freebsd-skq/sys/compat/ndis/subr_ndis.c
Bill Paul 78edd540cf Correct the API for Windows interupt handling a little. The prototype
for a Windows ISR is 'BOOLEAN isrfunc(KINTERRUPT *, void *)' meaning
the ISR get a pointer to the interrupt object and a context pointer,
and returns TRUE if the ISR determines the interrupt was really generated
by the associated device, or FALSE if not.

I had mistakenly used 'void isrfunc(void *)' instead. It happens the
only thing this affects is the internal ndis_intr() ISR in subr_ndis.c,
but it should be fixed just in case we ever need to register a real
Windows ISR vi IoConnectInterrupt().

For NDIS miniports that provide a MiniportISR() method, the 'is_our_intr'
value returned by the method serves as the return value from ndis_isr(),
and 'call_isr' is used to decide whether or not to schedule the interrupt
handler via DPC. For drivers that only supply MiniportEnableInterrupt()
and MiniportDisableInterrupt() methods, call_isr is always TRUE and
is_our_intr is always FALSE.

In the end, there should be no functional changes, except that now
ntoskrnl_intr() can terminate early once it finds the ISR that wants
to service the interrupt.
2005-11-20 01:29:29 +00:00

3535 lines
84 KiB
C

/*-
* Copyright (c) 2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* This file implements a translation layer between the BSD networking
* infrasturcture and Windows(R) NDIS network driver modules. A Windows
* NDIS driver calls into several functions in the NDIS.SYS Windows
* kernel module and exports a table of functions designed to be called
* by the NDIS subsystem. Using the PE loader, we can patch our own
* versions of the NDIS routines into a given Windows driver module and
* convince the driver that it is in fact running on Windows.
*
* We provide a table of all our implemented NDIS routines which is patched
* into the driver object code. All our exported routines must use the
* _stdcall calling convention, since that's what the Windows object code
* expects.
*/
#include <sys/ctype.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/timespec.h>
#include <sys/smp.h>
#include <sys/queue.h>
#include <sys/proc.h>
#include <sys/filedesc.h>
#include <sys/namei.h>
#include <sys/fcntl.h>
#include <sys/vnode.h>
#include <sys/kthread.h>
#include <sys/linker.h>
#include <sys/mount.h>
#include <sys/sysproto.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <machine/stdarg.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_ioctl.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <compat/ndis/pe_var.h>
#include <compat/ndis/cfg_var.h>
#include <compat/ndis/resource_var.h>
#include <compat/ndis/ntoskrnl_var.h>
#include <compat/ndis/hal_var.h>
#include <compat/ndis/ndis_var.h>
#include <dev/if_ndis/if_ndisvar.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/uma.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
static char ndis_filepath[MAXPATHLEN];
SYSCTL_STRING(_hw, OID_AUTO, ndis_filepath, CTLFLAG_RW, ndis_filepath,
MAXPATHLEN, "Path used by NdisOpenFile() to search for files");
static void NdisInitializeWrapper(ndis_handle *,
driver_object *, void *, void *);
static ndis_status NdisMRegisterMiniport(ndis_handle,
ndis_miniport_characteristics *, int);
static ndis_status NdisAllocateMemoryWithTag(void **,
uint32_t, uint32_t);
static ndis_status NdisAllocateMemory(void **,
uint32_t, uint32_t, ndis_physaddr);
static void NdisFreeMemory(void *, uint32_t, uint32_t);
static ndis_status NdisMSetAttributesEx(ndis_handle, ndis_handle,
uint32_t, uint32_t, ndis_interface_type);
static void NdisOpenConfiguration(ndis_status *,
ndis_handle *, ndis_handle);
static void NdisOpenConfigurationKeyByIndex(ndis_status *,
ndis_handle, uint32_t, unicode_string *, ndis_handle *);
static void NdisOpenConfigurationKeyByName(ndis_status *,
ndis_handle, unicode_string *, ndis_handle *);
static ndis_status ndis_encode_parm(ndis_miniport_block *,
struct sysctl_oid *, ndis_parm_type, ndis_config_parm **);
static ndis_status ndis_decode_parm(ndis_miniport_block *,
ndis_config_parm *, char *);
static void NdisReadConfiguration(ndis_status *, ndis_config_parm **,
ndis_handle, unicode_string *, ndis_parm_type);
static void NdisWriteConfiguration(ndis_status *, ndis_handle,
unicode_string *, ndis_config_parm *);
static void NdisCloseConfiguration(ndis_handle);
static void NdisAllocateSpinLock(ndis_spin_lock *);
static void NdisFreeSpinLock(ndis_spin_lock *);
static void NdisAcquireSpinLock(ndis_spin_lock *);
static void NdisReleaseSpinLock(ndis_spin_lock *);
static void NdisDprAcquireSpinLock(ndis_spin_lock *);
static void NdisDprReleaseSpinLock(ndis_spin_lock *);
static void NdisInitializeReadWriteLock(ndis_rw_lock *);
static void NdisAcquireReadWriteLock(ndis_rw_lock *,
uint8_t, ndis_lock_state *);
static void NdisReleaseReadWriteLock(ndis_rw_lock *, ndis_lock_state *);
static uint32_t NdisReadPciSlotInformation(ndis_handle, uint32_t,
uint32_t, void *, uint32_t);
static uint32_t NdisWritePciSlotInformation(ndis_handle, uint32_t,
uint32_t, void *, uint32_t);
static void NdisWriteErrorLogEntry(ndis_handle, ndis_error_code, uint32_t, ...);
static void ndis_map_cb(void *, bus_dma_segment_t *, int, int);
static void NdisMStartBufferPhysicalMapping(ndis_handle,
ndis_buffer *, uint32_t, uint8_t, ndis_paddr_unit *, uint32_t *);
static void NdisMCompleteBufferPhysicalMapping(ndis_handle,
ndis_buffer *, uint32_t);
static void NdisMInitializeTimer(ndis_miniport_timer *, ndis_handle,
ndis_timer_function, void *);
static void NdisInitializeTimer(ndis_timer *,
ndis_timer_function, void *);
static void NdisSetTimer(ndis_timer *, uint32_t);
static void NdisMSetPeriodicTimer(ndis_miniport_timer *, uint32_t);
static void NdisMCancelTimer(ndis_timer *, uint8_t *);
static void ndis_timercall(kdpc *, ndis_miniport_timer *,
void *, void *);
static void NdisMQueryAdapterResources(ndis_status *, ndis_handle,
ndis_resource_list *, uint32_t *);
static ndis_status NdisMRegisterIoPortRange(void **,
ndis_handle, uint32_t, uint32_t);
static void NdisMDeregisterIoPortRange(ndis_handle,
uint32_t, uint32_t, void *);
static void NdisReadNetworkAddress(ndis_status *, void **,
uint32_t *, ndis_handle);
static ndis_status NdisQueryMapRegisterCount(uint32_t, uint32_t *);
static ndis_status NdisMAllocateMapRegisters(ndis_handle,
uint32_t, uint8_t, uint32_t, uint32_t);
static void NdisMFreeMapRegisters(ndis_handle);
static void ndis_mapshared_cb(void *, bus_dma_segment_t *, int, int);
static void NdisMAllocateSharedMemory(ndis_handle, uint32_t,
uint8_t, void **, ndis_physaddr *);
static void ndis_asyncmem_complete(device_object *, void *);
static ndis_status NdisMAllocateSharedMemoryAsync(ndis_handle,
uint32_t, uint8_t, void *);
static void NdisMFreeSharedMemory(ndis_handle, uint32_t,
uint8_t, void *, ndis_physaddr);
static ndis_status NdisMMapIoSpace(void **, ndis_handle,
ndis_physaddr, uint32_t);
static void NdisMUnmapIoSpace(ndis_handle, void *, uint32_t);
static uint32_t NdisGetCacheFillSize(void);
static uint32_t NdisMGetDmaAlignment(ndis_handle);
static ndis_status NdisMInitializeScatterGatherDma(ndis_handle,
uint8_t, uint32_t);
static void NdisUnchainBufferAtFront(ndis_packet *, ndis_buffer **);
static void NdisUnchainBufferAtBack(ndis_packet *, ndis_buffer **);
static void NdisAllocateBufferPool(ndis_status *,
ndis_handle *, uint32_t);
static void NdisFreeBufferPool(ndis_handle);
static void NdisAllocateBuffer(ndis_status *, ndis_buffer **,
ndis_handle, void *, uint32_t);
static void NdisFreeBuffer(ndis_buffer *);
static uint32_t NdisBufferLength(ndis_buffer *);
static void NdisQueryBuffer(ndis_buffer *, void **, uint32_t *);
static void NdisQueryBufferSafe(ndis_buffer *, void **,
uint32_t *, uint32_t);
static void *NdisBufferVirtualAddress(ndis_buffer *);
static void *NdisBufferVirtualAddressSafe(ndis_buffer *, uint32_t);
static void NdisAdjustBufferLength(ndis_buffer *, int);
static uint32_t NdisInterlockedIncrement(uint32_t *);
static uint32_t NdisInterlockedDecrement(uint32_t *);
static void NdisInitializeEvent(ndis_event *);
static void NdisSetEvent(ndis_event *);
static void NdisResetEvent(ndis_event *);
static uint8_t NdisWaitEvent(ndis_event *, uint32_t);
static ndis_status NdisUnicodeStringToAnsiString(ansi_string *,
unicode_string *);
static ndis_status
NdisAnsiStringToUnicodeString(unicode_string *, ansi_string *);
static ndis_status NdisMPciAssignResources(ndis_handle,
uint32_t, ndis_resource_list **);
static ndis_status NdisMRegisterInterrupt(ndis_miniport_interrupt *,
ndis_handle, uint32_t, uint32_t, uint8_t,
uint8_t, ndis_interrupt_mode);
static void NdisMDeregisterInterrupt(ndis_miniport_interrupt *);
static void NdisMRegisterAdapterShutdownHandler(ndis_handle, void *,
ndis_shutdown_handler);
static void NdisMDeregisterAdapterShutdownHandler(ndis_handle);
static uint32_t NDIS_BUFFER_TO_SPAN_PAGES(ndis_buffer *);
static void NdisGetBufferPhysicalArraySize(ndis_buffer *,
uint32_t *);
static void NdisQueryBufferOffset(ndis_buffer *,
uint32_t *, uint32_t *);
static uint32_t NdisReadPcmciaAttributeMemory(ndis_handle,
uint32_t, void *, uint32_t);
static uint32_t NdisWritePcmciaAttributeMemory(ndis_handle,
uint32_t, void *, uint32_t);
static list_entry *NdisInterlockedInsertHeadList(list_entry *,
list_entry *, ndis_spin_lock *);
static list_entry *NdisInterlockedRemoveHeadList(list_entry *,
ndis_spin_lock *);
static list_entry *NdisInterlockedInsertTailList(list_entry *,
list_entry *, ndis_spin_lock *);
static uint8_t
NdisMSynchronizeWithInterrupt(ndis_miniport_interrupt *,
void *, void *);
static void NdisGetCurrentSystemTime(uint64_t *);
static void NdisGetSystemUpTime(uint32_t *);
static void NdisInitializeString(unicode_string *, char *);
static void NdisInitAnsiString(ansi_string *, char *);
static void NdisInitUnicodeString(unicode_string *, uint16_t *);
static void NdisFreeString(unicode_string *);
static ndis_status NdisMRemoveMiniport(ndis_handle *);
static void NdisTerminateWrapper(ndis_handle, void *);
static void NdisMGetDeviceProperty(ndis_handle, device_object **,
device_object **, device_object **, cm_resource_list *,
cm_resource_list *);
static void NdisGetFirstBufferFromPacket(ndis_packet *,
ndis_buffer **, void **, uint32_t *, uint32_t *);
static void NdisGetFirstBufferFromPacketSafe(ndis_packet *,
ndis_buffer **, void **, uint32_t *, uint32_t *, uint32_t);
static int ndis_find_sym(linker_file_t, char *, char *, caddr_t *);
static void NdisOpenFile(ndis_status *, ndis_handle *, uint32_t *,
unicode_string *, ndis_physaddr);
static void NdisMapFile(ndis_status *, void **, ndis_handle);
static void NdisUnmapFile(ndis_handle);
static void NdisCloseFile(ndis_handle);
static uint8_t NdisSystemProcessorCount(void);
static void NdisMIndicateStatusComplete(ndis_handle);
static void NdisMIndicateStatus(ndis_handle, ndis_status,
void *, uint32_t);
static uint8_t ndis_intr(kinterrupt *, void *);
static void ndis_intrhand(kdpc *, ndis_miniport_interrupt *, void *, void *);
static funcptr ndis_findwrap(funcptr);
static void NdisCopyFromPacketToPacket(ndis_packet *,
uint32_t, uint32_t, ndis_packet *, uint32_t, uint32_t *);
static void NdisCopyFromPacketToPacketSafe(ndis_packet *,
uint32_t, uint32_t, ndis_packet *, uint32_t, uint32_t *, uint32_t);
static ndis_status NdisMRegisterDevice(ndis_handle,
unicode_string *, unicode_string *, driver_dispatch **,
void **, ndis_handle *);
static ndis_status NdisMDeregisterDevice(ndis_handle);
static ndis_status
NdisMQueryAdapterInstanceName(unicode_string *, ndis_handle);
static void NdisMRegisterUnloadHandler(ndis_handle, void *);
static void dummy(void);
/*
* Some really old drivers do not properly check the return value
* from NdisAllocatePacket() and NdisAllocateBuffer() and will
* sometimes allocate few more buffers/packets that they originally
* requested when they created the pool. To prevent this from being
* a problem, we allocate a few extra buffers/packets beyond what
* the driver asks for. This #define controls how many.
