freebsd-skq/sys/dev/usb/usb_device.c
Andriy Gapon 1bdfff2252 fix a few cases where a string is passed via format argument instead of
via %s

Most of the cases looked harmless, but this is done for the sake of
correctness.  In one case it even allowed to drop an intermediate buffer.

Found by:	clang
MFC after:	2 week
2010-06-11 19:27:21 +00:00

2646 lines
67 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2008 Hans Petter Selasky. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/linker_set.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/sbuf.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usb_ioctl.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR usb_debug
#include <dev/usb/usb_core.h>
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/usb_device.h>
#include <dev/usb/usb_busdma.h>
#include <dev/usb/usb_transfer.h>
#include <dev/usb/usb_request.h>
#include <dev/usb/usb_dynamic.h>
#include <dev/usb/usb_hub.h>
#include <dev/usb/usb_util.h>
#include <dev/usb/usb_msctest.h>
#if USB_HAVE_UGEN
#include <dev/usb/usb_dev.h>
#include <dev/usb/usb_generic.h>
#endif
#include <dev/usb/quirk/usb_quirk.h>
#include <dev/usb/usb_controller.h>
#include <dev/usb/usb_bus.h>
/* function prototypes */
static void usb_init_endpoint(struct usb_device *, uint8_t,
struct usb_endpoint_descriptor *, struct usb_endpoint *);
static void usb_unconfigure(struct usb_device *, uint8_t);
static void usb_detach_device_sub(struct usb_device *, device_t *,
uint8_t);
static uint8_t usb_probe_and_attach_sub(struct usb_device *,
struct usb_attach_arg *);
static void usb_init_attach_arg(struct usb_device *,
struct usb_attach_arg *);
static void usb_suspend_resume_sub(struct usb_device *, device_t,
uint8_t);
static void usbd_clear_stall_proc(struct usb_proc_msg *_pm);
usb_error_t usb_config_parse(struct usb_device *, uint8_t, uint8_t);
static void usbd_set_device_strings(struct usb_device *);
#if USB_HAVE_UGEN
static void usb_notify_addq(const char *type, struct usb_device *);
static void usb_fifo_free_wrap(struct usb_device *, uint8_t, uint8_t);
static struct cdev *usb_make_dev(struct usb_device *, int, int);
static void usb_cdev_create(struct usb_device *);
static void usb_cdev_free(struct usb_device *);
static void usb_cdev_cleanup(void *);
#endif
/* This variable is global to allow easy access to it: */
int usb_template = 0;
TUNABLE_INT("hw.usb.usb_template", &usb_template);
SYSCTL_INT(_hw_usb, OID_AUTO, template, CTLFLAG_RW,
&usb_template, 0, "Selected USB device side template");
/* English is default language */
static int usb_lang_id = 0x0009;
static int usb_lang_mask = 0x00FF;
TUNABLE_INT("hw.usb.usb_lang_id", &usb_lang_id);
SYSCTL_INT(_hw_usb, OID_AUTO, usb_lang_id, CTLFLAG_RW,
&usb_lang_id, 0, "Preferred USB language ID");
TUNABLE_INT("hw.usb.usb_lang_mask", &usb_lang_mask);
SYSCTL_INT(_hw_usb, OID_AUTO, usb_lang_mask, CTLFLAG_RW,
&usb_lang_mask, 0, "Preferred USB language mask");
static const char* statestr[USB_STATE_MAX] = {
[USB_STATE_DETACHED] = "DETACHED",
[USB_STATE_ATTACHED] = "ATTACHED",
[USB_STATE_POWERED] = "POWERED",
[USB_STATE_ADDRESSED] = "ADDRESSED",
[USB_STATE_CONFIGURED] = "CONFIGURED",
};
const char *
usb_statestr(enum usb_dev_state state)
{
return ((state < USB_STATE_MAX) ? statestr[state] : "UNKNOWN");
}
/*------------------------------------------------------------------------*
* usbd_get_ep_by_addr
*
* This function searches for an USB ep by endpoint address and
* direction.
*
* Returns:
* NULL: Failure
* Else: Success
*------------------------------------------------------------------------*/
struct usb_endpoint *
usbd_get_ep_by_addr(struct usb_device *udev, uint8_t ea_val)
{
struct usb_endpoint *ep = udev->endpoints;
struct usb_endpoint *ep_end = udev->endpoints + udev->endpoints_max;
enum {
EA_MASK = (UE_DIR_IN | UE_DIR_OUT | UE_ADDR),
};
/*
* According to the USB specification not all bits are used
* for the endpoint address. Keep defined bits only:
*/
ea_val &= EA_MASK;
/*
* Iterate accross all the USB endpoints searching for a match
* based on the endpoint address:
*/
for (; ep != ep_end; ep++) {
if (ep->edesc == NULL) {
continue;
}
/* do the mask and check the value */
if ((ep->edesc->bEndpointAddress & EA_MASK) == ea_val) {
goto found;
}
}
/*
* The default endpoint is always present and is checked separately:
*/
if ((udev->ctrl_ep.edesc) &&
((udev->ctrl_ep.edesc->bEndpointAddress & EA_MASK) == ea_val)) {
ep = &udev->ctrl_ep;
goto found;
}
return (NULL);
found:
return (ep);
}
/*------------------------------------------------------------------------*
* usbd_get_endpoint
*
* This function searches for an USB endpoint based on the information
* given by the passed "struct usb_config" pointer.
*
* Return values:
* NULL: No match.
* Else: Pointer to "struct usb_endpoint".
*------------------------------------------------------------------------*/
struct usb_endpoint *
usbd_get_endpoint(struct usb_device *udev, uint8_t iface_index,
const struct usb_config *setup)
{
struct usb_endpoint *ep = udev->endpoints;
struct usb_endpoint *ep_end = udev->endpoints + udev->endpoints_max;
uint8_t index = setup->ep_index;
uint8_t ea_mask;
uint8_t ea_val;
uint8_t type_mask;
uint8_t type_val;
DPRINTFN(10, "udev=%p iface_index=%d address=0x%x "
"type=0x%x dir=0x%x index=%d\n",
udev, iface_index, setup->endpoint,
setup->type, setup->direction, setup->ep_index);
/* check USB mode */
if (setup->usb_mode != USB_MODE_DUAL &&
udev->flags.usb_mode != setup->usb_mode) {
/* wrong mode - no endpoint */
return (NULL);
}
/* setup expected endpoint direction mask and value */
if (setup->direction == UE_DIR_RX) {
ea_mask = (UE_DIR_IN | UE_DIR_OUT);
ea_val = (udev->flags.usb_mode == USB_MODE_DEVICE) ?
UE_DIR_OUT : UE_DIR_IN;
} else if (setup->direction == UE_DIR_TX) {
ea_mask = (UE_DIR_IN | UE_DIR_OUT);
ea_val = (udev->flags.usb_mode == USB_MODE_DEVICE) ?
UE_DIR_IN : UE_DIR_OUT;
} else if (setup->direction == UE_DIR_ANY) {
/* match any endpoint direction */
ea_mask = 0;
ea_val = 0;
} else {
/* match the given endpoint direction */
ea_mask = (UE_DIR_IN | UE_DIR_OUT);
ea_val = (setup->direction & (UE_DIR_IN | UE_DIR_OUT));
}
/* setup expected endpoint address */
if (setup->endpoint == UE_ADDR_ANY) {
/* match any endpoint address */
} else {
/* match the given endpoint address */
ea_mask |= UE_ADDR;
ea_val |= (setup->endpoint & UE_ADDR);
}
/* setup expected endpoint type */
if (setup->type == UE_BULK_INTR) {
/* this will match BULK and INTERRUPT endpoints */
type_mask = 2;
type_val = 2;
} else if (setup->type == UE_TYPE_ANY) {
/* match any endpoint type */
type_mask = 0;
type_val = 0;
} else {
/* match the given endpoint type */
type_mask = UE_XFERTYPE;
type_val = (setup->type & UE_XFERTYPE);
}
/*
* Iterate accross all the USB endpoints searching for a match
* based on the endpoint address. Note that we are searching
* the endpoints from the beginning of the "udev->endpoints" array.
*/
for (; ep != ep_end; ep++) {
if ((ep->edesc == NULL) ||
(ep->iface_index != iface_index)) {
continue;
}
/* do the masks and check the values */
if (((ep->edesc->bEndpointAddress & ea_mask) == ea_val) &&
((ep->edesc->bmAttributes & type_mask) == type_val)) {
if (!index--) {
goto found;
}
}
}
/*
* Match against default endpoint last, so that "any endpoint", "any
* address" and "any direction" returns the first endpoint of the
* interface. "iface_index" and "direction" is ignored:
*/
if ((udev->ctrl_ep.edesc) &&
((udev->ctrl_ep.edesc->bEndpointAddress & ea_mask) == ea_val) &&
((udev->ctrl_ep.edesc->bmAttributes & type_mask) == type_val) &&
(!index)) {
ep = &udev->ctrl_ep;
goto found;
}
return (NULL);
found:
return (ep);
}
/*------------------------------------------------------------------------*
* usbd_interface_count
*
* This function stores the number of USB interfaces excluding
* alternate settings, which the USB config descriptor reports into
* the unsigned 8-bit integer pointed to by "count".
