freebsd-skq/sys/dev/usb/wlan/if_ural.c
Jung-uk Kim 0f817de766 Fix typos that broke duration calculations on protection frames. A similar
fix was done for ral(4) long ago and it must be copy-and-paste bugs.

Found by:	clang
2010-06-14 23:01:50 +00:00

2268 lines
56 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2005, 2006
* Damien Bergamini <damien.bergamini@free.fr>
*
* Copyright (c) 2006, 2008
* Hans Petter Selasky <hselasky@FreeBSD.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2500USB chipset driver
* http://www.ralinktech.com/
*/
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kdb.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#endif
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_ratectl.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR ural_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/wlan/if_uralreg.h>
#include <dev/usb/wlan/if_uralvar.h>
#ifdef USB_DEBUG
static int ural_debug = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0,
"Debug level");
#endif
#define URAL_RSSI(rssi) \
((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \
((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
/* various supported device vendors/products */
static const struct usb_device_id ural_devs[] = {
#define URAL_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
URAL_DEV(ASUS, WL167G),
URAL_DEV(ASUS, RT2570),
URAL_DEV(BELKIN, F5D7050),
URAL_DEV(BELKIN, F5D7051),
URAL_DEV(CISCOLINKSYS, HU200TS),
URAL_DEV(CISCOLINKSYS, WUSB54G),
URAL_DEV(CISCOLINKSYS, WUSB54GP),
URAL_DEV(CONCEPTRONIC2, C54RU),
URAL_DEV(DLINK, DWLG122),
URAL_DEV(GIGABYTE, GN54G),
URAL_DEV(GIGABYTE, GNWBKG),
URAL_DEV(GUILLEMOT, HWGUSB254),
URAL_DEV(MELCO, KG54),
URAL_DEV(MELCO, KG54AI),
URAL_DEV(MELCO, KG54YB),
URAL_DEV(MELCO, NINWIFI),
URAL_DEV(MSI, RT2570),
URAL_DEV(MSI, RT2570_2),
URAL_DEV(MSI, RT2570_3),
URAL_DEV(NOVATECH, NV902),
URAL_DEV(RALINK, RT2570),
URAL_DEV(RALINK, RT2570_2),
URAL_DEV(RALINK, RT2570_3),
URAL_DEV(SIEMENS2, WL54G),
URAL_DEV(SMC, 2862WG),
URAL_DEV(SPHAIRON, UB801R),
URAL_DEV(SURECOM, RT2570),
URAL_DEV(VTECH, RT2570),
URAL_DEV(ZINWELL, RT2570),
#undef URAL_DEV
};
static usb_callback_t ural_bulk_read_callback;
static usb_callback_t ural_bulk_write_callback;
static usb_error_t ural_do_request(struct ural_softc *sc,
struct usb_device_request *req, void *data);
static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
const char name[IFNAMSIZ], int unit, int opmode,
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void ural_vap_delete(struct ieee80211vap *);
static void ural_tx_free(struct ural_tx_data *, int);
static void ural_setup_tx_list(struct ural_softc *);
static void ural_unsetup_tx_list(struct ural_softc *);
static int ural_newstate(struct ieee80211vap *,
enum ieee80211_state, int);
static void ural_setup_tx_desc(struct ural_softc *,
struct ural_tx_desc *, uint32_t, int, int);
static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
struct ieee80211_node *);
static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
struct ieee80211_node *);
static int ural_tx_data(struct ural_softc *, struct mbuf *,
struct ieee80211_node *);
static void ural_start(struct ifnet *);
static int ural_ioctl(struct ifnet *, u_long, caddr_t);
static void ural_set_testmode(struct ural_softc *);
static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
int);
static uint16_t ural_read(struct ural_softc *, uint16_t);
static void ural_read_multi(struct ural_softc *, uint16_t, void *,
int);
static void ural_write(struct ural_softc *, uint16_t, uint16_t);
static void ural_write_multi(struct ural_softc *, uint16_t, void *,
int) __unused;
static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
static void ural_scan_start(struct ieee80211com *);
static void ural_scan_end(struct ieee80211com *);
static void ural_set_channel(struct ieee80211com *);
static void ural_set_chan(struct ural_softc *,
struct ieee80211_channel *);
static void ural_disable_rf_tune(struct ural_softc *);
static void ural_enable_tsf_sync(struct ural_softc *);
static void ural_enable_tsf(struct ural_softc *);
static void ural_update_slot(struct ifnet *);
static void ural_set_txpreamble(struct ural_softc *);
static void ural_set_basicrates(struct ural_softc *,
const struct ieee80211_channel *);
static void ural_set_bssid(struct ural_softc *, const uint8_t *);
static void ural_set_macaddr(struct ural_softc *, uint8_t *);
static void ural_update_promisc(struct ifnet *);
static void ural_setpromisc(struct ural_softc *);
static const char *ural_get_rf(int);
static void ural_read_eeprom(struct ural_softc *);
static int ural_bbp_init(struct ural_softc *);
static void ural_set_txantenna(struct ural_softc *, int);
static void ural_set_rxantenna(struct ural_softc *, int);
static void ural_init_locked(struct ural_softc *);
static void ural_init(void *);
static void ural_stop(struct ural_softc *);
static int ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void ural_ratectl_start(struct ural_softc *,
struct ieee80211_node *);
static void ural_ratectl_timeout(void *);
static void ural_ratectl_task(void *, int);
static int ural_pause(struct ural_softc *sc, int timeout);
/*
* Default values for MAC registers; values taken from the reference driver.
