freebsd-skq/sys/mips/mips/machdep.c
Roger Pau Monné c98a2727cc ddb: allow specifying the exact address of the symtab and strtab
When the FreeBSD kernel is loaded from Xen the symtab and strtab are
not loaded the same way as the native boot loader. This patch adds
three new global variables to ddb that can be used to specify the
exact position and size of those tables, so they can be directly used
as parameters to db_add_symbol_table. A new helper is introduced, so callers
that used to set ksym_start and ksym_end can use this helper to set the new
variables.

It also adds support for loading them from the Xen PVH port, that was
previously missing those tables.

Sponsored by: Citrix Systems R&D
Reviewed by:	kib

ddb/db_main.c:
 - Add three new global variables: ksymtab, kstrtab, ksymtab_size that
   can be used to specify the position and size of the symtab and
   strtab.
 - Use those new variables in db_init in order to call db_add_symbol_table.
 - Move the logic in db_init to db_fetch_symtab in order to set ksymtab,
   kstrtab, ksymtab_size from ksym_start and ksym_end.

ddb/ddb.h:
 - Add prototype for db_fetch_ksymtab.
 - Declate the extern variables ksymtab, kstrtab and ksymtab_size.

x86/xen/pv.c:
 - Add support for finding the symtab and strtab when booted as a Xen
   PVH guest. Since Xen loads the symtab and strtab as NetBSD expects
   to find them we have to adapt and use the same method.

amd64/amd64/machdep.c:
arm/arm/machdep.c:
i386/i386/machdep.c:
mips/mips/machdep.c:
pc98/pc98/machdep.c:
powerpc/aim/machdep.c:
powerpc/booke/machdep.c:
sparc64/sparc64/machdep.c:
 - Use the newly introduced db_fetch_ksymtab in order to set ksymtab,
   kstrtab and ksymtab_size.
2014-09-25 08:28:10 +00:00

