freebsd-skq/sys/geom/raid/md_intel.c
2020-09-01 22:14:09 +00:00

2715 lines
77 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
* Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <sys/disk.h>
#include <geom/geom.h>
#include <geom/geom_dbg.h>
#include "geom/raid/g_raid.h"
#include "g_raid_md_if.h"
static MALLOC_DEFINE(M_MD_INTEL, "md_intel_data", "GEOM_RAID Intel metadata");
struct intel_raid_map {
uint32_t offset;
uint32_t disk_sectors;
uint32_t stripe_count;
uint16_t strip_sectors;
uint8_t status;
#define INTEL_S_READY 0x00
#define INTEL_S_UNINITIALIZED 0x01
#define INTEL_S_DEGRADED 0x02
#define INTEL_S_FAILURE 0x03
uint8_t type;
#define INTEL_T_RAID0 0x00
#define INTEL_T_RAID1 0x01
#define INTEL_T_RAID5 0x05
uint8_t total_disks;
uint8_t total_domains;
uint8_t failed_disk_num;
uint8_t ddf;
uint32_t offset_hi;
uint32_t disk_sectors_hi;
uint32_t stripe_count_hi;
uint32_t filler_2[4];
uint32_t disk_idx[1]; /* total_disks entries. */
#define INTEL_DI_IDX 0x00ffffff
#define INTEL_DI_RBLD 0x01000000
} __packed;
struct intel_raid_vol {
uint8_t name[16];
u_int64_t total_sectors __packed;
uint32_t state;
#define INTEL_ST_BOOTABLE 0x00000001
#define INTEL_ST_BOOT_DEVICE 0x00000002
#define INTEL_ST_READ_COALESCING 0x00000004
#define INTEL_ST_WRITE_COALESCING 0x00000008
#define INTEL_ST_LAST_SHUTDOWN_DIRTY 0x00000010
#define INTEL_ST_HIDDEN_AT_BOOT 0x00000020
#define INTEL_ST_CURRENTLY_HIDDEN 0x00000040
#define INTEL_ST_VERIFY_AND_FIX 0x00000080
#define INTEL_ST_MAP_STATE_UNINIT 0x00000100
#define INTEL_ST_NO_AUTO_RECOVERY 0x00000200
#define INTEL_ST_CLONE_N_GO 0x00000400
#define INTEL_ST_CLONE_MAN_SYNC 0x00000800
#define INTEL_ST_CNG_MASTER_DISK_NUM 0x00001000
uint32_t reserved;
uint8_t migr_priority;
uint8_t num_sub_vols;
uint8_t tid;
uint8_t cng_master_disk;
uint16_t cache_policy;
uint8_t cng_state;
#define INTEL_CNGST_UPDATED 0
#define INTEL_CNGST_NEEDS_UPDATE 1
#define INTEL_CNGST_MASTER_MISSING 2
uint8_t cng_sub_state;
uint32_t filler_0[10];
uint32_t curr_migr_unit;
uint32_t checkpoint_id;
uint8_t migr_state;
uint8_t migr_type;
#define INTEL_MT_INIT 0
#define INTEL_MT_REBUILD 1
#define INTEL_MT_VERIFY 2
#define INTEL_MT_GEN_MIGR 3
#define INTEL_MT_STATE_CHANGE 4
#define INTEL_MT_REPAIR 5
uint8_t dirty;
uint8_t fs_state;
uint16_t verify_errors;
uint16_t bad_blocks;
uint32_t curr_migr_unit_hi;
uint32_t filler_1[3];
struct intel_raid_map map[1]; /* 2 entries if migr_state != 0. */
} __packed;
struct intel_raid_disk {
#define INTEL_SERIAL_LEN 16
uint8_t serial[INTEL_SERIAL_LEN];
uint32_t sectors;
uint32_t id;
uint32_t flags;
#define INTEL_F_SPARE 0x01
#define INTEL_F_ASSIGNED 0x02
#define INTEL_F_FAILED 0x04
#define INTEL_F_ONLINE 0x08
#define INTEL_F_DISABLED 0x80
uint32_t owner_cfg_num;
uint32_t sectors_hi;
uint32_t filler[3];
} __packed;
struct intel_raid_conf {
uint8_t intel_id[24];
#define INTEL_MAGIC "Intel Raid ISM Cfg Sig. "
uint8_t version[6];
#define INTEL_VERSION_1000 "1.0.00" /* RAID0 */
#define INTEL_VERSION_1100 "1.1.00" /* RAID1 */
#define INTEL_VERSION_1200 "1.2.00" /* Many volumes */
#define INTEL_VERSION_1201 "1.2.01" /* 3 or 4 disks */
#define INTEL_VERSION_1202 "1.2.02" /* RAID5 */
#define INTEL_VERSION_1204 "1.2.04" /* 5 or 6 disks */
#define INTEL_VERSION_1206 "1.2.06" /* CNG */
#define INTEL_VERSION_1300 "1.3.00" /* Attributes */
uint8_t dummy_0[2];
uint32_t checksum;
uint32_t config_size;
uint32_t config_id;
uint32_t generation;
uint32_t error_log_size;
uint32_t attributes;
#define INTEL_ATTR_RAID0 0x00000001
#define INTEL_ATTR_RAID1 0x00000002
#define INTEL_ATTR_RAID10 0x00000004
#define INTEL_ATTR_RAID1E 0x00000008
#define INTEL_ATTR_RAID5 0x00000010
#define INTEL_ATTR_RAIDCNG 0x00000020
#define INTEL_ATTR_EXT_STRIP 0x00000040
#define INTEL_ATTR_NVM_CACHE 0x02000000
#define INTEL_ATTR_2TB_DISK 0x04000000
#define INTEL_ATTR_BBM 0x08000000
#define INTEL_ATTR_NVM_CACHE2 0x10000000
#define INTEL_ATTR_2TB 0x20000000
#define INTEL_ATTR_PM 0x40000000
#define INTEL_ATTR_CHECKSUM 0x80000000
uint8_t total_disks;
uint8_t total_volumes;
uint8_t error_log_pos;
uint8_t dummy_2[1];
uint32_t cache_size;
uint32_t orig_config_id;
uint32_t pwr_cycle_count;
uint32_t bbm_log_size;
uint32_t filler_0[35];
struct intel_raid_disk disk[1]; /* total_disks entries. */
/* Here goes total_volumes of struct intel_raid_vol. */
} __packed;
#define INTEL_ATTR_SUPPORTED ( INTEL_ATTR_RAID0 | INTEL_ATTR_RAID1 | \
INTEL_ATTR_RAID10 | INTEL_ATTR_RAID1E | INTEL_ATTR_RAID5 | \
INTEL_ATTR_RAIDCNG | INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | \
INTEL_ATTR_2TB | INTEL_ATTR_PM | INTEL_ATTR_CHECKSUM )
#define INTEL_MAX_MD_SIZE(ndisks) \
(sizeof(struct intel_raid_conf) + \
sizeof(struct intel_raid_disk) * (ndisks - 1) + \
sizeof(struct intel_raid_vol) * 2 + \
sizeof(struct intel_raid_map) * 2 + \
sizeof(uint32_t) * (ndisks - 1) * 4)
struct g_raid_md_intel_perdisk {
struct intel_raid_conf *pd_meta;
int pd_disk_pos;
struct intel_raid_disk pd_disk_meta;
};
struct g_raid_md_intel_pervolume {
int pv_volume_pos;
int pv_cng;
int pv_cng_man_sync;
int pv_cng_master_disk;
};
struct g_raid_md_intel_object {
struct g_raid_md_object mdio_base;
uint32_t mdio_config_id;
uint32_t mdio_orig_config_id;
uint32_t mdio_generation;
struct intel_raid_conf *mdio_meta;
struct callout mdio_start_co; /* STARTING state timer. */
int mdio_disks_present;
int mdio_started;
int mdio_incomplete;
struct root_hold_token *mdio_rootmount; /* Root mount delay token. */
};
static g_raid_md_create_t g_raid_md_create_intel;
static g_raid_md_taste_t g_raid_md_taste_intel;
static g_raid_md_event_t g_raid_md_event_intel;
static g_raid_md_ctl_t g_raid_md_ctl_intel;
static g_raid_md_write_t g_raid_md_write_intel;
static g_raid_md_fail_disk_t g_raid_md_fail_disk_intel;
static g_raid_md_free_disk_t g_raid_md_free_disk_intel;
static g_raid_md_free_volume_t g_raid_md_free_volume_intel;
static g_raid_md_free_t g_raid_md_free_intel;
static kobj_method_t g_raid_md_intel_methods[] = {
KOBJMETHOD(g_raid_md_create, g_raid_md_create_intel),
KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_intel),
KOBJMETHOD(g_raid_md_event, g_raid_md_event_intel),
KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_intel),
KOBJMETHOD(g_raid_md_write, g_raid_md_write_intel),
KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_intel),
KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_intel),
KOBJMETHOD(g_raid_md_free_volume, g_raid_md_free_volume_intel),
KOBJMETHOD(g_raid_md_free, g_raid_md_free_intel),
{ 0, 0 }
};
static struct g_raid_md_class g_raid_md_intel_class = {
"Intel",
g_raid_md_intel_methods,
sizeof(struct g_raid_md_intel_object),
.mdc_enable = 1,
.mdc_priority = 100
};
static struct intel_raid_map *
intel_get_map(struct intel_raid_vol *mvol, int i)
{
struct intel_raid_map *mmap;
if (i > (mvol->migr_state ? 1 : 0))
return (NULL);
mmap = &mvol->map[0];
for (; i > 0; i--) {
mmap = (struct intel_raid_map *)
&mmap->disk_idx[mmap->total_disks];
}
return ((struct intel_raid_map *)mmap);
}
static struct intel_raid_vol *
intel_get_volume(struct intel_raid_conf *meta, int i)
{
struct intel_raid_vol *mvol;
struct intel_raid_map *mmap;
if (i > 1)
return (NULL);
mvol = (struct intel_raid_vol *)&meta->disk[meta->total_disks];
for (; i > 0; i--) {
mmap = intel_get_map(mvol, mvol->migr_state ? 1 : 0);
mvol = (struct intel_raid_vol *)
&mmap->disk_idx[mmap->total_disks];
}
return (mvol);
}
static off_t
intel_get_map_offset(struct intel_raid_map *mmap)
{
off_t offset = (off_t)mmap->offset_hi << 32;
offset += mmap->offset;
return (offset);
}
static void
intel_set_map_offset(struct intel_raid_map *mmap, off_t offset)
{
mmap->offset = offset & 0xffffffff;
mmap->offset_hi = offset >> 32;
}
static off_t
intel_get_map_disk_sectors(struct intel_raid_map *mmap)
{
off_t disk_sectors = (off_t)mmap->disk_sectors_hi << 32;
disk_sectors += mmap->disk_sectors;
return (disk_sectors);
}
static void