*/
static const struct {
uint16_t reg;
uint16_t val;
} ural_def_mac[] = {
{ RAL_TXRX_CSR5, 0x8c8d },
{ RAL_TXRX_CSR6, 0x8b8a },
{ RAL_TXRX_CSR7, 0x8687 },
{ RAL_TXRX_CSR8, 0x0085 },
{ RAL_MAC_CSR13, 0x1111 },
{ RAL_MAC_CSR14, 0x1e11 },
{ RAL_TXRX_CSR21, 0xe78f },
{ RAL_MAC_CSR9, 0xff1d },
{ RAL_MAC_CSR11, 0x0002 },
{ RAL_MAC_CSR22, 0x0053 },
{ RAL_MAC_CSR15, 0x0000 },
{ RAL_MAC_CSR8, RAL_FRAME_SIZE },
{ RAL_TXRX_CSR19, 0x0000 },
{ RAL_TXRX_CSR18, 0x005a },
{ RAL_PHY_CSR2, 0x0000 },
{ RAL_TXRX_CSR0, 0x1ec0 },
{ RAL_PHY_CSR4, 0x000f }
};
/*
* Default values for BBP registers; values taken from the reference driver.
*/
static const struct {
uint8_t reg;
uint8_t val;
} ural_def_bbp[] = {
{ 3, 0x02 },
{ 4, 0x19 },
{ 14, 0x1c },
{ 15, 0x30 },
{ 16, 0xac },
{ 17, 0x48 },
{ 18, 0x18 },
{ 19, 0xff },
{ 20, 0x1e },
{ 21, 0x08 },
{ 22, 0x08 },
{ 23, 0x08 },
{ 24, 0x80 },
{ 25, 0x50 },
{ 26, 0x08 },
{ 27, 0x23 },
{ 30, 0x10 },
{ 31, 0x2b },
{ 32, 0xb9 },
{ 34, 0x12 },
{ 35, 0x50 },
{ 39, 0xc4 },
{ 40, 0x02 },
{ 41, 0x60 },
{ 53, 0x10 },
{ 54, 0x18 },
{ 56, 0x08 },
{ 57, 0x10 },
{ 58, 0x08 },
{ 61, 0x60 },
{ 62, 0x10 },
{ 75, 0xff }
};
/*
* Default values for RF register R2 indexed by channel numbers.
*/
static const uint32_t ural_rf2522_r2[] = {
0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
};
static const uint32_t ural_rf2523_r2[] = {
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
};
static const uint32_t ural_rf2524_r2[] = {
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
};
static const uint32_t ural_rf2525_r2[] = {
0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
};
static const uint32_t ural_rf2525_hi_r2[] = {
0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
};
static const uint32_t ural_rf2525e_r2[] = {
0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
};
static const uint32_t ural_rf2526_hi_r2[] = {
0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
};
static const uint32_t ural_rf2526_r2[] = {
0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
};
/*
* For dual-band RF, RF registers R1 and R4 also depend on channel number;
* values taken from the reference driver.
*/
static const struct {
uint8_t chan;
uint32_t r1;
uint32_t r2;
uint32_t r4;
} ural_rf5222[] = {
{ 1, 0x08808, 0x0044d, 0x00282 },
{ 2, 0x08808, 0x0044e, 0x00282 },
{ 3, 0x08808, 0x0044f, 0x00282 },
{ 4, 0x08808, 0x00460, 0x00282 },
{ 5, 0x08808, 0x00461, 0x00282 },
{ 6, 0x08808, 0x00462, 0x00282 },
{ 7, 0x08808, 0x00463, 0x00282 },
{ 8, 0x08808, 0x00464, 0x00282 },
{ 9, 0x08808, 0x00465, 0x00282 },
{ 10, 0x08808, 0x00466, 0x00282 },
{ 11, 0x08808, 0x00467, 0x00282 },
{ 12, 0x08808, 0x00468, 0x00282 },
{ 13, 0x08808, 0x00469, 0x00282 },
{ 14, 0x08808, 0x0046b, 0x00286 },
{ 36, 0x08804, 0x06225, 0x00287 },
{ 40, 0x08804, 0x06226, 0x00287 },
{ 44, 0x08804, 0x06227, 0x00287 },
{ 48, 0x08804, 0x06228, 0x00287 },
{ 52, 0x08804, 0x06229, 0x00287 },
{ 56, 0x08804, 0x0622a, 0x00287 },
{ 60, 0x08804, 0x0622b, 0x00287 },
{ 64, 0x08804, 0x0622c, 0x00287 },
{ 100, 0x08804, 0x02200, 0x00283 },
{ 104, 0x08804, 0x02201, 0x00283 },
{ 108, 0x08804, 0x02202, 0x00283 },
{ 112, 0x08804, 0x02203, 0x00283 },
{ 116, 0x08804, 0x02204, 0x00283 },
{ 120, 0x08804, 0x02205, 0x00283 },
{ 124, 0x08804, 0x02206, 0x00283 },
{ 128, 0x08804, 0x02207, 0x00283 },
{ 132, 0x08804, 0x02208, 0x00283 },
{ 136, 0x08804, 0x02209, 0x00283 },
{ 140, 0x08804, 0x0220a, 0x00283 },
{ 149, 0x08808, 0x02429, 0x00281 },
{ 153, 0x08808, 0x0242b, 0x00281 },
{ 157, 0x08808, 0x0242d, 0x00281 },
{ 161, 0x08808, 0x0242f, 0x00281 }
};
static const struct usb_config ural_config[URAL_N_TRANSFER] = {
[URAL_BULK_WR] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = ural_bulk_write_callback,
.timeout = 5000, /* ms */
},
[URAL_BULK_RD] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = ural_bulk_read_callback,
},
};
static device_probe_t ural_match;
static device_attach_t ural_attach;
static device_detach_t ural_detach;
static device_method_t ural_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ural_match),
DEVMETHOD(device_attach, ural_attach),
DEVMETHOD(device_detach, ural_detach),
{ 0, 0 }
};
static driver_t ural_driver = {
.name = "ural",
.methods = ural_methods,
.size = sizeof(struct ural_softc),
};
static devclass_t ural_devclass;
DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
MODULE_DEPEND(ural, usb, 1, 1, 1);
MODULE_DEPEND(ural, wlan, 1, 1, 1);
static int
ural_match(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != 0)
return (ENXIO);
if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
}
static int
ural_attach(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
struct ural_softc *sc = device_get_softc(self);
struct ifnet *ifp;
struct ieee80211com *ic;
uint8_t iface_index, bands;
int error;
device_set_usb_desc(self);
sc->sc_udev = uaa->device;
sc->sc_dev = self;
mtx_init(&sc->sc_mtx, device_get_nameunit(self),
MTX_NETWORK_LOCK, MTX_DEF);
iface_index = RAL_IFACE_INDEX;