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_interface_count(struct usb_device *udev, uint8_t *count)
{
if (udev->cdesc == NULL) {
*count = 0;
return (USB_ERR_NOT_CONFIGURED);
}
*count = udev->ifaces_max;
return (USB_ERR_NORMAL_COMPLETION);
}
/*------------------------------------------------------------------------*
* usb_init_endpoint
*
* This function will initialise the USB endpoint structure pointed to by
* the "endpoint" argument. The structure pointed to by "endpoint" must be
* zeroed before calling this function.
*------------------------------------------------------------------------*/
static void
usb_init_endpoint(struct usb_device *udev, uint8_t iface_index,
struct usb_endpoint_descriptor *edesc, struct usb_endpoint *ep)
{
struct usb_bus_methods *methods;
methods = udev->bus->methods;
(methods->endpoint_init) (udev, edesc, ep);
/* initialise USB endpoint structure */
ep->edesc = edesc;
ep->iface_index = iface_index;
TAILQ_INIT(&ep->endpoint_q.head);
ep->endpoint_q.command = &usbd_pipe_start;
/* the pipe is not supported by the hardware */
if (ep->methods == NULL)
return;
/* clear stall, if any */
if (methods->clear_stall != NULL) {
USB_BUS_LOCK(udev->bus);
(methods->clear_stall) (udev, ep);
USB_BUS_UNLOCK(udev->bus);
}
}
/*-----------------------------------------------------------------------*
* usb_endpoint_foreach
*
* This function will iterate all the USB endpoints except the control
* endpoint. This function is NULL safe.
*
* Return values:
* NULL: End of USB endpoints
* Else: Pointer to next USB endpoint
*------------------------------------------------------------------------*/
struct usb_endpoint *
usb_endpoint_foreach(struct usb_device *udev, struct usb_endpoint *ep)
{
struct usb_endpoint *ep_end;
/* be NULL safe */
if (udev == NULL)
return (NULL);
ep_end = udev->endpoints + udev->endpoints_max;
/* get next endpoint */
if (ep == NULL)
ep = udev->endpoints;
else
ep++;
/* find next allocated ep */
while (ep != ep_end) {
if (ep->edesc != NULL)
return (ep);
ep++;
}
return (NULL);
}
/*------------------------------------------------------------------------*
* usb_unconfigure
*
* This function will free all USB interfaces and USB endpoints belonging
* to an USB device.
*
* Flag values, see "USB_UNCFG_FLAG_XXX".
*------------------------------------------------------------------------*/
static void
usb_unconfigure(struct usb_device *udev, uint8_t flag)
{
uint8_t do_unlock;
/* automatic locking */
if (usbd_enum_is_locked(udev)) {
do_unlock = 0;
} else {
do_unlock = 1;
usbd_enum_lock(udev);
}
/* detach all interface drivers */
usb_detach_device(udev, USB_IFACE_INDEX_ANY, flag);
#if USB_HAVE_UGEN
/* free all FIFOs except control endpoint FIFOs */
usb_fifo_free_wrap(udev, USB_IFACE_INDEX_ANY, flag);
/*
* Free all cdev's, if any.
*/
usb_cdev_free(udev);
#endif
#if USB_HAVE_COMPAT_LINUX
/* free Linux compat device, if any */
if (udev->linux_endpoint_start) {
usb_linux_free_device(udev);
udev->linux_endpoint_start = NULL;
}
#endif
usb_config_parse(udev, USB_IFACE_INDEX_ANY, USB_CFG_FREE);
/* free "cdesc" after "ifaces" and "endpoints", if any */
if (udev->cdesc != NULL) {
if (udev->flags.usb_mode != USB_MODE_DEVICE)
free(udev->cdesc, M_USB);
udev->cdesc = NULL;
}
/* set unconfigured state */
udev->curr_config_no = USB_UNCONFIG_NO;
udev->curr_config_index = USB_UNCONFIG_INDEX;
if (do_unlock)
usbd_enum_unlock(udev);
}
/*------------------------------------------------------------------------*
* usbd_set_config_index
*
* This function selects configuration by index, independent of the
* actual configuration number. This function should not be used by
* USB drivers.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_set_config_index(struct usb_device *udev, uint8_t index)
{
struct usb_status ds;
struct usb_config_descriptor *cdp;
uint16_t power;
uint16_t max_power;
uint8_t selfpowered;
uint8_t do_unlock;
usb_error_t err;
DPRINTFN(6, "udev=%p index=%d\n", udev, index);
/* automatic locking */
if (usbd_enum_is_locked(udev)) {
do_unlock = 0;
} else {
do_unlock = 1;
usbd_enum_lock(udev);
}
usb_unconfigure(udev, 0);
if (index == USB_UNCONFIG_INDEX) {
/*
* Leave unallocated when unconfiguring the
* device. "usb_unconfigure()" will also reset
* the current config number and index.
*/
err = usbd_req_set_config(udev, NULL, USB_UNCONFIG_NO);
if (udev->state == USB_STATE_CONFIGURED)
usb_set_device_state(udev, USB_STATE_ADDRESSED);
goto done;
}
/* get the full config descriptor */
if (udev->flags.usb_mode == USB_MODE_DEVICE) {
/* save some memory */
err = usbd_req_get_descriptor_ptr(udev, &cdp,
(UDESC_CONFIG << 8) | index);
} else {
/* normal request */
err = usbd_req_get_config_desc_full(udev,
NULL, &cdp, M_USB, index);
}
if (err) {
goto done;
}
/* set the new config descriptor */
udev->cdesc = cdp;
/* Figure out if the device is self or bus powered. */
selfpowered = 0;
if ((!udev->flags.uq_bus_powered) &&
(cdp->bmAttributes & UC_SELF_POWERED) &&
(udev->flags.usb_mode == USB_MODE_HOST)) {
/* May be self powered. */
if (cdp->bmAttributes & UC_BUS_POWERED) {
/* Must ask device. */
err = usbd_req_get_device_status(udev, NULL, &ds);
if (err) {
DPRINTFN(0, "could not read "
"device status: %s\n",
usbd_errstr(err));
} else if (UGETW(ds.wStatus) & UDS_SELF_POWERED) {
selfpowered = 1;
}
DPRINTF("status=0x%04x \n",
UGETW(ds.wStatus));
} else
selfpowered = 1;
}
DPRINTF("udev=%p cdesc=%p (addr %d) cno=%d attr=0x%02x, "
"selfpowered=%d, power=%d\n",
udev, cdp,
udev->address, cdp->bConfigurationValue, cdp->bmAttributes,
selfpowered, cdp->bMaxPower * 2);
/* Check if we have enough power. */
power = cdp->bMaxPower * 2;
if (udev->parent_hub) {
max_power = udev->parent_hub->hub->portpower;
} else {
max_power = USB_MAX_POWER;
}
if (power > max_power) {
DPRINTFN(0, "power exceeded %d > %d\n", power, max_power);
err = USB_ERR_NO_POWER;
goto done;
}
/* Only update "self_powered" in USB Host Mode */
if (udev->flags.usb_mode == USB_MODE_HOST) {
udev->flags.self_powered = selfpowered;
}
udev->power = power;
udev->curr_config_no = cdp->bConfigurationValue;
udev->curr_config_index = index;
usb_set_device_state(udev, USB_STATE_CONFIGURED);
/* Set the actual configuration value. */
err = usbd_req_set_config(udev, NULL, cdp->bConfigurationValue);
if (err) {
goto done;
}
err = usb_config_parse(udev, USB_IFACE_INDEX_ANY, USB_CFG_ALLOC);
if (err) {
goto done;
}
err = usb_config_parse(udev, USB_IFACE_INDEX_ANY, USB_CFG_INIT);
if (err) {
goto done;
}
#if USB_HAVE_UGEN
/* create device nodes for each endpoint */
usb_cdev_create(udev);
#endif
done:
DPRINTF("error=%s\n", usbd_errstr(err));
if (err) {
usb_unconfigure(udev, 0);
}
if (do_unlock)
usbd_enum_unlock(udev);
return (err);
}
/*------------------------------------------------------------------------*
* usb_config_parse
*
* This function will allocate and free USB interfaces and USB endpoints,
* parse the USB configuration structure and initialise the USB endpoints
* and interfaces. If "iface_index" is not equal to
* "USB_IFACE_INDEX_ANY" then the "cmd" parameter is the
* alternate_setting to be selected for the given interface. Else the
* "cmd" parameter is defined by "USB_CFG_XXX". "iface_index" can be
* "USB_IFACE_INDEX_ANY" or a valid USB interface index. This function
* is typically called when setting the configuration or when setting
* an alternate interface.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usb_config_parse(struct usb_device *udev, uint8_t iface_index, uint8_t cmd)
{
struct usb_idesc_parse_state ips;
struct usb_interface_descriptor *id;
struct usb_endpoint_descriptor *ed;
struct usb_interface *iface;
struct usb_endpoint *ep;
usb_error_t err;
uint8_t ep_curr;
uint8_t ep_max;
uint8_t temp;
uint8_t do_init;
uint8_t alt_index;
if (iface_index != USB_IFACE_INDEX_ANY) {
/* parameter overload */
alt_index = cmd;
cmd = USB_CFG_INIT;
} else {
/* not used */
alt_index = 0;
}
err = 0;
DPRINTFN(5, "iface_index=%d cmd=%d\n",
iface_index, cmd);
if (cmd == USB_CFG_FREE)
goto cleanup;
if (cmd == USB_CFG_INIT) {
sx_assert(&udev->enum_sx, SA_LOCKED);
/* check for in-use endpoints */
ep = udev->endpoints;
ep_max = udev->endpoints_max;
while (ep_max--) {
/* look for matching endpoints */
if ((iface_index == USB_IFACE_INDEX_ANY) ||
(iface_index == ep->iface_index)) {
if (ep->refcount_alloc != 0) {
/*
* This typically indicates a
* more serious error.