intel_set_map_disk_sectors(struct intel_raid_map *mmap, off_t disk_sectors)
{
mmap->disk_sectors = disk_sectors & 0xffffffff;
mmap->disk_sectors_hi = disk_sectors >> 32;
}
static void
intel_set_map_stripe_count(struct intel_raid_map *mmap, off_t stripe_count)
{
mmap->stripe_count = stripe_count & 0xffffffff;
mmap->stripe_count_hi = stripe_count >> 32;
}
static off_t
intel_get_disk_sectors(struct intel_raid_disk *disk)
{
off_t sectors = (off_t)disk->sectors_hi << 32;
sectors += disk->sectors;
return (sectors);
}
static void
intel_set_disk_sectors(struct intel_raid_disk *disk, off_t sectors)
{
disk->sectors = sectors & 0xffffffff;
disk->sectors_hi = sectors >> 32;
}
static off_t
intel_get_vol_curr_migr_unit(struct intel_raid_vol *vol)
{
off_t curr_migr_unit = (off_t)vol->curr_migr_unit_hi << 32;
curr_migr_unit += vol->curr_migr_unit;
return (curr_migr_unit);
}
static void
intel_set_vol_curr_migr_unit(struct intel_raid_vol *vol, off_t curr_migr_unit)
{
vol->curr_migr_unit = curr_migr_unit & 0xffffffff;
vol->curr_migr_unit_hi = curr_migr_unit >> 32;
}
static char *
intel_status2str(int status)
{
switch (status) {
case INTEL_S_READY:
return ("READY");
case INTEL_S_UNINITIALIZED:
return ("UNINITIALIZED");
case INTEL_S_DEGRADED:
return ("DEGRADED");
case INTEL_S_FAILURE:
return ("FAILURE");
default:
return ("UNKNOWN");
}
}
static char *
intel_type2str(int type)
{
switch (type) {
case INTEL_T_RAID0:
return ("RAID0");
case INTEL_T_RAID1:
return ("RAID1");
case INTEL_T_RAID5:
return ("RAID5");
default:
return ("UNKNOWN");
}
}
static char *
intel_cngst2str(int cng_state)
{
switch (cng_state) {
case INTEL_CNGST_UPDATED:
return ("UPDATED");
case INTEL_CNGST_NEEDS_UPDATE:
return ("NEEDS_UPDATE");
case INTEL_CNGST_MASTER_MISSING:
return ("MASTER_MISSING");
default:
return ("UNKNOWN");
}
}
static char *
intel_mt2str(int type)
{
switch (type) {
case INTEL_MT_INIT:
return ("INIT");
case INTEL_MT_REBUILD:
return ("REBUILD");
case INTEL_MT_VERIFY:
return ("VERIFY");
case INTEL_MT_GEN_MIGR:
return ("GEN_MIGR");
case INTEL_MT_STATE_CHANGE:
return ("STATE_CHANGE");
case INTEL_MT_REPAIR:
return ("REPAIR");
default:
return ("UNKNOWN");
}
}
static void
g_raid_md_intel_print(struct intel_raid_conf *meta)
{
struct intel_raid_vol *mvol;
struct intel_raid_map *mmap;
int i, j, k;
if (g_raid_debug < 1)
return;
printf("********* ATA Intel MatrixRAID Metadata *********\n");
printf("intel_id <%.24s>\n", meta->intel_id);
printf("version <%.6s>\n", meta->version);
printf("checksum 0x%08x\n", meta->checksum);
printf("config_size 0x%08x\n", meta->config_size);
printf("config_id 0x%08x\n", meta->config_id);
printf("generation 0x%08x\n", meta->generation);
printf("error_log_size %d\n", meta->error_log_size);
printf("attributes 0x%b\n", meta->attributes,
"\020"
"\001RAID0"
"\002RAID1"
"\003RAID10"
"\004RAID1E"
"\005RAID15"
"\006RAIDCNG"
"\007EXT_STRIP"
"\032NVM_CACHE"
"\0332TB_DISK"
"\034BBM"
"\035NVM_CACHE"
"\0362TB"
"\037PM"
"\040CHECKSUM");
printf("total_disks %u\n", meta->total_disks);
printf("total_volumes %u\n", meta->total_volumes);
printf("error_log_pos %u\n", meta->error_log_pos);
printf("cache_size %u\n", meta->cache_size);
printf("orig_config_id 0x%08x\n", meta->orig_config_id);
printf("pwr_cycle_count %u\n", meta->pwr_cycle_count);
printf("bbm_log_size %u\n", meta->bbm_log_size);
printf("Flags: S - Spare, A - Assigned, F - Failed, O - Online, D - Disabled\n");
printf("DISK# serial disk_sectors disk_sectors_hi disk_id flags owner\n");
for (i = 0; i < meta->total_disks; i++ ) {
printf(" %d <%.16s> %u %u 0x%08x 0x%b %08x\n", i,
meta->disk[i].serial, meta->disk[i].sectors,
meta->disk[i].sectors_hi, meta->disk[i].id,
meta->disk[i].flags, "\20\01S\02A\03F\04O\05D",
meta->disk[i].owner_cfg_num);
}
for (i = 0; i < meta->total_volumes; i++) {
mvol = intel_get_volume(meta, i);
printf(" ****** Volume %d ******\n", i);
printf(" name %.16s\n", mvol->name);
printf(" total_sectors %ju\n", mvol->total_sectors);
printf(" state 0x%b\n", mvol->state,
"\020"
"\001BOOTABLE"
"\002BOOT_DEVICE"
"\003READ_COALESCING"
"\004WRITE_COALESCING"
"\005LAST_SHUTDOWN_DIRTY"
"\006HIDDEN_AT_BOOT"
"\007CURRENTLY_HIDDEN"
"\010VERIFY_AND_FIX"
"\011MAP_STATE_UNINIT"
"\012NO_AUTO_RECOVERY"
"\013CLONE_N_GO"
"\014CLONE_MAN_SYNC"
"\015CNG_MASTER_DISK_NUM");
printf(" reserved %u\n", mvol->reserved);
printf(" migr_priority %u\n", mvol->migr_priority);
printf(" num_sub_vols %u\n", mvol->num_sub_vols);
printf(" tid %u\n", mvol->tid);
printf(" cng_master_disk %u\n", mvol->cng_master_disk);
printf(" cache_policy %u\n", mvol->cache_policy);
printf(" cng_state %u (%s)\n", mvol->cng_state,
intel_cngst2str(mvol->cng_state));
printf(" cng_sub_state %u\n", mvol->cng_sub_state);
printf(" curr_migr_unit %u\n", mvol->curr_migr_unit);
printf(" curr_migr_unit_hi %u\n", mvol->curr_migr_unit_hi);
printf(" checkpoint_id %u\n", mvol->checkpoint_id);
printf(" migr_state %u\n", mvol->migr_state);
printf(" migr_type %u (%s)\n", mvol->migr_type,
intel_mt2str(mvol->migr_type));
printf(" dirty %u\n", mvol->dirty);
printf(" fs_state %u\n", mvol->fs_state);
printf(" verify_errors %u\n", mvol->verify_errors);
printf(" bad_blocks %u\n", mvol->bad_blocks);
for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
printf(" *** Map %d ***\n", j);
mmap = intel_get_map(mvol, j);
printf(" offset %u\n", mmap->offset);
printf(" offset_hi %u\n", mmap->offset_hi);
printf(" disk_sectors %u\n", mmap->disk_sectors);
printf(" disk_sectors_hi %u\n", mmap->disk_sectors_hi);
printf(" stripe_count %u\n", mmap->stripe_count);
printf(" stripe_count_hi %u\n", mmap->stripe_count_hi);
printf(" strip_sectors %u\n", mmap->strip_sectors);
printf(" status %u (%s)\n", mmap->status,
intel_status2str(mmap->status));
printf(" type %u (%s)\n", mmap->type,
intel_type2str(mmap->type));
printf(" total_disks %u\n", mmap->total_disks);
printf(" total_domains %u\n", mmap->total_domains);
printf(" failed_disk_num %u\n", mmap->failed_disk_num);
printf(" ddf %u\n", mmap->ddf);
printf(" disk_idx ");
for (k = 0; k < mmap->total_disks; k++)
printf(" 0x%08x", mmap->disk_idx[k]);
printf("\n");
}
}
printf("=================================================\n");
}
static struct intel_raid_conf *
intel_meta_copy(struct intel_raid_conf *meta)
{
struct intel_raid_conf *nmeta;
nmeta = malloc(meta->config_size, M_MD_INTEL, M_WAITOK);
memcpy(nmeta, meta, meta->config_size);
return (nmeta);
}
static int
intel_meta_find_disk(struct intel_raid_conf *meta, char *serial)
{
int pos;
for (pos = 0; pos < meta->total_disks; pos++) {
if (strncmp(meta->disk[pos].serial,
serial, INTEL_SERIAL_LEN) == 0)
return (pos);
}
return (-1);
}
static struct intel_raid_conf *
intel_meta_read(struct g_consumer *cp)
{
struct g_provider *pp;
struct intel_raid_conf *meta;
struct intel_raid_vol *mvol;
struct intel_raid_map *mmap, *mmap1;
char *buf;
int error, i, j, k, left, size;
uint32_t checksum, *ptr;
pp = cp->provider;
/* Read the anchor sector. */
buf = g_read_data(cp,
pp->mediasize - pp->sectorsize * 2, pp->sectorsize, &error);
if (buf == NULL) {
G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
pp->name, error);
return (NULL);
}
meta = (struct intel_raid_conf *)buf;
/* Check if this is an Intel RAID struct */
if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
G_RAID_DEBUG(1, "Intel signature check failed on %s", pp->name);
g_free(buf);
return (NULL);
}
if (meta->config_size > 65536 ||
meta->config_size < sizeof(struct intel_raid_conf)) {
G_RAID_DEBUG(1, "Intel metadata size looks wrong: %d",
meta->config_size);
g_free(buf);
return (NULL);
}
size = meta->config_size;
meta = malloc(size, M_MD_INTEL, M_WAITOK);
memcpy(meta, buf, min(size, pp->sectorsize));
g_free(buf);
/* Read all the rest, if needed. */
if (meta->config_size > pp->sectorsize) {
left = (meta->config_size - 1) / pp->sectorsize;
buf = g_read_data(cp,
pp->mediasize - pp->sectorsize * (2 + left),
pp->sectorsize * left, &error);
if (buf == NULL) {