error = usbd_transfer_setup(uaa->device,
&iface_index, sc->sc_xfer, ural_config,
URAL_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(self, "could not allocate USB transfers, "
"err=%s\n", usbd_errstr(error));
goto detach;
}
RAL_LOCK(sc);
/* retrieve RT2570 rev. no */
sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
/* retrieve MAC address and various other things from EEPROM */
ural_read_eeprom(sc);
RAL_UNLOCK(sc);
device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
sc->asic_rev, ural_get_rf(sc->rf_rev));
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
goto detach;
}
ic = ifp->if_l2com;
ifp->if_softc = sc;
if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = ural_init;
ifp->if_ioctl = ural_ioctl;
ifp->if_start = ural_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_IBSS /* IBSS mode supported */
| IEEE80211_C_MONITOR /* monitor mode supported */
| IEEE80211_C_HOSTAP /* HostAp mode supported */
| IEEE80211_C_TXPMGT /* tx power management */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_BGSCAN /* bg scanning supported */
| IEEE80211_C_WPA /* 802.11i */
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
if (sc->rf_rev == RAL_RF_5222)
setbit(&bands, IEEE80211_MODE_11A);
ieee80211_init_channels(ic, NULL, &bands);
ieee80211_ifattach(ic, sc->sc_bssid);
ic->ic_update_promisc = ural_update_promisc;
ic->ic_raw_xmit = ural_raw_xmit;
ic->ic_scan_start = ural_scan_start;
ic->ic_scan_end = ural_scan_end;
ic->ic_set_channel = ural_set_channel;
ic->ic_vap_create = ural_vap_create;
ic->ic_vap_delete = ural_vap_delete;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
RAL_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
RAL_RX_RADIOTAP_PRESENT);
if (bootverbose)
ieee80211_announce(ic);
return (0);
detach:
ural_detach(self);
return (ENXIO); /* failure */
}
static int
ural_detach(device_t self)
{
struct ural_softc *sc = device_get_softc(self);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic;
/* stop all USB transfers */
usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
/* free TX list, if any */
RAL_LOCK(sc);
ural_unsetup_tx_list(sc);
RAL_UNLOCK(sc);
if (ifp) {
ic = ifp->if_l2com;
ieee80211_ifdetach(ic);
if_free(ifp);
}
mtx_destroy(&sc->sc_mtx);
return (0);
}
static usb_error_t
ural_do_request(struct ural_softc *sc,
struct usb_device_request *req, void *data)
{
usb_error_t err;
int ntries = 10;
while (ntries--) {
err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
req, data, 0, NULL, 250 /* ms */);
if (err == 0)
break;
DPRINTFN(1, "Control request failed, %s (retrying)\n",
usbd_errstr(err));
if (ural_pause(sc, hz / 100))
break;
}
return (err);
}
static struct ieee80211vap *
ural_vap_create(struct ieee80211com *ic,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ural_softc *sc = ic->ic_ifp->if_softc;
struct ural_vap *uvp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (uvp == NULL)
return NULL;
vap = &uvp->vap;
/* enable s/w bmiss handling for sta mode */
ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
/* override state transition machine */
uvp->newstate = vap->iv_newstate;
vap->iv_newstate = ural_newstate;
usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
ieee80211_ratectl_init(vap);
ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
ic->ic_opmode = opmode;
return vap;
}
static void
ural_vap_delete(struct ieee80211vap *vap)
{
struct ural_vap *uvp = URAL_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
usb_callout_drain(&uvp->ratectl_ch);
ieee80211_draintask(ic, &uvp->ratectl_task);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(uvp, M_80211_VAP);
}
static void
ural_tx_free(struct ural_tx_data *data, int txerr)
{
struct ural_softc *sc = data->sc;
if (data->m != NULL) {
if (data->m->m_flags & M_TXCB)
ieee80211_process_callback(data->ni, data->m,
txerr ? ETIMEDOUT : 0);
m_freem(data->m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
}
STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
sc->tx_nfree++;
}
static void
ural_setup_tx_list(struct ural_softc *sc)
{
struct ural_tx_data *data;
int i;
sc->tx_nfree = 0;
STAILQ_INIT(&sc->tx_q);
STAILQ_INIT(&sc->tx_free);
for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
data->sc = sc;
STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
sc->tx_nfree++;
}
}
static void
ural_unsetup_tx_list(struct ural_softc *sc)
{
struct ural_tx_data *data;
int i;
/* make sure any subsequent use of the queues will fail */
sc->tx_nfree = 0;
STAILQ_INIT(&sc->tx_q);
STAILQ_INIT(&sc->tx_free);
/* free up all node references and mbufs */
for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
}
static int
ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct ural_vap *uvp = URAL_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct ural_softc *sc = ic->ic_ifp->if_softc;
const struct ieee80211_txparam *tp;
struct ieee80211_node *ni;
struct mbuf *m;
DPRINTF("%s -> %s\n",
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
RAL_LOCK(sc);
