd->sense_phys_addr & 0xFFFFFFFF);
r1_cmd->ccb_ptr = cmd->ccb_ptr;
req_desc2 = mrsas_get_request_desc(sc, r1_cmd->index - 1);
req_desc2->addr.Words = 0;
r1_cmd->request_desc = req_desc2;
req_desc2->SCSIIO.SMID = r1_cmd->index;
req_desc2->SCSIIO.RequestFlags = req_desc->SCSIIO.RequestFlags;
r1_cmd->request_desc->SCSIIO.DevHandle = cmd->r1_alt_dev_handle;
r1_cmd->r1_alt_dev_handle = cmd->io_request->DevHandle;
r1_cmd->io_request->DevHandle = cmd->r1_alt_dev_handle;
cmd->io_request->RaidContext.raid_context_g35.smid.peerSMID =
r1_cmd->index;
r1_cmd->io_request->RaidContext.raid_context_g35.smid.peerSMID =
cmd->index;
/*
* MSIxIndex of both commands request descriptors
* should be same
*/
r1_cmd->request_desc->SCSIIO.MSIxIndex = cmd->request_desc->SCSIIO.MSIxIndex;
/* span arm is different for r1 cmd */
r1_cmd->io_request->RaidContext.raid_context_g35.spanArm =
cmd->io_request->RaidContext.raid_context_g35.spanArm + 1;
}
/*
* mrsas_build_ldio_rw: Builds an LDIO command
* input: Adapter instance soft state
* Pointer to command packet
* Pointer to CCB
*
* This function builds the LDIO command packet. It returns 0 if the command is
* built successfully, otherwise it returns a 1.
*/
int
mrsas_build_ldio_rw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
union ccb *ccb)
{
struct ccb_hdr *ccb_h = &(ccb->ccb_h);
struct ccb_scsiio *csio = &(ccb->csio);
u_int32_t device_id;
MRSAS_RAID_SCSI_IO_REQUEST *io_request;
device_id = ccb_h->target_id;
io_request = cmd->io_request;
io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id);
io_request->RaidContext.raid_context.status = 0;
io_request->RaidContext.raid_context.exStatus = 0;
/* just the cdb len, other flags zero, and ORed-in later for FP */
io_request->IoFlags = htole16(csio->cdb_len);
if (mrsas_setup_io(sc, cmd, ccb, device_id, io_request) != SUCCESS)
device_printf(sc->mrsas_dev, "Build ldio or fpio error\n");
io_request->DataLength = htole32(cmd->length);
if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) {
if (cmd->sge_count > sc->max_num_sge) {
device_printf(sc->mrsas_dev, "Error: sge_count (0x%x) exceeds"
"max (0x%x) allowed\n", cmd->sge_count, sc->max_num_sge);
return (FAIL);
}
if (sc->is_ventura || sc->is_aero)
io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count;
else {
/*
* numSGE store lower 8 bit of sge_count. numSGEExt store
* higher 8 bit of sge_count
*/
io_request->RaidContext.raid_context.numSGE = cmd->sge_count;
io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8);
}
} else {
device_printf(sc->mrsas_dev, "Data map/load failed.\n");
return (FAIL);
}
return (0);
}
/* stream detection on read and and write IOs */
static void
mrsas_stream_detect(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
struct IO_REQUEST_INFO *io_info)
{
u_int32_t device_id = io_info->ldTgtId;
LD_STREAM_DETECT *current_ld_SD = sc->streamDetectByLD[device_id];
u_int32_t *track_stream = &current_ld_SD->mruBitMap;
u_int32_t streamNum, shiftedValues, unshiftedValues;
u_int32_t indexValueMask, shiftedValuesMask;
int i;
boolean_t isReadAhead = false;
STREAM_DETECT *current_SD;
/* find possible stream */
for (i = 0; i < MAX_STREAMS_TRACKED; ++i) {
streamNum = (*track_stream >> (i * BITS_PER_INDEX_STREAM)) &
STREAM_MASK;
current_SD = &current_ld_SD->streamTrack[streamNum];
/*
* if we found a stream, update the raid context and
* also update the mruBitMap
*/
if (current_SD->nextSeqLBA &&
io_info->ldStartBlock >= current_SD->nextSeqLBA &&
(io_info->ldStartBlock <= (current_SD->nextSeqLBA+32)) &&
(current_SD->isRead == io_info->isRead)) {
if (io_info->ldStartBlock != current_SD->nextSeqLBA &&
(!io_info->isRead || !isReadAhead)) {
/*
* Once the API availible we need to change this.
* At this point we are not allowing any gap
*/
continue;
}
cmd->io_request->RaidContext.raid_context_g35.streamDetected = TRUE;
current_SD->nextSeqLBA = io_info->ldStartBlock + io_info->numBlocks;
/*
* update the mruBitMap LRU
*/
shiftedValuesMask = (1 << i * BITS_PER_INDEX_STREAM) - 1 ;
shiftedValues = ((*track_stream & shiftedValuesMask) <<
BITS_PER_INDEX_STREAM);
indexValueMask = STREAM_MASK << i * BITS_PER_INDEX_STREAM;
unshiftedValues = (*track_stream) &
(~(shiftedValuesMask | indexValueMask));
*track_stream =
(unshiftedValues | shiftedValues | streamNum);
return;
}
}
/*
* if we did not find any stream, create a new one from the least recently used
*/
streamNum = (*track_stream >>
((MAX_STREAMS_TRACKED - 1) * BITS_PER_INDEX_STREAM)) & STREAM_MASK;
current_SD = &current_ld_SD->streamTrack[streamNum];
current_SD->isRead = io_info->isRead;
current_SD->nextSeqLBA = io_info->ldStartBlock + io_info->numBlocks;
*track_stream = (((*track_stream & ZERO_LAST_STREAM) << 4) | streamNum);
return;
}
/*
* mrsas_setup_io: Set up data including Fast Path I/O
* input: Adapter instance soft state
* Pointer to command packet
* Pointer to CCB
*
* This function builds the DCDB inquiry command. It returns 0 if the command
* is built successfully, otherwise it returns a 1.