G_RAID_DEBUG(1, "Cannot read remaining metadata"
" part from %s (error=%d).",
pp->name, error);
free(meta, M_MD_INTEL);
return (NULL);
}
memcpy(((char *)meta) + pp->sectorsize, buf,
pp->sectorsize * left);
g_free(buf);
}
/* Check metadata checksum. */
for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
i < (meta->config_size / sizeof(uint32_t)); i++) {
checksum += *ptr++;
}
checksum -= meta->checksum;
if (checksum != meta->checksum) {
G_RAID_DEBUG(1, "Intel checksum check failed on %s", pp->name);
free(meta, M_MD_INTEL);
return (NULL);
}
/* Validate metadata size. */
size = sizeof(struct intel_raid_conf) +
sizeof(struct intel_raid_disk) * (meta->total_disks - 1) +
sizeof(struct intel_raid_vol) * meta->total_volumes;
if (size > meta->config_size) {
badsize:
G_RAID_DEBUG(1, "Intel metadata size incorrect %d < %d",
meta->config_size, size);
free(meta, M_MD_INTEL);
return (NULL);
}
for (i = 0; i < meta->total_volumes; i++) {
mvol = intel_get_volume(meta, i);
mmap = intel_get_map(mvol, 0);
size += 4 * (mmap->total_disks - 1);
if (size > meta->config_size)
goto badsize;
if (mvol->migr_state) {
size += sizeof(struct intel_raid_map);
if (size > meta->config_size)
goto badsize;
mmap = intel_get_map(mvol, 1);
size += 4 * (mmap->total_disks - 1);
if (size > meta->config_size)
goto badsize;
}
}
g_raid_md_intel_print(meta);
if (strncmp(meta->version, INTEL_VERSION_1300, 6) > 0) {
G_RAID_DEBUG(1, "Intel unsupported version: '%.6s'",
meta->version);
free(meta, M_MD_INTEL);
return (NULL);
}
if (strncmp(meta->version, INTEL_VERSION_1300, 6) >= 0 &&
(meta->attributes & ~INTEL_ATTR_SUPPORTED) != 0) {
G_RAID_DEBUG(1, "Intel unsupported attributes: 0x%08x",
meta->attributes & ~INTEL_ATTR_SUPPORTED);
free(meta, M_MD_INTEL);
return (NULL);
}
/* Validate disk indexes. */
for (i = 0; i < meta->total_volumes; i++) {
mvol = intel_get_volume(meta, i);
for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
mmap = intel_get_map(mvol, j);
for (k = 0; k < mmap->total_disks; k++) {
if ((mmap->disk_idx[k] & INTEL_DI_IDX) >
meta->total_disks) {
G_RAID_DEBUG(1, "Intel metadata disk"
" index %d too big (>%d)",
mmap->disk_idx[k] & INTEL_DI_IDX,
meta->total_disks);
free(meta, M_MD_INTEL);
return (NULL);
}
}
}
}
/* Validate migration types. */
for (i = 0; i < meta->total_volumes; i++) {
mvol = intel_get_volume(meta, i);
/* Deny unknown migration types. */
if (mvol->migr_state &&
mvol->migr_type != INTEL_MT_INIT &&
mvol->migr_type != INTEL_MT_REBUILD &&
mvol->migr_type != INTEL_MT_VERIFY &&
mvol->migr_type != INTEL_MT_GEN_MIGR &&
mvol->migr_type != INTEL_MT_REPAIR) {
G_RAID_DEBUG(1, "Intel metadata has unsupported"
" migration type %d", mvol->migr_type);
free(meta, M_MD_INTEL);
return (NULL);
}
/* Deny general migrations except SINGLE->RAID1. */
if (mvol->migr_state &&
mvol->migr_type == INTEL_MT_GEN_MIGR) {
mmap = intel_get_map(mvol, 0);
mmap1 = intel_get_map(mvol, 1);
if (mmap1->total_disks != 1 ||
mmap->type != INTEL_T_RAID1 ||
mmap->total_disks != 2 ||
mmap->offset != mmap1->offset ||
mmap->disk_sectors != mmap1->disk_sectors ||
mmap->total_domains != mmap->total_disks ||
mmap->offset_hi != mmap1->offset_hi ||
mmap->disk_sectors_hi != mmap1->disk_sectors_hi ||
(mmap->disk_idx[0] != mmap1->disk_idx[0] &&
mmap->disk_idx[0] != mmap1->disk_idx[1])) {
G_RAID_DEBUG(1, "Intel metadata has unsupported"
" variant of general migration");
free(meta, M_MD_INTEL);
return (NULL);
}
}
}
return (meta);
}
static int
intel_meta_write(struct g_consumer *cp, struct intel_raid_conf *meta)
{
struct g_provider *pp;
char *buf;
int error, i, sectors;
uint32_t checksum, *ptr;
pp = cp->provider;
/* Recalculate checksum for case if metadata were changed. */
meta->checksum = 0;
for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
i < (meta->config_size / sizeof(uint32_t)); i++) {
checksum += *ptr++;
}
meta->checksum = checksum;
/* Create and fill buffer. */
sectors = howmany(meta->config_size, pp->sectorsize);
buf = malloc(sectors * pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
if (sectors > 1) {
memcpy(buf, ((char *)meta) + pp->sectorsize,
(sectors - 1) * pp->sectorsize);
}
memcpy(buf + (sectors - 1) * pp->sectorsize, meta, pp->sectorsize);
error = g_write_data(cp,
pp->mediasize - pp->sectorsize * (1 + sectors),
buf, pp->sectorsize * sectors);
if (error != 0) {
G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
pp->name, error);
}
free(buf, M_MD_INTEL);
return (error);
}
static int
intel_meta_erase(struct g_consumer *cp)
{
struct g_provider *pp;
char *buf;
int error;
pp = cp->provider;
buf = malloc(pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
error = g_write_data(cp,
pp->mediasize - 2 * pp->sectorsize,
buf, pp->sectorsize);
if (error != 0) {
G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
pp->name, error);
}
free(buf, M_MD_INTEL);
return (error);
}
static int
intel_meta_write_spare(struct g_consumer *cp, struct intel_raid_disk *d)
{
struct intel_raid_conf *meta;
int error;
/* Fill anchor and single disk. */
meta = malloc(INTEL_MAX_MD_SIZE(1), M_MD_INTEL, M_WAITOK | M_ZERO);
memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
memcpy(&meta->version[0], INTEL_VERSION_1000,
sizeof(INTEL_VERSION_1000) - 1);
meta->config_size = INTEL_MAX_MD_SIZE(1);
meta->config_id = meta->orig_config_id = arc4random();
meta->generation = 1;
meta->total_disks = 1;
meta->disk[0] = *d;
error = intel_meta_write(cp, meta);
free(meta, M_MD_INTEL);
return (error);
}
static struct g_raid_disk *
g_raid_md_intel_get_disk(struct g_raid_softc *sc, int id)
{
struct g_raid_disk *disk;
struct g_raid_md_intel_perdisk *pd;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
if (pd->pd_disk_pos == id)
break;
}
return (disk);
}
static int
g_raid_md_intel_supported(int level, int qual, int disks, int force)
{
switch (level) {
case G_RAID_VOLUME_RL_RAID0:
if (disks < 1)
return (0);
if (!force && (disks < 2 || disks > 6))
return (0);
break;
case G_RAID_VOLUME_RL_RAID1:
if (disks < 1)
return (0);
if (!force && (disks != 2))
return (0);
break;
case G_RAID_VOLUME_RL_RAID1E:
if (disks < 2)
return (0);
if (!force && (disks != 4))
return (0);
break;
case G_RAID_VOLUME_RL_RAID5:
if (disks < 3)
return (0);
if (!force && disks > 6)
return (0);
if (qual != G_RAID_VOLUME_RLQ_R5LA)
return (0);
break;
default:
return (0);
}
if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE)
return (0);
return (1);
}
static struct g_raid_volume *
g_raid_md_intel_get_volume(struct g_raid_softc *sc, int id)
{
struct g_raid_volume *mvol;
struct g_raid_md_intel_pervolume *pv;
TAILQ_FOREACH(mvol, &sc->sc_volumes, v_next) {
pv = mvol->v_md_data;
if (pv->pv_volume_pos == id)
break;
}
return (mvol);
}
static int
g_raid_md_intel_start_disk(struct g_raid_disk *disk)
{
struct g_raid_softc *sc;
struct g_raid_subdisk *sd, *tmpsd;
struct g_raid_disk *olddisk, *tmpdisk;
struct g_raid_md_object *md;
struct g_raid_md_intel_object *mdi;
struct g_raid_md_intel_pervolume *pv;
struct g_raid_md_intel_perdisk *pd, *oldpd;
struct intel_raid_conf *meta;
struct intel_raid_vol *mvol;
struct intel_raid_map *mmap0, *mmap1;
int disk_pos, resurrection = 0, migr_global, i;
sc = disk->d_softc;
md = sc->sc_md;
mdi = (struct g_raid_md_intel_object *)md;
meta = mdi->mdio_meta;
pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
olddisk = NULL;
/* Find disk position in metadata by its serial. */
disk_pos = intel_meta_find_disk(meta, pd->pd_disk_meta.serial);
if (disk_pos < 0) {
G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk");
/* Failed stale disk is useless for us. */
if ((pd->pd_disk_meta.flags & INTEL_F_FAILED) &&
!(pd->pd_disk_meta.flags & INTEL_F_DISABLED)) {
g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
return (0);
}
/* If we are in the start process, that's all for now. */
if (!mdi->mdio_started)
goto nofit;
/*
* If we have already started - try to get use of the disk.
* Try to replace OFFLINE disks first, then FAILED.