usb_callout_stop(&uvp->ratectl_ch);
switch (nstate) {
case IEEE80211_S_INIT:
if (vap->iv_state == IEEE80211_S_RUN) {
/* abort TSF synchronization */
ural_write(sc, RAL_TXRX_CSR19, 0);
/* force tx led to stop blinking */
ural_write(sc, RAL_MAC_CSR20, 0);
}
break;
case IEEE80211_S_RUN:
ni = vap->iv_bss;
if (vap->iv_opmode != IEEE80211_M_MONITOR) {
ural_update_slot(ic->ic_ifp);
ural_set_txpreamble(sc);
ural_set_basicrates(sc, ic->ic_bsschan);
IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
ural_set_bssid(sc, sc->sc_bssid);
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_IBSS) {
m = ieee80211_beacon_alloc(ni, &uvp->bo);
if (m == NULL) {
device_printf(sc->sc_dev,
"could not allocate beacon\n");
RAL_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (-1);
}
ieee80211_ref_node(ni);
if (ural_tx_bcn(sc, m, ni) != 0) {
device_printf(sc->sc_dev,
"could not send beacon\n");
RAL_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (-1);
}
}
/* make tx led blink on tx (controlled by ASIC) */
ural_write(sc, RAL_MAC_CSR20, 1);
if (vap->iv_opmode != IEEE80211_M_MONITOR)
ural_enable_tsf_sync(sc);
else
ural_enable_tsf(sc);
/* enable automatic rate adaptation */
/* XXX should use ic_bsschan but not valid until after newstate call below */
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
ural_ratectl_start(sc, ni);
break;
default:
break;
}
RAL_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (uvp->newstate(vap, nstate, arg));
}
static void
ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct ural_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211vap *vap;
struct ural_tx_data *data;
struct mbuf *m;
struct usb_page_cache *pc;
int len;
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(11, "transfer complete, %d bytes\n", len);
/* free resources */
data = usbd_xfer_get_priv(xfer);
ural_tx_free(data, 0);
usbd_xfer_set_priv(xfer, NULL);
ifp->if_opackets++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&sc->tx_q);
if (data) {
STAILQ_REMOVE_HEAD(&sc->tx_q, next);
m = data->m;
if (m->m_pkthdr.len > (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
DPRINTFN(0, "data overflow, %u bytes\n",
m->m_pkthdr.len);
m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
}
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
m->m_pkthdr.len);
vap = data->ni->ni_vap;
if (ieee80211_radiotap_active_vap(vap)) {
struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = data->rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(vap, m);
}
/* xfer length needs to be a multiple of two! */
len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
if ((len % 64) == 0)
len += 2;
DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
m->m_pkthdr.len, len);
usbd_xfer_set_frame_len(xfer, 0, len);
usbd_xfer_set_priv(xfer, data);
usbd_transfer_submit(xfer);
}
RAL_UNLOCK(sc);
ural_start(ifp);
RAL_LOCK(sc);
break;
default: /* Error */
DPRINTFN(11, "transfer error, %s\n",
usbd_errstr(error));
ifp->if_oerrors++;
data = usbd_xfer_get_priv(xfer);
if (data != NULL) {
ural_tx_free(data, error);
usbd_xfer_set_priv(xfer, NULL);
}
if (error == USB_ERR_STALLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
if (error == USB_ERR_TIMEOUT)
device_printf(sc->sc_dev, "device timeout\n");
break;
}
}
static void
ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct ural_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_node *ni;
struct mbuf *m = NULL;
struct usb_page_cache *pc;
uint32_t flags;
int8_t rssi = 0, nf = 0;
int len;
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(15, "rx done, actlen=%d\n", len);
if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
DPRINTF("%s: xfer too short %d\n",
device_get_nameunit(sc->sc_dev), len);
ifp->if_ierrors++;
goto tr_setup;
}
len -= RAL_RX_DESC_SIZE;
/* rx descriptor is located at the end */
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
nf = RAL_NOISE_FLOOR;
flags = le32toh(sc->sc_rx_desc.flags);
if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
/*
* This should not happen since we did not
* request to receive those frames when we
* filled RAL_TXRX_CSR2:
*/
DPRINTFN(5, "PHY or CRC error\n");
ifp->if_ierrors++;
goto tr_setup;
}
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
DPRINTF("could not allocate mbuf\n");
ifp->if_ierrors++;
goto tr_setup;
}
usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
if (ieee80211_radiotap_active(ic)) {
struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
/* XXX set once */
tap->wr_flags = 0;
tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
(flags & RAL_RX_OFDM) ?
IEEE80211_T_OFDM : IEEE80211_T_CCK);
tap->wr_antenna = sc->rx_ant;
tap->wr_antsignal = nf + rssi;
tap->wr_antnoise = nf;
}
/* Strip trailing 802.11 MAC FCS. */
m_adj(m, -IEEE80211_CRC_LEN);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
/*
* At the end of a USB callback it is always safe to unlock
* the private mutex of a device! That is why we do the
* "ieee80211_input" here, and not some lines up!