573 lines
14 KiB
C

/* $OpenBSD: machdep.c,v 1.33 1998/09/15 10:58:54 pefo Exp $ */
/* tracked to 1.38 */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department, The Mach Operating System project at
* Carnegie-Mellon University and Ralph Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)machdep.c 8.3 (Berkeley) 1/12/94
* Id: machdep.c,v 1.33 1998/09/15 10:58:54 pefo Exp
* JNPR: machdep.c,v 1.11.2.3 2007/08/29 12:24:49
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_md.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/cpu.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
#include <sys/socket.h>
#include <sys/user.h>
#include <sys/interrupt.h>
#include <sys/cons.h>
#include <sys/syslog.h>
#include <machine/asm.h>
#include <machine/bootinfo.h>
#include <machine/cache.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/cpuregs.h>
#include <machine/elf.h>
#include <machine/hwfunc.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/tlb.h>
#ifdef DDB
#include <sys/kdb.h>
#include <ddb/ddb.h>
#endif
#include <sys/random.h>
#include <net/if.h>
#define BOOTINFO_DEBUG 0
char machine[] = "mips";
SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "Machine class");
char cpu_model[80];
SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD, cpu_model, 0, "Machine model");
char cpu_board[80];
SYSCTL_STRING(_hw, OID_AUTO, board, CTLFLAG_RD, cpu_board, 0, "Machine board");
int cold = 1;
long realmem = 0;
long Maxmem = 0;
int cpu_clock = MIPS_DEFAULT_HZ;
SYSCTL_INT(_hw, OID_AUTO, clockrate, CTLFLAG_RD,
&cpu_clock, 0, "CPU instruction clock rate");
int clocks_running = 0;
vm_offset_t kstack0;
/*
* Each entry in the pcpu_space[] array is laid out in the following manner:
* struct pcpu for cpu 'n' pcpu_space[n]
* boot stack for cpu 'n' pcpu_space[n] + PAGE_SIZE * 2 - CALLFRAME_SIZ
*
* Note that the boot stack grows downwards and we assume that we never
* use enough stack space to trample over the 'struct pcpu' that is at
* the beginning of the array.
*
* The array is aligned on a (PAGE_SIZE * 2) boundary so that the 'struct pcpu'
* is always in the even page frame of the wired TLB entry on SMP kernels.
*
* The array is in the .data section so that the stack does not get zeroed out
* when the .bss section is zeroed.
*/
char pcpu_space[MAXCPU][PAGE_SIZE * 2] \
__aligned(PAGE_SIZE * 2) __section(".data");
struct pcpu *pcpup = (struct pcpu *)pcpu_space;
vm_paddr_t phys_avail[PHYS_AVAIL_ENTRIES + 2];
vm_paddr_t physmem_desc[PHYS_AVAIL_ENTRIES + 2];
vm_paddr_t dump_avail[PHYS_AVAIL_ENTRIES + 2];
#ifdef UNIMPLEMENTED
struct platform platform;
#endif
static void cpu_startup(void *);
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
struct kva_md_info kmi;
int cpucfg; /* Value of processor config register */
int num_tlbentries = 64; /* Size of the CPU tlb */
int cputype;
extern char MipsException[], MipsExceptionEnd[];
/* TLB miss handler address and end */
extern char MipsTLBMiss[], MipsTLBMissEnd[];
/* Cache error handler */
extern char MipsCache[], MipsCacheEnd[];
/* MIPS wait skip region */
extern char MipsWaitStart[], MipsWaitEnd[];
extern char edata[], end[];
u_int32_t bootdev;
struct bootinfo bootinfo;
/*
* First kseg0 address available for use. By default it's equal to &end.
* But in some cases there might be additional data placed right after
* _end by loader or ELF trampoline.
*/
vm_offset_t kernel_kseg0_end = (vm_offset_t)&end;
static void
cpu_startup(void *dummy)
{
if (boothowto & RB_VERBOSE)
bootverbose++;
printf("real memory = %ju (%juK bytes)\n", ptoa((uintmax_t)realmem),
ptoa((uintmax_t)realmem) / 1024);
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
printf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
(uintmax_t)phys_avail[indx],
(uintmax_t)phys_avail[indx + 1] - 1,