*/
int
mrsas_setup_io(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
union ccb *ccb, u_int32_t device_id,
MRSAS_RAID_SCSI_IO_REQUEST * io_request)
{
struct ccb_hdr *ccb_h = &(ccb->ccb_h);
struct ccb_scsiio *csio = &(ccb->csio);
struct IO_REQUEST_INFO io_info;
MR_DRV_RAID_MAP_ALL *map_ptr;
struct mrsas_mpt_cmd *r1_cmd = NULL;
MR_LD_RAID *raid;
u_int8_t fp_possible;
u_int32_t start_lba_hi, start_lba_lo, ld_block_size, ld;
u_int32_t datalength = 0;
io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id);
start_lba_lo = 0;
start_lba_hi = 0;
fp_possible = 0;
/*
* READ_6 (0x08) or WRITE_6 (0x0A) cdb
*/
if (csio->cdb_len == 6) {
datalength = (u_int32_t)csio->cdb_io.cdb_bytes[4];
start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[1] << 16) |
((u_int32_t)csio->cdb_io.cdb_bytes[2] << 8) |
(u_int32_t)csio->cdb_io.cdb_bytes[3];
start_lba_lo &= 0x1FFFFF;
}
/*
* READ_10 (0x28) or WRITE_6 (0x2A) cdb
*/
else if (csio->cdb_len == 10) {
datalength = (u_int32_t)csio->cdb_io.cdb_bytes[8] |
((u_int32_t)csio->cdb_io.cdb_bytes[7] << 8);
start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) |
((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) |
(u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 |
((u_int32_t)csio->cdb_io.cdb_bytes[5]);
}
/*
* READ_12 (0xA8) or WRITE_12 (0xAA) cdb
*/
else if (csio->cdb_len == 12) {
datalength = (u_int32_t)csio->cdb_io.cdb_bytes[6] << 24 |
((u_int32_t)csio->cdb_io.cdb_bytes[7] << 16) |
((u_int32_t)csio->cdb_io.cdb_bytes[8] << 8) |
((u_int32_t)csio->cdb_io.cdb_bytes[9]);
start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) |
((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) |
(u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 |
((u_int32_t)csio->cdb_io.cdb_bytes[5]);
}
/*
* READ_16 (0x88) or WRITE_16 (0xx8A) cdb
*/
else if (csio->cdb_len == 16) {
datalength = (u_int32_t)csio->cdb_io.cdb_bytes[10] << 24 |
((u_int32_t)csio->cdb_io.cdb_bytes[11] << 16) |
((u_int32_t)csio->cdb_io.cdb_bytes[12] << 8) |
((u_int32_t)csio->cdb_io.cdb_bytes[13]);
start_lba_lo = ((u_int32_t)csio->cdb_io.cdb_bytes[6] << 24) |
((u_int32_t)csio->cdb_io.cdb_bytes[7] << 16) |
(u_int32_t)csio->cdb_io.cdb_bytes[8] << 8 |
((u_int32_t)csio->cdb_io.cdb_bytes[9]);
start_lba_hi = ((u_int32_t)csio->cdb_io.cdb_bytes[2] << 24) |
((u_int32_t)csio->cdb_io.cdb_bytes[3] << 16) |
(u_int32_t)csio->cdb_io.cdb_bytes[4] << 8 |
((u_int32_t)csio->cdb_io.cdb_bytes[5]);
}
memset(&io_info, 0, sizeof(struct IO_REQUEST_INFO));
io_info.ldStartBlock = ((u_int64_t)start_lba_hi << 32) | start_lba_lo;
io_info.numBlocks = datalength;
io_info.ldTgtId = device_id;
io_info.r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
io_request->DataLength = htole32(cmd->length);
switch (ccb_h->flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
io_info.isRead = 1;
break;
case CAM_DIR_OUT:
io_info.isRead = 0;
break;
case CAM_DIR_NONE:
default:
mrsas_dprint(sc, MRSAS_TRACE, "From %s : DMA Flag is %d \n", __func__, ccb_h->flags & CAM_DIR_MASK);
break;
}
map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
ld_block_size = MR_LdBlockSizeGet(device_id, map_ptr);
ld = MR_TargetIdToLdGet(device_id, map_ptr);
if ((ld >= MAX_LOGICAL_DRIVES_EXT) || (!sc->fast_path_io)) {
io_request->RaidContext.raid_context.regLockFlags = 0;
fp_possible = 0;
} else {
if (MR_BuildRaidContext(sc, &io_info, &io_request->RaidContext.raid_context, map_ptr))
fp_possible = io_info.fpOkForIo;
}
raid = MR_LdRaidGet(ld, map_ptr);
/* Store the TM capability value in cmd */
cmd->tmCapable = raid->capability.tmCapable;
cmd->request_desc->SCSIIO.MSIxIndex =
sc->msix_vectors ? smp_processor_id() % sc->msix_vectors : 0;
if (sc->is_ventura || sc->is_aero) {
if (sc->streamDetectByLD) {
mtx_lock(&sc->stream_lock);
mrsas_stream_detect(sc, cmd, &io_info);
mtx_unlock(&sc->stream_lock);
/* In ventura if stream detected for a read and
* it is read ahead capable make this IO as LDIO */
if (io_request->RaidContext.raid_context_g35.streamDetected &&
io_info.isRead && io_info.raCapable)
fp_possible = FALSE;
}
/* Set raid 1/10 fast path write capable bit in io_info.
* Note - reset peer_cmd and r1_alt_dev_handle if fp_possible
* disabled after this point. Try not to add more check for
* fp_possible toggle after this.