*/
TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) {
if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE &&
tmpdisk->d_state != G_RAID_DISK_S_FAILED)
continue;
/* Make sure this disk is big enough. */
TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) {
off_t disk_sectors =
intel_get_disk_sectors(&pd->pd_disk_meta);
if (sd->sd_offset + sd->sd_size + 4096 >
disk_sectors * 512) {
G_RAID_DEBUG1(1, sc,
"Disk too small (%llu < %llu)",
(unsigned long long)
disk_sectors * 512,
(unsigned long long)
sd->sd_offset + sd->sd_size + 4096);
break;
}
}
if (sd != NULL)
continue;
if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) {
olddisk = tmpdisk;
break;
} else if (olddisk == NULL)
olddisk = tmpdisk;
}
if (olddisk == NULL) {
nofit:
if (pd->pd_disk_meta.flags & INTEL_F_SPARE) {
g_raid_change_disk_state(disk,
G_RAID_DISK_S_SPARE);
return (1);
} else {
g_raid_change_disk_state(disk,
G_RAID_DISK_S_STALE);
return (0);
}
}
oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
disk_pos = oldpd->pd_disk_pos;
resurrection = 1;
}
if (olddisk == NULL) {
/* Find placeholder by position. */
olddisk = g_raid_md_intel_get_disk(sc, disk_pos);
if (olddisk == NULL)
panic("No disk at position %d!", disk_pos);
if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) {
G_RAID_DEBUG1(1, sc, "More than one disk for pos %d",
disk_pos);
g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE);
return (0);
}
oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
}
/* Replace failed disk or placeholder with new disk. */
TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) {
TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next);
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
sd->sd_disk = disk;
}
oldpd->pd_disk_pos = -2;
pd->pd_disk_pos = disk_pos;
/* If it was placeholder -- destroy it. */
if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) {
g_raid_destroy_disk(olddisk);
} else {
/* Otherwise, make it STALE_FAILED. */
g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED);
/* Update global metadata just in case. */
memcpy(&meta->disk[disk_pos], &pd->pd_disk_meta,
sizeof(struct intel_raid_disk));
}
/* Welcome the new disk. */
if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) &&
!(pd->pd_disk_meta.flags & INTEL_F_SPARE))
g_raid_change_disk_state(disk, G_RAID_DISK_S_DISABLED);
else if (resurrection)
g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
else if (meta->disk[disk_pos].flags & INTEL_F_FAILED)
g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
else if (meta->disk[disk_pos].flags & INTEL_F_SPARE)
g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
else
g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
pv = sd->sd_volume->v_md_data;
mvol = intel_get_volume(meta, pv->pv_volume_pos);
mmap0 = intel_get_map(mvol, 0);
if (mvol->migr_state)
mmap1 = intel_get_map(mvol, 1);
else
mmap1 = mmap0;
migr_global = 1;
for (i = 0; i < mmap0->total_disks; i++) {
if ((mmap0->disk_idx[i] & INTEL_DI_RBLD) == 0 &&
(mmap1->disk_idx[i] & INTEL_DI_RBLD) != 0)
migr_global = 0;
}
if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) &&
!(pd->pd_disk_meta.flags & INTEL_F_SPARE)) {
/* Disabled disk, useless. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NONE);
} else if (resurrection) {
/* Stale disk, almost same as new. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NEW);
} else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) {
/* Failed disk, almost useless. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_FAILED);
} else if (mvol->migr_state == 0) {
if (mmap0->status == INTEL_S_UNINITIALIZED &&
(!pv->pv_cng || pv->pv_cng_master_disk != disk_pos)) {
/* Freshly created uninitialized volume. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_UNINITIALIZED);
} else if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
/* Freshly inserted disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NEW);
} else if (mvol->dirty && (!pv->pv_cng ||
pv->pv_cng_master_disk != disk_pos)) {
/* Dirty volume (unclean shutdown). */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_STALE);
} else {
/* Up to date disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_ACTIVE);
}
} else if (mvol->migr_type == INTEL_MT_INIT ||
mvol->migr_type == INTEL_MT_REBUILD) {
if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
/* Freshly inserted disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NEW);
} else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
/* Rebuilding disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_REBUILD);
if (mvol->dirty) {
sd->sd_rebuild_pos = 0;
} else {
sd->sd_rebuild_pos =
intel_get_vol_curr_migr_unit(mvol) *
sd->sd_volume->v_strip_size *
mmap0->total_domains;
}
} else if (mvol->migr_type == INTEL_MT_INIT &&
migr_global) {
/* Freshly created uninitialized volume. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_UNINITIALIZED);
} else if (mvol->dirty && (!pv->pv_cng ||
pv->pv_cng_master_disk != disk_pos)) {
/* Dirty volume (unclean shutdown). */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_STALE);
} else {
/* Up to date disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_ACTIVE);
}
} else if (mvol->migr_type == INTEL_MT_VERIFY ||
mvol->migr_type == INTEL_MT_REPAIR) {
if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
/* Freshly inserted disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NEW);
} else if ((mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) ||
migr_global) {
/* Resyncing disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_RESYNC);
if (mvol->dirty) {
sd->sd_rebuild_pos = 0;
} else {
sd->sd_rebuild_pos =
intel_get_vol_curr_migr_unit(mvol) *
sd->sd_volume->v_strip_size *
mmap0->total_domains;
}
} else if (mvol->dirty) {
/* Dirty volume (unclean shutdown). */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_STALE);
} else {
/* Up to date disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_ACTIVE);
}
} else if (mvol->migr_type == INTEL_MT_GEN_MIGR) {
if ((mmap1->disk_idx[0] & INTEL_DI_IDX) != disk_pos) {
/* Freshly inserted disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NEW);
} else {
/* Up to date disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_ACTIVE);
}
}
g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
G_RAID_EVENT_SUBDISK);
}
/* Update status of our need for spare. */
if (mdi->mdio_started) {
mdi->mdio_incomplete =
(g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) <
meta->total_disks);
}
return (resurrection);
}
static void
g_disk_md_intel_retaste(void *arg, int pending)
{
G_RAID_DEBUG(1, "Array is not complete, trying to retaste.");
g_retaste(&g_raid_class);
free(arg, M_MD_INTEL);
}
static void
g_raid_md_intel_refill(struct g_raid_softc *sc)
{
struct g_raid_md_object *md;
struct g_raid_md_intel_object *mdi;
struct intel_raid_conf *meta;
struct g_raid_disk *disk;
struct task *task;
int update, na;
md = sc->sc_md;
mdi = (struct g_raid_md_intel_object *)md;
meta = mdi->mdio_meta;
update = 0;
do {
/* Make sure we miss anything. */
na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED);
if (na == meta->total_disks)
break;
G_RAID_DEBUG1(1, md->mdo_softc,
"Array is not complete (%d of %d), "
"trying to refill.", na, meta->total_disks);
/* Try to get use some of STALE disks. */
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_RAID_DISK_S_STALE) {
update += g_raid_md_intel_start_disk(disk);
if (disk->d_state == G_RAID_DISK_S_ACTIVE ||
disk->d_state == G_RAID_DISK_S_DISABLED)
break;
}
}
if (disk != NULL)
continue;
/* Try to get use some of SPARE disks. */
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_RAID_DISK_S_SPARE) {
update += g_raid_md_intel_start_disk(disk);
if (disk->d_state == G_RAID_DISK_S_ACTIVE)
break;
}
}
} while (disk != NULL);
/* Write new metadata if we changed something. */
if (update) {
g_raid_md_write_intel(md, NULL, NULL, NULL);
meta = mdi->mdio_meta;
}
/* Update status of our need for spare. */
mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) < meta->total_disks);
/* Request retaste hoping to find spare. */
if (mdi->mdio_incomplete) {
task = malloc(sizeof(struct task),
M_MD_INTEL, M_WAITOK | M_ZERO);
TASK_INIT(task, 0, g_disk_md_intel_retaste, task);
taskqueue_enqueue(taskqueue_swi, task);
}
}
static void
g_raid_md_intel_start(struct g_raid_softc *sc)
{
struct g_raid_md_object *md;
struct g_raid_md_intel_object *mdi;
struct g_raid_md_intel_pervolume *pv;
struct g_raid_md_intel_perdisk *pd;
struct intel_raid_conf *meta;
struct intel_raid_vol *mvol;
struct intel_raid_map *mmap;
struct g_raid_volume *vol;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk;
int i, j, disk_pos;
md = sc->sc_md;
mdi = (struct g_raid_md_intel_object *)md;
meta = mdi->mdio_meta;
/* Create volumes and subdisks. */
for (i = 0; i < meta->total_volumes; i++) {
mvol = intel_get_volume(meta, i);
mmap = intel_get_map(mvol, 0);
vol = g_raid_create_volume(sc, mvol->name, mvol->tid - 1);
pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
pv->pv_volume_pos = i;
pv->pv_cng = (mvol->state & INTEL_ST_CLONE_N_GO) != 0;
pv->pv_cng_man_sync = (mvol->state & INTEL_ST_CLONE_MAN_SYNC) != 0;
if (mvol->cng_master_disk < mmap->total_disks)
pv->pv_cng_master_disk = mvol->cng_master_disk;
vol->v_md_data = pv;
vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
if (mmap->type == INTEL_T_RAID0)
vol->v_raid_level = G_RAID_VOLUME_RL_RAID0;