*/
err = USB_ERR_IN_USE;
} else {
/* reset endpoint */
memset(ep, 0, sizeof(*ep));
/* make sure we don't zero the endpoint again */
ep->iface_index = USB_IFACE_INDEX_ANY;
}
}
ep++;
}
if (err)
return (err);
}
memset(&ips, 0, sizeof(ips));
ep_curr = 0;
ep_max = 0;
while ((id = usb_idesc_foreach(udev->cdesc, &ips))) {
/* check for interface overflow */
if (ips.iface_index == USB_IFACE_MAX)
break; /* crazy */
iface = udev->ifaces + ips.iface_index;
/* check for specific interface match */
if (cmd == USB_CFG_INIT) {
if ((iface_index != USB_IFACE_INDEX_ANY) &&
(iface_index != ips.iface_index)) {
/* wrong interface */
do_init = 0;
} else if (alt_index != ips.iface_index_alt) {
/* wrong alternate setting */
do_init = 0;
} else {
/* initialise interface */
do_init = 1;
}
} else
do_init = 0;
/* check for new interface */
if (ips.iface_index_alt == 0) {
/* update current number of endpoints */
ep_curr = ep_max;
}
/* check for init */
if (do_init) {
/* setup the USB interface structure */
iface->idesc = id;
/* default setting */
iface->parent_iface_index = USB_IFACE_INDEX_ANY;
/* set alternate index */
iface->alt_index = alt_index;
}
DPRINTFN(5, "found idesc nendpt=%d\n", id->bNumEndpoints);
ed = (struct usb_endpoint_descriptor *)id;
temp = ep_curr;
/* iterate all the endpoint descriptors */
while ((ed = usb_edesc_foreach(udev->cdesc, ed))) {
if (temp == USB_EP_MAX)
break; /* crazy */
ep = udev->endpoints + temp;
if (do_init) {
usb_init_endpoint(udev,
ips.iface_index, ed, ep);
}
temp ++;
/* find maximum number of endpoints */
if (ep_max < temp)
ep_max = temp;
/* optimalisation */
id = (struct usb_interface_descriptor *)ed;
}
}
/* NOTE: It is valid to have no interfaces and no endpoints! */
if (cmd == USB_CFG_ALLOC) {
udev->ifaces_max = ips.iface_index;
udev->ifaces = NULL;
if (udev->ifaces_max != 0) {
udev->ifaces = malloc(sizeof(*iface) * udev->ifaces_max,
M_USB, M_WAITOK | M_ZERO);
if (udev->ifaces == NULL) {
err = USB_ERR_NOMEM;
goto done;
}
}
if (ep_max != 0) {
udev->endpoints = malloc(sizeof(*ep) * ep_max,
M_USB, M_WAITOK | M_ZERO);
if (udev->endpoints == NULL) {
err = USB_ERR_NOMEM;
goto done;
}
} else {
udev->endpoints = NULL;
}
USB_BUS_LOCK(udev->bus);
udev->endpoints_max = ep_max;
/* reset any ongoing clear-stall */
udev->ep_curr = NULL;
USB_BUS_UNLOCK(udev->bus);
}
done:
if (err) {
if (cmd == USB_CFG_ALLOC) {
cleanup:
USB_BUS_LOCK(udev->bus);
udev->endpoints_max = 0;
/* reset any ongoing clear-stall */
udev->ep_curr = NULL;
USB_BUS_UNLOCK(udev->bus);
/* cleanup */
if (udev->ifaces != NULL)
free(udev->ifaces, M_USB);
if (udev->endpoints != NULL)
free(udev->endpoints, M_USB);
udev->ifaces = NULL;
udev->endpoints = NULL;
udev->ifaces_max = 0;
}
}
return (err);
}
/*------------------------------------------------------------------------*
* usbd_set_alt_interface_index
*
* This function will select an alternate interface index for the
* given interface index. The interface should not be in use when this
* function is called. That means there should not be any open USB
* transfers. Else an error is returned. If the alternate setting is
* already set this function will simply return success. This function
* is called in Host mode and Device mode!
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_set_alt_interface_index(struct usb_device *udev,
uint8_t iface_index, uint8_t alt_index)
{
struct usb_interface *iface = usbd_get_iface(udev, iface_index);
usb_error_t err;
uint8_t do_unlock;
/* automatic locking */
if (usbd_enum_is_locked(udev)) {
do_unlock = 0;
} else {
do_unlock = 1;
usbd_enum_lock(udev);
}
if (iface == NULL) {
err = USB_ERR_INVAL;
goto done;
}
if (iface->alt_index == alt_index) {
/*
* Optimise away duplicate setting of
* alternate setting in USB Host Mode!
*/
err = 0;
goto done;
}
#if USB_HAVE_UGEN
/*
* Free all generic FIFOs for this interface, except control
* endpoint FIFOs:
*/
usb_fifo_free_wrap(udev, iface_index, 0);
#endif
err = usb_config_parse(udev, iface_index, alt_index);
if (err) {
goto done;
}
if (iface->alt_index != alt_index) {
/* the alternate setting does not exist */
err = USB_ERR_INVAL;
goto done;
}
err = usbd_req_set_alt_interface_no(udev, NULL, iface_index,
iface->idesc->bAlternateSetting);
done:
if (do_unlock)
usbd_enum_unlock(udev);
return (err);
}
/*------------------------------------------------------------------------*
* usbd_set_endpoint_stall
*
* This function is used to make a BULK or INTERRUPT endpoint
* send STALL tokens.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usbd_set_endpoint_stall(struct usb_device *udev, struct usb_endpoint *ep,
uint8_t do_stall)
{
struct usb_xfer *xfer;
uint8_t et;
uint8_t was_stalled;
if (ep == NULL) {
/* nothing to do */
DPRINTF("Cannot find endpoint\n");
/*
* Pretend that the clear or set stall request is
* successful else some USB host stacks can do
* strange things, especially when a control endpoint
* stalls.
*/
return (0);
}
et = (ep->edesc->bmAttributes & UE_XFERTYPE);
if ((et != UE_BULK) &&
(et != UE_INTERRUPT)) {
/*
* Should not stall control
* nor isochronous endpoints.
*/
DPRINTF("Invalid endpoint\n");
return (0);
}
USB_BUS_LOCK(udev->bus);
/* store current stall state */
was_stalled = ep->is_stalled;
/* check for no change */
if (was_stalled && do_stall) {
/* if the endpoint is already stalled do nothing */
USB_BUS_UNLOCK(udev->bus);
DPRINTF("No change\n");
return (0);
}
/* set stalled state */
ep->is_stalled = 1;
if (do_stall || (!was_stalled)) {
if (!was_stalled) {
/* lookup the current USB transfer, if any */
xfer = ep->endpoint_q.curr;
} else {
xfer = NULL;
}
/*
* If "xfer" is non-NULL the "set_stall" method will
* complete the USB transfer like in case of a timeout
* setting the error code "USB_ERR_STALLED".
*/
(udev->bus->methods->set_stall) (udev, xfer, ep, &do_stall);
}
if (!do_stall) {
ep->toggle_next = 0; /* reset data toggle */
ep->is_stalled = 0; /* clear stalled state */
(udev->bus->methods->clear_stall) (udev, ep);
/* start up the current or next transfer, if any */
usb_command_wrapper(&ep->endpoint_q, ep->endpoint_q.curr);
}
USB_BUS_UNLOCK(udev->bus);
return (0);
}
/*------------------------------------------------------------------------*
* usb_reset_iface_endpoints - used in USB device side mode
*------------------------------------------------------------------------*/
usb_error_t
usb_reset_iface_endpoints(struct usb_device *udev, uint8_t iface_index)
{
struct usb_endpoint *ep;
struct usb_endpoint *ep_end;
ep = udev->endpoints;
ep_end = udev->endpoints + udev->endpoints_max;
for (; ep != ep_end; ep++) {
if ((ep->edesc == NULL) ||
(ep->iface_index != iface_index)) {
continue;
}
/* simulate a clear stall from the peer */
usbd_set_endpoint_stall(udev, ep, 0);
}
return (0);
}
/*------------------------------------------------------------------------*
* usb_detach_device_sub
*
* This function will try to detach an USB device. If it fails a panic
* will result.
*
* Flag values, see "USB_UNCFG_FLAG_XXX".
*------------------------------------------------------------------------*/
static void
usb_detach_device_sub(struct usb_device *udev, device_t *ppdev,
uint8_t flag)
{
device_t dev;
int err;
dev = *ppdev;
if (dev) {
/*
* NOTE: It is important to clear "*ppdev" before deleting
* the child due to some device methods being called late
* during the delete process !
*/
*ppdev = NULL;
device_printf(dev, "at %s, port %d, addr %d "
"(disconnected)\n",
device_get_nameunit(udev->parent_dev),
udev->port_no, udev->address);
if (device_is_attached(dev)) {
if (udev->flags.peer_suspended) {
err = DEVICE_RESUME(dev);
if (err) {
device_printf(dev, "Resume failed\n");
}
}
if (device_detach(dev)) {
goto error;
}
}
if (device_delete_child(udev->parent_dev, dev)) {
goto error;
}
}
return;
error:
/* Detach is not allowed to fail in the USB world */
panic("A USB driver would not detach\n");
}
/*------------------------------------------------------------------------*
* usb_detach_device
*
* The following function will detach the matching interfaces.