*/
RAL_UNLOCK(sc);
if (m) {
ni = ieee80211_find_rxnode(ic,
mtod(m, struct ieee80211_frame_min *));
if (ni != NULL) {
(void) ieee80211_input(ni, m, rssi, nf);
ieee80211_free_node(ni);
} else
(void) ieee80211_input_all(ic, m, rssi, nf);
}
if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
!IFQ_IS_EMPTY(&ifp->if_snd))
ural_start(ifp);
RAL_LOCK(sc);
return;
default: /* Error */
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
return;
}
}
static uint8_t
ural_plcp_signal(int rate)
{
switch (rate) {
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* CCK rates (NB: not IEEE std, device-specific) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
}
return 0xff; /* XXX unsupported/unknown rate */
}
static void
ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
uint32_t flags, int len, int rate)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint16_t plcp_length;
int remainder;
desc->flags = htole32(flags);
desc->flags |= htole32(RAL_TX_NEWSEQ);
desc->flags |= htole32(len << 16);
desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
/* setup PLCP fields */
desc->plcp_signal = ural_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
desc->flags |= htole32(RAL_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RAL_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
desc->iv = 0;
desc->eiv = 0;
}
#define RAL_TX_TIMEOUT 5000
static int
ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = sc->sc_ifp;
const struct ieee80211_txparam *tp;
struct ural_tx_data *data;
if (sc->tx_nfree == 0) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
m_freem(m0);
ieee80211_free_node(ni);
return EIO;
}
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
data->m = m0;
data->ni = ni;
data->rate = tp->mgmtrate;
ural_setup_tx_desc(sc, &data->desc,
RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
tp->mgmtrate);
DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
m0->m_pkthdr.len, tp->mgmtrate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
return (0);
}
static int
ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_txparam *tp;
struct ural_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint32_t flags;
uint16_t dur;
RAL_LOCK_ASSERT(sc, MA_OWNED);
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
wh = mtod(m0, struct ieee80211_frame *);
}
data->m = m0;
data->ni = ni;
data->rate = tp->mgmtrate;
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RAL_TX_ACK;
dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
ic->ic_flags & IEEE80211_F_SHPREAMBLE);
*(uint16_t *)wh->i_dur = htole16(dur);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT &&
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= RAL_TX_TIMESTAMP;
}
ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
m0->m_pkthdr.len, tp->mgmtrate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
return 0;
}
static int
ural_sendprot(struct ural_softc *sc,
const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
{
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_frame *wh;
struct ural_tx_data *data;
struct mbuf *mprot;
int protrate, ackrate, pktlen, flags, isshort;
uint16_t dur;
KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
("protection %d", prot));
wh = mtod(m, const struct ieee80211_frame *);
pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
+ ieee80211_ack_duration(ic->ic_rt, rate, isshort);
flags = RAL_TX_RETRY(7);
if (prot == IEEE80211_PROT_RTSCTS) {
/* NB: CTS is the same size as an ACK */
dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
flags |= RAL_TX_ACK;
mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
} else {
mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
}
if (mprot == NULL) {
/* XXX stat + msg */
return ENOBUFS;
}
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
data->m = mprot;
data->ni = ieee80211_ref_node(ni);
data->rate = protrate;
ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
return 0;
}
static int
ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ural_tx_data *data;
uint32_t flags;
int error;
int rate;
RAL_LOCK_ASSERT(sc, MA_OWNED);
KASSERT(params != NULL, ("no raw xmit params"));
rate = params->ibp_rate0;
if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
m_freem(m0);
return EINVAL;
}
flags = 0;
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
flags |= RAL_TX_ACK;
if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
error = ural_sendprot(sc, m0, ni,
params->ibp_flags & IEEE80211_BPF_RTS ?
IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
rate);
if (error || sc->tx_nfree == 0) {
m_freem(m0);
return ENOBUFS;
}
flags |= RAL_TX_IFS_SIFS;
}
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
data->m = m0;
data->ni = ni;
data->rate = rate;
/* XXX need to setup descriptor ourself */
ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
m0->m_pkthdr.len, rate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
return 0;
}
static int
ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ural_tx_data *data;
struct ieee80211_frame *wh;
const struct ieee80211_txparam *tp;
struct ieee80211_key *k;
uint32_t flags = 0;
uint16_t dur;
int error, rate;
RAL_LOCK_ASSERT(sc, MA_OWNED);
wh = mtod(m0, struct ieee80211_frame *);
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
rate = tp->mcastrate;
else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
rate = tp->ucastrate;
else
rate = ni->ni_txrate;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
int prot = IEEE80211_PROT_NONE;
if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
prot = IEEE80211_PROT_RTSCTS;
else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
prot = ic->ic_protmode;
if (prot != IEEE80211_PROT_NONE) {
error = ural_sendprot(sc, m0, ni, prot, rate);
if (error || sc->tx_nfree == 0) {
m_freem(m0);
return ENOBUFS;
}
flags |= RAL_TX_IFS_SIFS;
}
}
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
data->m = m0;
data->ni = ni;
data->rate = rate;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RAL_TX_ACK;
flags |= RAL_TX_RETRY(7);
dur = ieee80211_ack_duration(ic->ic_rt, rate,
ic->ic_flags & IEEE80211_F_SHPREAMBLE);
*(uint16_t *)wh->i_dur = htole16(dur);
}
ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
DPRINTFN(10, "sending data frame len=%u rate=%u\n",
m0->m_pkthdr.len, rate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
return 0;
}
static void
ural_start(struct ifnet *ifp)
{
struct ural_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct mbuf *m;