*/
#define NDIS_POOL_EXTRA 16
int
ndis_libinit()
{
image_patch_table *patch;
strcpy(ndis_filepath, "/compat/ndis");
patch = ndis_functbl;
while (patch->ipt_func != NULL) {
windrv_wrap((funcptr)patch->ipt_func,
(funcptr *)&patch->ipt_wrap,
patch->ipt_argcnt, patch->ipt_ftype);
patch++;
}
return(0);
}
int
ndis_libfini()
{
image_patch_table *patch;
patch = ndis_functbl;
while (patch->ipt_func != NULL) {
windrv_unwrap(patch->ipt_wrap);
patch++;
}
return(0);
}
static funcptr
ndis_findwrap(func)
funcptr func;
{
image_patch_table *patch;
patch = ndis_functbl;
while (patch->ipt_func != NULL) {
if ((funcptr)patch->ipt_func == func)
return((funcptr)patch->ipt_wrap);
patch++;
}
return(NULL);
}
/*
* This routine does the messy Windows Driver Model device attachment
* stuff on behalf of NDIS drivers. We register our own AddDevice
* routine here
*/
static void
NdisInitializeWrapper(wrapper, drv, path, unused)
ndis_handle *wrapper;
driver_object *drv;
void *path;
void *unused;
{
/*
* As of yet, I haven't come up with a compelling
* reason to define a private NDIS wrapper structure,
* so we use a pointer to the driver object as the
* wrapper handle. The driver object has the miniport
* characteristics struct for this driver hung off it
* via IoAllocateDriverObjectExtension(), and that's
* really all the private data we need.
*/
*wrapper = drv;
/*
* If this was really Windows, we'd be registering dispatch
* routines for the NDIS miniport module here, but we're
* not Windows so all we really need to do is set up an
* AddDevice function that'll be invoked when a new device
* instance appears.
*/
drv->dro_driverext->dre_adddevicefunc = NdisAddDevice;
return;
}
static void
NdisTerminateWrapper(handle, syspec)
ndis_handle handle;
void *syspec;
{
/* Nothing to see here, move along. */
return;
}
static ndis_status
NdisMRegisterMiniport(handle, characteristics, len)
ndis_handle handle;
ndis_miniport_characteristics *characteristics;
int len;
{
ndis_miniport_characteristics *ch = NULL;
driver_object *drv;
drv = (driver_object *)handle;
/*
* We need to save the NDIS miniport characteristics
* somewhere. This data is per-driver, not per-device
* (all devices handled by the same driver have the
* same characteristics) so we hook it onto the driver
* object using IoAllocateDriverObjectExtension().
* The extra extension info is automagically deleted when
* the driver is unloaded (see windrv_unload()).
*/
if (IoAllocateDriverObjectExtension(drv, (void *)1,
sizeof(ndis_miniport_characteristics), (void **)&ch) !=
STATUS_SUCCESS) {
return(NDIS_STATUS_RESOURCES);
}
bzero((char *)ch, sizeof(ndis_miniport_characteristics));
bcopy((char *)characteristics, (char *)ch, len);
if (ch->nmc_version_major < 5 || ch->nmc_version_minor < 1) {
ch->nmc_shutdown_handler = NULL;
ch->nmc_canceltxpkts_handler = NULL;
ch->nmc_pnpevent_handler = NULL;
}
return(NDIS_STATUS_SUCCESS);
}
static ndis_status
NdisAllocateMemoryWithTag(vaddr, len, tag)
void **vaddr;
uint32_t len;
uint32_t tag;
{
void *mem;
mem = ExAllocatePoolWithTag(NonPagedPool, len, tag);
if (mem == NULL) {
return(NDIS_STATUS_RESOURCES);
}
*vaddr = mem;
return(NDIS_STATUS_SUCCESS);
}
static ndis_status
NdisAllocateMemory(vaddr, len, flags, highaddr)
void **vaddr;
uint32_t len;
uint32_t flags;
ndis_physaddr highaddr;
{
void *mem;
mem = ExAllocatePoolWithTag(NonPagedPool, len, 0);
if (mem == NULL)
return(NDIS_STATUS_RESOURCES);
*vaddr = mem;
return(NDIS_STATUS_SUCCESS);
}
static void
NdisFreeMemory(vaddr, len, flags)
void *vaddr;
uint32_t len;
uint32_t flags;
{
if (len == 0)
return;
ExFreePool(vaddr);
return;
}
static ndis_status
NdisMSetAttributesEx(adapter_handle, adapter_ctx, hangsecs,
flags, iftype)
ndis_handle adapter_handle;
ndis_handle adapter_ctx;
uint32_t hangsecs;
uint32_t flags;
ndis_interface_type iftype;
{
ndis_miniport_block *block;
/*
* Save the adapter context, we need it for calling
* the driver's internal functions.
*/
block = (ndis_miniport_block *)adapter_handle;
block->nmb_miniportadapterctx = adapter_ctx;
block->nmb_checkforhangsecs = hangsecs;
block->nmb_flags = flags;
return(NDIS_STATUS_SUCCESS);
}
static void
NdisOpenConfiguration(status, cfg, wrapctx)
ndis_status *status;
ndis_handle *cfg;
ndis_handle wrapctx;
{
*cfg = wrapctx;
*status = NDIS_STATUS_SUCCESS;
return;
}
static void
NdisOpenConfigurationKeyByName(status, cfg, subkey, subhandle)
ndis_status *status;
ndis_handle cfg;
unicode_string *subkey;
ndis_handle *subhandle;
{
*subhandle = cfg;
*status = NDIS_STATUS_SUCCESS;
return;
}
static void
NdisOpenConfigurationKeyByIndex(status, cfg, idx, subkey, subhandle)
ndis_status *status;
ndis_handle cfg;
uint32_t idx;
unicode_string *subkey;
ndis_handle *subhandle;
{
*status = NDIS_STATUS_FAILURE;
return;
}
static ndis_status
ndis_encode_parm(block, oid, type, parm)
ndis_miniport_block *block;
struct sysctl_oid *oid;
ndis_parm_type type;
ndis_config_parm **parm;
{
ndis_config_parm *p;
ndis_parmlist_entry *np;
unicode_string *us;
ansi_string as;
int base = 0;
uint32_t val;
char tmp[32];
np = ExAllocatePoolWithTag(NonPagedPool,
sizeof(ndis_parmlist_entry), 0);
if (np == NULL)
return(NDIS_STATUS_RESOURCES);
InsertHeadList((&block->nmb_parmlist), (&np->np_list));
*parm = p = &np->np_parm;
switch(type) {
case ndis_parm_string:
/* See if this might be a number. */
val = strtoul((char *)oid->oid_arg1, NULL, 10);
us = &p->ncp_parmdata.ncp_stringdata;
p->ncp_type = ndis_parm_string;
if (val) {
snprintf(tmp, 32, "%x", val);
RtlInitAnsiString(&as, tmp);
} else {
RtlInitAnsiString(&as, (char *)oid->oid_arg1);
}
if (RtlAnsiStringToUnicodeString(us, &as, TRUE)) {
ExFreePool(np);
return(NDIS_STATUS_RESOURCES);
}
break;
case ndis_parm_int:
if (strncmp((char *)oid->oid_arg1, "0x", 2) == 0)
base = 16;
else
base = 10;
p->ncp_type = ndis_parm_int;
p->ncp_parmdata.ncp_intdata =
strtol((char *)oid->oid_arg1, NULL, base);
break;
case ndis_parm_hexint:
#ifdef notdef
if (strncmp((char *)oid->oid_arg1, "0x", 2) == 0)
base = 16;
else
base = 10;
#endif
base = 16;
p->ncp_type = ndis_parm_hexint;
p->ncp_parmdata.ncp_intdata =
strtoul((char *)oid->oid_arg1, NULL, base);
break;
default:
return(NDIS_STATUS_FAILURE);
break;
}
return(NDIS_STATUS_SUCCESS);
}
int
ndis_strcasecmp(s1, s2)
const char *s1;
const char *s2;
{
char a, b;
/*
* In the kernel, toupper() is a macro. Have to be careful
* not to use pointer arithmetic when passing it arguments.
*/
while(1) {
a = *s1;
b = *s2++;
if (toupper(a) != toupper(b))
break;
if (*s1++ == '\0')
return(0);
}
return (*(const unsigned char *)s1 - *(const unsigned char *)(s2 - 1));
}
int
ndis_strncasecmp(s1, s2, n)
const char *s1;
const char *s2;
size_t n;
{
char a, b;
if (n != 0) {
do {
a = *s1;
b = *s2++;
if (toupper(a) != toupper(b))
return (*(const unsigned char *)s1 -
*(const unsigned char *)(s2 - 1));
if (*s1++ == '\0')
break;
} while (--n != 0);
}
return(0);
}
static void
NdisReadConfiguration(status, parm, cfg, key, type)
ndis_status *status;
ndis_config_parm **parm;
ndis_handle cfg;
unicode_string *key;
ndis_parm_type type;
{
char *keystr = NULL;
ndis_miniport_block *block;
struct ndis_softc *sc;
struct sysctl_oid *oidp;
struct sysctl_ctx_entry *e;
ansi_string as;
block = (ndis_miniport_block *)cfg;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
if (key->us_len == 0 || key->us_buf == NULL) {
*status = NDIS_STATUS_FAILURE;
return;
}
if (RtlUnicodeStringToAnsiString(&as, key, TRUE)) {
*status = NDIS_STATUS_RESOURCES;
return;
}
keystr = as.as_buf;
/*
* See if registry key is already in a list of known keys
* included with the driver.
*/
#if __FreeBSD_version < 502113
TAILQ_FOREACH(e, &sc->ndis_ctx, link) {
#else
TAILQ_FOREACH(e, device_get_sysctl_ctx(sc->ndis_dev), link) {
#endif
oidp = e->entry;
if (ndis_strcasecmp(oidp->oid_name, keystr) == 0) {
if (strcmp((char *)oidp->oid_arg1, "UNSET") == 0) {
RtlFreeAnsiString(&as);
*status = NDIS_STATUS_FAILURE;
return;
}
*status = ndis_encode_parm(block, oidp, type, parm);
RtlFreeAnsiString(&as);
return;
}
}
/*
* If the key didn't match, add it to the list of dynamically
* created ones. Sometimes, drivers refer to registry keys
* that aren't documented in their .INF files. These keys
* are supposed to be created by some sort of utility or
* control panel snap-in that comes with the driver software.
* Sometimes it's useful to be able to manipulate these.
* If the driver requests the key in the form of a string,
* make its default value an empty string, otherwise default
* it to "0".