*/
if (fp_possible &&
(io_info.r1_alt_dev_handle != MR_DEVHANDLE_INVALID) &&
(raid->level == 1) && !io_info.isRead) {
r1_cmd = mrsas_get_mpt_cmd(sc);
if (mrsas_atomic_inc_return(&sc->fw_outstanding) > sc->max_scsi_cmds) {
fp_possible = FALSE;
mrsas_atomic_dec(&sc->fw_outstanding);
} else {
r1_cmd = mrsas_get_mpt_cmd(sc);
if (!r1_cmd) {
fp_possible = FALSE;
mrsas_atomic_dec(&sc->fw_outstanding);
}
else {
cmd->peer_cmd = r1_cmd;
r1_cmd->peer_cmd = cmd;
}
}
}
}
if (fp_possible) {
mrsas_set_pd_lba(io_request, csio->cdb_len, &io_info, ccb, map_ptr,
start_lba_lo, ld_block_size);
io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
cmd->request_desc->SCSIIO.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_FP_IO <<
MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
if (sc->mrsas_gen3_ctrl) {
if (io_request->RaidContext.raid_context.regLockFlags == REGION_TYPE_UNUSED)
cmd->request_desc->SCSIIO.RequestFlags =
(MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK <<
MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA;
io_request->RaidContext.raid_context.nseg = 0x1;
io_request->IoFlags |= htole16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH);
io_request->RaidContext.raid_context.regLockFlags |=
(MR_RL_FLAGS_GRANT_DESTINATION_CUDA |
MR_RL_FLAGS_SEQ_NUM_ENABLE);
} else if (sc->is_ventura || sc->is_aero) {
io_request->RaidContext.raid_context_g35.Type = MPI2_TYPE_CUDA;
io_request->RaidContext.raid_context_g35.nseg = 0x1;
io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1;
io_request->IoFlags |= htole16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH);
if (io_request->RaidContext.raid_context_g35.routingFlags.bits.sld) {
io_request->RaidContext.raid_context_g35.RAIDFlags =
(MR_RAID_FLAGS_IO_SUB_TYPE_CACHE_BYPASS
<< MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT);
}
}
if ((sc->load_balance_info[device_id].loadBalanceFlag) &&
(io_info.isRead)) {
io_info.devHandle =
mrsas_get_updated_dev_handle(sc,
&sc->load_balance_info[device_id], &io_info);
cmd->load_balance = MRSAS_LOAD_BALANCE_FLAG;
cmd->pd_r1_lb = io_info.pd_after_lb;
if (sc->is_ventura || sc->is_aero)
io_request->RaidContext.raid_context_g35.spanArm = io_info.span_arm;
else
io_request->RaidContext.raid_context.spanArm = io_info.span_arm;
} else
cmd->load_balance = 0;
if (sc->is_ventura || sc->is_aero)
cmd->r1_alt_dev_handle = io_info.r1_alt_dev_handle;
else
cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
cmd->request_desc->SCSIIO.DevHandle = io_info.devHandle;
io_request->DevHandle = io_info.devHandle;
cmd->pdInterface = io_info.pdInterface;
} else {
/* Not FP IO */
io_request->RaidContext.raid_context.timeoutValue = htole16(map_ptr->raidMap.fpPdIoTimeoutSec);
cmd->request_desc->SCSIIO.RequestFlags =
(MRSAS_REQ_DESCRIPT_FLAGS_LD_IO <<
MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
if (sc->mrsas_gen3_ctrl) {
if (io_request->RaidContext.raid_context.regLockFlags == REGION_TYPE_UNUSED)
cmd->request_desc->SCSIIO.RequestFlags =
(MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK <<
MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA;
io_request->RaidContext.raid_context.regLockFlags |=
(MR_RL_FLAGS_GRANT_DESTINATION_CPU0 |
MR_RL_FLAGS_SEQ_NUM_ENABLE);
io_request->RaidContext.raid_context.nseg = 0x1;
} else if (sc->is_ventura || sc->is_aero) {
io_request->RaidContext.raid_context_g35.Type = MPI2_TYPE_CUDA;
io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1;
io_request->RaidContext.raid_context_g35.nseg = 0x1;
}
io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST;
io_request->DevHandle = htole16(device_id);
}
return (0);
}
/*
* mrsas_build_ldio_nonrw: Builds an LDIO command
* input: Adapter instance soft state
* Pointer to command packet
* Pointer to CCB
*
* This function builds the LDIO command packet. It returns 0 if the command is
* built successfully, otherwise it returns a 1.
*/
int
mrsas_build_ldio_nonrw(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
union ccb *ccb)
{
struct ccb_hdr *ccb_h = &(ccb->ccb_h);
u_int32_t device_id, ld;
MR_DRV_RAID_MAP_ALL *map_ptr;
MR_LD_RAID *raid;
RAID_CONTEXT *pRAID_Context;
MRSAS_RAID_SCSI_IO_REQUEST *io_request;
io_request = cmd->io_request;
device_id = ccb_h->target_id;
map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
ld = MR_TargetIdToLdGet(device_id, map_ptr);
raid = MR_LdRaidGet(ld, map_ptr);
/* get RAID_Context pointer */
pRAID_Context = &io_request->RaidContext.raid_context;
/* Store the TM capability value in cmd */
cmd->tmCapable = raid->capability.tmCapable;
/* FW path for LD Non-RW (SCSI management commands) */
io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST;
io_request->DevHandle = device_id;
cmd->request_desc->SCSIIO.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
io_request->RaidContext.raid_context.VirtualDiskTgtId = device_id;
io_request->LUN[1] = ccb_h->target_lun & 0xF;
io_request->DataLength = cmd->length;
if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) {
if (cmd->sge_count > sc->max_num_sge) {
device_printf(sc->mrsas_dev, "Error: sge_count (0x%x) exceeds"
"max (0x%x) allowed\n", cmd->sge_count, sc->max_num_sge);
return (1);
}
if (sc->is_ventura || sc->is_aero)
io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count;
else {
/*
* numSGE store lower 8 bit of sge_count. numSGEExt store
* higher 8 bit of sge_count
*/
io_request->RaidContext.raid_context.numSGE = cmd->sge_count;
io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8);
}
} else {
device_printf(sc->mrsas_dev, "Data map/load failed.\n");
return (1);
}
return (0);
}
/*
* mrsas_build_syspdio: Builds an DCDB command
* input: Adapter instance soft state
* Pointer to command packet
* Pointer to CCB
*
* This function builds the DCDB inquiry command. It returns 0 if the command
* is built successfully, otherwise it returns a 1.