RAL_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
RAL_UNLOCK(sc);
return;
}
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (sc->tx_nfree < RAL_TX_MINFREE) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
if (ural_tx_data(sc, m, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
RAL_UNLOCK(sc);
}
static int
ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ural_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
RAL_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
ural_init_locked(sc);
startall = 1;
} else
ural_setpromisc(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ural_stop(sc);
}
RAL_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return error;
}
static void
ural_set_testmode(struct ural_softc *sc)
{
struct usb_device_request req;
usb_error_t error;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RAL_VENDOR_REQUEST;
USETW(req.wValue, 4);
USETW(req.wIndex, 1);
USETW(req.wLength, 0);
error = ural_do_request(sc, &req, NULL);
if (error != 0) {
device_printf(sc->sc_dev, "could not set test mode: %s\n",
usbd_errstr(error));
}
}
static void
ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
{
struct usb_device_request req;
usb_error_t error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RAL_READ_EEPROM;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
error = ural_do_request(sc, &req, buf);
if (error != 0) {
device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
usbd_errstr(error));
}
}
static uint16_t
ural_read(struct ural_softc *sc, uint16_t reg)
{
struct usb_device_request req;
usb_error_t error;
uint16_t val;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RAL_READ_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, sizeof (uint16_t));
error = ural_do_request(sc, &req, &val);
if (error != 0) {
device_printf(sc->sc_dev, "could not read MAC register: %s\n",
usbd_errstr(error));
return 0;
}
return le16toh(val);
}
static void
ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
{
struct usb_device_request req;
usb_error_t error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RAL_READ_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
error = ural_do_request(sc, &req, buf);
if (error != 0) {
device_printf(sc->sc_dev, "could not read MAC register: %s\n",
usbd_errstr(error));
}
}
static void
ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
{
struct usb_device_request req;
usb_error_t error;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RAL_WRITE_MAC;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
error = ural_do_request(sc, &req, NULL);
if (error != 0) {
device_printf(sc->sc_dev, "could not write MAC register: %s\n",
usbd_errstr(error));
}
}
static void
ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
{
struct usb_device_request req;
usb_error_t error;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RAL_WRITE_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
error = ural_do_request(sc, &req, buf);
if (error != 0) {
device_printf(sc->sc_dev, "could not write MAC register: %s\n",
usbd_errstr(error));
}
}
static void
ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
{
uint16_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
break;
if (ural_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to BBP\n");
return;
}
tmp = reg << 8 | val;
ural_write(sc, RAL_PHY_CSR7, tmp);
}
static uint8_t
ural_bbp_read(struct ural_softc *sc, uint8_t reg)
{
uint16_t val;
int ntries;
val = RAL_BBP_WRITE | reg << 8;
ural_write(sc, RAL_PHY_CSR7, val);
for (ntries = 0; ntries < 100; ntries++) {
if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
break;
if (ural_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not read BBP\n");
return 0;
}
return ural_read(sc, RAL_PHY_CSR7) & 0xff;
}
static void
ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
break;
if (ural_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to RF\n");
return;
}
tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
}
static void
ural_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ural_softc *sc = ifp->if_softc;
RAL_LOCK(sc);
ural_write(sc, RAL_TXRX_CSR19, 0);
ural_set_bssid(sc, ifp->if_broadcastaddr);
RAL_UNLOCK(sc);
}
static void
ural_scan_end(struct ieee80211com *ic)
{
struct ural_softc *sc = ic->ic_ifp->if_softc;
RAL_LOCK(sc);
ural_enable_tsf_sync(sc);
ural_set_bssid(sc, sc->sc_bssid);
RAL_UNLOCK(sc);
}
static void
ural_set_channel(struct ieee80211com *ic)
{
struct ural_softc *sc = ic->ic_ifp->if_softc;
RAL_LOCK(sc);
ural_set_chan(sc, ic->ic_curchan);
RAL_UNLOCK(sc);
}
static void
ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint8_t power, tmp;
int i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
if (IEEE80211_IS_CHAN_2GHZ(c))
power = min(sc->txpow[chan - 1], 31);
else
power = 31;
/* adjust txpower using ifconfig settings */
power -= (100 - ic->ic_txpowlimit) / 8;
DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
switch (sc->rf_rev) {
case RAL_RF_2522:
ural_rf_write(sc, RAL_RF1, 0x00814);
ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
break;
case RAL_RF_2523:
ural_rf_write(sc, RAL_RF1, 0x08804);
ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2524:
ural_rf_write(sc, RAL_RF1, 0x0c808);
ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2525:
ural_rf_write(sc, RAL_RF1, 0x08808);
ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
ural_rf_write(sc, RAL_RF1, 0x08808);
ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2525E:
ural_rf_write(sc, RAL_RF1, 0x08808);
ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
break;
case RAL_RF_2526:
ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
ural_rf_write(sc, RAL_RF1, 0x08804);
ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
break;
/* dual-band RF */
case RAL_RF_5222:
for (i = 0; ural_rf5222[i].chan != chan; i++);
ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
break;
}
if (ic->ic_opmode != IEEE80211_M_MONITOR &&
(ic->ic_flags & IEEE80211_F_SCAN) == 0) {
/* set Japan filter bit for channel 14 */
tmp = ural_bbp_read(sc, 70);
tmp &= ~RAL_JAPAN_FILTER;
if (chan == 14)
tmp |= RAL_JAPAN_FILTER;
ural_bbp_write(sc, 70, tmp);
/* clear CRC errors */
ural_read(sc, RAL_STA_CSR0);
ural_pause(sc, hz / 100);
ural_disable_rf_tune(sc);
}
/* XXX doesn't belong here */
/* update basic rate set */
ural_set_basicrates(sc, c);
/* give the hardware some time to do the switchover */
ural_pause(sc, hz / 100);
}
/*
* Disable RF auto-tuning.