*/
if (type == ndis_parm_int || type == ndis_parm_hexint)
ndis_add_sysctl(sc, keystr, "(dynamic integer key)",
"UNSET", CTLFLAG_RW);
else
ndis_add_sysctl(sc, keystr, "(dynamic string key)",
"UNSET", CTLFLAG_RW);
RtlFreeAnsiString(&as);
*status = NDIS_STATUS_FAILURE;
return;
}
static ndis_status
ndis_decode_parm(block, parm, val)
ndis_miniport_block *block;
ndis_config_parm *parm;
char *val;
{
unicode_string *ustr;
ansi_string as;
switch(parm->ncp_type) {
case ndis_parm_string:
ustr = &parm->ncp_parmdata.ncp_stringdata;
if (RtlUnicodeStringToAnsiString(&as, ustr, TRUE))
return(NDIS_STATUS_RESOURCES);
bcopy(as.as_buf, val, as.as_len);
RtlFreeAnsiString(&as);
break;
case ndis_parm_int:
sprintf(val, "%d", parm->ncp_parmdata.ncp_intdata);
break;
case ndis_parm_hexint:
sprintf(val, "%xu", parm->ncp_parmdata.ncp_intdata);
break;
default:
return(NDIS_STATUS_FAILURE);
break;
}
return(NDIS_STATUS_SUCCESS);
}
static void
NdisWriteConfiguration(status, cfg, key, parm)
ndis_status *status;
ndis_handle cfg;
unicode_string *key;
ndis_config_parm *parm;
{
ansi_string as;
char *keystr = NULL;
ndis_miniport_block *block;
struct ndis_softc *sc;
struct sysctl_oid *oidp;
struct sysctl_ctx_entry *e;
char val[256];
block = (ndis_miniport_block *)cfg;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
if (RtlUnicodeStringToAnsiString(&as, key, TRUE)) {
*status = NDIS_STATUS_RESOURCES;
return;
}
keystr = as.as_buf;
/* Decode the parameter into a string. */
bzero(val, sizeof(val));
*status = ndis_decode_parm(block, parm, val);
if (*status != NDIS_STATUS_SUCCESS) {
RtlFreeAnsiString(&as);
return;
}
/* See if the key already exists. */
#if __FreeBSD_version < 502113
TAILQ_FOREACH(e, &sc->ndis_ctx, link) {
#else
TAILQ_FOREACH(e, device_get_sysctl_ctx(sc->ndis_dev), link) {
#endif
oidp = e->entry;
if (ndis_strcasecmp(oidp->oid_name, keystr) == 0) {
/* Found it, set the value. */
strcpy((char *)oidp->oid_arg1, val);
RtlFreeAnsiString(&as);
return;
}
}
/* Not found, add a new key with the specified value. */
ndis_add_sysctl(sc, keystr, "(dynamically set key)",
val, CTLFLAG_RW);
RtlFreeAnsiString(&as);
*status = NDIS_STATUS_SUCCESS;
return;
}
static void
NdisCloseConfiguration(cfg)
ndis_handle cfg;
{
list_entry *e;
ndis_parmlist_entry *pe;
ndis_miniport_block *block;
ndis_config_parm *p;
block = (ndis_miniport_block *)cfg;
while (!IsListEmpty(&block->nmb_parmlist)) {
e = RemoveHeadList(&block->nmb_parmlist);
pe = CONTAINING_RECORD(e, ndis_parmlist_entry, np_list);
p = &pe->np_parm;
if (p->ncp_type == ndis_parm_string)
RtlFreeUnicodeString(&p->ncp_parmdata.ncp_stringdata);
ExFreePool(e);
}
return;
}
/*
* Initialize a Windows spinlock.
*/
static void
NdisAllocateSpinLock(lock)
ndis_spin_lock *lock;
{
KeInitializeSpinLock(&lock->nsl_spinlock);
lock->nsl_kirql = 0;
return;
}
/*
* Destroy a Windows spinlock. This is a no-op for now. There are two reasons
* for this. One is that it's sort of superfluous: we don't have to do anything
* special to deallocate the spinlock. The other is that there are some buggy
* drivers which call NdisFreeSpinLock() _after_ calling NdisFreeMemory() on
* the block of memory in which the spinlock resides. (Yes, ADMtek, I'm
* talking to you.)
*/
static void
NdisFreeSpinLock(lock)
ndis_spin_lock *lock;
{
#ifdef notdef
KeInitializeSpinLock(&lock->nsl_spinlock);
lock->nsl_kirql = 0;
#endif
return;
}
/*
* Acquire a spinlock from IRQL <= DISPATCH_LEVEL.
*/
static void
NdisAcquireSpinLock(lock)
ndis_spin_lock *lock;
{
KeAcquireSpinLock(&lock->nsl_spinlock, &lock->nsl_kirql);
return;
}
/*
* Release a spinlock from IRQL == DISPATCH_LEVEL.
*/
static void
NdisReleaseSpinLock(lock)
ndis_spin_lock *lock;
{
KeReleaseSpinLock(&lock->nsl_spinlock, lock->nsl_kirql);
return;
}
/*
* Acquire a spinlock when already running at IRQL == DISPATCH_LEVEL.
*/
static void
NdisDprAcquireSpinLock(lock)
ndis_spin_lock *lock;
{
KeAcquireSpinLockAtDpcLevel(&lock->nsl_spinlock);
return;
}
/*
* Release a spinlock without leaving IRQL == DISPATCH_LEVEL.
*/
static void
NdisDprReleaseSpinLock(lock)
ndis_spin_lock *lock;
{
KeReleaseSpinLockFromDpcLevel(&lock->nsl_spinlock);
return;
}
static void
NdisInitializeReadWriteLock(lock)
ndis_rw_lock *lock;
{
KeInitializeSpinLock(&lock->nrl_spinlock);
bzero((char *)&lock->nrl_rsvd, sizeof(lock->nrl_rsvd));
return;
}
static void
NdisAcquireReadWriteLock(lock, writeacc, state)
ndis_rw_lock *lock;
uint8_t writeacc;
ndis_lock_state *state;
{
if (writeacc == TRUE) {
KeAcquireSpinLock(&lock->nrl_spinlock, &state->nls_oldirql);
lock->nrl_rsvd[0]++;
} else
lock->nrl_rsvd[1]++;
return;
}
static void
NdisReleaseReadWriteLock(lock, state)
ndis_rw_lock *lock;
ndis_lock_state *state;
{
if (lock->nrl_rsvd[0]) {
lock->nrl_rsvd[0]--;
KeReleaseSpinLock(&lock->nrl_spinlock, state->nls_oldirql);
} else
lock->nrl_rsvd[1]--;
return;
}
static uint32_t
NdisReadPciSlotInformation(adapter, slot, offset, buf, len)
ndis_handle adapter;
uint32_t slot;
uint32_t offset;
void *buf;
uint32_t len;
{
ndis_miniport_block *block;
int i;
char *dest;
device_t dev;
block = (ndis_miniport_block *)adapter;
dest = buf;
if (block == NULL)
return(0);
dev = block->nmb_physdeviceobj->do_devext;
/*
* I have a test system consisting of a Sun w2100z
* dual 2.4Ghz Opteron machine and an Atheros 802.11a/b/g
* "Aries" miniPCI NIC. (The NIC is installed in the
* machine using a miniPCI to PCI bus adapter card.)
* When running in SMP mode, I found that
* performing a large number of consecutive calls to
* NdisReadPciSlotInformation() would result in a
* sudden system reset (or in some cases a freeze).
* My suspicion is that the multiple reads are somehow
* triggering a fatal PCI bus error that leads to a
* machine check. The 1us delay in the loop below
* seems to prevent this problem.
*/
for (i = 0; i < len; i++) {
DELAY(1);
dest[i] = pci_read_config(dev, i + offset, 1);
}
return(len);
}
static uint32_t
NdisWritePciSlotInformation(adapter, slot, offset, buf, len)
ndis_handle adapter;
uint32_t slot;
uint32_t offset;
void *buf;
uint32_t len;
{
ndis_miniport_block *block;
int i;
char *dest;
device_t dev;
block = (ndis_miniport_block *)adapter;
dest = buf;
if (block == NULL)
return(0);
dev = block->nmb_physdeviceobj->do_devext;
for (i = 0; i < len; i++) {
DELAY(1);
pci_write_config(dev, i + offset, dest[i], 1);
}
return(len);
}
/*
* The errorlog routine uses a variable argument list, so we
* have to declare it this way.
*/
#define ERRMSGLEN 512
static void
NdisWriteErrorLogEntry(ndis_handle adapter, ndis_error_code code,
uint32_t numerrors, ...)
{
ndis_miniport_block *block;
va_list ap;
int i, error;
char *str = NULL;
uint16_t flags;
device_t dev;
driver_object *drv;
struct ndis_softc *sc;
struct ifnet *ifp;
unicode_string us;
ansi_string as = { 0, 0, NULL };
block = (ndis_miniport_block *)adapter;
dev = block->nmb_physdeviceobj->do_devext;
drv = block->nmb_deviceobj->do_drvobj;
sc = device_get_softc(dev);
ifp = sc->ifp;
if (ifp->if_flags & IFF_DEBUG) {
error = pe_get_message((vm_offset_t)drv->dro_driverstart,
code, &str, &i, &flags);
if (error == 0) {
if (flags & MESSAGE_RESOURCE_UNICODE) {
RtlInitUnicodeString(&us, (uint16_t *)str);
if (RtlUnicodeStringToAnsiString(&as,
&us, TRUE) == STATUS_SUCCESS)
str = as.as_buf;
else
str = NULL;
}
}
}
device_printf (dev, "NDIS ERROR: %x (%s)\n", code,
str == NULL ? "unknown error" : str);
if (ifp->if_flags & IFF_DEBUG) {
device_printf (dev, "NDIS NUMERRORS: %x\n", numerrors);
va_start(ap, numerrors);
for (i = 0; i < numerrors; i++)
device_printf (dev, "argptr: %p\n",
va_arg(ap, void *));
va_end(ap);
}
if (as.as_len)
RtlFreeAnsiString(&as);
return;
}
static void
ndis_map_cb(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
int error;
{
struct ndis_map_arg *ctx;
int i;
if (error)
return;
ctx = arg;
for (i = 0; i < nseg; i++) {
ctx->nma_fraglist[i].npu_physaddr.np_quad = segs[i].ds_addr;
ctx->nma_fraglist[i].npu_len = segs[i].ds_len;
}
ctx->nma_cnt = nseg;
return;
}
static void
NdisMStartBufferPhysicalMapping(adapter, buf, mapreg, writedev, addrarray, arraysize)
ndis_handle adapter;
ndis_buffer *buf;
uint32_t mapreg;
uint8_t writedev;
ndis_paddr_unit *addrarray;
uint32_t *arraysize;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
struct ndis_map_arg nma;
bus_dmamap_t map;
int error;
if (adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
if (mapreg > sc->ndis_mmapcnt)
return;
map = sc->ndis_mmaps[mapreg];
nma.nma_fraglist = addrarray;
error = bus_dmamap_load(sc->ndis_mtag, map,
MmGetMdlVirtualAddress(buf), MmGetMdlByteCount(buf), ndis_map_cb,
(void *)&nma, BUS_DMA_NOWAIT);
if (error)
return;
bus_dmamap_sync(sc->ndis_mtag, map,
writedev ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
*arraysize = nma.nma_cnt;
return;
}
static void
NdisMCompleteBufferPhysicalMapping(adapter, buf, mapreg)
ndis_handle adapter;
ndis_buffer *buf;
uint32_t mapreg;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
bus_dmamap_t map;
if (adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
if (mapreg > sc->ndis_mmapcnt)
return;
map = sc->ndis_mmaps[mapreg];
bus_dmamap_sync(sc->ndis_mtag, map,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ndis_mtag, map);
return;
}
/*
* This is an older (?) timer init routine which doesn't
* accept a miniport context handle. Serialized miniports should
* never call this function.
*/
static void
NdisInitializeTimer(timer, func, ctx)
ndis_timer *timer;
ndis_timer_function func;
void *ctx;
{
KeInitializeTimer(&timer->nt_ktimer);
KeInitializeDpc(&timer->nt_kdpc, func, ctx);
KeSetImportanceDpc(&timer->nt_kdpc, KDPC_IMPORTANCE_LOW);
return;
}
static void
ndis_timercall(dpc, timer, sysarg1, sysarg2)
kdpc *dpc;
ndis_miniport_timer *timer;
void *sysarg1;
void *sysarg2;
{
/*
* Since we're called as a DPC, we should be running
* at DISPATCH_LEVEL here. This means to acquire the
* spinlock, we can use KeAcquireSpinLockAtDpcLevel()
* rather than KeAcquireSpinLock().
*/
if (NDIS_SERIALIZED(timer->nmt_block))
KeAcquireSpinLockAtDpcLevel(&timer->nmt_block->nmb_lock);
MSCALL4(timer->nmt_timerfunc, dpc, timer->nmt_timerctx,
sysarg1, sysarg2);
if (NDIS_SERIALIZED(timer->nmt_block))
KeReleaseSpinLockFromDpcLevel(&timer->nmt_block->nmb_lock);
return;
}
/*
* For a long time I wondered why there were two NDIS timer initialization
* routines, and why this one needed an NDIS_MINIPORT_TIMER and the
* MiniportAdapterHandle. The NDIS_MINIPORT_TIMER has its own callout
* function and context pointers separate from those in the DPC, which
* allows for another level of indirection: when the timer fires, we
* can have our own timer function invoked, and from there we can call
* the driver's function. But why go to all that trouble? Then it hit
* me: for serialized miniports, the timer callouts are not re-entrant.
* By trapping the callouts and having access to the MiniportAdapterHandle,
* we can protect the driver callouts by acquiring the NDIS serialization
* lock. This is essential for allowing serialized miniports to work
* correctly on SMP systems. On UP hosts, setting IRQL to DISPATCH_LEVEL
* is enough to prevent other threads from pre-empting you, but with
* SMP, you must acquire a lock as well, otherwise the other CPU is
* free to clobber you.
*/
static void
NdisMInitializeTimer(timer, handle, func, ctx)
ndis_miniport_timer *timer;
ndis_handle handle;
ndis_timer_function func;
void *ctx;
{
/* Save the driver's funcptr and context */
timer->nmt_timerfunc = func;
timer->nmt_timerctx = ctx;
timer->nmt_block = handle;
/*
* Set up the timer so it will call our intermediate DPC.