* This function is NULL safe.
*
* Flag values, see "USB_UNCFG_FLAG_XXX".
*------------------------------------------------------------------------*/
void
usb_detach_device(struct usb_device *udev, uint8_t iface_index,
uint8_t flag)
{
struct usb_interface *iface;
uint8_t i;
if (udev == NULL) {
/* nothing to do */
return;
}
DPRINTFN(4, "udev=%p\n", udev);
sx_assert(&udev->enum_sx, SA_LOCKED);
/*
* First detach the child to give the child's detach routine a
* chance to detach the sub-devices in the correct order.
* Then delete the child using "device_delete_child()" which
* will detach all sub-devices from the bottom and upwards!
*/
if (iface_index != USB_IFACE_INDEX_ANY) {
i = iface_index;
iface_index = i + 1;
} else {
i = 0;
iface_index = USB_IFACE_MAX;
}
/* do the detach */
for (; i != iface_index; i++) {
iface = usbd_get_iface(udev, i);
if (iface == NULL) {
/* looks like the end of the USB interfaces */
break;
}
usb_detach_device_sub(udev, &iface->subdev, flag);
}
}
/*------------------------------------------------------------------------*
* usb_probe_and_attach_sub
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
static uint8_t
usb_probe_and_attach_sub(struct usb_device *udev,
struct usb_attach_arg *uaa)
{
struct usb_interface *iface;
device_t dev;
int err;
iface = uaa->iface;
if (iface->parent_iface_index != USB_IFACE_INDEX_ANY) {
/* leave interface alone */
return (0);
}
dev = iface->subdev;
if (dev) {
/* clean up after module unload */
if (device_is_attached(dev)) {
/* already a device there */
return (0);
}
/* clear "iface->subdev" as early as possible */
iface->subdev = NULL;
if (device_delete_child(udev->parent_dev, dev)) {
/*
* Panic here, else one can get a double call
* to device_detach(). USB devices should
* never fail on detach!
*/
panic("device_delete_child() failed\n");
}
}
if (uaa->temp_dev == NULL) {
/* create a new child */
uaa->temp_dev = device_add_child(udev->parent_dev, NULL, -1);
if (uaa->temp_dev == NULL) {
device_printf(udev->parent_dev,
"Device creation failed\n");
return (1); /* failure */
}
device_set_ivars(uaa->temp_dev, uaa);
device_quiet(uaa->temp_dev);
}
/*
* Set "subdev" before probe and attach so that "devd" gets
* the information it needs.
*/
iface->subdev = uaa->temp_dev;
if (device_probe_and_attach(iface->subdev) == 0) {
/*
* The USB attach arguments are only available during probe
* and attach !
*/
uaa->temp_dev = NULL;
device_set_ivars(iface->subdev, NULL);
if (udev->flags.peer_suspended) {
err = DEVICE_SUSPEND(iface->subdev);
if (err)
device_printf(iface->subdev, "Suspend failed\n");
}
return (0); /* success */
} else {
/* No USB driver found */
iface->subdev = NULL;
}
return (1); /* failure */
}
/*------------------------------------------------------------------------*
* usbd_set_parent_iface
*
* Using this function will lock the alternate interface setting on an
* interface. It is typically used for multi interface drivers. In USB
* device side mode it is assumed that the alternate interfaces all
* have the same endpoint descriptors. The default parent index value
* is "USB_IFACE_INDEX_ANY". Then the alternate setting value is not
* locked.
*------------------------------------------------------------------------*/
void
usbd_set_parent_iface(struct usb_device *udev, uint8_t iface_index,
uint8_t parent_index)
{
struct usb_interface *iface;
iface = usbd_get_iface(udev, iface_index);
if (iface) {
iface->parent_iface_index = parent_index;
}
}
static void
usb_init_attach_arg(struct usb_device *udev,
struct usb_attach_arg *uaa)
{
bzero(uaa, sizeof(*uaa));
uaa->device = udev;
uaa->usb_mode = udev->flags.usb_mode;
uaa->port = udev->port_no;
uaa->dev_state = UAA_DEV_READY;
uaa->info.idVendor = UGETW(udev->ddesc.idVendor);
uaa->info.idProduct = UGETW(udev->ddesc.idProduct);
uaa->info.bcdDevice = UGETW(udev->ddesc.bcdDevice);
uaa->info.bDeviceClass = udev->ddesc.bDeviceClass;
uaa->info.bDeviceSubClass = udev->ddesc.bDeviceSubClass;
uaa->info.bDeviceProtocol = udev->ddesc.bDeviceProtocol;
uaa->info.bConfigIndex = udev->curr_config_index;
uaa->info.bConfigNum = udev->curr_config_no;
}
/*------------------------------------------------------------------------*
* usb_probe_and_attach
*
* This function is called from "uhub_explore_sub()",
* "usb_handle_set_config()" and "usb_handle_request()".
*
* Returns:
* 0: Success
* Else: A control transfer failed
*------------------------------------------------------------------------*/
usb_error_t
usb_probe_and_attach(struct usb_device *udev, uint8_t iface_index)
{
struct usb_attach_arg uaa;
struct usb_interface *iface;
uint8_t i;
uint8_t j;
uint8_t do_unlock;
if (udev == NULL) {
DPRINTF("udev == NULL\n");
return (USB_ERR_INVAL);
}
/* automatic locking */
if (usbd_enum_is_locked(udev)) {
do_unlock = 0;
} else {
do_unlock = 1;
usbd_enum_lock(udev);
}
if (udev->curr_config_index == USB_UNCONFIG_INDEX) {
/* do nothing - no configuration has been set */
goto done;
}
/* setup USB attach arguments */
usb_init_attach_arg(udev, &uaa);
/* Check if only one interface should be probed: */
if (iface_index != USB_IFACE_INDEX_ANY) {
i = iface_index;
j = i + 1;
} else {
i = 0;
j = USB_IFACE_MAX;
}
/* Do the probe and attach */
for (; i != j; i++) {
iface = usbd_get_iface(udev, i);
if (iface == NULL) {
/*
* Looks like the end of the USB
* interfaces !
*/
DPRINTFN(2, "end of interfaces "
"at %u\n", i);
break;
}
if (iface->idesc == NULL) {
/* no interface descriptor */
continue;
}
uaa.iface = iface;
uaa.info.bInterfaceClass =
iface->idesc->bInterfaceClass;
uaa.info.bInterfaceSubClass =
iface->idesc->bInterfaceSubClass;
uaa.info.bInterfaceProtocol =
iface->idesc->bInterfaceProtocol;
uaa.info.bIfaceIndex = i;
uaa.info.bIfaceNum =
iface->idesc->bInterfaceNumber;
uaa.use_generic = 0;
uaa.driver_info = 0; /* reset driver_info */
DPRINTFN(2, "iclass=%u/%u/%u iindex=%u/%u\n",
uaa.info.bInterfaceClass,
uaa.info.bInterfaceSubClass,
uaa.info.bInterfaceProtocol,
uaa.info.bIfaceIndex,
uaa.info.bIfaceNum);
/* try specific interface drivers first */
if (usb_probe_and_attach_sub(udev, &uaa)) {
/* ignore */
}
/* try generic interface drivers last */
uaa.use_generic = 1;
uaa.driver_info = 0; /* reset driver_info */
if (usb_probe_and_attach_sub(udev, &uaa)) {
/* ignore */
}
}
if (uaa.temp_dev) {
/* remove the last created child; it is unused */
if (device_delete_child(udev->parent_dev, uaa.temp_dev)) {
DPRINTFN(0, "device delete child failed\n");
}
}
done:
if (do_unlock)
usbd_enum_unlock(udev);
return (0);
}
/*------------------------------------------------------------------------*
* usb_suspend_resume_sub
*
* This function is called when the suspend or resume methods should
* be executed on an USB device.
*------------------------------------------------------------------------*/
static void
usb_suspend_resume_sub(struct usb_device *udev, device_t dev, uint8_t do_suspend)
{
int err;
if (dev == NULL) {
return;
}
if (!device_is_attached(dev)) {
return;
}
if (do_suspend) {
err = DEVICE_SUSPEND(dev);
} else {
err = DEVICE_RESUME(dev);
}
if (err) {
device_printf(dev, "%s failed\n",
do_suspend ? "Suspend" : "Resume");
}
}
/*------------------------------------------------------------------------*
* usb_suspend_resume
*
* The following function will suspend or resume the USB device.
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
usb_error_t
usb_suspend_resume(struct usb_device *udev, uint8_t do_suspend)
{
struct usb_interface *iface;
uint8_t i;
if (udev == NULL) {
/* nothing to do */
return (0);
}
DPRINTFN(4, "udev=%p do_suspend=%d\n", udev, do_suspend);
sx_assert(&udev->sr_sx, SA_LOCKED);
USB_BUS_LOCK(udev->bus);
/* filter the suspend events */
if (udev->flags.peer_suspended == do_suspend) {
USB_BUS_UNLOCK(udev->bus);
/* nothing to do */
return (0);
}
udev->flags.peer_suspended = do_suspend;
USB_BUS_UNLOCK(udev->bus);
/* do the suspend or resume */
for (i = 0; i != USB_IFACE_MAX; i++) {
iface = usbd_get_iface(udev, i);
if (iface == NULL) {
/* looks like the end of the USB interfaces */
break;
}
usb_suspend_resume_sub(udev, iface->subdev, do_suspend);
}
return (0);
}
/*------------------------------------------------------------------------*
* usbd_clear_stall_proc
*
* This function performs generic USB clear stall operations.