*/
int
mrsas_build_syspdio(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
union ccb *ccb, struct cam_sim *sim, u_int8_t fp_possible)
{
struct ccb_hdr *ccb_h = &(ccb->ccb_h);
u_int32_t device_id;
MR_DRV_RAID_MAP_ALL *local_map_ptr;
MRSAS_RAID_SCSI_IO_REQUEST *io_request;
RAID_CONTEXT *pRAID_Context;
struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync;
io_request = cmd->io_request;
/* get RAID_Context pointer */
pRAID_Context = &io_request->RaidContext.raid_context;
device_id = ccb_h->target_id;
local_map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
io_request->RaidContext.raid_context.RAIDFlags = MR_RAID_FLAGS_IO_SUB_TYPE_SYSTEM_PD
<< MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT;
io_request->RaidContext.raid_context.regLockFlags = 0;
io_request->RaidContext.raid_context.regLockRowLBA = 0;
io_request->RaidContext.raid_context.regLockLength = 0;
cmd->pdInterface = sc->target_list[device_id].interface_type;
/* If FW supports PD sequence number */
if (sc->use_seqnum_jbod_fp &&
sc->pd_list[device_id].driveType == 0x00) {
//printf("Using Drv seq num\n");
pd_sync = (void *)sc->jbodmap_mem[(sc->pd_seq_map_id - 1) & 1];
cmd->tmCapable = pd_sync->seq[device_id].capability.tmCapable;
/* More than 256 PD/JBOD support for Ventura */
if (sc->support_morethan256jbod)
io_request->RaidContext.raid_context.VirtualDiskTgtId =
pd_sync->seq[device_id].pdTargetId;
else
io_request->RaidContext.raid_context.VirtualDiskTgtId =
htole16(device_id + 255);
io_request->RaidContext.raid_context.configSeqNum = pd_sync->seq[device_id].seqNum;
io_request->DevHandle = pd_sync->seq[device_id].devHandle;
if (sc->is_ventura || sc->is_aero)
io_request->RaidContext.raid_context_g35.routingFlags.bits.sqn = 1;
else
io_request->RaidContext.raid_context.regLockFlags |=
(MR_RL_FLAGS_SEQ_NUM_ENABLE | MR_RL_FLAGS_GRANT_DESTINATION_CUDA);
/* raid_context.Type = MPI2_TYPE_CUDA is valid only,
* if FW support Jbod Sequence number
*/
io_request->RaidContext.raid_context.Type = MPI2_TYPE_CUDA;
io_request->RaidContext.raid_context.nseg = 0x1;
} else if (sc->fast_path_io) {
//printf("Using LD RAID map\n");
io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id);
io_request->RaidContext.raid_context.configSeqNum = 0;
local_map_ptr = sc->ld_drv_map[(sc->map_id & 1)];
io_request->DevHandle =
local_map_ptr->raidMap.devHndlInfo[device_id].curDevHdl;
} else {
//printf("Using FW PATH\n");
/* Want to send all IO via FW path */
io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id);
io_request->RaidContext.raid_context.configSeqNum = 0;
io_request->DevHandle = MR_DEVHANDLE_INVALID;
}
cmd->request_desc->SCSIIO.DevHandle = io_request->DevHandle;
cmd->request_desc->SCSIIO.MSIxIndex =
sc->msix_vectors ? smp_processor_id() % sc->msix_vectors : 0;
if (!fp_possible) {
/* system pd firmware path */
io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST;
cmd->request_desc->SCSIIO.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
io_request->RaidContext.raid_context.timeoutValue =
htole16(local_map_ptr->raidMap.fpPdIoTimeoutSec);
io_request->RaidContext.raid_context.VirtualDiskTgtId = htole16(device_id);
} else {
/* system pd fast path */
io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
io_request->RaidContext.raid_context.timeoutValue = htole16(local_map_ptr->raidMap.fpPdIoTimeoutSec);
/*
* NOTE - For system pd RW cmds only IoFlags will be FAST_PATH
* Because the NON RW cmds will now go via FW Queue
* and not the Exception queue
*/
if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero)
io_request->IoFlags |= htole16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH);
cmd->request_desc->SCSIIO.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_FP_IO <<
MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
}
io_request->LUN[1] = ccb_h->target_lun & 0xF;
io_request->DataLength = htole32(cmd->length);
if (mrsas_map_request(sc, cmd, ccb) == SUCCESS) {
if (cmd->sge_count > sc->max_num_sge) {
device_printf(sc->mrsas_dev, "Error: sge_count (0x%x) exceeds"
"max (0x%x) allowed\n", cmd->sge_count, sc->max_num_sge);
return (1);
}
if (sc->is_ventura || sc->is_aero)
io_request->RaidContext.raid_context_g35.numSGE = cmd->sge_count;
else {
/*
* numSGE store lower 8 bit of sge_count. numSGEExt store
* higher 8 bit of sge_count
*/
io_request->RaidContext.raid_context.numSGE = cmd->sge_count;
io_request->RaidContext.raid_context.numSGEExt = (uint8_t)(cmd->sge_count >> 8);
}
} else {
device_printf(sc->mrsas_dev, "Data map/load failed.\n");
return (1);
}
return (0);
}
/*
* mrsas_is_prp_possible: This function will tell whether PRPs should be built or not
* sc: Adapter instance soft state
* cmd: MPT command frame pointer
* nsesg: Number of OS SGEs
*
* This function will check whether IO is qualified to build PRPs
* return: true: if PRP should be built
* false: if IEEE SGLs should be built
*/
static boolean_t mrsas_is_prp_possible(struct mrsas_mpt_cmd *cmd,
bus_dma_segment_t *segs, int nsegs)
{
struct mrsas_softc *sc = cmd->sc;
int i;
u_int32_t data_length = 0;
bool build_prp = false;
u_int32_t mr_nvme_pg_size;
mr_nvme_pg_size = max(sc->nvme_page_size, MR_DEFAULT_NVME_PAGE_SIZE);
data_length = cmd->length;
if (data_length > (mr_nvme_pg_size * 5))
build_prp = true;
else if ((data_length > (mr_nvme_pg_size * 4)) &&
(data_length <= (mr_nvme_pg_size * 5))) {
/* check if 1st SG entry size is < residual beyond 4 pages */
if ((segs[0].ds_len) < (data_length - (mr_nvme_pg_size * 4)))
build_prp = true;
}
/*check for SGE holes here*/
for (i = 0; i < nsegs; i++) {
/* check for mid SGEs */
if ((i != 0) && (i != (nsegs - 1))) {
if ((segs[i].ds_addr % mr_nvme_pg_size) ||
(segs[i].ds_len % mr_nvme_pg_size)) {
build_prp = false;
mrsas_atomic_inc(&sc->sge_holes);
break;
}
}
/* check for first SGE*/
if ((nsegs > 1) && (i == 0)) {
if ((segs[i].ds_addr + segs[i].ds_len) % mr_nvme_pg_size) {
build_prp = false;
mrsas_atomic_inc(&sc->sge_holes);
break;
}
}
/* check for Last SGE*/
if ((nsegs > 1) && (i == (nsegs - 1))) {
if (segs[i].ds_addr % mr_nvme_pg_size) {
build_prp = false;
mrsas_atomic_inc(&sc->sge_holes);
break;
}
}
}
return build_prp;
}
/*
* mrsas_map_request: Map and load data
* input: Adapter instance soft state
* Pointer to command packet
*
* For data from OS, map and load the data buffer into bus space. The SG list
* is built in the callback. If the bus dmamap load is not successful,
* cmd->error_code will contain the error code and a 1 is returned.