* Be sure to use the wrapped entry point, since
* ntoskrnl_run_dpc() expects to invoke a function with
* Microsoft calling conventions.
*/
KeInitializeTimer(&timer->nmt_ktimer);
KeInitializeDpc(&timer->nmt_kdpc,
ndis_findwrap((funcptr)ndis_timercall), timer);
timer->nmt_ktimer.k_dpc = &timer->nmt_kdpc;
return;
}
/*
* In Windows, there's both an NdisMSetTimer() and an NdisSetTimer(),
* but the former is just a macro wrapper around the latter.
*/
static void
NdisSetTimer(timer, msecs)
ndis_timer *timer;
uint32_t msecs;
{
/*
* KeSetTimer() wants the period in
* hundred nanosecond intervals.
*/
KeSetTimer(&timer->nt_ktimer,
((int64_t)msecs * -10000), &timer->nt_kdpc);
return;
}
static void
NdisMSetPeriodicTimer(timer, msecs)
ndis_miniport_timer *timer;
uint32_t msecs;
{
KeSetTimerEx(&timer->nmt_ktimer,
((int64_t)msecs * -10000), msecs, &timer->nmt_kdpc);
return;
}
/*
* Technically, this is really NdisCancelTimer(), but we also
* (ab)use it for NdisMCancelTimer(), since in our implementation
* we don't need the extra info in the ndis_miniport_timer
* structure just to cancel a timer.
*/
static void
NdisMCancelTimer(timer, cancelled)
ndis_timer *timer;
uint8_t *cancelled;
{
*cancelled = KeCancelTimer(&timer->nt_ktimer);
return;
}
static void
NdisMQueryAdapterResources(status, adapter, list, buflen)
ndis_status *status;
ndis_handle adapter;
ndis_resource_list *list;
uint32_t *buflen;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
int rsclen;
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
rsclen = sizeof(ndis_resource_list) +
(sizeof(cm_partial_resource_desc) * (sc->ndis_rescnt - 1));
if (*buflen < rsclen) {
*buflen = rsclen;
*status = NDIS_STATUS_INVALID_LENGTH;
return;
}
bcopy((char *)block->nmb_rlist, (char *)list, rsclen);
*status = NDIS_STATUS_SUCCESS;
return;
}
static ndis_status
NdisMRegisterIoPortRange(offset, adapter, port, numports)
void **offset;
ndis_handle adapter;
uint32_t port;
uint32_t numports;
{
struct ndis_miniport_block *block;
struct ndis_softc *sc;
if (adapter == NULL)
return(NDIS_STATUS_FAILURE);
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
if (sc->ndis_res_io == NULL)
return(NDIS_STATUS_FAILURE);
/* Don't let the device map more ports than we have. */
if (rman_get_size(sc->ndis_res_io) < numports)
return(NDIS_STATUS_INVALID_LENGTH);
*offset = (void *)rman_get_start(sc->ndis_res_io);
return(NDIS_STATUS_SUCCESS);
}
static void
NdisMDeregisterIoPortRange(adapter, port, numports, offset)
ndis_handle adapter;
uint32_t port;
uint32_t numports;
void *offset;
{
return;
}
static void
NdisReadNetworkAddress(status, addr, addrlen, adapter)
ndis_status *status;
void **addr;
uint32_t *addrlen;
ndis_handle adapter;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
uint8_t empty[] = { 0, 0, 0, 0, 0, 0 };
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
#ifdef IFP2ENADDR
if (bcmp(IFP2ENADDR(sc->ifp), empty, ETHER_ADDR_LEN) == 0)
#elif __FreeBSD_version >= 700000
if (sc->ifp->if_addr == NULL ||
bcmp(IF_LLADDR(sc->ifp), empty, ETHER_ADDR_LEN) == 0)
#else
if (bcmp(sc->arpcom.ac_enaddr, empty, ETHER_ADDR_LEN) == 0)
#endif
*status = NDIS_STATUS_FAILURE;
else {
#ifdef IFP2ENADDR
*addr = IFP2ENADDR(sc->ifp);
#elif __FreeBSD_version >= 700000
*addr = IF_LLADDR(sc->ifp);
#else
*addr = sc->arpcom.ac_enaddr;
#endif
*addrlen = ETHER_ADDR_LEN;
*status = NDIS_STATUS_SUCCESS;
}
return;
}
static ndis_status
NdisQueryMapRegisterCount(bustype, cnt)
uint32_t bustype;
uint32_t *cnt;
{
*cnt = 8192;
return(NDIS_STATUS_SUCCESS);
}
static ndis_status
NdisMAllocateMapRegisters(adapter, dmachannel, dmasize, physmapneeded, maxmap)
ndis_handle adapter;
uint32_t dmachannel;
uint8_t dmasize;
uint32_t physmapneeded;
uint32_t maxmap;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
int error, i, nseg = NDIS_MAXSEG;
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
sc->ndis_mmaps = malloc(sizeof(bus_dmamap_t) * physmapneeded,
M_DEVBUF, M_NOWAIT|M_ZERO);
if (sc->ndis_mmaps == NULL)
return(NDIS_STATUS_RESOURCES);
error = bus_dma_tag_create(sc->ndis_parent_tag, ETHER_ALIGN, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, maxmap * nseg, nseg, maxmap, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->ndis_mtag);
if (error) {
free(sc->ndis_mmaps, M_DEVBUF);
return(NDIS_STATUS_RESOURCES);
}
for (i = 0; i < physmapneeded; i++)
bus_dmamap_create(sc->ndis_mtag, 0, &sc->ndis_mmaps[i]);
sc->ndis_mmapcnt = physmapneeded;
return(NDIS_STATUS_SUCCESS);
}
static void
NdisMFreeMapRegisters(adapter)
ndis_handle adapter;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
int i;
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
for (i = 0; i < sc->ndis_mmapcnt; i++)
bus_dmamap_destroy(sc->ndis_mtag, sc->ndis_mmaps[i]);
free(sc->ndis_mmaps, M_DEVBUF);
bus_dma_tag_destroy(sc->ndis_mtag);
return;
}
static void
ndis_mapshared_cb(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
int error;
{
ndis_physaddr *p;
if (error || nseg > 1)
return;
p = arg;
p->np_quad = segs[0].ds_addr;
return;
}
/*
* This maps to bus_dmamem_alloc().
*/
static void
NdisMAllocateSharedMemory(adapter, len, cached, vaddr, paddr)
ndis_handle adapter;
uint32_t len;
uint8_t cached;
void **vaddr;
ndis_physaddr *paddr;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
struct ndis_shmem *sh;
int error;
if (adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
sh = malloc(sizeof(struct ndis_shmem), M_DEVBUF, M_NOWAIT|M_ZERO);
if (sh == NULL)
return;
InitializeListHead(&sh->ndis_list);
/*
* When performing shared memory allocations, create a tag
* with a lowaddr limit that restricts physical memory mappings
* so that they all fall within the first 1GB of memory.
* At least one device/driver combination (Linksys Instant
* Wireless PCI Card V2.7, Broadcom 802.11b) seems to have
* problems with performing DMA operations with physical
* addresses that lie above the 1GB mark. I don't know if this
* is a hardware limitation or if the addresses are being
* truncated within the driver, but this seems to be the only
* way to make these cards work reliably in systems with more
* than 1GB of physical memory.
*/
error = bus_dma_tag_create(sc->ndis_parent_tag, 64,
0, NDIS_BUS_SPACE_SHARED_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, len, 1, len, BUS_DMA_ALLOCNOW, NULL, NULL,
&sh->ndis_stag);
if (error) {
free(sh, M_DEVBUF);
return;
}
error = bus_dmamem_alloc(sh->ndis_stag, vaddr,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sh->ndis_smap);
if (error) {
bus_dma_tag_destroy(sh->ndis_stag);
free(sh, M_DEVBUF);
return;
}
error = bus_dmamap_load(sh->ndis_stag, sh->ndis_smap, *vaddr,
len, ndis_mapshared_cb, (void *)paddr, BUS_DMA_NOWAIT);
if (error) {
bus_dmamem_free(sh->ndis_stag, *vaddr, sh->ndis_smap);
bus_dma_tag_destroy(sh->ndis_stag);
free(sh, M_DEVBUF);
return;
}
/*
* Save the physical address along with the source address.
* The AirGo MIMO driver will call NdisMFreeSharedMemory()
* with a bogus virtual address sometimes, but with a valid
* physical address. To keep this from causing trouble, we
* use the physical address to as a sanity check in case
* searching based on the virtual address fails.
*/
NDIS_LOCK(sc);
sh->ndis_paddr.np_quad = paddr->np_quad;
sh->ndis_saddr = *vaddr;
InsertHeadList((&sc->ndis_shlist), (&sh->ndis_list));
NDIS_UNLOCK(sc);
return;
}
struct ndis_allocwork {
uint32_t na_len;
uint8_t na_cached;
void *na_ctx;
io_workitem *na_iw;
};
static void
ndis_asyncmem_complete(dobj, arg)
device_object *dobj;
void *arg;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
struct ndis_allocwork *w;
void *vaddr;
ndis_physaddr paddr;
ndis_allocdone_handler donefunc;
w = arg;
block = (ndis_miniport_block *)dobj->do_devext;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
vaddr = NULL;
paddr.np_quad = 0;
donefunc = sc->ndis_chars->nmc_allocate_complete_func;
NdisMAllocateSharedMemory(block, w->na_len,
w->na_cached, &vaddr, &paddr);
MSCALL5(donefunc, block, vaddr, &paddr, w->na_len, w->na_ctx);
IoFreeWorkItem(w->na_iw);
free(w, M_DEVBUF);
return;
}
static ndis_status
NdisMAllocateSharedMemoryAsync(adapter, len, cached, ctx)
ndis_handle adapter;
uint32_t len;
uint8_t cached;
void *ctx;
{
ndis_miniport_block *block;
struct ndis_allocwork *w;
io_workitem *iw;
io_workitem_func ifw;
if (adapter == NULL)
return(NDIS_STATUS_FAILURE);
block = adapter;
iw = IoAllocateWorkItem(block->nmb_deviceobj);
if (iw == NULL)
return(NDIS_STATUS_FAILURE);
w = malloc(sizeof(struct ndis_allocwork), M_TEMP, M_NOWAIT);
if (w == NULL)
return(NDIS_STATUS_FAILURE);
w->na_cached = cached;
w->na_len = len;
w->na_ctx = ctx;
w->na_iw = iw;
ifw = (io_workitem_func)ndis_findwrap((funcptr)ndis_asyncmem_complete);
IoQueueWorkItem(iw, ifw, WORKQUEUE_DELAYED, w);
return(NDIS_STATUS_PENDING);
}
static void
NdisMFreeSharedMemory(adapter, len, cached, vaddr, paddr)
ndis_handle adapter;
uint32_t len;
uint8_t cached;
void *vaddr;
ndis_physaddr paddr;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
struct ndis_shmem *sh = NULL;
list_entry *l;
if (vaddr == NULL || adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
/* Sanity check: is list empty? */
if (IsListEmpty(&sc->ndis_shlist))
return;
NDIS_LOCK(sc);
l = sc->ndis_shlist.nle_flink;
while (l != &sc->ndis_shlist) {
sh = CONTAINING_RECORD(l, struct ndis_shmem, ndis_list);
if (sh->ndis_saddr == vaddr)
break;
/*
* Check the physaddr too, just in case the driver lied
* about the virtual address.
*/
if (sh->ndis_paddr.np_quad == paddr.np_quad)
break;
l = l->nle_flink;
}
if (sh == NULL) {
NDIS_UNLOCK(sc);
printf("NDIS: buggy driver tried to free "
"invalid shared memory: vaddr: %p paddr: 0x%jx\n",
vaddr, (uintmax_t)paddr.np_quad);
return;
}
RemoveEntryList(&sh->ndis_list);
NDIS_UNLOCK(sc);
bus_dmamap_unload(sh->ndis_stag, sh->ndis_smap);
bus_dmamem_free(sh->ndis_stag, sh->ndis_saddr, sh->ndis_smap);
bus_dma_tag_destroy(sh->ndis_stag);
free(sh, M_DEVBUF);
return;
}
static ndis_status
NdisMMapIoSpace(vaddr, adapter, paddr, len)
void **vaddr;
ndis_handle adapter;
ndis_physaddr paddr;
uint32_t len;
{
if (adapter == NULL)
return(NDIS_STATUS_FAILURE);
*vaddr = MmMapIoSpace(paddr.np_quad, len, 0);
if (*vaddr == NULL)
return(NDIS_STATUS_FAILURE);
return(NDIS_STATUS_SUCCESS);
}
static void
NdisMUnmapIoSpace(adapter, vaddr, len)
ndis_handle adapter;
void *vaddr;
uint32_t len;
{
MmUnmapIoSpace(vaddr, len);
return;
}
static uint32_t
NdisGetCacheFillSize(void)
{
return(128);
}
static uint32_t
NdisMGetDmaAlignment(handle)
ndis_handle handle;
{
return(16);
}
/*
* NDIS has two methods for dealing with NICs that support DMA.