*/
static void
ural_disable_rf_tune(struct ural_softc *sc)
{
uint32_t tmp;
if (sc->rf_rev != RAL_RF_2523) {
tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
ural_rf_write(sc, RAL_RF1, tmp);
}
tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
ural_rf_write(sc, RAL_RF3, tmp);
DPRINTFN(2, "disabling RF autotune\n");
}
/*
* Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
* synchronization.
*/
static void
ural_enable_tsf_sync(struct ural_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint16_t logcwmin, preload, tmp;
/* first, disable TSF synchronization */
ural_write(sc, RAL_TXRX_CSR19, 0);
tmp = (16 * vap->iv_bss->ni_intval) << 4;
ural_write(sc, RAL_TXRX_CSR18, tmp);
logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
tmp = logcwmin << 12 | preload;
ural_write(sc, RAL_TXRX_CSR20, tmp);
/* finally, enable TSF synchronization */
tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RAL_ENABLE_TSF_SYNC(1);
else
tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
ural_write(sc, RAL_TXRX_CSR19, tmp);
DPRINTF("enabling TSF synchronization\n");
}
static void
ural_enable_tsf(struct ural_softc *sc)
{
/* first, disable TSF synchronization */
ural_write(sc, RAL_TXRX_CSR19, 0);
ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
}
#define RAL_RXTX_TURNAROUND 5 /* us */
static void
ural_update_slot(struct ifnet *ifp)
{
struct ural_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
uint16_t slottime, sifs, eifs;
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
/*
* These settings may sound a bit inconsistent but this is what the
* reference driver does.
*/
if (ic->ic_curmode == IEEE80211_MODE_11B) {
sifs = 16 - RAL_RXTX_TURNAROUND;
eifs = 364;
} else {
sifs = 10 - RAL_RXTX_TURNAROUND;
eifs = 64;
}
ural_write(sc, RAL_MAC_CSR10, slottime);
ural_write(sc, RAL_MAC_CSR11, sifs);
ural_write(sc, RAL_MAC_CSR12, eifs);
}
static void
ural_set_txpreamble(struct ural_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint16_t tmp;
tmp = ural_read(sc, RAL_TXRX_CSR10);
tmp &= ~RAL_SHORT_PREAMBLE;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RAL_SHORT_PREAMBLE;
ural_write(sc, RAL_TXRX_CSR10, tmp);
}
static void
ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
{
/* XXX wrong, take from rate set */
/* update basic rate set */
if (IEEE80211_IS_CHAN_5GHZ(c)) {
/* 11a basic rates: 6, 12, 24Mbps */
ural_write(sc, RAL_TXRX_CSR11, 0x150);
} else if (IEEE80211_IS_CHAN_ANYG(c)) {
/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
ural_write(sc, RAL_TXRX_CSR11, 0x15f);
} else {
/* 11b basic rates: 1, 2Mbps */
ural_write(sc, RAL_TXRX_CSR11, 0x3);
}
}
static void
ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
{
uint16_t tmp;
tmp = bssid[0] | bssid[1] << 8;
ural_write(sc, RAL_MAC_CSR5, tmp);
tmp = bssid[2] | bssid[3] << 8;
ural_write(sc, RAL_MAC_CSR6, tmp);
tmp = bssid[4] | bssid[5] << 8;
ural_write(sc, RAL_MAC_CSR7, tmp);
DPRINTF("setting BSSID to %6D\n", bssid, ":");
}
static void
ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
{
uint16_t tmp;
tmp = addr[0] | addr[1] << 8;
ural_write(sc, RAL_MAC_CSR2, tmp);
tmp = addr[2] | addr[3] << 8;
ural_write(sc, RAL_MAC_CSR3, tmp);
tmp = addr[4] | addr[5] << 8;
ural_write(sc, RAL_MAC_CSR4, tmp);
DPRINTF("setting MAC address to %6D\n", addr, ":");
}
static void
ural_setpromisc(struct ural_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
uint32_t tmp;
tmp = ural_read(sc, RAL_TXRX_CSR2);
tmp &= ~RAL_DROP_NOT_TO_ME;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RAL_DROP_NOT_TO_ME;
ural_write(sc, RAL_TXRX_CSR2, tmp);
DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
"entering" : "leaving");
}
static void
ural_update_promisc(struct ifnet *ifp)
{
struct ural_softc *sc = ifp->if_softc;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
RAL_LOCK(sc);
ural_setpromisc(sc);
RAL_UNLOCK(sc);
}
static const char *
ural_get_rf(int rev)
{
switch (rev) {
case RAL_RF_2522: return "RT2522";
case RAL_RF_2523: return "RT2523";
case RAL_RF_2524: return "RT2524";
case RAL_RF_2525: return "RT2525";
case RAL_RF_2525E: return "RT2525e";
case RAL_RF_2526: return "RT2526";
case RAL_RF_5222: return "RT5222";
default: return "unknown";
}
}
static void
ural_read_eeprom(struct ural_softc *sc)
{
uint16_t val;
ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
val = le16toh(val);
sc->rf_rev = (val >> 11) & 0x7;
sc->hw_radio = (val >> 10) & 0x1;
sc->led_mode = (val >> 6) & 0x7;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
/* read MAC address */
ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6);
/* read default values for BBP registers */
ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
/* read Tx power for all b/g channels */
ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
}
static int
ural_bbp_init(struct ural_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
break;
if (ural_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for BBP\n");
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < N(ural_def_bbp); i++)
ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
#if 0
/* initialize BBP registers to values stored in EEPROM */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0xff)
continue;
ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
#endif
return 0;
#undef N
}
static void
ural_set_txantenna(struct ural_softc *sc, int antenna)
{
uint16_t tmp;
uint8_t tx;
tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