*/
int
mrsas_map_request(struct mrsas_softc *sc,
struct mrsas_mpt_cmd *cmd, union ccb *ccb)
{
u_int32_t retcode = 0;
struct cam_sim *sim;
sim = xpt_path_sim(cmd->ccb_ptr->ccb_h.path);
if (cmd->data != NULL) {
/* Map data buffer into bus space */
mtx_lock(&sc->io_lock);
#if (__FreeBSD_version >= 902001)
retcode = bus_dmamap_load_ccb(sc->data_tag, cmd->data_dmamap, ccb,
mrsas_data_load_cb, cmd, 0);
#else
retcode = bus_dmamap_load(sc->data_tag, cmd->data_dmamap, cmd->data,
cmd->length, mrsas_data_load_cb, cmd, BUS_DMA_NOWAIT);
#endif
mtx_unlock(&sc->io_lock);
if (retcode)
device_printf(sc->mrsas_dev, "bus_dmamap_load(): retcode = %d\n", retcode);
if (retcode == EINPROGRESS) {
device_printf(sc->mrsas_dev, "request load in progress\n");
mrsas_freeze_simq(cmd, sim);
}
}
if (cmd->error_code)
return (1);
return (retcode);
}
/*
* mrsas_unmap_request: Unmap and unload data
* input: Adapter instance soft state
* Pointer to command packet
*
* This function unmaps and unloads data from OS.
*/
void
mrsas_unmap_request(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd)
{
if (cmd->data != NULL) {
if (cmd->flags & MRSAS_DIR_IN)
bus_dmamap_sync(sc->data_tag, cmd->data_dmamap, BUS_DMASYNC_POSTREAD);
if (cmd->flags & MRSAS_DIR_OUT)
bus_dmamap_sync(sc->data_tag, cmd->data_dmamap, BUS_DMASYNC_POSTWRITE);
mtx_lock(&sc->io_lock);
bus_dmamap_unload(sc->data_tag, cmd->data_dmamap);
mtx_unlock(&sc->io_lock);
}
}
/**
* mrsas_build_ieee_sgl - Prepare IEEE SGLs
* @sc: Adapter soft state
* @segs: OS SGEs pointers
* @nseg: Number of OS SGEs
* @cmd: Fusion command frame
* return: void
*/
static void mrsas_build_ieee_sgl(struct mrsas_mpt_cmd *cmd, bus_dma_segment_t *segs, int nseg)
{
struct mrsas_softc *sc = cmd->sc;
MRSAS_RAID_SCSI_IO_REQUEST *io_request;
pMpi25IeeeSgeChain64_t sgl_ptr;
int i = 0, sg_processed = 0;
io_request = cmd->io_request;
sgl_ptr = (pMpi25IeeeSgeChain64_t)&io_request->SGL;
if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) {
pMpi25IeeeSgeChain64_t sgl_ptr_end = sgl_ptr;
sgl_ptr_end += sc->max_sge_in_main_msg - 1;
sgl_ptr_end->Flags = 0;
}
if (nseg != 0) {
for (i = 0; i < nseg; i++) {
sgl_ptr->Address = htole64(segs[i].ds_addr);
sgl_ptr->Length = htole32(segs[i].ds_len);
sgl_ptr->Flags = 0;
if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) {
if (i == nseg - 1)
sgl_ptr->Flags = IEEE_SGE_FLAGS_END_OF_LIST;
}
sgl_ptr++;
sg_processed = i + 1;
if ((sg_processed == (sc->max_sge_in_main_msg - 1)) &&
(nseg > sc->max_sge_in_main_msg)) {
pMpi25IeeeSgeChain64_t sg_chain;
if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero) {
if ((cmd->io_request->IoFlags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH)
!= MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH)
cmd->io_request->ChainOffset = sc->chain_offset_io_request;
else
cmd->io_request->ChainOffset = 0;
} else
cmd->io_request->ChainOffset = sc->chain_offset_io_request;
sg_chain = sgl_ptr;
if (sc->mrsas_gen3_ctrl || sc->is_ventura || sc->is_aero)
sg_chain->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT;
else
sg_chain->Flags = (IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
sg_chain->Length = htole32((sizeof(MPI2_SGE_IO_UNION) * (nseg - sg_processed)));
sg_chain->Address = htole64(cmd->chain_frame_phys_addr);
sgl_ptr = (pMpi25IeeeSgeChain64_t)cmd->chain_frame;
}
}
}
}
/**
* mrsas_build_prp_nvme - Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
* @sc: Adapter soft state
* @segs: OS SGEs pointers
* @nseg: Number of OS SGEs
* @cmd: Fusion command frame
* return: void
*/
static void mrsas_build_prp_nvme(struct mrsas_mpt_cmd *cmd, bus_dma_segment_t *segs, int nseg)
{
struct mrsas_softc *sc = cmd->sc;
int sge_len, offset, num_prp_in_chain = 0;
pMpi25IeeeSgeChain64_t main_chain_element, ptr_first_sgl, sgl_ptr;
u_int64_t *ptr_sgl;
bus_addr_t ptr_sgl_phys;
u_int64_t sge_addr;
u_int32_t page_mask, page_mask_result, i = 0;
u_int32_t first_prp_len;
int data_len = cmd->length;
u_int32_t mr_nvme_pg_size = max(sc->nvme_page_size,
MR_DEFAULT_NVME_PAGE_SIZE);
sgl_ptr = (pMpi25IeeeSgeChain64_t) &cmd->io_request->SGL;
/*
* NVMe has a very convoluted PRP format. One PRP is required
* for each page or partial page. We need to split up OS SG
* entries if they are longer than one page or cross a page
* boundary. We also have to insert a PRP list pointer entry as
* the last entry in each physical page of the PRP list.