* One is to just pass packets to the driver and let it call
* NdisMStartBufferPhysicalMapping() to map each buffer in the packet
* all by itself, and the other is to let the NDIS library handle the
* buffer mapping internally, and hand the driver an already populated
* scatter/gather fragment list. If the driver calls
* NdisMInitializeScatterGatherDma(), it wants to use the latter
* method.
*/
static ndis_status
NdisMInitializeScatterGatherDma(adapter, is64, maxphysmap)
ndis_handle adapter;
uint8_t is64;
uint32_t maxphysmap;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
int error;
if (adapter == NULL)
return(NDIS_STATUS_FAILURE);
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
/* Don't do this twice. */
if (sc->ndis_sc == 1)
return(NDIS_STATUS_SUCCESS);
error = bus_dma_tag_create(sc->ndis_parent_tag, ETHER_ALIGN, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * NDIS_MAXSEG, NDIS_MAXSEG, MCLBYTES, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->ndis_ttag);
sc->ndis_sc = 1;
return(NDIS_STATUS_SUCCESS);
}
void
NdisAllocatePacketPool(status, pool, descnum, protrsvdlen)
ndis_status *status;
ndis_handle *pool;
uint32_t descnum;
uint32_t protrsvdlen;
{
ndis_packet_pool *p;
ndis_packet *packets;
int i;
p = ExAllocatePoolWithTag(NonPagedPool, sizeof(ndis_packet_pool), 0);
if (p == NULL) {
*status = NDIS_STATUS_RESOURCES;
return;
}
p->np_cnt = descnum + NDIS_POOL_EXTRA;
p->np_protrsvd = protrsvdlen;
p->np_len = sizeof(ndis_packet) + protrsvdlen;
packets = ExAllocatePoolWithTag(NonPagedPool, p->np_cnt *
p->np_len, 0);
if (packets == NULL) {
ExFreePool(p);
*status = NDIS_STATUS_RESOURCES;
return;
}
p->np_pktmem = packets;
for (i = 0; i < p->np_cnt; i++)
InterlockedPushEntrySList(&p->np_head,
(struct slist_entry *)&packets[i]);
#ifdef NDIS_DEBUG_PACKETS
p->np_dead = 0;
KeInitializeSpinLock(&p->np_lock);
KeInitializeEvent(&p->np_event, EVENT_TYPE_NOTIFY, TRUE);
#endif
*pool = p;
*status = NDIS_STATUS_SUCCESS;
return;
}
void
NdisAllocatePacketPoolEx(status, pool, descnum, oflowdescnum, protrsvdlen)
ndis_status *status;
ndis_handle *pool;
uint32_t descnum;
uint32_t oflowdescnum;
uint32_t protrsvdlen;
{
return(NdisAllocatePacketPool(status, pool,
descnum + oflowdescnum, protrsvdlen));
}
uint32_t
NdisPacketPoolUsage(pool)
ndis_handle pool;
{
ndis_packet_pool *p;
p = (ndis_packet_pool *)pool;
return(p->np_cnt - ExQueryDepthSList(&p->np_head));
}
void
NdisFreePacketPool(pool)
ndis_handle pool;
{
ndis_packet_pool *p;
int usage;
#ifdef NDIS_DEBUG_PACKETS
uint8_t irql;
#endif
p = (ndis_packet_pool *)pool;
#ifdef NDIS_DEBUG_PACKETS
KeAcquireSpinLock(&p->np_lock, &irql);
#endif
usage = NdisPacketPoolUsage(pool);
#ifdef NDIS_DEBUG_PACKETS
if (usage) {
p->np_dead = 1;
KeResetEvent(&p->np_event);
KeReleaseSpinLock(&p->np_lock, irql);
KeWaitForSingleObject(&p->np_event, 0, 0, FALSE, NULL);
} else
KeReleaseSpinLock(&p->np_lock, irql);
#endif
ExFreePool(p->np_pktmem);
ExFreePool(p);
return;
}
void
NdisAllocatePacket(status, packet, pool)
ndis_status *status;
ndis_packet **packet;
ndis_handle pool;
{
ndis_packet_pool *p;
ndis_packet *pkt;
#ifdef NDIS_DEBUG_PACKETS
uint8_t irql;
#endif
p = (ndis_packet_pool *)pool;
#ifdef NDIS_DEBUG_PACKETS
KeAcquireSpinLock(&p->np_lock, &irql);
if (p->np_dead) {
KeReleaseSpinLock(&p->np_lock, irql);
printf("NDIS: tried to allocate packet from dead pool %p\n",
pool);
*status = NDIS_STATUS_RESOURCES;
return;
}
#endif
pkt = (ndis_packet *)InterlockedPopEntrySList(&p->np_head);
#ifdef NDIS_DEBUG_PACKETS
KeReleaseSpinLock(&p->np_lock, irql);
#endif
if (pkt == NULL) {
*status = NDIS_STATUS_RESOURCES;
return;
}
bzero((char *)pkt, sizeof(ndis_packet));
/* Save pointer to the pool. */
pkt->np_private.npp_pool = pool;
/* Set the oob offset pointer. Lots of things expect this. */
pkt->np_private.npp_packetooboffset = offsetof(ndis_packet, np_oob);
/*
* We must initialize the packet flags correctly in order
* for the NDIS_SET_PACKET_MEDIA_SPECIFIC_INFO() and
* NDIS_GET_PACKET_MEDIA_SPECIFIC_INFO() macros to work
* correctly.
*/
pkt->np_private.npp_ndispktflags = NDIS_PACKET_ALLOCATED_BY_NDIS;
pkt->np_private.npp_validcounts = FALSE;
*packet = pkt;
*status = NDIS_STATUS_SUCCESS;
return;
}
void
NdisFreePacket(packet)
ndis_packet *packet;
{
ndis_packet_pool *p;
#ifdef NDIS_DEBUG_PACKETS
uint8_t irql;
#endif
p = (ndis_packet_pool *)packet->np_private.npp_pool;
#ifdef NDIS_DEBUG_PACKETS
KeAcquireSpinLock(&p->np_lock, &irql);
#endif
InterlockedPushEntrySList(&p->np_head, (slist_entry *)packet);
#ifdef NDIS_DEBUG_PACKETS
if (p->np_dead) {
if (ExQueryDepthSList(&p->np_head) == p->np_cnt)
KeSetEvent(&p->np_event, IO_NO_INCREMENT, FALSE);
}
KeReleaseSpinLock(&p->np_lock, irql);
#endif
return;
}
static void
NdisUnchainBufferAtFront(packet, buf)
ndis_packet *packet;
ndis_buffer **buf;
{
ndis_packet_private *priv;
if (packet == NULL || buf == NULL)
return;
priv = &packet->np_private;
priv->npp_validcounts = FALSE;
if (priv->npp_head == priv->npp_tail) {
*buf = priv->npp_head;
priv->npp_head = priv->npp_tail = NULL;
} else {
*buf = priv->npp_head;
priv->npp_head = (*buf)->mdl_next;
}
return;
}
static void
NdisUnchainBufferAtBack(packet, buf)
ndis_packet *packet;
ndis_buffer **buf;
{
ndis_packet_private *priv;
ndis_buffer *tmp;
if (packet == NULL || buf == NULL)
return;
priv = &packet->np_private;
priv->npp_validcounts = FALSE;
if (priv->npp_head == priv->npp_tail) {
*buf = priv->npp_head;
priv->npp_head = priv->npp_tail = NULL;
} else {
*buf = priv->npp_tail;
tmp = priv->npp_head;
while (tmp->mdl_next != priv->npp_tail)
tmp = tmp->mdl_next;
priv->npp_tail = tmp;
tmp->mdl_next = NULL;
}
return;
}
/*
* The NDIS "buffer" is really an MDL (memory descriptor list)
* which is used to describe a buffer in a way that allows it
* to mapped into different contexts. We have to be careful how
* we handle them: in some versions of Windows, the NdisFreeBuffer()
* routine is an actual function in the NDIS API, but in others
* it's just a macro wrapper around IoFreeMdl(). There's really
* no way to use the 'descnum' parameter to count how many
* "buffers" are allocated since in order to use IoFreeMdl() to
* dispose of a buffer, we have to use IoAllocateMdl() to allocate
* them, and IoAllocateMdl() just grabs them out of the heap.
*/
static void
NdisAllocateBufferPool(status, pool, descnum)
ndis_status *status;
ndis_handle *pool;
uint32_t descnum;
{
/*
* The only thing we can really do here is verify that descnum
* is a reasonable value, but I really don't know what to check
* it against.
*/
*pool = NonPagedPool;
*status = NDIS_STATUS_SUCCESS;
return;
}
static void
NdisFreeBufferPool(pool)
ndis_handle pool;
{
return;
}
static void
NdisAllocateBuffer(status, buffer, pool, vaddr, len)
ndis_status *status;
ndis_buffer **buffer;
ndis_handle pool;
void *vaddr;
uint32_t len;
{
ndis_buffer *buf;
buf = IoAllocateMdl(vaddr, len, FALSE, FALSE, NULL);
if (buf == NULL) {
*status = NDIS_STATUS_RESOURCES;
return;
}
MmBuildMdlForNonPagedPool(buf);
*buffer = buf;
*status = NDIS_STATUS_SUCCESS;
return;
}
static void
NdisFreeBuffer(buf)
ndis_buffer *buf;
{
IoFreeMdl(buf);
return;
}
/* Aw c'mon. */
static uint32_t
NdisBufferLength(buf)
ndis_buffer *buf;
{
return(MmGetMdlByteCount(buf));
}
/*
* Get the virtual address and length of a buffer.
* Note: the vaddr argument is optional.
*/
static void
NdisQueryBuffer(buf, vaddr, len)
ndis_buffer *buf;
void **vaddr;
uint32_t *len;
{
if (vaddr != NULL)
*vaddr = MmGetMdlVirtualAddress(buf);
*len = MmGetMdlByteCount(buf);
return;
}
/* Same as above -- we don't care about the priority. */
static void
NdisQueryBufferSafe(buf, vaddr, len, prio)
ndis_buffer *buf;
void **vaddr;
uint32_t *len;
uint32_t prio;
{
if (vaddr != NULL)
*vaddr = MmGetMdlVirtualAddress(buf);
*len = MmGetMdlByteCount(buf);
return;
}
/* Damnit Microsoft!! How many ways can you do the same thing?! */
static void *
NdisBufferVirtualAddress(buf)
ndis_buffer *buf;
{
return(MmGetMdlVirtualAddress(buf));
}
static void *
NdisBufferVirtualAddressSafe(buf, prio)
ndis_buffer *buf;
uint32_t prio;
{
return(MmGetMdlVirtualAddress(buf));
}
static void
NdisAdjustBufferLength(buf, len)
ndis_buffer *buf;
int len;
{
MmGetMdlByteCount(buf) = len;
return;
}
static uint32_t
NdisInterlockedIncrement(addend)
uint32_t *addend;
{
atomic_add_long((u_long *)addend, 1);
return(*addend);
}
static uint32_t
NdisInterlockedDecrement(addend)
uint32_t *addend;
{
atomic_subtract_long((u_long *)addend, 1);
return(*addend);
}
static void
NdisInitializeEvent(event)
ndis_event *event;
{
/*
* NDIS events are always notification
* events, and should be initialized to the
* not signaled state.