else if (mmap->type == INTEL_T_RAID1 &&
mmap->total_domains >= 2 &&
mmap->total_domains <= mmap->total_disks) {
/* Assume total_domains is correct. */
if (mmap->total_domains == mmap->total_disks)
vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
else
vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
} else if (mmap->type == INTEL_T_RAID1) {
/* total_domains looks wrong. */
if (mmap->total_disks <= 2)
vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
else
vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
} else if (mmap->type == INTEL_T_RAID5) {
vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA;
} else
vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
vol->v_strip_size = (u_int)mmap->strip_sectors * 512; //ZZZ
vol->v_disks_count = mmap->total_disks;
vol->v_mediasize = (off_t)mvol->total_sectors * 512; //ZZZ
vol->v_sectorsize = 512; //ZZZ
for (j = 0; j < vol->v_disks_count; j++) {
sd = &vol->v_subdisks[j];
sd->sd_offset = intel_get_map_offset(mmap) * 512; //ZZZ
sd->sd_size = intel_get_map_disk_sectors(mmap) * 512; //ZZZ
}
g_raid_start_volume(vol);
}
/* Create disk placeholders to store data for later writing. */
for (disk_pos = 0; disk_pos < meta->total_disks; disk_pos++) {
pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
pd->pd_disk_pos = disk_pos;
pd->pd_disk_meta = meta->disk[disk_pos];
disk = g_raid_create_disk(sc);
disk->d_md_data = (void *)pd;
disk->d_state = G_RAID_DISK_S_OFFLINE;
for (i = 0; i < meta->total_volumes; i++) {
mvol = intel_get_volume(meta, i);
mmap = intel_get_map(mvol, 0);
for (j = 0; j < mmap->total_disks; j++) {
if ((mmap->disk_idx[j] & INTEL_DI_IDX) == disk_pos)
break;
}
if (j == mmap->total_disks)
continue;
vol = g_raid_md_intel_get_volume(sc, i);
sd = &vol->v_subdisks[j];
sd->sd_disk = disk;
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
}
}
/* Make all disks found till the moment take their places. */
do {
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_RAID_DISK_S_NONE) {
g_raid_md_intel_start_disk(disk);
break;
}
}
} while (disk != NULL);
mdi->mdio_started = 1;
G_RAID_DEBUG1(0, sc, "Array started.");
g_raid_md_write_intel(md, NULL, NULL, NULL);
/* Pickup any STALE/SPARE disks to refill array if needed. */
g_raid_md_intel_refill(sc);
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
g_raid_event_send(vol, G_RAID_VOLUME_E_START,
G_RAID_EVENT_VOLUME);
}
callout_stop(&mdi->mdio_start_co);
G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount);
root_mount_rel(mdi->mdio_rootmount);
mdi->mdio_rootmount = NULL;
}
static void
g_raid_md_intel_new_disk(struct g_raid_disk *disk)
{
struct g_raid_softc *sc;
struct g_raid_md_object *md;
struct g_raid_md_intel_object *mdi;
struct intel_raid_conf *pdmeta;
struct g_raid_md_intel_perdisk *pd;
sc = disk->d_softc;
md = sc->sc_md;
mdi = (struct g_raid_md_intel_object *)md;
pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
pdmeta = pd->pd_meta;
if (mdi->mdio_started) {
if (g_raid_md_intel_start_disk(disk))
g_raid_md_write_intel(md, NULL, NULL, NULL);
} else {
/* If we haven't started yet - check metadata freshness. */
if (mdi->mdio_meta == NULL ||
((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) {
G_RAID_DEBUG1(1, sc, "Newer disk");
if (mdi->mdio_meta != NULL)
free(mdi->mdio_meta, M_MD_INTEL);
mdi->mdio_meta = intel_meta_copy(pdmeta);
mdi->mdio_generation = mdi->mdio_meta->generation;
mdi->mdio_disks_present = 1;
} else if (pdmeta->generation == mdi->mdio_generation) {
mdi->mdio_disks_present++;
G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)",
mdi->mdio_disks_present,
mdi->mdio_meta->total_disks);
} else {
G_RAID_DEBUG1(1, sc, "Older disk");
}
/* If we collected all needed disks - start array. */
if (mdi->mdio_disks_present == mdi->mdio_meta->total_disks)
g_raid_md_intel_start(sc);
}
}
static void
g_raid_intel_go(void *arg)
{
struct g_raid_softc *sc;
struct g_raid_md_object *md;
struct g_raid_md_intel_object *mdi;
sc = arg;
md = sc->sc_md;
mdi = (struct g_raid_md_intel_object *)md;
if (!mdi->mdio_started) {
G_RAID_DEBUG1(0, sc, "Force array start due to timeout.");
g_raid_event_send(sc, G_RAID_NODE_E_START, 0);
}
}
static int
g_raid_md_create_intel(struct g_raid_md_object *md, struct g_class *mp,
struct g_geom **gp)
{
struct g_raid_softc *sc;
struct g_raid_md_intel_object *mdi;
char name[16];
mdi = (struct g_raid_md_intel_object *)md;
mdi->mdio_config_id = mdi->mdio_orig_config_id = arc4random();
mdi->mdio_generation = 0;
snprintf(name, sizeof(name), "Intel-%08x", mdi->mdio_config_id);
sc = g_raid_create_node(mp, name, md);
if (sc == NULL)
return (G_RAID_MD_TASTE_FAIL);
md->mdo_softc = sc;
*gp = sc->sc_geom;
return (G_RAID_MD_TASTE_NEW);
}
/*
* Return the last N characters of the serial label. The Linux and
* ataraid(7) code always uses the last 16 characters of the label to
* store into the Intel meta format. Generalize this to N characters
* since that's easy. Labels can be up to 20 characters for SATA drives
* and up 251 characters for SAS drives. Since intel controllers don't
* support SAS drives, just stick with the SATA limits for stack friendliness.
*/
static int
g_raid_md_get_label(struct g_consumer *cp, char *serial, int serlen)
{
char serial_buffer[DISK_IDENT_SIZE];
int len, error;
len = sizeof(serial_buffer);
error = g_io_getattr("GEOM::ident", cp, &len, serial_buffer);
if (error != 0)
return (error);
len = strlen(serial_buffer);
if (len > serlen)
len -= serlen;
else
len = 0;
strncpy(serial, serial_buffer + len, serlen);
return (0);
}
static int
g_raid_md_taste_intel(struct g_raid_md_object *md, struct g_class *mp,
struct g_consumer *cp, struct g_geom **gp)
{
struct g_consumer *rcp;
struct g_provider *pp;
struct g_raid_md_intel_object *mdi, *mdi1;
struct g_raid_softc *sc;
struct g_raid_disk *disk;
struct intel_raid_conf *meta;
struct g_raid_md_intel_perdisk *pd;
struct g_geom *geom;
int error, disk_pos, result, spare, len;
char serial[INTEL_SERIAL_LEN];
char name[16];
uint16_t vendor;
G_RAID_DEBUG(1, "Tasting Intel on %s", cp->provider->name);
mdi = (struct g_raid_md_intel_object *)md;
pp = cp->provider;
/* Read metadata from device. */
meta = NULL;
disk_pos = 0;
g_topology_unlock();
error = g_raid_md_get_label(cp, serial, sizeof(serial));
if (error != 0) {
G_RAID_DEBUG(1, "Cannot get serial number from %s (error=%d).",
pp->name, error);
goto fail2;
}
vendor = 0xffff;
len = sizeof(vendor);
if (pp->geom->rank == 1)
g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor);
meta = intel_meta_read(cp);
g_topology_lock();
if (meta == NULL) {
if (g_raid_aggressive_spare) {
if (vendor != 0x8086) {
G_RAID_DEBUG(1,
"Intel vendor mismatch 0x%04x != 0x8086",
vendor);
} else {
G_RAID_DEBUG(1,
"No Intel metadata, forcing spare.");
spare = 2;
goto search;
}
}
return (G_RAID_MD_TASTE_FAIL);
}
/* Check this disk position in obtained metadata. */
disk_pos = intel_meta_find_disk(meta, serial);
if (disk_pos < 0) {
G_RAID_DEBUG(1, "Intel serial '%s' not found", serial);
goto fail1;
}
if (intel_get_disk_sectors(&meta->disk[disk_pos]) !=
(pp->mediasize / pp->sectorsize)) {
G_RAID_DEBUG(1, "Intel size mismatch %ju != %ju",
intel_get_disk_sectors(&meta->disk[disk_pos]),
(off_t)(pp->mediasize / pp->sectorsize));
goto fail1;
}
G_RAID_DEBUG(1, "Intel disk position %d", disk_pos);
spare = meta->disk[disk_pos].flags & INTEL_F_SPARE;
search:
/* Search for matching node. */
sc = NULL;
mdi1 = NULL;
LIST_FOREACH(geom, &mp->geom, geom) {
sc = geom->softc;
if (sc == NULL)
continue;
if (sc->sc_stopping != 0)
continue;
if (sc->sc_md->mdo_class != md->mdo_class)
continue;
mdi1 = (struct g_raid_md_intel_object *)sc->sc_md;
if (spare) {
if (mdi1->mdio_incomplete)
break;
} else {
if (mdi1->mdio_config_id == meta->config_id)
break;
}
}
/* Found matching node. */
if (geom != NULL) {
G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
result = G_RAID_MD_TASTE_EXISTING;
} else if (spare) { /* Not found needy node -- left for later. */
G_RAID_DEBUG(1, "Spare is not needed at this time");
goto fail1;
} else { /* Not found matching node -- create one. */
result = G_RAID_MD_TASTE_NEW;
mdi->mdio_config_id = meta->config_id;
mdi->mdio_orig_config_id = meta->orig_config_id;
snprintf(name, sizeof(name), "Intel-%08x", meta->config_id);
sc = g_raid_create_node(mp, name, md);
md->mdo_softc = sc;
geom = sc->sc_geom;
callout_init(&mdi->mdio_start_co, 1);
callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz,
g_raid_intel_go, sc);
mdi->mdio_rootmount = root_mount_hold("GRAID-Intel");
G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount);
}
/* There is no return after this point, so we close passed consumer. */
g_access(cp, -1, 0, 0);
rcp = g_new_consumer(geom);
rcp->flags |= G_CF_DIRECT_RECEIVE;
g_attach(rcp, pp);
if (g_access(rcp, 1, 1, 1) != 0)
; //goto fail1;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
pd->pd_meta = meta;
pd->pd_disk_pos = -1;
if (spare == 2) {
memcpy(&pd->pd_disk_meta.serial[0], serial, INTEL_SERIAL_LEN);
intel_set_disk_sectors(&pd->pd_disk_meta,
pp->mediasize / pp->sectorsize);
pd->pd_disk_meta.id = 0;
pd->pd_disk_meta.flags = INTEL_F_SPARE;
} else {
pd->pd_disk_meta = meta->disk[disk_pos];
}
disk = g_raid_create_disk(sc);
disk->d_md_data = (void *)pd;
disk->d_consumer = rcp;
rcp->private = disk;
g_raid_get_disk_info(disk);
g_raid_md_intel_new_disk(disk);
sx_xunlock(&sc->sc_lock);
g_topology_lock();
*gp = geom;
return (result);
fail2:
g_topology_lock();
fail1:
free(meta, M_MD_INTEL);
return (G_RAID_MD_TASTE_FAIL);
}
static int
g_raid_md_event_intel(struct g_raid_md_object *md,
struct g_raid_disk *disk, u_int event)
{
struct g_raid_softc *sc;
struct g_raid_subdisk *sd;
struct g_raid_md_intel_object *mdi;
struct g_raid_md_intel_perdisk *pd;
sc = md->mdo_softc;
mdi = (struct g_raid_md_intel_object *)md;
if (disk == NULL) {
switch (event) {
case G_RAID_NODE_E_START:
if (!mdi->mdio_started)
g_raid_md_intel_start(sc);
return (0);
}
return (-1);
}
pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
switch (event) {
case G_RAID_DISK_E_DISCONNECTED:
/* If disk was assigned, just update statuses. */
if (pd->pd_disk_pos >= 0) {
g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
if (disk->d_consumer) {
g_raid_kill_consumer(sc, disk->d_consumer);
disk->d_consumer = NULL;
}
TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NONE);
g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
G_RAID_EVENT_SUBDISK);
}
} else {
/* Otherwise -- delete. */
g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
g_raid_destroy_disk(disk);
}
/* Write updated metadata to all disks. */
g_raid_md_write_intel(md, NULL, NULL, NULL);
/* Check if anything left except placeholders. */
if (g_raid_ndisks(sc, -1) ==
g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
g_raid_destroy_node(sc, 0);
else
g_raid_md_intel_refill(sc);
return (0);
}
return (-2);
}
static int
g_raid_md_ctl_intel(struct g_raid_md_object *md,
struct gctl_req *req)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol, *vol1;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk;
struct g_raid_md_intel_object *mdi;
struct g_raid_md_intel_pervolume *pv;
struct g_raid_md_intel_perdisk *pd;
struct g_consumer *cp;
struct g_provider *pp;
char arg[16], serial[INTEL_SERIAL_LEN];
const char *nodename, *verb, *volname, *levelname, *diskname;
char *tmp;
int *nargs, *force;
off_t off, size, sectorsize, strip, disk_sectors;
intmax_t *sizearg, *striparg;
int numdisks, i, len, level, qual, update;
int error;
sc = md->mdo_softc;
mdi = (struct g_raid_md_intel_object *)md;
verb = gctl_get_param(req, "verb", NULL);
nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
error = 0;
if (strcmp(verb, "label") == 0) {
if (*nargs < 4) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
volname = gctl_get_asciiparam(req, "arg1");
if (volname == NULL) {
gctl_error(req, "No volume name.");
return (-2);
}
levelname = gctl_get_asciiparam(req, "arg2");
if (levelname == NULL) {
gctl_error(req, "No RAID level.");
return (-3);
}
if (strcasecmp(levelname, "RAID5") == 0)
levelname = "RAID5-LA";
if (g_raid_volume_str2level(levelname, &level, &qual)) {
gctl_error(req, "Unknown RAID level '%s'.", levelname);
return (-4);
}
numdisks = *nargs - 3;
force = gctl_get_paraml(req, "force", sizeof(*force));
if (!g_raid_md_intel_supported(level, qual, numdisks,
force ? *force : 0)) {
gctl_error(req, "Unsupported RAID level "
"(0x%02x/0x%02x), or number of disks (%d).",
level, qual, numdisks);
return (-5);
}
/* Search for disks, connect them and probe. */
size = 0x7fffffffffffffffllu;
sectorsize = 0;
for (i = 0; i < numdisks; i++) {
snprintf(arg, sizeof(arg), "arg%d", i + 3);
diskname = gctl_get_asciiparam(req, arg);
if (diskname == NULL) {
gctl_error(req, "No disk name (%s).", arg);
error = -6;
break;
}
if (strcmp(diskname, "NONE") == 0) {
cp = NULL;
pp = NULL;
} else {
g_topology_lock();
cp = g_raid_open_consumer(sc, diskname);
if (cp == NULL) {
gctl_error(req, "Can't open disk '%s'.",
diskname);
g_topology_unlock();
error = -7;
break;
}
pp = cp->provider;
}
pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
pd->pd_disk_pos = i;
disk = g_raid_create_disk(sc);
disk->d_md_data = (void *)pd;
disk->d_consumer = cp;
if (cp == NULL) {
strcpy(&pd->pd_disk_meta.serial[0], "NONE");
pd->pd_disk_meta.id = 0xffffffff;
pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
continue;
}
cp->private = disk;
g_topology_unlock();
error = g_raid_md_get_label(cp,
&pd->pd_disk_meta.serial[0], INTEL_SERIAL_LEN);
if (error != 0) {
gctl_error(req,
"Can't get serial for provider '%s'.",
diskname);
error = -8;
break;
}
g_raid_get_disk_info(disk);
intel_set_disk_sectors(&pd->pd_disk_meta,
pp->mediasize / pp->sectorsize);
if (size > pp->mediasize)
size = pp->mediasize;
if (sectorsize < pp->sectorsize)
sectorsize = pp->sectorsize;
pd->pd_disk_meta.id = 0;
pd->pd_disk_meta.flags = INTEL_F_ASSIGNED | INTEL_F_ONLINE;
}
if (error != 0)
return (error);
if (sectorsize <= 0) {
gctl_error(req, "Can't get sector size.");
return (-8);
}
/* Reserve some space for metadata. */
size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
/* Handle size argument. */
len = sizeof(*sizearg);
sizearg = gctl_get_param(req, "size", &len);
if (sizearg != NULL && len == sizeof(*sizearg) &&
*sizearg > 0) {
if (*sizearg > size) {
gctl_error(req, "Size too big %lld > %lld.",
(long long)*sizearg, (long long)size);
return (-9);
}
size = *sizearg;
}
/* Handle strip argument. */
strip = 131072;
len = sizeof(*striparg);
striparg = gctl_get_param(req, "strip", &len);
if (striparg != NULL && len == sizeof(*striparg) &&
*striparg > 0) {
if (*striparg < sectorsize) {
gctl_error(req, "Strip size too small.");
return (-10);
}
if (*striparg % sectorsize != 0) {
gctl_error(req, "Incorrect strip size.");
return (-11);
}
if (strip > 65535 * sectorsize) {
gctl_error(req, "Strip size too big.");
return (-12);
}
strip = *striparg;
}
/* Round size down to strip or sector. */
if (level == G_RAID_VOLUME_RL_RAID1)
size -= (size % sectorsize);
else if (level == G_RAID_VOLUME_RL_RAID1E &&
(numdisks & 1) != 0)
size -= (size % (2 * strip));
else
size -= (size % strip);
if (size <= 0) {
gctl_error(req, "Size too small.");
return (-13);
}
/* We have all we need, create things: volume, ... */
mdi->mdio_started = 1;
vol = g_raid_create_volume(sc, volname, -1);
pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
pv->pv_volume_pos = 0;
vol->v_md_data = pv;
vol->v_raid_level = level;
vol->v_raid_level_qualifier = qual;
vol->v_strip_size = strip;
vol->v_disks_count = numdisks;
if (level == G_RAID_VOLUME_RL_RAID0)
vol->v_mediasize = size * numdisks;
else if (level == G_RAID_VOLUME_RL_RAID1)
vol->v_mediasize = size;
else if (level == G_RAID_VOLUME_RL_RAID5)
vol->v_mediasize = size * (numdisks - 1);
else { /* RAID1E */
vol->v_mediasize = ((size * numdisks) / strip / 2) *
strip;
}
vol->v_sectorsize = sectorsize;
g_raid_start_volume(vol);
/* , and subdisks. */
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
sd = &vol->v_subdisks[pd->pd_disk_pos];
sd->sd_disk = disk;
sd->sd_offset = 0;
sd->sd_size = size;
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
if (sd->sd_disk->d_consumer != NULL) {
g_raid_change_disk_state(disk,
G_RAID_DISK_S_ACTIVE);
if (level == G_RAID_VOLUME_RL_RAID5)
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_UNINITIALIZED);
else
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_ACTIVE);
g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
G_RAID_EVENT_SUBDISK);
} else {
g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
}
}
/* Write metadata based on created entities. */
G_RAID_DEBUG1(0, sc, "Array started.");
g_raid_md_write_intel(md, NULL, NULL, NULL);
/* Pickup any STALE/SPARE disks to refill array if needed. */
g_raid_md_intel_refill(sc);
g_raid_event_send(vol, G_RAID_VOLUME_E_START,
G_RAID_EVENT_VOLUME);
return (0);
}
if (strcmp(verb, "add") == 0) {
if (*nargs != 3) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
volname = gctl_get_asciiparam(req, "arg1");
if (volname == NULL) {
gctl_error(req, "No volume name.");
return (-2);
}
levelname = gctl_get_asciiparam(req, "arg2");
if (levelname == NULL) {
gctl_error(req, "No RAID level.");
return (-3);
}
if (strcasecmp(levelname, "RAID5") == 0)
levelname = "RAID5-LA";
if (g_raid_volume_str2level(levelname, &level, &qual)) {
gctl_error(req, "Unknown RAID level '%s'.", levelname);
return (-4);
}
/* Look for existing volumes. */
i = 0;
vol1 = NULL;
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
vol1 = vol;
i++;
}
if (i > 1) {
gctl_error(req, "Maximum two volumes supported.");
return (-6);
}
if (vol1 == NULL) {
gctl_error(req, "At least one volume must exist.");
return (-7);
}
numdisks = vol1->v_disks_count;
force = gctl_get_paraml(req, "force", sizeof(*force));
if (!g_raid_md_intel_supported(level, qual, numdisks,
force ? *force : 0)) {
gctl_error(req, "Unsupported RAID level "
"(0x%02x/0x%02x), or number of disks (%d).",
level, qual, numdisks);
return (-5);
}
/* Collect info about present disks. */
size = 0x7fffffffffffffffllu;
sectorsize = 512;
for (i = 0; i < numdisks; i++) {
disk = vol1->v_subdisks[i].sd_disk;
pd = (struct g_raid_md_intel_perdisk *)
disk->d_md_data;
disk_sectors =
intel_get_disk_sectors(&pd->pd_disk_meta);
if (disk_sectors * 512 < size)
size = disk_sectors * 512;
if (disk->d_consumer != NULL &&
disk->d_consumer->provider != NULL &&
disk->d_consumer->provider->sectorsize >
sectorsize) {
sectorsize =
disk->d_consumer->provider->sectorsize;
}
}
/* Reserve some space for metadata. */
size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
/* Decide insert before or after. */
sd = &vol1->v_subdisks[0];
if (sd->sd_offset >
size - (sd->sd_offset + sd->sd_size)) {
off = 0;
size = sd->sd_offset;
} else {
off = sd->sd_offset + sd->sd_size;
size = size - (sd->sd_offset + sd->sd_size);