*
* NOTE: The first PRP "entry" is actually placed in the first
* SGL entry in the main message in IEEE 64 format. The 2nd
* entry in the main message is the chain element, and the rest
* of the PRP entries are built in the contiguous PCIe buffer.
*/
page_mask = mr_nvme_pg_size - 1;
ptr_sgl = (u_int64_t *) cmd->chain_frame;
ptr_sgl_phys = cmd->chain_frame_phys_addr;
memset(ptr_sgl, 0, sc->max_chain_frame_sz);
/* Build chain frame element which holds all PRPs except first*/
main_chain_element = (pMpi25IeeeSgeChain64_t)
((u_int8_t *)sgl_ptr + sizeof(MPI25_IEEE_SGE_CHAIN64));
main_chain_element->Address = cmd->chain_frame_phys_addr;
main_chain_element->NextChainOffset = 0;
main_chain_element->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT |
IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
/* Build first PRP, SGE need not to be PAGE aligned*/
ptr_first_sgl = sgl_ptr;
sge_addr = segs[i].ds_addr;
sge_len = segs[i].ds_len;
i++;
offset = (u_int32_t) (sge_addr & page_mask);
first_prp_len = mr_nvme_pg_size - offset;
ptr_first_sgl->Address = sge_addr;
ptr_first_sgl->Length = first_prp_len;
data_len -= first_prp_len;
if (sge_len > first_prp_len) {
sge_addr += first_prp_len;
sge_len -= first_prp_len;
} else if (sge_len == first_prp_len) {
sge_addr = segs[i].ds_addr;
sge_len = segs[i].ds_len;
i++;
}
for (;;) {
offset = (u_int32_t) (sge_addr & page_mask);
/* Put PRP pointer due to page boundary*/
page_mask_result = (uintptr_t)(ptr_sgl + 1) & page_mask;
if (!page_mask_result) {
device_printf(sc->mrsas_dev, "BRCM: Put prp pointer as we are at page boundary"
" ptr_sgl: 0x%p\n", ptr_sgl);
ptr_sgl_phys++;
*ptr_sgl = (uintptr_t)ptr_sgl_phys;
ptr_sgl++;
num_prp_in_chain++;
}
*ptr_sgl = sge_addr;
ptr_sgl++;
ptr_sgl_phys++;
num_prp_in_chain++;
sge_addr += mr_nvme_pg_size;
sge_len -= mr_nvme_pg_size;
data_len -= mr_nvme_pg_size;
if (data_len <= 0)
break;
if (sge_len > 0)
continue;
sge_addr = segs[i].ds_addr;
sge_len = segs[i].ds_len;
i++;
}
main_chain_element->Length = num_prp_in_chain * sizeof(u_int64_t);
mrsas_atomic_inc(&sc->prp_count);
}
/*
* mrsas_data_load_cb: Callback entry point to build SGLs
* input: Pointer to command packet as argument
* Pointer to segment
* Number of segments Error
*
* This is the callback function of the bus dma map load. It builds SG list
*/
static void
mrsas_data_load_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct mrsas_mpt_cmd *cmd = (struct mrsas_mpt_cmd *)arg;
struct mrsas_softc *sc = cmd->sc;
boolean_t build_prp = false;
if (error) {
cmd->error_code = error;
device_printf(sc->mrsas_dev, "mrsas_data_load_cb_prp: error=%d\n", error);
if (error == EFBIG) {
cmd->ccb_ptr->ccb_h.status = CAM_REQ_TOO_BIG;
return;
}
}
if (cmd->flags & MRSAS_DIR_IN)
bus_dmamap_sync(cmd->sc->data_tag, cmd->data_dmamap,
BUS_DMASYNC_PREREAD);
if (cmd->flags & MRSAS_DIR_OUT)
bus_dmamap_sync(cmd->sc->data_tag, cmd->data_dmamap,
BUS_DMASYNC_PREWRITE);
if (nseg > sc->max_num_sge) {
device_printf(sc->mrsas_dev, "SGE count is too large or 0.\n");
return;
}
/* Check for whether PRPs should be built or IEEE SGLs*/
if ((cmd->io_request->IoFlags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) &&
(cmd->pdInterface == NVME_PD))
build_prp = mrsas_is_prp_possible(cmd, segs, nseg);
if (build_prp == true)
mrsas_build_prp_nvme(cmd, segs, nseg);
else
mrsas_build_ieee_sgl(cmd, segs, nseg);
cmd->sge_count = nseg;
}
/*
* mrsas_freeze_simq: Freeze SIM queue
* input: Pointer to command packet
* Pointer to SIM
*
* This function freezes the sim queue.
*/
static void
mrsas_freeze_simq(struct mrsas_mpt_cmd *cmd, struct cam_sim *sim)
{
union ccb *ccb = (union ccb *)(cmd->ccb_ptr);
xpt_freeze_simq(sim, 1);
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
}
void
mrsas_xpt_freeze(struct mrsas_softc *sc)
{
xpt_freeze_simq(sc->sim_0, 1);
xpt_freeze_simq(sc->sim_1, 1);
}
void
mrsas_xpt_release(struct mrsas_softc *sc)
{
xpt_release_simq(sc->sim_0, 1);
xpt_release_simq(sc->sim_1, 1);
}
/*
* mrsas_cmd_done: Perform remaining command completion
* input: Adapter instance soft state Pointer to command packet
*
* This function calls ummap request and releases the MPT command.