*/
KeInitializeEvent(&event->ne_event, EVENT_TYPE_NOTIFY, FALSE);
return;
}
static void
NdisSetEvent(event)
ndis_event *event;
{
KeSetEvent(&event->ne_event, IO_NO_INCREMENT, FALSE);
return;
}
static void
NdisResetEvent(event)
ndis_event *event;
{
KeResetEvent(&event->ne_event);
return;
}
static uint8_t
NdisWaitEvent(event, msecs)
ndis_event *event;
uint32_t msecs;
{
int64_t duetime;
uint32_t rval;
duetime = ((int64_t)msecs * -10000);
rval = KeWaitForSingleObject(event,
0, 0, TRUE, msecs ? & duetime : NULL);
if (rval == STATUS_TIMEOUT)
return(FALSE);
return(TRUE);
}
static ndis_status
NdisUnicodeStringToAnsiString(dstr, sstr)
ansi_string *dstr;
unicode_string *sstr;
{
uint32_t rval;
rval = RtlUnicodeStringToAnsiString(dstr, sstr, FALSE);
if (rval == STATUS_INSUFFICIENT_RESOURCES)
return(NDIS_STATUS_RESOURCES);
if (rval)
return(NDIS_STATUS_FAILURE);
return (NDIS_STATUS_SUCCESS);
}
static ndis_status
NdisAnsiStringToUnicodeString(dstr, sstr)
unicode_string *dstr;
ansi_string *sstr;
{
uint32_t rval;
rval = RtlAnsiStringToUnicodeString(dstr, sstr, FALSE);
if (rval == STATUS_INSUFFICIENT_RESOURCES)
return(NDIS_STATUS_RESOURCES);
if (rval)
return(NDIS_STATUS_FAILURE);
return (NDIS_STATUS_SUCCESS);
}
static ndis_status
NdisMPciAssignResources(adapter, slot, list)
ndis_handle adapter;
uint32_t slot;
ndis_resource_list **list;
{
ndis_miniport_block *block;
if (adapter == NULL || list == NULL)
return (NDIS_STATUS_FAILURE);
block = (ndis_miniport_block *)adapter;
*list = block->nmb_rlist;
return (NDIS_STATUS_SUCCESS);
}
static uint8_t
ndis_intr(iobj, arg)
kinterrupt *iobj;
void *arg;
{
struct ndis_softc *sc;
uint8_t is_our_intr = FALSE;
int call_isr = 0;
ndis_miniport_interrupt *intr;
sc = arg;
intr = sc->ndis_block->nmb_interrupt;
if (intr == NULL || sc->ndis_block->nmb_miniportadapterctx == NULL)
return(FALSE);
if (sc->ndis_block->nmb_interrupt->ni_isrreq == TRUE)
MSCALL3(intr->ni_isrfunc, &is_our_intr, &call_isr,
sc->ndis_block->nmb_miniportadapterctx);
else {
MSCALL1(sc->ndis_chars->nmc_disable_interrupts_func,
sc->ndis_block->nmb_miniportadapterctx);
call_isr = 1;
}
if (call_isr)
IoRequestDpc(sc->ndis_block->nmb_deviceobj, NULL, sc);
return(is_our_intr);
}
static void
ndis_intrhand(dpc, intr, sysarg1, sysarg2)
kdpc *dpc;
ndis_miniport_interrupt *intr;
void *sysarg1;
void *sysarg2;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
ndis_handle adapter;
block = intr->ni_block;
adapter = block->nmb_miniportadapterctx;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
if (NDIS_SERIALIZED(sc->ndis_block))
KeAcquireSpinLockAtDpcLevel(&block->nmb_lock);
MSCALL1(intr->ni_dpcfunc, adapter);
/* If there's a MiniportEnableInterrupt() routine, call it. */
if (sc->ndis_chars->nmc_enable_interrupts_func != NULL)
MSCALL1(sc->ndis_chars->nmc_enable_interrupts_func, adapter);
if (NDIS_SERIALIZED(sc->ndis_block))
KeReleaseSpinLockFromDpcLevel(&block->nmb_lock);
/*
* Set the completion event if we've drained all
* pending interrupts.
*/
KeAcquireSpinLockAtDpcLevel(&intr->ni_dpccountlock);
intr->ni_dpccnt--;
if (intr->ni_dpccnt == 0)
KeSetEvent(&intr->ni_dpcevt, IO_NO_INCREMENT, FALSE);
KeReleaseSpinLockFromDpcLevel(&intr->ni_dpccountlock);
return;
}
static ndis_status
NdisMRegisterInterrupt(intr, adapter, ivec, ilevel, reqisr, shared, imode)
ndis_miniport_interrupt *intr;
ndis_handle adapter;
uint32_t ivec;
uint32_t ilevel;
uint8_t reqisr;
uint8_t shared;
ndis_interrupt_mode imode;
{
ndis_miniport_block *block;
ndis_miniport_characteristics *ch;
struct ndis_softc *sc;
int error;
block = adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
ch = IoGetDriverObjectExtension(block->nmb_deviceobj->do_drvobj,
(void *)1);
intr->ni_rsvd = ExAllocatePoolWithTag(NonPagedPool,
sizeof(struct mtx), 0);
if (intr->ni_rsvd == NULL)
return(NDIS_STATUS_RESOURCES);
intr->ni_block = adapter;
intr->ni_isrreq = reqisr;
intr->ni_shared = shared;
intr->ni_dpccnt = 0;
intr->ni_isrfunc = ch->nmc_isr_func;
intr->ni_dpcfunc = ch->nmc_interrupt_func;
KeInitializeEvent(&intr->ni_dpcevt, EVENT_TYPE_NOTIFY, TRUE);
KeInitializeDpc(&intr->ni_dpc,
ndis_findwrap((funcptr)ndis_intrhand), intr);
KeSetImportanceDpc(&intr->ni_dpc, KDPC_IMPORTANCE_LOW);
error = IoConnectInterrupt(&intr->ni_introbj,
ndis_findwrap((funcptr)ndis_intr), sc, NULL,
ivec, ilevel, 0, imode, shared, 0, FALSE);
if (error != STATUS_SUCCESS)
return(NDIS_STATUS_FAILURE);
block->nmb_interrupt = intr;
return(NDIS_STATUS_SUCCESS);
}
static void
NdisMDeregisterInterrupt(intr)
ndis_miniport_interrupt *intr;
{
ndis_miniport_block *block;
struct ndis_softc *sc;
uint8_t irql;
block = intr->ni_block;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
/* Should really be KeSynchronizeExecution() */
KeAcquireSpinLock(intr->ni_introbj->ki_lock, &irql);
block->nmb_interrupt = NULL;
KeReleaseSpinLock(intr->ni_introbj->ki_lock, irql);
/*
KeFlushQueuedDpcs();
*/
/* Disconnect our ISR */
IoDisconnectInterrupt(intr->ni_introbj);
KeWaitForSingleObject(&intr->ni_dpcevt, 0, 0, FALSE, NULL);
KeResetEvent(&intr->ni_dpcevt);
return;
}
static void
NdisMRegisterAdapterShutdownHandler(adapter, shutdownctx, shutdownfunc)
ndis_handle adapter;
void *shutdownctx;
ndis_shutdown_handler shutdownfunc;
{
ndis_miniport_block *block;
ndis_miniport_characteristics *chars;
struct ndis_softc *sc;
if (adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
chars = sc->ndis_chars;
chars->nmc_shutdown_handler = shutdownfunc;
chars->nmc_rsvd0 = shutdownctx;
return;
}
static void
NdisMDeregisterAdapterShutdownHandler(adapter)
ndis_handle adapter;
{
ndis_miniport_block *block;
ndis_miniport_characteristics *chars;
struct ndis_softc *sc;
if (adapter == NULL)
return;
block = (ndis_miniport_block *)adapter;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
chars = sc->ndis_chars;
chars->nmc_shutdown_handler = NULL;
chars->nmc_rsvd0 = NULL;
return;
}
static uint32_t
NDIS_BUFFER_TO_SPAN_PAGES(buf)
ndis_buffer *buf;
{
if (buf == NULL)
return(0);
if (MmGetMdlByteCount(buf) == 0)
return(1);
return(SPAN_PAGES(MmGetMdlVirtualAddress(buf),
MmGetMdlByteCount(buf)));
}
static void
NdisGetBufferPhysicalArraySize(buf, pages)
ndis_buffer *buf;
uint32_t *pages;
{
if (buf == NULL)
return;
*pages = NDIS_BUFFER_TO_SPAN_PAGES(buf);
return;
}
static void
NdisQueryBufferOffset(buf, off, len)
ndis_buffer *buf;
uint32_t *off;
uint32_t *len;
{
if (buf == NULL)
return;
*off = MmGetMdlByteOffset(buf);
*len = MmGetMdlByteCount(buf);
return;
}
void
NdisMSleep(usecs)
uint32_t usecs;
{
ktimer timer;
/*
* During system bootstrap, (i.e. cold == 1), we aren't
* allowed to sleep, so we have to do a hard DELAY()
* instead.
*/
if (cold)
DELAY(usecs);
else {
KeInitializeTimer(&timer);
KeSetTimer(&timer, ((int64_t)usecs * -10), NULL);
KeWaitForSingleObject(&timer, 0, 0, FALSE, NULL);
}
return;
}
static uint32_t
NdisReadPcmciaAttributeMemory(handle, offset, buf, len)
ndis_handle handle;
uint32_t offset;
void *buf;
uint32_t len;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
bus_space_handle_t bh;
bus_space_tag_t bt;
char *dest;
int i;
if (handle == NULL)
return(0);
block = (ndis_miniport_block *)handle;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
dest = buf;
bh = rman_get_bushandle(sc->ndis_res_am);
bt = rman_get_bustag(sc->ndis_res_am);
for (i = 0; i < len; i++)
dest[i] = bus_space_read_1(bt, bh, (offset + i) * 2);
return(i);
}
static uint32_t
NdisWritePcmciaAttributeMemory(handle, offset, buf, len)
ndis_handle handle;
uint32_t offset;
void *buf;
uint32_t len;
{
struct ndis_softc *sc;
ndis_miniport_block *block;
bus_space_handle_t bh;
bus_space_tag_t bt;
char *src;
int i;
if (handle == NULL)
return(0);
block = (ndis_miniport_block *)handle;
sc = device_get_softc(block->nmb_physdeviceobj->do_devext);
src = buf;
bh = rman_get_bushandle(sc->ndis_res_am);
bt = rman_get_bustag(sc->ndis_res_am);
for (i = 0; i < len; i++)
bus_space_write_1(bt, bh, (offset + i) * 2, src[i]);
return(i);
}
static list_entry *
NdisInterlockedInsertHeadList(head, entry, lock)
list_entry *head;
list_entry *entry;
ndis_spin_lock *lock;
{
list_entry *flink;
KeAcquireSpinLock(&lock->nsl_spinlock, &lock->nsl_kirql);
flink = head->nle_flink;
entry->nle_flink = flink;
entry->nle_blink = head;
flink->nle_blink = entry;
head->nle_flink = entry;
KeReleaseSpinLock(&lock->nsl_spinlock, lock->nsl_kirql);
return(flink);
}
static list_entry *
NdisInterlockedRemoveHeadList(head, lock)
list_entry *head;
ndis_spin_lock *lock;
{
list_entry *flink;
list_entry *entry;
KeAcquireSpinLock(&lock->nsl_spinlock, &lock->nsl_kirql);
entry = head->nle_flink;
flink = entry->nle_flink;
head->nle_flink = flink;
flink->nle_blink = head;
KeReleaseSpinLock(&lock->nsl_spinlock, lock->nsl_kirql);
return(entry);
}
static list_entry *
NdisInterlockedInsertTailList(head, entry, lock)
list_entry *head;
list_entry *entry;
ndis_spin_lock *lock;
{
list_entry *blink;
KeAcquireSpinLock(&lock->nsl_spinlock, &lock->nsl_kirql);
blink = head->nle_blink;
entry->nle_flink = head;
entry->nle_blink = blink;
blink->nle_flink = entry;
head->nle_blink = entry;
KeReleaseSpinLock(&lock->nsl_spinlock, lock->nsl_kirql);
return(blink);
}
static uint8_t
NdisMSynchronizeWithInterrupt(intr, syncfunc, syncctx)
ndis_miniport_interrupt *intr;
void *syncfunc;
void *syncctx;
{
return(KeSynchronizeExecution(intr->ni_introbj, syncfunc, syncctx));
}
/*
* Return the number of 100 nanosecond intervals since
* January 1, 1601. (?!?!)
*/
static void
NdisGetCurrentSystemTime(tval)
uint64_t *tval;
{
struct timespec ts;
nanotime(&ts);
*tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
11644473600;
return;
}
/*
* Return the number of milliseconds since the system booted.