if (antenna == 1)
tx |= RAL_BBP_ANTA;
else if (antenna == 2)
tx |= RAL_BBP_ANTB;
else
tx |= RAL_BBP_DIVERSITY;
/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
sc->rf_rev == RAL_RF_5222)
tx |= RAL_BBP_FLIPIQ;
ural_bbp_write(sc, RAL_BBP_TX, tx);
/* update values in PHY_CSR5 and PHY_CSR6 */
tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
}
static void
ural_set_rxantenna(struct ural_softc *sc, int antenna)
{
uint8_t rx;
rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
if (antenna == 1)
rx |= RAL_BBP_ANTA;
else if (antenna == 2)
rx |= RAL_BBP_ANTB;
else
rx |= RAL_BBP_DIVERSITY;
/* need to force no I/Q flip for RF 2525e and 2526 */
if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
rx &= ~RAL_BBP_FLIPIQ;
ural_bbp_write(sc, RAL_BBP_RX, rx);
}
static void
ural_init_locked(struct ural_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint16_t tmp;
int i, ntries;
RAL_LOCK_ASSERT(sc, MA_OWNED);
ural_set_testmode(sc);
ural_write(sc, 0x308, 0x00f0); /* XXX magic */
ural_stop(sc);
/* initialize MAC registers to default values */
for (i = 0; i < N(ural_def_mac); i++)
ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
/* wait for BBP and RF to wake up (this can take a long time!) */
for (ntries = 0; ntries < 100; ntries++) {
tmp = ural_read(sc, RAL_MAC_CSR17);
if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
(RAL_BBP_AWAKE | RAL_RF_AWAKE))
break;
if (ural_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"timeout waiting for BBP/RF to wakeup\n");
goto fail;
}
/* we're ready! */
ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
/* set basic rate set (will be updated later) */
ural_write(sc, RAL_TXRX_CSR11, 0x15f);
if (ural_bbp_init(sc) != 0)
goto fail;
ural_set_chan(sc, ic->ic_curchan);
/* clear statistic registers (STA_CSR0 to STA_CSR10) */
ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
ural_set_txantenna(sc, sc->tx_ant);
ural_set_rxantenna(sc, sc->rx_ant);
ural_set_macaddr(sc, IF_LLADDR(ifp));
/*
* Allocate Tx and Rx xfer queues.
*/
ural_setup_tx_list(sc);
/* kick Rx */
tmp = RAL_DROP_PHY | RAL_DROP_CRC;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RAL_DROP_TODS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RAL_DROP_NOT_TO_ME;
}
ural_write(sc, RAL_TXRX_CSR2, tmp);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
return;
fail: ural_stop(sc);
#undef N
}
static void
ural_init(void *priv)
{
struct ural_softc *sc = priv;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
RAL_LOCK(sc);
ural_init_locked(sc);
RAL_UNLOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ieee80211_start_all(ic); /* start all vap's */
}
static void
ural_stop(struct ural_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
RAL_LOCK_ASSERT(sc, MA_OWNED);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/*
* Drain all the transfers, if not already drained:
*/
RAL_UNLOCK(sc);
usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
RAL_LOCK(sc);
ural_unsetup_tx_list(sc);
/* disable Rx */
ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
/* reset ASIC and BBP (but won't reset MAC registers!) */
ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
/* wait a little */
ural_pause(sc, hz / 10);
ural_write(sc, RAL_MAC_CSR1, 0);
/* wait a little */
ural_pause(sc, hz / 10);
}
static int
ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ural_softc *sc = ifp->if_softc;
RAL_LOCK(sc);
/* prevent management frames from being sent if we're not ready */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
RAL_UNLOCK(sc);
m_freem(m);
ieee80211_free_node(ni);
return ENETDOWN;
}
if (sc->tx_nfree < RAL_TX_MINFREE) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
RAL_UNLOCK(sc);
m_freem(m);
ieee80211_free_node(ni);
return EIO;
}
ifp->if_opackets++;
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
if (ural_tx_mgt(sc, m, ni) != 0)
goto bad;
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
if (ural_tx_raw(sc, m, ni, params) != 0)
goto bad;
}
RAL_UNLOCK(sc);
return 0;
bad:
ifp->if_oerrors++;
RAL_UNLOCK(sc);
ieee80211_free_node(ni);
return EIO; /* XXX */
}
static void
ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ural_vap *uvp = URAL_VAP(vap);
/* clear statistic registers (STA_CSR0 to STA_CSR10) */
ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
ieee80211_ratectl_node_init(ni);
usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
}
static void
ural_ratectl_timeout(void *arg)
{
struct ural_vap *uvp = arg;
struct ieee80211vap *vap = &uvp->vap;
struct ieee80211com *ic = vap->iv_ic;
ieee80211_runtask(ic, &uvp->ratectl_task);
}
static void
ural_ratectl_task(void *arg, int pending)
{
struct ural_vap *uvp = arg;
struct ieee80211vap *vap = &uvp->vap;
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ural_softc *sc = ifp->if_softc;
struct ieee80211_node *ni = vap->iv_bss;
int ok, fail;
int sum, retrycnt;
RAL_LOCK(sc);
/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
ok = sc->sta[7] + /* TX ok w/o retry */
sc->sta[8]; /* TX ok w/ retry */
fail = sc->sta[9]; /* TX retry-fail count */
sum = ok+fail;
retrycnt = sc->sta[8] + fail;
ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
(void) ieee80211_ratectl_rate(ni, NULL, 0);
ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */
usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
RAL_UNLOCK(sc);
}
static int
ural_pause(struct ural_softc *sc, int timeout)
{
usb_pause_mtx(&sc->sc_mtx, timeout);
return (0);
}