}
/* Handle strip argument. */
strip = 131072;
len = sizeof(*striparg);
striparg = gctl_get_param(req, "strip", &len);
if (striparg != NULL && len == sizeof(*striparg) &&
*striparg > 0) {
if (*striparg < sectorsize) {
gctl_error(req, "Strip size too small.");
return (-10);
}
if (*striparg % sectorsize != 0) {
gctl_error(req, "Incorrect strip size.");
return (-11);
}
if (strip > 65535 * sectorsize) {
gctl_error(req, "Strip size too big.");
return (-12);
}
strip = *striparg;
}
/* Round offset up to strip. */
if (off % strip != 0) {
size -= strip - off % strip;
off += strip - off % strip;
}
/* Handle size argument. */
len = sizeof(*sizearg);
sizearg = gctl_get_param(req, "size", &len);
if (sizearg != NULL && len == sizeof(*sizearg) &&
*sizearg > 0) {
if (*sizearg > size) {
gctl_error(req, "Size too big %lld > %lld.",
(long long)*sizearg, (long long)size);
return (-9);
}
size = *sizearg;
}
/* Round size down to strip or sector. */
if (level == G_RAID_VOLUME_RL_RAID1)
size -= (size % sectorsize);
else
size -= (size % strip);
if (size <= 0) {
gctl_error(req, "Size too small.");
return (-13);
}
if (size > 0xffffffffllu * sectorsize) {
gctl_error(req, "Size too big.");
return (-14);
}
/* We have all we need, create things: volume, ... */
vol = g_raid_create_volume(sc, volname, -1);
pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
pv->pv_volume_pos = i;
vol->v_md_data = pv;
vol->v_raid_level = level;
vol->v_raid_level_qualifier = qual;
vol->v_strip_size = strip;
vol->v_disks_count = numdisks;
if (level == G_RAID_VOLUME_RL_RAID0)
vol->v_mediasize = size * numdisks;
else if (level == G_RAID_VOLUME_RL_RAID1)
vol->v_mediasize = size;
else if (level == G_RAID_VOLUME_RL_RAID5)
vol->v_mediasize = size * (numdisks - 1);
else { /* RAID1E */
vol->v_mediasize = ((size * numdisks) / strip / 2) *
strip;
}
vol->v_sectorsize = sectorsize;
g_raid_start_volume(vol);
/* , and subdisks. */
for (i = 0; i < numdisks; i++) {
disk = vol1->v_subdisks[i].sd_disk;
sd = &vol->v_subdisks[i];
sd->sd_disk = disk;
sd->sd_offset = off;
sd->sd_size = size;
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
if (level == G_RAID_VOLUME_RL_RAID5)
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_UNINITIALIZED);
else
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_ACTIVE);
g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
G_RAID_EVENT_SUBDISK);
}
}
/* Write metadata based on created entities. */
g_raid_md_write_intel(md, NULL, NULL, NULL);
g_raid_event_send(vol, G_RAID_VOLUME_E_START,
G_RAID_EVENT_VOLUME);
return (0);
}
if (strcmp(verb, "delete") == 0) {
nodename = gctl_get_asciiparam(req, "arg0");
if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
nodename = NULL;
/* Full node destruction. */
if (*nargs == 1 && nodename != NULL) {
/* Check if some volume is still open. */
force = gctl_get_paraml(req, "force", sizeof(*force));
if (force != NULL && *force == 0 &&
g_raid_nopens(sc) != 0) {
gctl_error(req, "Some volume is still open.");
return (-4);
}
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_consumer)
intel_meta_erase(disk->d_consumer);
}
g_raid_destroy_node(sc, 0);
return (0);
}
/* Destroy specified volume. If it was last - all node. */
if (*nargs > 2) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
volname = gctl_get_asciiparam(req,
nodename != NULL ? "arg1" : "arg0");
if (volname == NULL) {
gctl_error(req, "No volume name.");
return (-2);
}
/* Search for volume. */
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
if (strcmp(vol->v_name, volname) == 0)
break;
pp = vol->v_provider;
if (pp == NULL)
continue;
if (strcmp(pp->name, volname) == 0)
break;
if (strncmp(pp->name, "raid/", 5) == 0 &&
strcmp(pp->name + 5, volname) == 0)
break;
}
if (vol == NULL) {
i = strtol(volname, &tmp, 10);
if (verb != volname && tmp[0] == 0) {
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
if (vol->v_global_id == i)
break;
}
}
}
if (vol == NULL) {
gctl_error(req, "Volume '%s' not found.", volname);
return (-3);
}
/* Check if volume is still open. */
force = gctl_get_paraml(req, "force", sizeof(*force));
if (force != NULL && *force == 0 &&
vol->v_provider_open != 0) {
gctl_error(req, "Volume is still open.");
return (-4);
}
/* Destroy volume and potentially node. */
i = 0;
TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
i++;
if (i >= 2) {
g_raid_destroy_volume(vol);
g_raid_md_write_intel(md, NULL, NULL, NULL);
} else {
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_consumer)
intel_meta_erase(disk->d_consumer);
}
g_raid_destroy_node(sc, 0);
}
return (0);
}
if (strcmp(verb, "remove") == 0 ||
strcmp(verb, "fail") == 0) {
if (*nargs < 2) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
for (i = 1; i < *nargs; i++) {
snprintf(arg, sizeof(arg), "arg%d", i);
diskname = gctl_get_asciiparam(req, arg);
if (diskname == NULL) {
gctl_error(req, "No disk name (%s).", arg);
error = -2;
break;
}
if (strncmp(diskname, _PATH_DEV, 5) == 0)
diskname += 5;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_consumer != NULL &&
disk->d_consumer->provider != NULL &&
strcmp(disk->d_consumer->provider->name,
diskname) == 0)
break;
}
if (disk == NULL) {
gctl_error(req, "Disk '%s' not found.",
diskname);
error = -3;
break;
}
if (strcmp(verb, "fail") == 0) {
g_raid_md_fail_disk_intel(md, NULL, disk);
continue;
}
pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
/* Erase metadata on deleting disk. */
intel_meta_erase(disk->d_consumer);
/* If disk was assigned, just update statuses. */
if (pd->pd_disk_pos >= 0) {
g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
g_raid_kill_consumer(sc, disk->d_consumer);
disk->d_consumer = NULL;
TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NONE);
g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
G_RAID_EVENT_SUBDISK);
}
} else {
/* Otherwise -- delete. */
g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
g_raid_destroy_disk(disk);
}
}
/* Write updated metadata to remaining disks. */
g_raid_md_write_intel(md, NULL, NULL, NULL);
/* Check if anything left except placeholders. */
if (g_raid_ndisks(sc, -1) ==
g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
g_raid_destroy_node(sc, 0);
else
g_raid_md_intel_refill(sc);
return (error);
}
if (strcmp(verb, "insert") == 0) {
if (*nargs < 2) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
update = 0;
for (i = 1; i < *nargs; i++) {
/* Get disk name. */
snprintf(arg, sizeof(arg), "arg%d", i);
diskname = gctl_get_asciiparam(req, arg);
if (diskname == NULL) {
gctl_error(req, "No disk name (%s).", arg);
error = -3;
break;
}
/* Try to find provider with specified name. */
g_topology_lock();
cp = g_raid_open_consumer(sc, diskname);
if (cp == NULL) {
gctl_error(req, "Can't open disk '%s'.",
diskname);
g_topology_unlock();
error = -4;
break;
}
pp = cp->provider;
g_topology_unlock();
/* Read disk serial. */
error = g_raid_md_get_label(cp,
&serial[0], INTEL_SERIAL_LEN);
if (error != 0) {
gctl_error(req,
"Can't get serial for provider '%s'.",
diskname);
g_raid_kill_consumer(sc, cp);
error = -7;
break;
}
pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
pd->pd_disk_pos = -1;
disk = g_raid_create_disk(sc);
disk->d_consumer = cp;
disk->d_md_data = (void *)pd;
cp->private = disk;
g_raid_get_disk_info(disk);
memcpy(&pd->pd_disk_meta.serial[0], &serial[0],
INTEL_SERIAL_LEN);
intel_set_disk_sectors(&pd->pd_disk_meta,
pp->mediasize / pp->sectorsize);
pd->pd_disk_meta.id = 0;
pd->pd_disk_meta.flags = INTEL_F_SPARE;
/* Welcome the "new" disk. */
update += g_raid_md_intel_start_disk(disk);
if (disk->d_state == G_RAID_DISK_S_SPARE) {
intel_meta_write_spare(cp, &pd->pd_disk_meta);
g_raid_destroy_disk(disk);
} else if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
gctl_error(req, "Disk '%s' doesn't fit.",
diskname);
g_raid_destroy_disk(disk);
error = -8;
break;
}
}
/* Write new metadata if we changed something. */
if (update)
g_raid_md_write_intel(md, NULL, NULL, NULL);
return (error);
}
return (-100);
}
static int
g_raid_md_write_intel(struct g_raid_md_object *md, struct g_raid_volume *tvol,
struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk;
struct g_raid_md_intel_object *mdi;
struct g_raid_md_intel_pervolume *pv;
struct g_raid_md_intel_perdisk *pd;
struct intel_raid_conf *meta;
struct intel_raid_vol *mvol;
struct intel_raid_map *mmap0, *mmap1;
off_t sectorsize = 512, pos;
const char *version, *cv;
int vi, sdi, numdisks, len, state, stale;
sc = md->mdo_softc;
mdi = (struct g_raid_md_intel_object *)md;
if (sc->sc_stopping == G_RAID_DESTROY_HARD)
return (0);
/* Bump generation. Newly written metadata may differ from previous. */
mdi->mdio_generation++;
/* Count number of disks. */
numdisks = 0;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
if (pd->pd_disk_pos < 0)
continue;
numdisks++;
if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
pd->pd_disk_meta.flags =
INTEL_F_ONLINE | INTEL_F_ASSIGNED;
} else if (disk->d_state == G_RAID_DISK_S_FAILED) {
pd->pd_disk_meta.flags = INTEL_F_FAILED |
INTEL_F_ASSIGNED;
} else if (disk->d_state == G_RAID_DISK_S_DISABLED) {
pd->pd_disk_meta.flags = INTEL_F_FAILED |
INTEL_F_ASSIGNED | INTEL_F_DISABLED;
} else {
if (!(pd->pd_disk_meta.flags & INTEL_F_DISABLED))
pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
if (pd->pd_disk_meta.id != 0xffffffff) {
pd->pd_disk_meta.id = 0xffffffff;
len = strlen(pd->pd_disk_meta.serial);