*/
static void
NdisGetSystemUpTime(tval)
uint32_t *tval;
{
struct timespec ts;
nanouptime(&ts);
*tval = ts.tv_nsec / 1000000 + ts.tv_sec * 1000;
return;
}
static void
NdisInitializeString(dst, src)
unicode_string *dst;
char *src;
{
ansi_string as;
RtlInitAnsiString(&as, src);
RtlAnsiStringToUnicodeString(dst, &as, TRUE);
return;
}
static void
NdisFreeString(str)
unicode_string *str;
{
RtlFreeUnicodeString(str);
return;
}
static ndis_status
NdisMRemoveMiniport(adapter)
ndis_handle *adapter;
{
return(NDIS_STATUS_SUCCESS);
}
static void
NdisInitAnsiString(dst, src)
ansi_string *dst;
char *src;
{
RtlInitAnsiString(dst, src);
return;
}
static void
NdisInitUnicodeString(dst, src)
unicode_string *dst;
uint16_t *src;
{
RtlInitUnicodeString(dst, src);
return;
}
static void NdisMGetDeviceProperty(adapter, phydevobj,
funcdevobj, nextdevobj, resources, transresources)
ndis_handle adapter;
device_object **phydevobj;
device_object **funcdevobj;
device_object **nextdevobj;
cm_resource_list *resources;
cm_resource_list *transresources;
{
ndis_miniport_block *block;
block = (ndis_miniport_block *)adapter;
if (phydevobj != NULL)
*phydevobj = block->nmb_physdeviceobj;
if (funcdevobj != NULL)
*funcdevobj = block->nmb_deviceobj;
if (nextdevobj != NULL)
*nextdevobj = block->nmb_nextdeviceobj;
return;
}
static void
NdisGetFirstBufferFromPacket(packet, buf, firstva, firstlen, totlen)
ndis_packet *packet;
ndis_buffer **buf;
void **firstva;
uint32_t *firstlen;
uint32_t *totlen;
{
ndis_buffer *tmp;
tmp = packet->np_private.npp_head;
*buf = tmp;
if (tmp == NULL) {
*firstva = NULL;
*firstlen = *totlen = 0;
} else {
*firstva = MmGetMdlVirtualAddress(tmp);
*firstlen = *totlen = MmGetMdlByteCount(tmp);
for (tmp = tmp->mdl_next; tmp != NULL; tmp = tmp->mdl_next)
*totlen += MmGetMdlByteCount(tmp);
}
return;
}
static void
NdisGetFirstBufferFromPacketSafe(packet, buf, firstva, firstlen, totlen, prio)
ndis_packet *packet;
ndis_buffer **buf;
void **firstva;
uint32_t *firstlen;
uint32_t *totlen;
uint32_t prio;
{
NdisGetFirstBufferFromPacket(packet, buf, firstva, firstlen, totlen);
}
static int
ndis_find_sym(lf, filename, suffix, sym)
linker_file_t lf;
char *filename;
char *suffix;
caddr_t *sym;
{
char *fullsym;
char *suf;
int i;
fullsym = ExAllocatePoolWithTag(NonPagedPool, MAXPATHLEN, 0);
if (fullsym == NULL)
return(ENOMEM);
bzero(fullsym, MAXPATHLEN);
strncpy(fullsym, filename, MAXPATHLEN);
if (strlen(filename) < 4) {
ExFreePool(fullsym);
return(EINVAL);
}
/* If the filename has a .ko suffix, strip if off. */
suf = fullsym + (strlen(filename) - 3);
if (strcmp(suf, ".ko") == 0)
*suf = '\0';
for (i = 0; i < strlen(fullsym); i++) {
if (fullsym[i] == '.')
fullsym[i] = '_';
else
fullsym[i] = tolower(fullsym[i]);
}
strcat(fullsym, suffix);
*sym = linker_file_lookup_symbol(lf, fullsym, 0);
ExFreePool(fullsym);
if (*sym == 0)
return(ENOENT);
return(0);
}
/* can also return NDIS_STATUS_RESOURCES/NDIS_STATUS_ERROR_READING_FILE */
static void
NdisOpenFile(status, filehandle, filelength, filename, highestaddr)
ndis_status *status;
ndis_handle *filehandle;
uint32_t *filelength;
unicode_string *filename;
ndis_physaddr highestaddr;
{
ansi_string as;
char *afilename = NULL;
struct thread *td = curthread;
struct nameidata nd;
int flags, error;
struct vattr vat;
struct vattr *vap = &vat;
ndis_fh *fh;
char *path;
linker_file_t head, lf;
caddr_t kldstart, kldend;
if (RtlUnicodeStringToAnsiString(&as, filename, TRUE)) {
*status = NDIS_STATUS_RESOURCES;
return;
}
afilename = strdup(as.as_buf, M_DEVBUF);
RtlFreeAnsiString(&as);
fh = ExAllocatePoolWithTag(NonPagedPool, sizeof(ndis_fh), 0);
if (fh == NULL) {
free(afilename, M_DEVBUF);
*status = NDIS_STATUS_RESOURCES;
return;
}
fh->nf_name = afilename;
/*
* During system bootstrap, it's impossible to load files
* from the rootfs since it's not mounted yet. We therefore
* offer the possibility of opening files that have been
* preloaded as modules instead. Both choices will work
* when kldloading a module from multiuser, but only the
* module option will work during bootstrap. The module
* loading option works by using the ndiscvt(8) utility
* to convert the arbitrary file into a .ko using objcopy(1).
* This file will contain two special symbols: filename_start
* and filename_end. All we have to do is traverse the KLD
* list in search of those symbols and we've found the file
* data. As an added bonus, ndiscvt(8) will also generate
* a normal .o file which can be linked statically with
* the kernel. This means that the symbols will actual reside
* in the kernel's symbol table, but that doesn't matter to
* us since the kernel appears to us as just another module.
*/
/*
* This is an evil trick for getting the head of the linked
* file list, which is not exported from kern_linker.o. It
* happens that linker file #1 is always the kernel, and is
* always the first element in the list.
*/
head = linker_find_file_by_id(1);
for (lf = head; lf != NULL; lf = TAILQ_NEXT(lf, link)) {
if (ndis_find_sym(lf, afilename, "_start", &kldstart))
continue;
if (ndis_find_sym(lf, afilename, "_end", &kldend))
continue;
fh->nf_vp = lf;
fh->nf_map = NULL;
fh->nf_type = NDIS_FH_TYPE_MODULE;
*filelength = fh->nf_maplen = (kldend - kldstart) & 0xFFFFFFFF;
*filehandle = fh;
*status = NDIS_STATUS_SUCCESS;
return;
}
if (TAILQ_EMPTY(&mountlist)) {
ExFreePool(fh);
*status = NDIS_STATUS_FILE_NOT_FOUND;
printf("NDIS: could not find file %s in linker list\n",
afilename);
printf("NDIS: and no filesystems mounted yet, "
"aborting NdisOpenFile()\n");
free(afilename, M_DEVBUF);
return;
}
path = ExAllocatePoolWithTag(NonPagedPool, MAXPATHLEN, 0);
if (path == NULL) {
ExFreePool(fh);
free(afilename, M_DEVBUF);
*status = NDIS_STATUS_RESOURCES;
return;
}
snprintf(path, MAXPATHLEN, "%s/%s", ndis_filepath, afilename);
mtx_lock(&Giant);
/* Some threads don't have a current working directory. */
if (td->td_proc->p_fd->fd_rdir == NULL)
td->td_proc->p_fd->fd_rdir = rootvnode;
if (td->td_proc->p_fd->fd_cdir == NULL)
td->td_proc->p_fd->fd_cdir = rootvnode;
NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, td);
flags = FREAD;
error = vn_open(&nd, &flags, 0, -1);
if (error) {
mtx_unlock(&Giant);
*status = NDIS_STATUS_FILE_NOT_FOUND;
ExFreePool(fh);
printf("NDIS: open file %s failed: %d\n", path, error);
ExFreePool(path);
free(afilename, M_DEVBUF);
return;
}
ExFreePool(path);
NDFREE(&nd, NDF_ONLY_PNBUF);
/* Get the file size. */
VOP_GETATTR(nd.ni_vp, vap, td->td_ucred, td);
VOP_UNLOCK(nd.ni_vp, 0, td);
mtx_unlock(&Giant);
fh->nf_vp = nd.ni_vp;
fh->nf_map = NULL;
fh->nf_type = NDIS_FH_TYPE_VFS;
*filehandle = fh;
*filelength = fh->nf_maplen = vap->va_size & 0xFFFFFFFF;
*status = NDIS_STATUS_SUCCESS;
return;
}
static void
NdisMapFile(status, mappedbuffer, filehandle)
ndis_status *status;
void **mappedbuffer;
ndis_handle filehandle;
{
ndis_fh *fh;
struct thread *td = curthread;
linker_file_t lf;
caddr_t kldstart;
int error, resid;
if (filehandle == NULL) {
*status = NDIS_STATUS_FAILURE;
return;
}
fh = (ndis_fh *)filehandle;
if (fh->nf_vp == NULL) {
*status = NDIS_STATUS_FAILURE;
return;
}
if (fh->nf_map != NULL) {
*status = NDIS_STATUS_ALREADY_MAPPED;
return;
}
if (fh->nf_type == NDIS_FH_TYPE_MODULE) {
lf = fh->nf_vp;
if (ndis_find_sym(lf, fh->nf_name, "_start", &kldstart)) {
*status = NDIS_STATUS_FAILURE;
return;
}
fh->nf_map = kldstart;
*status = NDIS_STATUS_SUCCESS;
*mappedbuffer = fh->nf_map;
return;
}
fh->nf_map = ExAllocatePoolWithTag(NonPagedPool, fh->nf_maplen, 0);
if (fh->nf_map == NULL) {
*status = NDIS_STATUS_RESOURCES;
return;
}
mtx_lock(&Giant);
error = vn_rdwr(UIO_READ, fh->nf_vp, fh->nf_map, fh->nf_maplen, 0,
UIO_SYSSPACE, 0, td->td_ucred, NOCRED, &resid, td);
mtx_unlock(&Giant);
if (error)
*status = NDIS_STATUS_FAILURE;
else {
*status = NDIS_STATUS_SUCCESS;
*mappedbuffer = fh->nf_map;
}
return;
}
static void
NdisUnmapFile(filehandle)
ndis_handle filehandle;
{
ndis_fh *fh;
fh = (ndis_fh *)filehandle;
if (fh->nf_map == NULL)
return;
if (fh->nf_type == NDIS_FH_TYPE_VFS)
ExFreePool(fh->nf_map);
fh->nf_map = NULL;
return;
}
static void
NdisCloseFile(filehandle)
ndis_handle filehandle;
{
struct thread *td = curthread;
ndis_fh *fh;
if (filehandle == NULL)
return;
fh = (ndis_fh *)filehandle;
if (fh->nf_map != NULL) {
if (fh->nf_type == NDIS_FH_TYPE_VFS)
ExFreePool(fh->nf_map);
fh->nf_map = NULL;
}
if (fh->nf_vp == NULL)
return;
if (fh->nf_type == NDIS_FH_TYPE_VFS) {
mtx_lock(&Giant);
vn_close(fh->nf_vp, FREAD, td->td_ucred, td);
mtx_unlock(&Giant);
}
fh->nf_vp = NULL;
free(fh->nf_name, M_DEVBUF);
ExFreePool(fh);
return;
}
static uint8_t
NdisSystemProcessorCount()
{
return(mp_ncpus);
}
typedef void (*ndis_statusdone_handler)(ndis_handle);
typedef void (*ndis_status_handler)(ndis_handle, ndis_status,
void *, uint32_t);
static void
NdisMIndicateStatusComplete(adapter)
ndis_handle adapter;
{
ndis_miniport_block *block;
ndis_statusdone_handler statusdonefunc;
block = (ndis_miniport_block *)adapter;
statusdonefunc = block->nmb_statusdone_func;
MSCALL1(statusdonefunc, adapter);
return;
}
static void
NdisMIndicateStatus(adapter, status, sbuf, slen)
ndis_handle adapter;
ndis_status status;
void *sbuf;
uint32_t slen;
{
ndis_miniport_block *block;
ndis_status_handler statusfunc;
block = (ndis_miniport_block *)adapter;
statusfunc = block->nmb_status_func;
MSCALL4(statusfunc, adapter, status, sbuf, slen);
return;
}
/*
* The DDK documentation says that you should use IoQueueWorkItem()
* instead of ExQueueWorkItem(). The problem is, IoQueueWorkItem()
* is fundamentally incompatible with NdisScheduleWorkItem(), which
* depends on the API semantics of ExQueueWorkItem(). In our world,
* ExQueueWorkItem() is implemented on top of IoAllocateQueueItem()
* anyway.
*
* There are actually three distinct APIs here. NdisScheduleWorkItem()
* takes a pointer to an NDIS_WORK_ITEM. ExQueueWorkItem() takes a pointer
* to a WORK_QUEUE_ITEM. And finally, IoQueueWorkItem() takes a pointer
* to an opaque work item thingie which you get from IoAllocateWorkItem().
* An NDIS_WORK_ITEM is not the same as a WORK_QUEUE_ITEM. However,
* the NDIS_WORK_ITEM has some opaque storage at the end of it, and we
* (ab)use this storage as a WORK_QUEUE_ITEM, which is what we submit
* to ExQueueWorkItem().
*
* Got all that? (Sheesh.)