*------------------------------------------------------------------------*/
static void
usbd_clear_stall_proc(struct usb_proc_msg *_pm)
{
struct usb_clear_stall_msg *pm = (void *)_pm;
struct usb_device *udev = pm->udev;
/* Change lock */
USB_BUS_UNLOCK(udev->bus);
mtx_lock(&udev->device_mtx);
/* Start clear stall callback */
usbd_transfer_start(udev->ctrl_xfer[1]);
/* Change lock */
mtx_unlock(&udev->device_mtx);
USB_BUS_LOCK(udev->bus);
}
/*------------------------------------------------------------------------*
* usb_alloc_device
*
* This function allocates a new USB device. This function is called
* when a new device has been put in the powered state, but not yet in
* the addressed state. Get initial descriptor, set the address, get
* full descriptor and get strings.
*
* Return values:
* 0: Failure
* Else: Success
*------------------------------------------------------------------------*/
struct usb_device *
usb_alloc_device(device_t parent_dev, struct usb_bus *bus,
struct usb_device *parent_hub, uint8_t depth, uint8_t port_index,
uint8_t port_no, enum usb_dev_speed speed, enum usb_hc_mode mode)
{
struct usb_attach_arg uaa;
struct usb_device *udev;
struct usb_device *adev;
struct usb_device *hub;
uint8_t *scratch_ptr;
size_t scratch_size;
usb_error_t err;
uint8_t device_index;
uint8_t config_index;
uint8_t config_quirk;
uint8_t set_config_failed;
DPRINTF("parent_dev=%p, bus=%p, parent_hub=%p, depth=%u, "
"port_index=%u, port_no=%u, speed=%u, usb_mode=%u\n",
parent_dev, bus, parent_hub, depth, port_index, port_no,
speed, mode);
/*
* Find an unused device index. In USB Host mode this is the
* same as the device address.
*
* Device index zero is not used and device index 1 should
* always be the root hub.
*/
for (device_index = USB_ROOT_HUB_ADDR;
(device_index != bus->devices_max) &&
(bus->devices[device_index] != NULL);
device_index++) /* nop */;
if (device_index == bus->devices_max) {
device_printf(bus->bdev,
"No free USB device index for new device\n");
return (NULL);
}
if (depth > 0x10) {
device_printf(bus->bdev,
"Invalid device depth\n");
return (NULL);
}
udev = malloc(sizeof(*udev), M_USB, M_WAITOK | M_ZERO);
if (udev == NULL) {
return (NULL);
}
/* initialise our SX-lock */
sx_init_flags(&udev->ctrl_sx, "USB device SX lock", SX_DUPOK);
/* initialise our SX-lock */
sx_init_flags(&udev->enum_sx, "USB config SX lock", SX_DUPOK);
sx_init_flags(&udev->sr_sx, "USB suspend and resume SX lock", SX_DUPOK);
cv_init(&udev->ctrlreq_cv, "WCTRL");
cv_init(&udev->ref_cv, "UGONE");
/* initialise our mutex */
mtx_init(&udev->device_mtx, "USB device mutex", NULL, MTX_DEF);
/* initialise generic clear stall */
udev->cs_msg[0].hdr.pm_callback = &usbd_clear_stall_proc;
udev->cs_msg[0].udev = udev;
udev->cs_msg[1].hdr.pm_callback = &usbd_clear_stall_proc;
udev->cs_msg[1].udev = udev;
/* initialise some USB device fields */
udev->parent_hub = parent_hub;
udev->parent_dev = parent_dev;
udev->port_index = port_index;
udev->port_no = port_no;
udev->depth = depth;
udev->bus = bus;
udev->address = USB_START_ADDR; /* default value */
udev->plugtime = (usb_ticks_t)ticks;
usb_set_device_state(udev, USB_STATE_POWERED);
/*
* We need to force the power mode to "on" because there are plenty
* of USB devices out there that do not work very well with
* automatic suspend and resume!
*/
udev->power_mode = USB_POWER_MODE_ON;
udev->pwr_save.last_xfer_time = ticks;
/* we are not ready yet */
udev->refcount = 1;
/* set up default endpoint descriptor */
udev->ctrl_ep_desc.bLength = sizeof(udev->ctrl_ep_desc);
udev->ctrl_ep_desc.bDescriptorType = UDESC_ENDPOINT;
udev->ctrl_ep_desc.bEndpointAddress = USB_CONTROL_ENDPOINT;
udev->ctrl_ep_desc.bmAttributes = UE_CONTROL;
udev->ctrl_ep_desc.wMaxPacketSize[0] = USB_MAX_IPACKET;
udev->ctrl_ep_desc.wMaxPacketSize[1] = 0;
udev->ctrl_ep_desc.bInterval = 0;
udev->ddesc.bMaxPacketSize = USB_MAX_IPACKET;
udev->speed = speed;
udev->flags.usb_mode = mode;
/* search for our High Speed USB HUB, if any */
adev = udev;
hub = udev->parent_hub;
while (hub) {
if (hub->speed == USB_SPEED_HIGH) {
udev->hs_hub_addr = hub->address;
udev->parent_hs_hub = hub;
udev->hs_port_no = adev->port_no;
break;
}
adev = hub;
hub = hub->parent_hub;
}
/* init the default endpoint */
usb_init_endpoint(udev, 0,
&udev->ctrl_ep_desc,
&udev->ctrl_ep);
/* set device index */
udev->device_index = device_index;
#if USB_HAVE_UGEN
/* Create ugen name */
snprintf(udev->ugen_name, sizeof(udev->ugen_name),
USB_GENERIC_NAME "%u.%u", device_get_unit(bus->bdev),
device_index);
LIST_INIT(&udev->pd_list);
/* Create the control endpoint device */
udev->ctrl_dev = usb_make_dev(udev, 0, FREAD|FWRITE);
/* Create a link from /dev/ugenX.X to the default endpoint */
make_dev_alias(udev->ctrl_dev, "%s", udev->ugen_name);
#endif
if (udev->flags.usb_mode == USB_MODE_HOST) {
err = usbd_req_set_address(udev, NULL, device_index);
/* This is the new USB device address from now on */
udev->address = device_index;
/*
* We ignore any set-address errors, hence there are
* buggy USB devices out there that actually receive
* the SETUP PID, but manage to set the address before
* the STATUS stage is ACK'ed. If the device responds
* to the subsequent get-descriptor at the new
* address, then we know that the set-address command
* was successful.
*/
if (err) {
DPRINTFN(0, "set address %d failed "
"(%s, ignored)\n", udev->address,
usbd_errstr(err));
}
/* allow device time to set new address */
usb_pause_mtx(NULL,
USB_MS_TO_TICKS(USB_SET_ADDRESS_SETTLE));
} else {
/* We are not self powered */
udev->flags.self_powered = 0;
/* Set unconfigured state */
udev->curr_config_no = USB_UNCONFIG_NO;
udev->curr_config_index = USB_UNCONFIG_INDEX;
/* Setup USB descriptors */
err = (usb_temp_setup_by_index_p) (udev, usb_template);
if (err) {
DPRINTFN(0, "setting up USB template failed maybe the USB "
"template module has not been loaded\n");
goto done;
}
}
usb_set_device_state(udev, USB_STATE_ADDRESSED);
/*
* Get the first 8 bytes of the device descriptor !
*
* NOTE: "usbd_do_request" will check the device descriptor
* next time we do a request to see if the maximum packet size
* changed! The 8 first bytes of the device descriptor
* contains the maximum packet size to use on control endpoint
* 0. If this value is different from "USB_MAX_IPACKET" a new
* USB control request will be setup!
*/
err = usbd_req_get_desc(udev, NULL, NULL, &udev->ddesc,
USB_MAX_IPACKET, USB_MAX_IPACKET, 0, UDESC_DEVICE, 0, 0);
if (err) {
DPRINTFN(0, "getting device descriptor "
"at addr %d failed, %s\n", udev->address,
usbd_errstr(err));
/* XXX try to re-enumerate the device */
err = usbd_req_re_enumerate(udev, NULL);
if (err) {
goto done;
}
}
DPRINTF("adding unit addr=%d, rev=%02x, class=%d, "
"subclass=%d, protocol=%d, maxpacket=%d, len=%d, speed=%d\n",
udev->address, UGETW(udev->ddesc.bcdUSB),
udev->ddesc.bDeviceClass,
udev->ddesc.bDeviceSubClass,
udev->ddesc.bDeviceProtocol,
udev->ddesc.bMaxPacketSize,
udev->ddesc.bLength,
udev->speed);
/* get the full device descriptor */
err = usbd_req_get_device_desc(udev, NULL, &udev->ddesc);
if (err) {
DPRINTF("addr=%d, getting full desc failed\n",
udev->address);
goto done;
}
/*
* Setup temporary USB attach args so that we can figure out some
* basic quirks for this device.
*/
usb_init_attach_arg(udev, &uaa);
if (usb_test_quirk(&uaa, UQ_BUS_POWERED)) {
udev->flags.uq_bus_powered = 1;
}
if (usb_test_quirk(&uaa, UQ_NO_STRINGS)) {
udev->flags.no_strings = 1;
}
/*
* Workaround for buggy USB devices.
*
* It appears that some string-less USB chips will crash and
* disappear if any attempts are made to read any string
* descriptors.