len = min(len, INTEL_SERIAL_LEN - 3);
strcpy(pd->pd_disk_meta.serial + len, ":0");
}
}
}
/* Fill anchor and disks. */
meta = malloc(INTEL_MAX_MD_SIZE(numdisks),
M_MD_INTEL, M_WAITOK | M_ZERO);
memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
meta->config_size = INTEL_MAX_MD_SIZE(numdisks);
meta->config_id = mdi->mdio_config_id;
meta->orig_config_id = mdi->mdio_orig_config_id;
meta->generation = mdi->mdio_generation;
meta->attributes = INTEL_ATTR_CHECKSUM;
meta->total_disks = numdisks;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
if (pd->pd_disk_pos < 0)
continue;
meta->disk[pd->pd_disk_pos] = pd->pd_disk_meta;
if (pd->pd_disk_meta.sectors_hi != 0)
meta->attributes |= INTEL_ATTR_2TB_DISK;
}
/* Fill volumes and maps. */
vi = 0;
version = INTEL_VERSION_1000;
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
pv = vol->v_md_data;
if (vol->v_stopping)
continue;
mvol = intel_get_volume(meta, vi);
/* New metadata may have different volumes order. */
pv->pv_volume_pos = vi;
for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
sd = &vol->v_subdisks[sdi];
if (sd->sd_disk != NULL)
break;
}
if (sdi >= vol->v_disks_count)
panic("No any filled subdisk in volume");
if (vol->v_mediasize >= 0x20000000000llu)
meta->attributes |= INTEL_ATTR_2TB;
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
meta->attributes |= INTEL_ATTR_RAID0;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
meta->attributes |= INTEL_ATTR_RAID1;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
meta->attributes |= INTEL_ATTR_RAID5;
else if ((vol->v_disks_count & 1) == 0)
meta->attributes |= INTEL_ATTR_RAID10;
else
meta->attributes |= INTEL_ATTR_RAID1E;
if (pv->pv_cng)
meta->attributes |= INTEL_ATTR_RAIDCNG;
if (vol->v_strip_size > 131072)
meta->attributes |= INTEL_ATTR_EXT_STRIP;
if (pv->pv_cng)
cv = INTEL_VERSION_1206;
else if (vol->v_disks_count > 4)
cv = INTEL_VERSION_1204;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
cv = INTEL_VERSION_1202;
else if (vol->v_disks_count > 2)
cv = INTEL_VERSION_1201;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
cv = INTEL_VERSION_1100;
else
cv = INTEL_VERSION_1000;
if (strcmp(cv, version) > 0)
version = cv;
strlcpy(&mvol->name[0], vol->v_name, sizeof(mvol->name));
mvol->total_sectors = vol->v_mediasize / sectorsize;
mvol->state = (INTEL_ST_READ_COALESCING |
INTEL_ST_WRITE_COALESCING);
mvol->tid = vol->v_global_id + 1;
if (pv->pv_cng) {
mvol->state |= INTEL_ST_CLONE_N_GO;
if (pv->pv_cng_man_sync)
mvol->state |= INTEL_ST_CLONE_MAN_SYNC;
mvol->cng_master_disk = pv->pv_cng_master_disk;
if (vol->v_subdisks[pv->pv_cng_master_disk].sd_state ==
G_RAID_SUBDISK_S_NONE)
mvol->cng_state = INTEL_CNGST_MASTER_MISSING;
else if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL)
mvol->cng_state = INTEL_CNGST_NEEDS_UPDATE;
else
mvol->cng_state = INTEL_CNGST_UPDATED;
}
/* Check for any recovery in progress. */
state = G_RAID_SUBDISK_S_ACTIVE;
pos = 0x7fffffffffffffffllu;
stale = 0;
for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
sd = &vol->v_subdisks[sdi];
if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD)
state = G_RAID_SUBDISK_S_REBUILD;
else if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC &&
state != G_RAID_SUBDISK_S_REBUILD)
state = G_RAID_SUBDISK_S_RESYNC;
else if (sd->sd_state == G_RAID_SUBDISK_S_STALE)
stale = 1;
if ((sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
sd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
sd->sd_rebuild_pos < pos)
pos = sd->sd_rebuild_pos;
}
if (state == G_RAID_SUBDISK_S_REBUILD) {
mvol->migr_state = 1;
mvol->migr_type = INTEL_MT_REBUILD;
} else if (state == G_RAID_SUBDISK_S_RESYNC) {
mvol->migr_state = 1;
/* mvol->migr_type = INTEL_MT_REPAIR; */
mvol->migr_type = INTEL_MT_VERIFY;
mvol->state |= INTEL_ST_VERIFY_AND_FIX;
} else
mvol->migr_state = 0;
mvol->dirty = (vol->v_dirty || stale);
mmap0 = intel_get_map(mvol, 0);
/* Write map / common part of two maps. */
intel_set_map_offset(mmap0, sd->sd_offset / sectorsize);
intel_set_map_disk_sectors(mmap0, sd->sd_size / sectorsize);
mmap0->strip_sectors = vol->v_strip_size / sectorsize;
if (vol->v_state == G_RAID_VOLUME_S_BROKEN)
mmap0->status = INTEL_S_FAILURE;
else if (vol->v_state == G_RAID_VOLUME_S_DEGRADED)
mmap0->status = INTEL_S_DEGRADED;
else if (g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED)
== g_raid_nsubdisks(vol, -1))
mmap0->status = INTEL_S_UNINITIALIZED;
else
mmap0->status = INTEL_S_READY;
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
mmap0->type = INTEL_T_RAID0;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
mmap0->type = INTEL_T_RAID1;
else
mmap0->type = INTEL_T_RAID5;
mmap0->total_disks = vol->v_disks_count;
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
mmap0->total_domains = vol->v_disks_count;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
mmap0->total_domains = 2;
else
mmap0->total_domains = 1;
intel_set_map_stripe_count(mmap0,
sd->sd_size / vol->v_strip_size / mmap0->total_domains);
mmap0->failed_disk_num = 0xff;
mmap0->ddf = 1;
/* If there are two maps - copy common and update. */
if (mvol->migr_state) {
intel_set_vol_curr_migr_unit(mvol,
pos / vol->v_strip_size / mmap0->total_domains);
mmap1 = intel_get_map(mvol, 1);
memcpy(mmap1, mmap0, sizeof(struct intel_raid_map));
mmap0->status = INTEL_S_READY;
} else
mmap1 = NULL;
/* Write disk indexes and put rebuild flags. */
for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
sd = &vol->v_subdisks[sdi];
pd = (struct g_raid_md_intel_perdisk *)
sd->sd_disk->d_md_data;
mmap0->disk_idx[sdi] = pd->pd_disk_pos;
if (mvol->migr_state)
mmap1->disk_idx[sdi] = pd->pd_disk_pos;
if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
} else if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
sd->sd_state != G_RAID_SUBDISK_S_STALE &&
sd->sd_state != G_RAID_SUBDISK_S_UNINITIALIZED) {
mmap0->disk_idx[sdi] |= INTEL_DI_RBLD;
if (mvol->migr_state)
mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
}
if ((sd->sd_state == G_RAID_SUBDISK_S_NONE ||
sd->sd_state == G_RAID_SUBDISK_S_FAILED ||
sd->sd_state == G_RAID_SUBDISK_S_REBUILD) &&
mmap0->failed_disk_num == 0xff) {
mmap0->failed_disk_num = sdi;
if (mvol->migr_state)
mmap1->failed_disk_num = sdi;
}
}
vi++;
}
meta->total_volumes = vi;
if (vi > 1 || meta->attributes &
(INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | INTEL_ATTR_2TB))
version = INTEL_VERSION_1300;
if (strcmp(version, INTEL_VERSION_1300) < 0)
meta->attributes &= INTEL_ATTR_CHECKSUM;
memcpy(&meta->version[0], version, sizeof(INTEL_VERSION_1000) - 1);
/* We are done. Print meta data and store them to disks. */
g_raid_md_intel_print(meta);
if (mdi->mdio_meta != NULL)
free(mdi->mdio_meta, M_MD_INTEL);
mdi->mdio_meta = meta;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
if (disk->d_state != G_RAID_DISK_S_ACTIVE)
continue;
if (pd->pd_meta != NULL) {
free(pd->pd_meta, M_MD_INTEL);
pd->pd_meta = NULL;
}
pd->pd_meta = intel_meta_copy(meta);
intel_meta_write(disk->d_consumer, meta);
}
return (0);
}
static int
g_raid_md_fail_disk_intel(struct g_raid_md_object *md,
struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
{
struct g_raid_softc *sc;
struct g_raid_md_intel_object *mdi;
struct g_raid_md_intel_perdisk *pd;
struct g_raid_subdisk *sd;
sc = md->mdo_softc;
mdi = (struct g_raid_md_intel_object *)md;
pd = (struct g_raid_md_intel_perdisk *)tdisk->d_md_data;
/* We can't fail disk that is not a part of array now. */
if (pd->pd_disk_pos < 0)
return (-1);
/*
* Mark disk as failed in metadata and try to write that metadata
* to the disk itself to prevent it's later resurrection as STALE.
*/
mdi->mdio_meta->disk[pd->pd_disk_pos].flags = INTEL_F_FAILED;
pd->pd_disk_meta.flags = INTEL_F_FAILED;
g_raid_md_intel_print(mdi->mdio_meta);
if (tdisk->d_consumer)
intel_meta_write(tdisk->d_consumer, mdi->mdio_meta);
/* Change states. */
g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_FAILED);
g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
G_RAID_EVENT_SUBDISK);
}
/* Write updated metadata to remaining disks. */
g_raid_md_write_intel(md, NULL, NULL, tdisk);
/* Check if anything left except placeholders. */
if (g_raid_ndisks(sc, -1) ==
g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
g_raid_destroy_node(sc, 0);
else
g_raid_md_intel_refill(sc);
return (0);
}
static int
g_raid_md_free_disk_intel(struct g_raid_md_object *md,
struct g_raid_disk *disk)
{
struct g_raid_md_intel_perdisk *pd;
pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
if (pd->pd_meta != NULL) {
free(pd->pd_meta, M_MD_INTEL);
pd->pd_meta = NULL;
}
free(pd, M_MD_INTEL);
disk->d_md_data = NULL;
return (0);
}
static int
g_raid_md_free_volume_intel(struct g_raid_md_object *md,
struct g_raid_volume *vol)
{
struct g_raid_md_intel_pervolume *pv;
pv = (struct g_raid_md_intel_pervolume *)vol->v_md_data;
free(pv, M_MD_INTEL);
vol->v_md_data = NULL;
return (0);
}
static int
g_raid_md_free_intel(struct g_raid_md_object *md)
{
struct g_raid_md_intel_object *mdi;
mdi = (struct g_raid_md_intel_object *)md;
if (!mdi->mdio_started) {
mdi->mdio_started = 0;
callout_stop(&mdi->mdio_start_co);
G_RAID_DEBUG1(1, md->mdo_softc,
"root_mount_rel %p", mdi->mdio_rootmount);
root_mount_rel(mdi->mdio_rootmount);
mdi->mdio_rootmount = NULL;
}
if (mdi->mdio_meta != NULL) {
free(mdi->mdio_meta, M_MD_INTEL);
mdi->mdio_meta = NULL;
}
return (0);
}
G_RAID_MD_DECLARE(intel, "Intel");