*/
void
mrsas_cmd_done(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd)
{
mrsas_unmap_request(sc, cmd);
mtx_lock(&sc->sim_lock);
if (cmd->callout_owner) {
callout_stop(&cmd->cm_callout);
cmd->callout_owner = false;
}
xpt_done(cmd->ccb_ptr);
cmd->ccb_ptr = NULL;
mtx_unlock(&sc->sim_lock);
mrsas_release_mpt_cmd(cmd);
}
/*
* mrsas_cam_poll: Polling entry point
* input: Pointer to SIM
*
* This is currently a stub function.
*/
static void
mrsas_cam_poll(struct cam_sim *sim)
{
int i;
struct mrsas_softc *sc = (struct mrsas_softc *)cam_sim_softc(sim);
if (sc->msix_vectors != 0){
for (i=0; i<sc->msix_vectors; i++){
mrsas_complete_cmd(sc, i);
}
} else {
mrsas_complete_cmd(sc, 0);
}
}
/*
* mrsas_bus_scan: Perform bus scan
* input: Adapter instance soft state
*
* This mrsas_bus_scan function is needed for FreeBSD 7.x. Also, it should not
* be called in FreeBSD 8.x and later versions, where the bus scan is
* automatic.
*/
int
mrsas_bus_scan(struct mrsas_softc *sc)
{
union ccb *ccb_0;
union ccb *ccb_1;
if ((ccb_0 = xpt_alloc_ccb()) == NULL) {
return (ENOMEM);
}
if ((ccb_1 = xpt_alloc_ccb()) == NULL) {
xpt_free_ccb(ccb_0);
return (ENOMEM);
}
mtx_lock(&sc->sim_lock);
if (xpt_create_path(&ccb_0->ccb_h.path, xpt_periph, cam_sim_path(sc->sim_0),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_free_ccb(ccb_0);
xpt_free_ccb(ccb_1);
mtx_unlock(&sc->sim_lock);
return (EIO);
}
if (xpt_create_path(&ccb_1->ccb_h.path, xpt_periph, cam_sim_path(sc->sim_1),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_free_ccb(ccb_0);
xpt_free_ccb(ccb_1);
mtx_unlock(&sc->sim_lock);
return (EIO);
}
mtx_unlock(&sc->sim_lock);
xpt_rescan(ccb_0);
xpt_rescan(ccb_1);
return (0);
}
/*
* mrsas_bus_scan_sim: Perform bus scan per SIM
* input: adapter instance soft state
*
* This function will be called from Event handler on LD creation/deletion,
* JBOD on/off.
*/
int
mrsas_bus_scan_sim(struct mrsas_softc *sc, struct cam_sim *sim)
{
union ccb *ccb;
if ((ccb = xpt_alloc_ccb()) == NULL) {
return (ENOMEM);
}
mtx_lock(&sc->sim_lock);
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, cam_sim_path(sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_free_ccb(ccb);
mtx_unlock(&sc->sim_lock);
return (EIO);
}
mtx_unlock(&sc->sim_lock);
xpt_rescan(ccb);
return (0);
}
/*
* mrsas_track_scsiio: Track IOs for a given target in the mpt_cmd_list
* input: Adapter instance soft state
* Target ID of target
* Bus ID of the target
*
* This function checks for any pending IO in the whole mpt_cmd_list pool
* with the bus_id and target_id passed in arguments. If some IO is found
* that means target reset is not successfully completed.
*
* Returns FAIL if IOs pending to the target device, else return SUCCESS
*/
static int
mrsas_track_scsiio(struct mrsas_softc *sc, target_id_t tgt_id, u_int32_t bus_id)
{
int i;
struct mrsas_mpt_cmd *mpt_cmd = NULL;
for (i = 0 ; i < sc->max_fw_cmds; i++) {
mpt_cmd = sc->mpt_cmd_list[i];
/*
* Check if the target_id and bus_id is same as the timeout IO
*/
if (mpt_cmd->ccb_ptr) {
/* bus_id = 1 denotes a VD */
if (bus_id == 1)
tgt_id =
(mpt_cmd->ccb_ptr->ccb_h.target_id - (MRSAS_MAX_PD - 1));
if (mpt_cmd->ccb_ptr->cpi.bus_id == bus_id &&
mpt_cmd->ccb_ptr->ccb_h.target_id == tgt_id) {
device_printf(sc->mrsas_dev,
"IO commands pending to target id %d\n", tgt_id);
return FAIL;
}
}
}
return SUCCESS;
}
#if TM_DEBUG
/*
* mrsas_tm_response_code: Prints TM response code received from FW
* input: Adapter instance soft state
* MPI reply returned from firmware
*
* Returns nothing.
*/
static void
mrsas_tm_response_code(struct mrsas_softc *sc,
MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply)
{
char *desc;
switch (mpi_reply->ResponseCode) {
case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE:
desc = "task management request completed";
break;
case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME:
desc = "invalid frame";
break;
case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED:
desc = "task management request not supported";
break;
case MPI2_SCSITASKMGMT_RSP_TM_FAILED:
desc = "task management request failed";
break;
case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED:
desc = "task management request succeeded";
break;
case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN:
desc = "invalid lun";
break;
case 0xA:
desc = "overlapped tag attempted";
break;
case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC:
desc = "task queued, however not sent to target";
break;
default:
desc = "unknown";
break;
}
device_printf(sc->mrsas_dev, "response_code(%01x): %s\n",
mpi_reply->ResponseCode, desc);
device_printf(sc->mrsas_dev,
"TerminationCount/DevHandle/Function/TaskType/IOCStat/IOCLoginfo\n"
"0x%x/0x%x/0x%x/0x%x/0x%x/0x%x\n",
mpi_reply->TerminationCount, mpi_reply->DevHandle,
mpi_reply->Function, mpi_reply->TaskType,
mpi_reply->IOCStatus, mpi_reply->IOCLogInfo);
}
#endif
/*
* mrsas_issue_tm: Fires the TM command to FW and waits for completion
* input: Adapter instance soft state
* reqest descriptor compiled by mrsas_reset_targets
*
* Returns FAIL if TM command TIMEDOUT from FW else SUCCESS.