*/
ndis_status
NdisScheduleWorkItem(work)
ndis_work_item *work;
{
work_queue_item *wqi;
wqi = (work_queue_item *)work->nwi_wraprsvd;
ExInitializeWorkItem(wqi,
(work_item_func)work->nwi_func, work->nwi_ctx);
ExQueueWorkItem(wqi, WORKQUEUE_DELAYED);
return(NDIS_STATUS_SUCCESS);
}
static void
NdisCopyFromPacketToPacket(dpkt, doff, reqlen, spkt, soff, cpylen)
ndis_packet *dpkt;
uint32_t doff;
uint32_t reqlen;
ndis_packet *spkt;
uint32_t soff;
uint32_t *cpylen;
{
ndis_buffer *src, *dst;
char *sptr, *dptr;
int resid, copied, len, scnt, dcnt;
*cpylen = 0;
src = spkt->np_private.npp_head;
dst = dpkt->np_private.npp_head;
sptr = MmGetMdlVirtualAddress(src);
dptr = MmGetMdlVirtualAddress(dst);
scnt = MmGetMdlByteCount(src);
dcnt = MmGetMdlByteCount(dst);
while (soff) {
if (MmGetMdlByteCount(src) > soff) {
sptr += soff;
scnt = MmGetMdlByteCount(src)- soff;
break;
}
soff -= MmGetMdlByteCount(src);
src = src->mdl_next;
if (src == NULL)
return;
sptr = MmGetMdlVirtualAddress(src);
}
while (doff) {
if (MmGetMdlByteCount(dst) > doff) {
dptr += doff;
dcnt = MmGetMdlByteCount(dst) - doff;
break;
}
doff -= MmGetMdlByteCount(dst);
dst = dst->mdl_next;
if (dst == NULL)
return;
dptr = MmGetMdlVirtualAddress(dst);
}
resid = reqlen;
copied = 0;
while(1) {
if (resid < scnt)
len = resid;
else
len = scnt;
if (dcnt < len)
len = dcnt;
bcopy(sptr, dptr, len);
copied += len;
resid -= len;
if (resid == 0)
break;
dcnt -= len;
if (dcnt == 0) {
dst = dst->mdl_next;
if (dst == NULL)
break;
dptr = MmGetMdlVirtualAddress(dst);
dcnt = MmGetMdlByteCount(dst);
}
scnt -= len;
if (scnt == 0) {
src = src->mdl_next;
if (src == NULL)
break;
sptr = MmGetMdlVirtualAddress(src);
scnt = MmGetMdlByteCount(src);
}
}
*cpylen = copied;
return;
}
static void
NdisCopyFromPacketToPacketSafe(dpkt, doff, reqlen, spkt, soff, cpylen, prio)
ndis_packet *dpkt;
uint32_t doff;
uint32_t reqlen;
ndis_packet *spkt;
uint32_t soff;
uint32_t *cpylen;
uint32_t prio;
{
NdisCopyFromPacketToPacket(dpkt, doff, reqlen, spkt, soff, cpylen);
return;
}
static ndis_status
NdisMRegisterDevice(handle, devname, symname, majorfuncs, devobj, devhandle)
ndis_handle handle;
unicode_string *devname;
unicode_string *symname;
driver_dispatch *majorfuncs[];
void **devobj;
ndis_handle *devhandle;
{
uint32_t status;
device_object *dobj;
status = IoCreateDevice(handle, 0, devname,
FILE_DEVICE_UNKNOWN, 0, FALSE, &dobj);
if (status == STATUS_SUCCESS) {
*devobj = dobj;
*devhandle = dobj;
}
return(status);
}
static ndis_status
NdisMDeregisterDevice(handle)
ndis_handle handle;
{
IoDeleteDevice(handle);
return(NDIS_STATUS_SUCCESS);
}
static ndis_status
NdisMQueryAdapterInstanceName(name, handle)
unicode_string *name;
ndis_handle handle;
{
ndis_miniport_block *block;
device_t dev;
ansi_string as;
block = (ndis_miniport_block *)handle;
dev = block->nmb_physdeviceobj->do_devext;
RtlInitAnsiString(&as, __DECONST(char *, device_get_nameunit(dev)));
if (RtlAnsiStringToUnicodeString(name, &as, TRUE))
return(NDIS_STATUS_RESOURCES);
return(NDIS_STATUS_SUCCESS);
}
static void
NdisMRegisterUnloadHandler(handle, func)
ndis_handle handle;
void *func;
{
return;
}
static void
dummy()
{
printf ("NDIS dummy called...\n");
return;
}
/*
* Note: a couple of entries in this table specify the
* number of arguments as "foo + 1". These are routines
* that accept a 64-bit argument, passed by value. On
* x86, these arguments consume two longwords on the stack,
* so we lie and say there's one additional argument so
* that the wrapping routines will do the right thing.
*/
image_patch_table ndis_functbl[] = {
IMPORT_SFUNC(NdisCopyFromPacketToPacket, 6),
IMPORT_SFUNC(NdisCopyFromPacketToPacketSafe, 7),
IMPORT_SFUNC(NdisScheduleWorkItem, 1),
IMPORT_SFUNC(NdisMIndicateStatusComplete, 1),
IMPORT_SFUNC(NdisMIndicateStatus, 4),
IMPORT_SFUNC(NdisSystemProcessorCount, 0),
IMPORT_SFUNC(NdisUnchainBufferAtBack, 2),
IMPORT_SFUNC(NdisGetFirstBufferFromPacket, 5),
IMPORT_SFUNC(NdisGetFirstBufferFromPacketSafe, 6),
IMPORT_SFUNC(NdisGetBufferPhysicalArraySize, 2),
IMPORT_SFUNC(NdisMGetDeviceProperty, 6),
IMPORT_SFUNC(NdisInitAnsiString, 2),
IMPORT_SFUNC(NdisInitUnicodeString, 2),
IMPORT_SFUNC(NdisWriteConfiguration, 4),
IMPORT_SFUNC(NdisAnsiStringToUnicodeString, 2),
IMPORT_SFUNC(NdisTerminateWrapper, 2),
IMPORT_SFUNC(NdisOpenConfigurationKeyByName, 4),
IMPORT_SFUNC(NdisOpenConfigurationKeyByIndex, 5),
IMPORT_SFUNC(NdisMRemoveMiniport, 1),
IMPORT_SFUNC(NdisInitializeString, 2),
IMPORT_SFUNC(NdisFreeString, 1),
IMPORT_SFUNC(NdisGetCurrentSystemTime, 1),
IMPORT_SFUNC(NdisGetSystemUpTime, 1),
IMPORT_SFUNC(NdisMSynchronizeWithInterrupt, 3),
IMPORT_SFUNC(NdisMAllocateSharedMemoryAsync, 4),
IMPORT_SFUNC(NdisInterlockedInsertHeadList, 3),
IMPORT_SFUNC(NdisInterlockedInsertTailList, 3),
IMPORT_SFUNC(NdisInterlockedRemoveHeadList, 2),
IMPORT_SFUNC(NdisInitializeWrapper, 4),
IMPORT_SFUNC(NdisMRegisterMiniport, 3),
IMPORT_SFUNC(NdisAllocateMemoryWithTag, 3),
IMPORT_SFUNC(NdisAllocateMemory, 4 + 1),
IMPORT_SFUNC(NdisMSetAttributesEx, 5),
IMPORT_SFUNC(NdisCloseConfiguration, 1),
IMPORT_SFUNC(NdisReadConfiguration, 5),
IMPORT_SFUNC(NdisOpenConfiguration, 3),
IMPORT_SFUNC(NdisAcquireSpinLock, 1),
IMPORT_SFUNC(NdisReleaseSpinLock, 1),
IMPORT_SFUNC(NdisDprAcquireSpinLock, 1),
IMPORT_SFUNC(NdisDprReleaseSpinLock, 1),
IMPORT_SFUNC(NdisAllocateSpinLock, 1),
IMPORT_SFUNC(NdisInitializeReadWriteLock, 1),
IMPORT_SFUNC(NdisAcquireReadWriteLock, 3),
IMPORT_SFUNC(NdisReleaseReadWriteLock, 2),
IMPORT_SFUNC(NdisFreeSpinLock, 1),
IMPORT_SFUNC(NdisFreeMemory, 3),
IMPORT_SFUNC(NdisReadPciSlotInformation, 5),
IMPORT_SFUNC(NdisWritePciSlotInformation, 5),
IMPORT_SFUNC_MAP(NdisImmediateReadPciSlotInformation,
NdisReadPciSlotInformation, 5),
IMPORT_SFUNC_MAP(NdisImmediateWritePciSlotInformation,
NdisWritePciSlotInformation, 5),
IMPORT_CFUNC(NdisWriteErrorLogEntry, 0),
IMPORT_SFUNC(NdisMStartBufferPhysicalMapping, 6),
IMPORT_SFUNC(NdisMCompleteBufferPhysicalMapping, 3),
IMPORT_SFUNC(NdisMInitializeTimer, 4),
IMPORT_SFUNC(NdisInitializeTimer, 3),
IMPORT_SFUNC(NdisSetTimer, 2),
IMPORT_SFUNC(NdisMCancelTimer, 2),
IMPORT_SFUNC_MAP(NdisCancelTimer, NdisMCancelTimer, 2),
IMPORT_SFUNC(NdisMSetPeriodicTimer, 2),
IMPORT_SFUNC(NdisMQueryAdapterResources, 4),
IMPORT_SFUNC(NdisMRegisterIoPortRange, 4),
IMPORT_SFUNC(NdisMDeregisterIoPortRange, 4),
IMPORT_SFUNC(NdisReadNetworkAddress, 4),
IMPORT_SFUNC(NdisQueryMapRegisterCount, 2),
IMPORT_SFUNC(NdisMAllocateMapRegisters, 5),
IMPORT_SFUNC(NdisMFreeMapRegisters, 1),
IMPORT_SFUNC(NdisMAllocateSharedMemory, 5),
IMPORT_SFUNC(NdisMMapIoSpace, 4 + 1),
IMPORT_SFUNC(NdisMUnmapIoSpace, 3),
IMPORT_SFUNC(NdisGetCacheFillSize, 0),
IMPORT_SFUNC(NdisMGetDmaAlignment, 1),
IMPORT_SFUNC(NdisMInitializeScatterGatherDma, 3),
IMPORT_SFUNC(NdisAllocatePacketPool, 4),
IMPORT_SFUNC(NdisAllocatePacketPoolEx, 5),
IMPORT_SFUNC(NdisAllocatePacket, 3),
IMPORT_SFUNC(NdisFreePacket, 1),
IMPORT_SFUNC(NdisFreePacketPool, 1),
IMPORT_SFUNC_MAP(NdisDprAllocatePacket, NdisAllocatePacket, 3),
IMPORT_SFUNC_MAP(NdisDprFreePacket, NdisFreePacket, 1),
IMPORT_SFUNC(NdisAllocateBufferPool, 3),
IMPORT_SFUNC(NdisAllocateBuffer, 5),
IMPORT_SFUNC(NdisQueryBuffer, 3),
IMPORT_SFUNC(NdisQueryBufferSafe, 4),
IMPORT_SFUNC(NdisBufferVirtualAddress, 1),
IMPORT_SFUNC(NdisBufferVirtualAddressSafe, 2),
IMPORT_SFUNC(NdisBufferLength, 1),
IMPORT_SFUNC(NdisFreeBuffer, 1),
IMPORT_SFUNC(NdisFreeBufferPool, 1),
IMPORT_SFUNC(NdisInterlockedIncrement, 1),
IMPORT_SFUNC(NdisInterlockedDecrement, 1),
IMPORT_SFUNC(NdisInitializeEvent, 1),
IMPORT_SFUNC(NdisSetEvent, 1),
IMPORT_SFUNC(NdisResetEvent, 1),
IMPORT_SFUNC(NdisWaitEvent, 2),
IMPORT_SFUNC(NdisUnicodeStringToAnsiString, 2),
IMPORT_SFUNC(NdisMPciAssignResources, 3),
IMPORT_SFUNC(NdisMFreeSharedMemory, 5 + 1),
IMPORT_SFUNC(NdisMRegisterInterrupt, 7),
IMPORT_SFUNC(NdisMDeregisterInterrupt, 1),
IMPORT_SFUNC(NdisMRegisterAdapterShutdownHandler, 3),
IMPORT_SFUNC(NdisMDeregisterAdapterShutdownHandler, 1),
IMPORT_SFUNC(NDIS_BUFFER_TO_SPAN_PAGES, 1),
IMPORT_SFUNC(NdisQueryBufferOffset, 3),
IMPORT_SFUNC(NdisAdjustBufferLength, 2),
IMPORT_SFUNC(NdisPacketPoolUsage, 1),
IMPORT_SFUNC(NdisMSleep, 1),
IMPORT_SFUNC(NdisUnchainBufferAtFront, 2),
IMPORT_SFUNC(NdisReadPcmciaAttributeMemory, 4),
IMPORT_SFUNC(NdisWritePcmciaAttributeMemory, 4),
IMPORT_SFUNC(NdisOpenFile, 5 + 1),
IMPORT_SFUNC(NdisMapFile, 3),
IMPORT_SFUNC(NdisUnmapFile, 1),
IMPORT_SFUNC(NdisCloseFile, 1),
IMPORT_SFUNC(NdisMRegisterDevice, 6),
IMPORT_SFUNC(NdisMDeregisterDevice, 1),
IMPORT_SFUNC(NdisMQueryAdapterInstanceName, 2),
IMPORT_SFUNC(NdisMRegisterUnloadHandler, 2),
IMPORT_SFUNC(ndis_timercall, 4),
IMPORT_SFUNC(ndis_asyncmem_complete, 2),
IMPORT_SFUNC(ndis_intr, 2),
IMPORT_SFUNC(ndis_intrhand, 4),
/*
* This last entry is a catch-all for any function we haven't
* implemented yet. The PE import list patching routine will
* use it for any function that doesn't have an explicit match
* in this table.
*/
{ NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL },
/* End of list. */
{ NULL, NULL, NULL }
};