(uintmax_t)size1,
(uintmax_t)size1 / PAGE_SIZE);
}
}
vm_ksubmap_init(&kmi);
printf("avail memory = %ju (%juMB)\n",
ptoa((uintmax_t)vm_cnt.v_free_count),
ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
cpu_init_interrupts();
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
vm_pager_bufferinit();
}
/*
* Shutdown the CPU as much as possible
*/
void
cpu_reset(void)
{
platform_reset();
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* TBD */
}
/* Get current clock frequency for the given cpu id. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
return (ENXIO);
}
/*
* Shutdown the CPU as much as possible
*/
void
cpu_halt(void)
{
for (;;)
;
}
SYSCTL_STRUCT(_machdep, OID_AUTO, bootinfo, CTLFLAG_RD, &bootinfo,
bootinfo, "Bootinfo struct: kernel filename, BIOS harddisk geometry, etc");
/*
* Initialize per cpu data structures, include curthread.
*/
void
mips_pcpu0_init()
{
/* Initialize pcpu info of cpu-zero */
pcpu_init(PCPU_ADDR(0), 0, sizeof(struct pcpu));
PCPU_SET(curthread, &thread0);
}
/*
* Initialize mips and configure to run kernel
*/
void
mips_proc0_init(void)
{
#ifdef SMP
if (platform_processor_id() != 0)
panic("BSP must be processor number 0");
#endif
proc_linkup0(&proc0, &thread0);
KASSERT((kstack0 & PAGE_MASK) == 0,
("kstack0 is not aligned on a page boundary: 0x%0lx",
(long)kstack0));
thread0.td_kstack = kstack0;
thread0.td_kstack_pages = KSTACK_PAGES;
/*
* Do not use cpu_thread_alloc to initialize these fields
* thread0 is the only thread that has kstack located in KSEG0
* while cpu_thread_alloc handles kstack allocated in KSEG2.
*/
thread0.td_pcb = (struct pcb *)(thread0.td_kstack +
thread0.td_kstack_pages * PAGE_SIZE) - 1;
thread0.td_frame = &thread0.td_pcb->pcb_regs;
/* Steal memory for the dynamic per-cpu area. */
dpcpu_init((void *)pmap_steal_memory(DPCPU_SIZE), 0);
PCPU_SET(curpcb, thread0.td_pcb);
/*
* There is no need to initialize md_upte array for thread0 as it's
* located in .bss section and should be explicitly zeroed during
* kernel initialization.
*/
}
void
cpu_initclocks(void)
{
platform_initclocks();
cpu_initclocks_bsp();
}
struct msgbuf *msgbufp=0;
/*
* Initialize the hardware exception vectors, and the jump table used to
* call locore cache and TLB management functions, based on the kind
* of CPU the kernel is running on.
*/
void
mips_vector_init(void)
{
/*
* Make sure that the Wait region logic is not been
* changed
*/
if (MipsWaitEnd - MipsWaitStart != 16)
panic("startup: MIPS wait region not correct");
/*
* Copy down exception vector code.
*/
if (MipsTLBMissEnd - MipsTLBMiss > 0x80)
panic("startup: UTLB code too large");
if (MipsCacheEnd - MipsCache > 0x80)
panic("startup: Cache error code too large");
bcopy(MipsTLBMiss, (void *)MIPS_UTLB_MISS_EXC_VEC,
MipsTLBMissEnd - MipsTLBMiss);
/*
* XXXRW: Why don't we install the XTLB handler for all 64-bit
* architectures?
*/
#if defined(__mips_n64) || defined(CPU_RMI) || defined(CPU_NLM) || defined(CPU_BERI)
/* Fake, but sufficient, for the 32-bit with 64-bit hardware addresses */
bcopy(MipsTLBMiss, (void *)MIPS_XTLB_MISS_EXC_VEC,
MipsTLBMissEnd - MipsTLBMiss);
#endif
bcopy(MipsException, (void *)MIPS_GEN_EXC_VEC,
MipsExceptionEnd - MipsException);
bcopy(MipsCache, (void *)MIPS_CACHE_ERR_EXC_VEC,
MipsCacheEnd - MipsCache);
/*
* Clear out the I and D caches.
*/
mips_icache_sync_all();
mips_dcache_wbinv_all();
/*
* Mask all interrupts. Each interrupt will be enabled
* when handler is installed for it
*/
set_intr_mask(0);
/* Clear BEV in SR so we start handling our own exceptions */
mips_wr_status(mips_rd_status() & ~MIPS_SR_BEV);
}
/*
* Fix kernel_kseg0_end address in case trampoline placed debug sympols
* data there
*/
void
mips_postboot_fixup(void)
{
static char fake_preload[256];
caddr_t preload_ptr = (caddr_t)&fake_preload[0];