*
* Try to detect such chips by checking the strings in the USB
* device descriptor. If no strings are present there we
* simply disable all USB strings.
*/
scratch_ptr = udev->bus->scratch[0].data;
scratch_size = sizeof(udev->bus->scratch[0].data);
if (udev->ddesc.iManufacturer ||
udev->ddesc.iProduct ||
udev->ddesc.iSerialNumber) {
/* read out the language ID string */
err = usbd_req_get_string_desc(udev, NULL,
(char *)scratch_ptr, 4, 0, USB_LANGUAGE_TABLE);
} else {
err = USB_ERR_INVAL;
}
if (err || (scratch_ptr[0] < 4)) {
udev->flags.no_strings = 1;
} else {
uint16_t langid;
uint16_t pref;
uint16_t mask;
uint8_t x;
/* load preferred value and mask */
pref = usb_lang_id;
mask = usb_lang_mask;
/* align length correctly */
scratch_ptr[0] &= ~1;
/* fix compiler warning */
langid = 0;
/* search for preferred language */
for (x = 2; (x < scratch_ptr[0]); x += 2) {
langid = UGETW(scratch_ptr + x);
if ((langid & mask) == pref)
break;
}
if (x >= scratch_ptr[0]) {
/* pick the first language as the default */
DPRINTFN(1, "Using first language\n");
langid = UGETW(scratch_ptr + 2);
}
DPRINTFN(1, "Language selected: 0x%04x\n", langid);
udev->langid = langid;
}
/* assume 100mA bus powered for now. Changed when configured. */
udev->power = USB_MIN_POWER;
/* fetch the vendor and product strings from the device */
usbd_set_device_strings(udev);
if (udev->flags.usb_mode == USB_MODE_DEVICE) {
/* USB device mode setup is complete */
err = 0;
goto config_done;
}
/*
* Most USB devices should attach to config index 0 by
* default
*/
if (usb_test_quirk(&uaa, UQ_CFG_INDEX_0)) {
config_index = 0;
config_quirk = 1;
} else if (usb_test_quirk(&uaa, UQ_CFG_INDEX_1)) {
config_index = 1;
config_quirk = 1;
} else if (usb_test_quirk(&uaa, UQ_CFG_INDEX_2)) {
config_index = 2;
config_quirk = 1;
} else if (usb_test_quirk(&uaa, UQ_CFG_INDEX_3)) {
config_index = 3;
config_quirk = 1;
} else if (usb_test_quirk(&uaa, UQ_CFG_INDEX_4)) {
config_index = 4;
config_quirk = 1;
} else {
config_index = 0;
config_quirk = 0;
}
set_config_failed = 0;
repeat_set_config:
DPRINTF("setting config %u\n", config_index);
/* get the USB device configured */
err = usbd_set_config_index(udev, config_index);
if (err) {
if (udev->ddesc.bNumConfigurations != 0) {
if (!set_config_failed) {
set_config_failed = 1;
/* XXX try to re-enumerate the device */
err = usbd_req_re_enumerate(udev, NULL);
if (err == 0)
goto repeat_set_config;
}
DPRINTFN(0, "Failure selecting configuration index %u:"
"%s, port %u, addr %u (ignored)\n",
config_index, usbd_errstr(err), udev->port_no,
udev->address);
}
/*
* Some USB devices do not have any configurations. Ignore any
* set config failures!
*/
err = 0;
goto config_done;
}
if (!config_quirk && config_index + 1 < udev->ddesc.bNumConfigurations) {
if ((udev->cdesc->bNumInterface < 2) &&
usbd_get_no_descriptors(udev->cdesc, UDESC_ENDPOINT) == 0) {
DPRINTFN(0, "Found no endpoints, trying next config\n");
config_index++;
goto repeat_set_config;
}
if (config_index == 0) {
/*
* Try to figure out if we have an
* auto-install disk there:
*/
if (usb_iface_is_cdrom(udev, 0)) {
DPRINTFN(0, "Found possible auto-install "
"disk (trying next config)\n");
config_index++;
goto repeat_set_config;
}
}
}
EVENTHANDLER_INVOKE(usb_dev_configured, udev, &uaa);
if (uaa.dev_state != UAA_DEV_READY) {
/* leave device unconfigured */
usb_unconfigure(udev, 0);
}
config_done:
DPRINTF("new dev (addr %d), udev=%p, parent_hub=%p\n",
udev->address, udev, udev->parent_hub);
/* register our device - we are ready */
usb_bus_port_set_device(bus, parent_hub ?
parent_hub->hub->ports + port_index : NULL, udev, device_index);
#if USB_HAVE_UGEN
/* Symlink the ugen device name */
udev->ugen_symlink = usb_alloc_symlink(udev->ugen_name);
/* Announce device */
printf("%s: <%s> at %s\n", udev->ugen_name, udev->manufacturer,
device_get_nameunit(udev->bus->bdev));
usb_notify_addq("ATTACH", udev);
#endif
done:
if (err) {
/*
* Free USB device and all subdevices, if any.
*/
usb_free_device(udev, 0);
udev = NULL;
}
return (udev);
}
#if USB_HAVE_UGEN
static struct cdev *
usb_make_dev(struct usb_device *udev, int ep, int mode)
{
struct usb_fs_privdata* pd;
char devname[20];
/* Store information to locate ourselves again later */
pd = malloc(sizeof(struct usb_fs_privdata), M_USBDEV,
M_WAITOK | M_ZERO);
pd->bus_index = device_get_unit(udev->bus->bdev);
pd->dev_index = udev->device_index;
pd->ep_addr = ep;
pd->mode = mode;
/* Now, create the device itself */
snprintf(devname, sizeof(devname), "%u.%u.%u",
pd->bus_index, pd->dev_index, pd->ep_addr);
pd->cdev = make_dev(&usb_devsw, 0, UID_ROOT,
GID_OPERATOR, 0600, USB_DEVICE_DIR "/%s", devname);
pd->cdev->si_drv1 = pd;
return (pd->cdev);
}
static void
usb_cdev_create(struct usb_device *udev)
{
struct usb_config_descriptor *cd;
struct usb_endpoint_descriptor *ed;
struct usb_descriptor *desc;
struct usb_fs_privdata* pd;
struct cdev *dev;
int inmode, outmode, inmask, outmask, mode;
uint8_t ep;
KASSERT(LIST_FIRST(&udev->pd_list) == NULL, ("stale cdev entries"));
DPRINTFN(2, "Creating device nodes\n");
if (usbd_get_mode(udev) == USB_MODE_DEVICE) {
inmode = FWRITE;
outmode = FREAD;
} else { /* USB_MODE_HOST */
inmode = FREAD;
outmode = FWRITE;
}
inmask = 0;
outmask = 0;
desc = NULL;
/*
* Collect all used endpoint numbers instead of just
* generating 16 static endpoints.
*/
cd = usbd_get_config_descriptor(udev);
while ((desc = usb_desc_foreach(cd, desc))) {
/* filter out all endpoint descriptors */
if ((desc->bDescriptorType == UDESC_ENDPOINT) &&
(desc->bLength >= sizeof(*ed))) {
ed = (struct usb_endpoint_descriptor *)desc;
/* update masks */
ep = ed->bEndpointAddress;
if (UE_GET_DIR(ep) == UE_DIR_OUT)
outmask |= 1 << UE_GET_ADDR(ep);
else
inmask |= 1 << UE_GET_ADDR(ep);
}
}
/* Create all available endpoints except EP0 */
for (ep = 1; ep < 16; ep++) {
mode = inmask & (1 << ep) ? inmode : 0;
mode |= outmask & (1 << ep) ? outmode : 0;
if (mode == 0)
continue; /* no IN or OUT endpoint */
dev = usb_make_dev(udev, ep, mode);
pd = dev->si_drv1;
LIST_INSERT_HEAD(&udev->pd_list, pd, pd_next);
}
}
static void
usb_cdev_free(struct usb_device *udev)
{
struct usb_fs_privdata* pd;
struct cdev* pcdev;
DPRINTFN(2, "Freeing device nodes\n");
while ((pd = LIST_FIRST(&udev->pd_list)) != NULL) {
KASSERT(pd->cdev->si_drv1 == pd, ("privdata corrupt"));
pcdev = pd->cdev;
pd->cdev = NULL;
LIST_REMOVE(pd, pd_next);
if (pcdev != NULL)
destroy_dev_sched_cb(pcdev, usb_cdev_cleanup, pd);
}
}
static void
usb_cdev_cleanup(void* arg)
{
free(arg, M_USBDEV);
}
#endif
/*------------------------------------------------------------------------*
* usb_free_device
*
* This function is NULL safe and will free an USB device and its
* children devices, if any.
*
* Flag values: Reserved, set to zero.