*/
static int
mrsas_issue_tm(struct mrsas_softc *sc,
MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc)
{
int sleep_stat;
mrsas_fire_cmd(sc, req_desc->addr.u.low, req_desc->addr.u.high);
sleep_stat = msleep(&sc->ocr_chan, &sc->sim_lock, PRIBIO, "tm_sleep", 50*hz);
if (sleep_stat == EWOULDBLOCK) {
device_printf(sc->mrsas_dev, "tm cmd TIMEDOUT\n");
return FAIL;
}
return SUCCESS;
}
/*
* mrsas_reset_targets : Gathers info to fire a target reset command
* input: Adapter instance soft state
*
* This function compiles data for a target reset command to be fired to the FW
* and then traverse the target_reset_pool to see targets with TIMEDOUT IOs.
*
* Returns SUCCESS or FAIL
*/
int mrsas_reset_targets(struct mrsas_softc *sc)
{
struct mrsas_mpt_cmd *tm_mpt_cmd = NULL;
struct mrsas_mpt_cmd *tgt_mpt_cmd = NULL;
MR_TASK_MANAGE_REQUEST *mr_request;
MPI2_SCSI_TASK_MANAGE_REQUEST *tm_mpi_request;
MRSAS_REQUEST_DESCRIPTOR_UNION *req_desc;
int retCode = FAIL, count, i, outstanding;
u_int32_t MSIxIndex, bus_id;
target_id_t tgt_id;
#if TM_DEBUG
MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply;
#endif
outstanding = mrsas_atomic_read(&sc->fw_outstanding);
if (!outstanding) {
device_printf(sc->mrsas_dev, "NO IOs pending...\n");
mrsas_atomic_set(&sc->target_reset_outstanding, 0);
retCode = SUCCESS;
goto return_status;
} else if (sc->adprecovery != MRSAS_HBA_OPERATIONAL) {
device_printf(sc->mrsas_dev, "Controller is not operational\n");
goto return_status;
} else {
/* Some more error checks will be added in future */
}
/* Get an mpt frame and an index to fire the TM cmd */
tm_mpt_cmd = mrsas_get_mpt_cmd(sc);
if (!tm_mpt_cmd) {
retCode = FAIL;
goto return_status;
}
req_desc = mrsas_get_request_desc(sc, (tm_mpt_cmd->index) - 1);
if (!req_desc) {
device_printf(sc->mrsas_dev, "Cannot get request_descriptor for tm.\n");
retCode = FAIL;
goto release_mpt;
}
memset(req_desc, 0, sizeof(MRSAS_REQUEST_DESCRIPTOR_UNION));
req_desc->HighPriority.SMID = tm_mpt_cmd->index;
req_desc->HighPriority.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY <<
MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
req_desc->HighPriority.MSIxIndex = 0;
req_desc->HighPriority.LMID = 0;
req_desc->HighPriority.Reserved1 = 0;
tm_mpt_cmd->request_desc = req_desc;
mr_request = (MR_TASK_MANAGE_REQUEST *) tm_mpt_cmd->io_request;
memset(mr_request, 0, sizeof(MR_TASK_MANAGE_REQUEST));
tm_mpi_request = (MPI2_SCSI_TASK_MANAGE_REQUEST *) &mr_request->TmRequest;
tm_mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
tm_mpi_request->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
tm_mpi_request->TaskMID = 0; /* smid task */
tm_mpi_request->LUN[1] = 0;
/* Traverse the tm_mpt pool to get valid entries */
for (i = 0 ; i < MRSAS_MAX_TM_TARGETS; i++) {
if(!sc->target_reset_pool[i]) {
continue;
} else {
tgt_mpt_cmd = sc->target_reset_pool[i];
}
tgt_id = i;
/* See if the target is tm capable or NOT */
if (!tgt_mpt_cmd->tmCapable) {
device_printf(sc->mrsas_dev, "Task management NOT SUPPORTED for "
"CAM target:%d\n", tgt_id);
retCode = FAIL;
goto release_mpt;
}
tm_mpi_request->DevHandle = tgt_mpt_cmd->io_request->DevHandle;
if (i < (MRSAS_MAX_PD - 1)) {
mr_request->uTmReqReply.tmReqFlags.isTMForPD = 1;
bus_id = 0;
} else {
mr_request->uTmReqReply.tmReqFlags.isTMForLD = 1;
bus_id = 1;
}
device_printf(sc->mrsas_dev, "TM will be fired for "
"CAM target:%d and bus_id %d\n", tgt_id, bus_id);
sc->ocr_chan = (void *)&tm_mpt_cmd;
retCode = mrsas_issue_tm(sc, req_desc);
if (retCode == FAIL)
goto release_mpt;
#if TM_DEBUG
mpi_reply =
(MPI2_SCSI_TASK_MANAGE_REPLY *) &mr_request->uTmReqReply.TMReply;
mrsas_tm_response_code(sc, mpi_reply);
#endif
mrsas_atomic_dec(&sc->target_reset_outstanding);
sc->target_reset_pool[i] = NULL;
/* Check for pending cmds in the mpt_cmd_pool with the tgt_id */
mrsas_disable_intr(sc);
/* Wait for 1 second to complete parallel ISR calling same
* mrsas_complete_cmd()
*/
msleep(&sc->ocr_chan, &sc->sim_lock, PRIBIO, "mrsas_reset_wakeup",
1 * hz);
count = sc->msix_vectors > 0 ? sc->msix_vectors : 1;
mtx_unlock(&sc->sim_lock);
for (MSIxIndex = 0; MSIxIndex < count; MSIxIndex++)
mrsas_complete_cmd(sc, MSIxIndex);
mtx_lock(&sc->sim_lock);
retCode = mrsas_track_scsiio(sc, tgt_id, bus_id);
mrsas_enable_intr(sc);
if (retCode == FAIL)
goto release_mpt;
}
device_printf(sc->mrsas_dev, "Number of targets outstanding "
"after reset: %d\n", mrsas_atomic_read(&sc->target_reset_outstanding));
release_mpt:
mrsas_release_mpt_cmd(tm_mpt_cmd);
return_status:
device_printf(sc->mrsas_dev, "target reset %s!!\n",
(retCode == SUCCESS) ? "SUCCESS" : "FAIL");
return retCode;
}