size_t size = 0;
#define PRELOAD_PUSH_VALUE(type, value) do { \
*(type *)(preload_ptr + size) = (value); \
size += sizeof(type); \
} while (0);
/*
* Provide kernel module file information
*/
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_NAME);
PRELOAD_PUSH_VALUE(uint32_t, strlen("kernel") + 1);
strcpy((char*)(preload_ptr + size), "kernel");
size += strlen("kernel") + 1;
size = roundup(size, sizeof(u_long));
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_TYPE);
PRELOAD_PUSH_VALUE(uint32_t, strlen("elf kernel") + 1);
strcpy((char*)(preload_ptr + size), "elf kernel");
size += strlen("elf kernel") + 1;
size = roundup(size, sizeof(u_long));
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_ADDR);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(vm_offset_t));
PRELOAD_PUSH_VALUE(vm_offset_t, KERNLOADADDR);
size = roundup(size, sizeof(u_long));
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_SIZE);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(size_t));
PRELOAD_PUSH_VALUE(size_t, (size_t)&end - KERNLOADADDR);
size = roundup(size, sizeof(u_long));
/* End marker */
PRELOAD_PUSH_VALUE(uint32_t, 0);
PRELOAD_PUSH_VALUE(uint32_t, 0);
#undef PRELOAD_PUSH_VALUE
KASSERT((size < sizeof(fake_preload)),
("fake preload size is more thenallocated"));
preload_metadata = (void *)fake_preload;
#ifdef DDB
Elf_Size *trampoline_data = (Elf_Size*)kernel_kseg0_end;
Elf_Size symtabsize = 0;
vm_offset_t ksym_start;
vm_offset_t ksym_end;
if (trampoline_data[0] == SYMTAB_MAGIC) {
symtabsize = trampoline_data[1];
kernel_kseg0_end += 2 * sizeof(Elf_Size);
/* start of .symtab */
ksym_start = kernel_kseg0_end;
kernel_kseg0_end += symtabsize;
/* end of .strtab */
ksym_end = kernel_kseg0_end;
db_fetch_ksymtab(ksym_start, ksym_end);
}
#endif
}
#ifdef SMP
void
mips_pcpu_tlb_init(struct pcpu *pcpu)
{
vm_paddr_t pa;
pt_entry_t pte;
/*
* Map the pcpu structure at the virtual address 'pcpup'.
* We use a wired tlb index to do this one-time mapping.
*/
pa = vtophys(pcpu);
pte = PTE_D | PTE_V | PTE_G | PTE_C_CACHE;
tlb_insert_wired(PCPU_TLB_ENTRY, (vm_offset_t)pcpup,
TLBLO_PA_TO_PFN(pa) | pte,
TLBLO_PA_TO_PFN(pa + PAGE_SIZE) | pte);
}
#endif
/*
* Initialise a struct pcpu.
*/
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{
pcpu->pc_next_asid = 1;
pcpu->pc_asid_generation = 1;
#ifdef SMP
if ((vm_offset_t)pcpup >= VM_MIN_KERNEL_ADDRESS &&
(vm_offset_t)pcpup <= VM_MAX_KERNEL_ADDRESS) {
mips_pcpu_tlb_init(pcpu);
}
#endif
}
int
fill_dbregs(struct thread *td, struct dbreg *dbregs)
{
/* No debug registers on mips */
return (ENOSYS);
}
int
set_dbregs(struct thread *td, struct dbreg *dbregs)
{
/* No debug registers on mips */
return (ENOSYS);
}
void
spinlock_enter(void)
{
struct thread *td;
register_t intr;
td = curthread;
if (td->td_md.md_spinlock_count == 0) {
intr = intr_disable();
td->td_md.md_spinlock_count = 1;
td->td_md.md_saved_intr = intr;
} else
td->td_md.md_spinlock_count++;
critical_enter();
}
void
spinlock_exit(void)
{
struct thread *td;
register_t intr;
td = curthread;
critical_exit();
intr = td->td_md.md_saved_intr;
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0)
intr_restore(intr);
}
/*
* call platform specific code to halt (until next interrupt) for the idle loop
*/
void
cpu_idle(int busy)
{
KASSERT((mips_rd_status() & MIPS_SR_INT_IE) != 0,
("interrupts disabled in idle process."));
KASSERT((mips_rd_status() & MIPS_INT_MASK) != 0,
("all interrupts masked in idle process."));
if (!busy) {
critical_enter();
cpu_idleclock();
}
mips_wait();
if (!busy) {
cpu_activeclock();
critical_exit();
}
}
int
cpu_idle_wakeup(int cpu)
{
return (0);
}
int
is_cacheable_mem(vm_paddr_t pa)
{
int i;
for (i = 0; physmem_desc[i + 1] != 0; i += 2) {
if (pa >= physmem_desc[i] && pa < physmem_desc[i + 1])
return (1);
}
return (0);
}