*------------------------------------------------------------------------*/
void
usb_free_device(struct usb_device *udev, uint8_t flag)
{
struct usb_bus *bus;
if (udev == NULL)
return; /* already freed */
DPRINTFN(4, "udev=%p port=%d\n", udev, udev->port_no);
bus = udev->bus;
usb_set_device_state(udev, USB_STATE_DETACHED);
#if USB_HAVE_UGEN
usb_notify_addq("DETACH", udev);
printf("%s: <%s> at %s (disconnected)\n", udev->ugen_name,
udev->manufacturer, device_get_nameunit(bus->bdev));
/* Destroy UGEN symlink, if any */
if (udev->ugen_symlink) {
usb_free_symlink(udev->ugen_symlink);
udev->ugen_symlink = NULL;
}
#endif
/*
* Unregister our device first which will prevent any further
* references:
*/
usb_bus_port_set_device(bus, udev->parent_hub ?
udev->parent_hub->hub->ports + udev->port_index : NULL,
NULL, USB_ROOT_HUB_ADDR);
#if USB_HAVE_UGEN
/* wait for all pending references to go away: */
mtx_lock(&usb_ref_lock);
udev->refcount--;
while (udev->refcount != 0) {
cv_wait(&udev->ref_cv, &usb_ref_lock);
}
mtx_unlock(&usb_ref_lock);
destroy_dev_sched_cb(udev->ctrl_dev, usb_cdev_cleanup,
udev->ctrl_dev->si_drv1);
#endif
if (udev->flags.usb_mode == USB_MODE_DEVICE) {
/* stop receiving any control transfers (Device Side Mode) */
usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX);
}
/* the following will get the device unconfigured in software */
usb_unconfigure(udev, USB_UNCFG_FLAG_FREE_EP0);
/* unsetup any leftover default USB transfers */
usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX);
/* template unsetup, if any */
(usb_temp_unsetup_p) (udev);
/*
* Make sure that our clear-stall messages are not queued
* anywhere:
*/
USB_BUS_LOCK(udev->bus);
usb_proc_mwait(&udev->bus->non_giant_callback_proc,
&udev->cs_msg[0], &udev->cs_msg[1]);
USB_BUS_UNLOCK(udev->bus);
sx_destroy(&udev->ctrl_sx);
sx_destroy(&udev->enum_sx);
sx_destroy(&udev->sr_sx);
cv_destroy(&udev->ctrlreq_cv);
cv_destroy(&udev->ref_cv);
mtx_destroy(&udev->device_mtx);
#if USB_HAVE_UGEN
KASSERT(LIST_FIRST(&udev->pd_list) == NULL, ("leaked cdev entries"));
#endif
/* free device */
free(udev->serial, M_USB);
free(udev->manufacturer, M_USB);
free(udev->product, M_USB);
free(udev, M_USB);
}
/*------------------------------------------------------------------------*
* usbd_get_iface
*
* This function is the safe way to get the USB interface structure
* pointer by interface index.
*
* Return values:
* NULL: Interface not present.
* Else: Pointer to USB interface structure.
*------------------------------------------------------------------------*/
struct usb_interface *
usbd_get_iface(struct usb_device *udev, uint8_t iface_index)
{
struct usb_interface *iface = udev->ifaces + iface_index;
if (iface_index >= udev->ifaces_max)
return (NULL);
return (iface);
}
/*------------------------------------------------------------------------*
* usbd_find_descriptor
*
* This function will lookup the first descriptor that matches the
* criteria given by the arguments "type" and "subtype". Descriptors
* will only be searched within the interface having the index
* "iface_index". If the "id" argument points to an USB descriptor,
* it will be skipped before the search is started. This allows
* searching for multiple descriptors using the same criteria. Else
* the search is started after the interface descriptor.
*
* Return values:
* NULL: End of descriptors
* Else: A descriptor matching the criteria
*------------------------------------------------------------------------*/
void *
usbd_find_descriptor(struct usb_device *udev, void *id, uint8_t iface_index,
uint8_t type, uint8_t type_mask,
uint8_t subtype, uint8_t subtype_mask)
{
struct usb_descriptor *desc;
struct usb_config_descriptor *cd;
struct usb_interface *iface;
cd = usbd_get_config_descriptor(udev);
if (cd == NULL) {
return (NULL);
}
if (id == NULL) {
iface = usbd_get_iface(udev, iface_index);
if (iface == NULL) {
return (NULL);
}
id = usbd_get_interface_descriptor(iface);
if (id == NULL) {
return (NULL);
}
}
desc = (void *)id;
while ((desc = usb_desc_foreach(cd, desc))) {
if (desc->bDescriptorType == UDESC_INTERFACE) {
break;
}
if (((desc->bDescriptorType & type_mask) == type) &&
((desc->bDescriptorSubtype & subtype_mask) == subtype)) {
return (desc);
}
}
return (NULL);
}
/*------------------------------------------------------------------------*
* usb_devinfo
*
* This function will dump information from the device descriptor
* belonging to the USB device pointed to by "udev", to the string
* pointed to by "dst_ptr" having a maximum length of "dst_len" bytes
* including the terminating zero.
*------------------------------------------------------------------------*/
void
usb_devinfo(struct usb_device *udev, char *dst_ptr, uint16_t dst_len)
{
struct usb_device_descriptor *udd = &udev->ddesc;
uint16_t bcdDevice;
uint16_t bcdUSB;
bcdUSB = UGETW(udd->bcdUSB);
bcdDevice = UGETW(udd->bcdDevice);
if (udd->bDeviceClass != 0xFF) {
snprintf(dst_ptr, dst_len, "%s %s, class %d/%d, rev %x.%02x/"
"%x.%02x, addr %d",
udev->manufacturer, udev->product,
udd->bDeviceClass, udd->bDeviceSubClass,
(bcdUSB >> 8), bcdUSB & 0xFF,
(bcdDevice >> 8), bcdDevice & 0xFF,
udev->address);
} else {
snprintf(dst_ptr, dst_len, "%s %s, rev %x.%02x/"
"%x.%02x, addr %d",
udev->manufacturer, udev->product,
(bcdUSB >> 8), bcdUSB & 0xFF,
(bcdDevice >> 8), bcdDevice & 0xFF,
udev->address);
}
}
#ifdef USB_VERBOSE
/*
* Descriptions of of known vendors and devices ("products").
*/
struct usb_knowndev {
uint16_t vendor;
uint16_t product;
uint32_t flags;
const char *vendorname;
const char *productname;
};
#define USB_KNOWNDEV_NOPROD 0x01 /* match on vendor only */
#include "usbdevs.h"
#include "usbdevs_data.h"
#endif /* USB_VERBOSE */
static void
usbd_set_device_strings(struct usb_device *udev)
{
struct usb_device_descriptor *udd = &udev->ddesc;
#ifdef USB_VERBOSE
const struct usb_knowndev *kdp;
#endif
char *temp_ptr;
size_t temp_size;
uint16_t vendor_id;
uint16_t product_id;
temp_ptr = (char *)udev->bus->scratch[0].data;
temp_size = sizeof(udev->bus->scratch[0].data);
vendor_id = UGETW(udd->idVendor);
product_id = UGETW(udd->idProduct);
/* get serial number string */
usbd_req_get_string_any(udev, NULL, temp_ptr, temp_size,
udev->ddesc.iSerialNumber);
udev->serial = strdup(temp_ptr, M_USB);
/* get manufacturer string */
usbd_req_get_string_any(udev, NULL, temp_ptr, temp_size,
udev->ddesc.iManufacturer);
usb_trim_spaces(temp_ptr);
if (temp_ptr[0] != '\0')
udev->manufacturer = strdup(temp_ptr, M_USB);
/* get product string */
usbd_req_get_string_any(udev, NULL, temp_ptr, temp_size,
udev->ddesc.iProduct);
usb_trim_spaces(temp_ptr);
if (temp_ptr[0] != '\0')
udev->product = strdup(temp_ptr, M_USB);
#ifdef USB_VERBOSE
if (udev->manufacturer == NULL || udev->product == NULL) {
for (kdp = usb_knowndevs; kdp->vendorname != NULL; kdp++) {
if (kdp->vendor == vendor_id &&
(kdp->product == product_id ||
(kdp->flags & USB_KNOWNDEV_NOPROD) != 0))
break;
}
if (kdp->vendorname != NULL) {
/* XXX should use pointer to knowndevs string */
if (udev->manufacturer == NULL) {
udev->manufacturer = strdup(kdp->vendorname,
M_USB);
}
if (udev->product == NULL &&
(kdp->flags & USB_KNOWNDEV_NOPROD) == 0) {
udev->product = strdup(kdp->productname,
M_USB);
}
}
}
#endif
/* Provide default strings if none were found */
if (udev->manufacturer == NULL) {
snprintf(temp_ptr, temp_size, "vendor 0x%04x", vendor_id);
udev->manufacturer = strdup(temp_ptr, M_USB);
}
if (udev->product == NULL) {
snprintf(temp_ptr, temp_size, "product 0x%04x", product_id);
udev->product = strdup(temp_ptr, M_USB);
}
}
/*
* Returns:
* See: USB_MODE_XXX
*/
enum usb_hc_mode
usbd_get_mode(struct usb_device *udev)
{
return (udev->flags.usb_mode);
}
/*
* Returns:
* See: USB_SPEED_XXX
*/
enum usb_dev_speed
usbd_get_speed(struct usb_device *udev)
{
return (udev->speed);
}
uint32_t
usbd_get_isoc_fps(struct usb_device *udev)
{
; /* indent fix */
switch (udev->speed) {
case USB_SPEED_LOW:
case USB_SPEED_FULL:
return (1000);
default:
return (8000);
}
}
struct usb_device_descriptor *
usbd_get_device_descriptor(struct usb_device *udev)
{
if (udev == NULL)
return (NULL); /* be NULL safe */
return (&udev->ddesc);
}
struct usb_config_descriptor *
usbd_get_config_descriptor(struct usb_device *udev)
{
if (udev == NULL)
return (NULL); /* be NULL safe */
return (udev->cdesc);
}
/*------------------------------------------------------------------------*
* usb_test_quirk - test a device for a given quirk
*
* Return values:
* 0: The USB device does not have the given quirk.
* Else: The USB device has the given quirk.
*------------------------------------------------------------------------*/
uint8_t
usb_test_quirk(const struct usb_attach_arg *uaa, uint16_t quirk)
{
uint8_t found;
found = (usb_test_quirk_p) (&uaa->info, quirk);
return (found);
}
struct usb_interface_descriptor *
usbd_get_interface_descriptor(struct usb_interface *iface)
{
if (iface == NULL)
return (NULL); /* be NULL safe */
return (iface->idesc);
}
uint8_t
usbd_get_interface_altindex(struct usb_interface *iface)
{
return (iface->alt_index);
}
uint8_t
usbd_get_bus_index(struct usb_device *udev)
{
return ((uint8_t)device_get_unit(udev->bus->bdev));
}
uint8_t
usbd_get_device_index(struct usb_device *udev)
{
return (udev->device_index);
}
#if USB_HAVE_UGEN
/*------------------------------------------------------------------------*
* usb_notify_addq
*
* This function will generate events for dev.
*------------------------------------------------------------------------*/
#ifndef BURN_BRIDGES
static void
usb_notify_addq_compat(const char *type, struct usb_device *udev)
{
char *data = NULL;
const char *ntype;
struct malloc_type *mt;
const size_t buf_size = 512;
/* Convert notify type */
if (strcmp(type, "ATTACH") == 0)
ntype = "+";
else if (strcmp(type, "DETACH") == 0)
ntype = "-";
else
return;
mtx_lock(&malloc_mtx);
mt = malloc_desc2type("bus"); /* XXX M_BUS */
mtx_unlock(&malloc_mtx);
if (mt == NULL)
return;
data = malloc(buf_size, mt, M_NOWAIT);
if (data == NULL)
return;
/* String it all together. */
snprintf(data, buf_size,
"%s"
"%s "
"vendor=0x%04x "
"product=0x%04x "
"devclass=0x%02x "
"devsubclass=0x%02x "
"sernum=\"%s\" "
"release=0x%04x "
"at "
"port=%u "
"on "
"%s\n",
ntype,
udev->ugen_name,
UGETW(udev->ddesc.idVendor),
UGETW(udev->ddesc.idProduct),
udev->ddesc.bDeviceClass,
udev->ddesc.bDeviceSubClass,
udev->serial,
UGETW(udev->ddesc.bcdDevice),
udev->port_no,
udev->parent_hub != NULL ?
udev->parent_hub->ugen_name :
device_get_nameunit(device_get_parent(udev->bus->bdev)));
devctl_queue_data(data);
}
#endif
static void
usb_notify_addq(const char *type, struct usb_device *udev)
{
struct usb_interface *iface;
struct sbuf *sb;
int i;
#ifndef BURN_BRIDGES
usb_notify_addq_compat(type, udev);
#endif
/* announce the device */
sb = sbuf_new_auto();
sbuf_printf(sb,
"cdev=%s "
"vendor=0x%04x "
"product=0x%04x "
"devclass=0x%02x "
"devsubclass=0x%02x "
"sernum=\"%s\" "
"release=0x%04x "
"mode=%s "
"port=%u "
"parent=%s\n",
udev->ugen_name,
UGETW(udev->ddesc.idVendor),
UGETW(udev->ddesc.idProduct),
udev->ddesc.bDeviceClass,
udev->ddesc.bDeviceSubClass,
udev->serial,
UGETW(udev->ddesc.bcdDevice),
(udev->flags.usb_mode == USB_MODE_HOST) ? "host" : "device",
udev->port_no,
udev->parent_hub != NULL ?
udev->parent_hub->ugen_name :
device_get_nameunit(device_get_parent(udev->bus->bdev)));
sbuf_finish(sb);
devctl_notify("USB", "DEVICE", type, sbuf_data(sb));
sbuf_delete(sb);
/* announce each interface */
for (i = 0; i < USB_IFACE_MAX; i++) {
iface = usbd_get_iface(udev, i);
if (iface == NULL)
break; /* end of interfaces */
if (iface->idesc == NULL)
continue; /* no interface descriptor */
sb = sbuf_new_auto();
sbuf_printf(sb,
"cdev=%s "
"vendor=0x%04x "
"product=0x%04x "
"devclass=0x%02x "
"devsubclass=0x%02x "
"sernum=\"%s\" "
"release=0x%04x "
"mode=%s "
"interface=%d "
"endpoints=%d "
"intclass=0x%02x "
"intsubclass=0x%02x "
"intprotocol=0x%02x\n",
udev->ugen_name,
UGETW(udev->ddesc.idVendor),
UGETW(udev->ddesc.idProduct),
udev->ddesc.bDeviceClass,
udev->ddesc.bDeviceSubClass,
udev->serial,
UGETW(udev->ddesc.bcdDevice),
(udev->flags.usb_mode == USB_MODE_HOST) ? "host" : "device",
iface->idesc->bInterfaceNumber,
iface->idesc->bNumEndpoints,
iface->idesc->bInterfaceClass,
iface->idesc->bInterfaceSubClass,
iface->idesc->bInterfaceProtocol);
sbuf_finish(sb);
devctl_notify("USB", "INTERFACE", type, sbuf_data(sb));
sbuf_delete(sb);
}
}
/*------------------------------------------------------------------------*
* usb_fifo_free_wrap
*
* This function will free the FIFOs.
*
* Description of "flag" argument: If the USB_UNCFG_FLAG_FREE_EP0 flag
* is set and "iface_index" is set to "USB_IFACE_INDEX_ANY", we free
* all FIFOs. If the USB_UNCFG_FLAG_FREE_EP0 flag is not set and
* "iface_index" is set to "USB_IFACE_INDEX_ANY", we free all non
* control endpoint FIFOs. If "iface_index" is not set to
* "USB_IFACE_INDEX_ANY" the flag has no effect.
*------------------------------------------------------------------------*/
static void
usb_fifo_free_wrap(struct usb_device *udev,
uint8_t iface_index, uint8_t flag)
{
struct usb_fifo *f;
uint16_t i;
/*
* Free any USB FIFOs on the given interface:
*/
for (i = 0; i != USB_FIFO_MAX; i++) {
f = udev->fifo[i];
if (f == NULL) {
continue;
}
/* Check if the interface index matches */
if (iface_index == f->iface_index) {
if (f->methods != &usb_ugen_methods) {
/*
* Don't free any non-generic FIFOs in
* this case.
*/
continue;
}
if ((f->dev_ep_index == 0) &&
(f->fs_xfer == NULL)) {
/* no need to free this FIFO */
continue;
}
} else if (iface_index == USB_IFACE_INDEX_ANY) {
if ((f->methods == &usb_ugen_methods) &&
(f->dev_ep_index == 0) &&
(!(flag & USB_UNCFG_FLAG_FREE_EP0)) &&
(f->fs_xfer == NULL)) {
/* no need to free this FIFO */
continue;
}
} else {
/* no need to free this FIFO */
continue;
}
/* free this FIFO */
usb_fifo_free(f);
}
}
#endif
/*------------------------------------------------------------------------*
* usb_peer_can_wakeup
*
* Return values:
* 0: Peer cannot do resume signalling.
* Else: Peer can do resume signalling.
*------------------------------------------------------------------------*/
uint8_t
usb_peer_can_wakeup(struct usb_device *udev)
{
const struct usb_config_descriptor *cdp;
cdp = udev->cdesc;
if ((cdp != NULL) && (udev->flags.usb_mode == USB_MODE_HOST)) {
return (cdp->bmAttributes & UC_REMOTE_WAKEUP);
}
return (0); /* not supported */
}
void
usb_set_device_state(struct usb_device *udev, enum usb_dev_state state)
{
KASSERT(state < USB_STATE_MAX, ("invalid udev state"));
DPRINTF("udev %p state %s -> %s\n", udev,
usb_statestr(udev->state), usb_statestr(state));
udev->state = state;
}
uint8_t
usbd_device_attached(struct usb_device *udev)
{
return (udev->state > USB_STATE_DETACHED);
}
/* The following function locks enumerating the given USB device. */
void
usbd_enum_lock(struct usb_device *udev)
{
sx_xlock(&udev->enum_sx);
sx_xlock(&udev->sr_sx);
/*
* NEWBUS LOCK NOTE: We should check if any parent SX locks
* are locked before locking Giant. Else the lock can be
* locked multiple times.
*/
mtx_lock(&Giant);
}
/* The following function unlocks enumerating the given USB device. */
void
usbd_enum_unlock(struct usb_device *udev)
{
mtx_unlock(&Giant);
sx_xunlock(&udev->enum_sx);
sx_xunlock(&udev->sr_sx);
}
/* The following function locks suspend and resume. */
void
usbd_sr_lock(struct usb_device *udev)
{
sx_xlock(&udev->sr_sx);
/*
* NEWBUS LOCK NOTE: We should check if any parent SX locks
* are locked before locking Giant. Else the lock can be
* locked multiple times.
*/
mtx_lock(&Giant);
}
/* The following function unlocks suspend and resume. */
void
usbd_sr_unlock(struct usb_device *udev)
{
mtx_unlock(&Giant);
sx_xunlock(&udev->sr_sx);
}
/*
* The following function checks the enumerating lock for the given
* USB device.
*/
uint8_t
usbd_enum_is_locked(struct usb_device *udev)
{
return (sx_xlocked(&udev->enum_sx));
}