freebsd-skq/contrib/compiler-rt/lib/lsan/lsan_allocator.cc
Dimitry Andric abb48e0e14 Update compiler-rt to trunk r230183. This has some of our patches
imported, so we have just a few small diffs against upstream left.
2015-02-22 22:53:51 +00:00

251 lines
7.2 KiB
C++

//=-- lsan_allocator.cc ---------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// See lsan_allocator.h for details.
//
//===----------------------------------------------------------------------===//
#include "lsan_allocator.h"
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "lsan_common.h"
extern "C" void *memset(void *ptr, int value, uptr num);
namespace __lsan {
struct ChunkMetadata {
bool allocated : 8; // Must be first.
ChunkTag tag : 2;
uptr requested_size : 54;
u32 stack_trace_id;
};
#if defined(__mips64)
static const uptr kMaxAllowedMallocSize = 4UL << 30;
static const uptr kRegionSizeLog = 20;
static const uptr kNumRegions = SANITIZER_MMAP_RANGE_SIZE >> kRegionSizeLog;
typedef TwoLevelByteMap<(kNumRegions >> 12), 1 << 12> ByteMap;
typedef CompactSizeClassMap SizeClassMap;
typedef SizeClassAllocator32<0, SANITIZER_MMAP_RANGE_SIZE,
sizeof(ChunkMetadata), SizeClassMap, kRegionSizeLog, ByteMap>
PrimaryAllocator;
#else
static const uptr kMaxAllowedMallocSize = 8UL << 30;
static const uptr kAllocatorSpace = 0x600000000000ULL;
static const uptr kAllocatorSize = 0x40000000000ULL; // 4T.
typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize,
sizeof(ChunkMetadata), DefaultSizeClassMap> PrimaryAllocator;
#endif
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
SecondaryAllocator> Allocator;
static Allocator allocator;
static THREADLOCAL AllocatorCache cache;
void InitializeAllocator() {
allocator.InitLinkerInitialized(common_flags()->allocator_may_return_null);
}
void AllocatorThreadFinish() {
allocator.SwallowCache(&cache);
}
static ChunkMetadata *Metadata(const void *p) {
return reinterpret_cast<ChunkMetadata *>(allocator.GetMetaData(p));
}
static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) {
if (!p) return;
ChunkMetadata *m = Metadata(p);
CHECK(m);
m->tag = DisabledInThisThread() ? kIgnored : kDirectlyLeaked;
m->stack_trace_id = StackDepotPut(stack);
m->requested_size = size;
atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 1, memory_order_relaxed);
}
static void RegisterDeallocation(void *p) {
if (!p) return;
ChunkMetadata *m = Metadata(p);
CHECK(m);
atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 0, memory_order_relaxed);
}
void *Allocate(const StackTrace &stack, uptr size, uptr alignment,
bool cleared) {
if (size == 0)
size = 1;
if (size > kMaxAllowedMallocSize) {
Report("WARNING: LeakSanitizer failed to allocate %zu bytes\n", size);
return 0;
}
void *p = allocator.Allocate(&cache, size, alignment, false);
// Do not rely on the allocator to clear the memory (it's slow).
if (cleared && allocator.FromPrimary(p))
memset(p, 0, size);
RegisterAllocation(stack, p, size);
if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(p, size);
return p;
}
void Deallocate(void *p) {
if (&__sanitizer_free_hook) __sanitizer_free_hook(p);
RegisterDeallocation(p);
allocator.Deallocate(&cache, p);
}
void *Reallocate(const StackTrace &stack, void *p, uptr new_size,
uptr alignment) {
RegisterDeallocation(p);
if (new_size > kMaxAllowedMallocSize) {
Report("WARNING: LeakSanitizer failed to allocate %zu bytes\n", new_size);
allocator.Deallocate(&cache, p);
return 0;
}
p = allocator.Reallocate(&cache, p, new_size, alignment);
RegisterAllocation(stack, p, new_size);
return p;
}
void GetAllocatorCacheRange(uptr *begin, uptr *end) {
*begin = (uptr)&cache;
*end = *begin + sizeof(cache);
}
uptr GetMallocUsableSize(const void *p) {
ChunkMetadata *m = Metadata(p);
if (!m) return 0;
return m->requested_size;
}
///// Interface to the common LSan module. /////
void LockAllocator() {
allocator.ForceLock();
}
void UnlockAllocator() {
allocator.ForceUnlock();
}
void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
*begin = (uptr)&allocator;
*end = *begin + sizeof(allocator);
}
uptr PointsIntoChunk(void* p) {
uptr addr = reinterpret_cast<uptr>(p);
uptr chunk = reinterpret_cast<uptr>(allocator.GetBlockBeginFastLocked(p));
if (!chunk) return 0;
// LargeMmapAllocator considers pointers to the meta-region of a chunk to be
// valid, but we don't want that.
if (addr < chunk) return 0;
ChunkMetadata *m = Metadata(reinterpret_cast<void *>(chunk));
CHECK(m);
if (!m->allocated)
return 0;
if (addr < chunk + m->requested_size)
return chunk;
if (IsSpecialCaseOfOperatorNew0(chunk, m->requested_size, addr))
return chunk;
return 0;
}
uptr GetUserBegin(uptr chunk) {
return chunk;
}
LsanMetadata::LsanMetadata(uptr chunk) {
metadata_ = Metadata(reinterpret_cast<void *>(chunk));
CHECK(metadata_);
}
bool LsanMetadata::allocated() const {
return reinterpret_cast<ChunkMetadata *>(metadata_)->allocated;
}
ChunkTag LsanMetadata::tag() const {
return reinterpret_cast<ChunkMetadata *>(metadata_)->tag;
}
void LsanMetadata::set_tag(ChunkTag value) {
reinterpret_cast<ChunkMetadata *>(metadata_)->tag = value;
}
uptr LsanMetadata::requested_size() const {
return reinterpret_cast<ChunkMetadata *>(metadata_)->requested_size;
}
u32 LsanMetadata::stack_trace_id() const {
return reinterpret_cast<ChunkMetadata *>(metadata_)->stack_trace_id;
}
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
allocator.ForEachChunk(callback, arg);
}
IgnoreObjectResult IgnoreObjectLocked(const void *p) {
void *chunk = allocator.GetBlockBegin(p);
if (!chunk || p < chunk) return kIgnoreObjectInvalid;
ChunkMetadata *m = Metadata(chunk);
CHECK(m);
if (m->allocated && (uptr)p < (uptr)chunk + m->requested_size) {
if (m->tag == kIgnored)
return kIgnoreObjectAlreadyIgnored;
m->tag = kIgnored;
return kIgnoreObjectSuccess;
} else {
return kIgnoreObjectInvalid;
}
}
} // namespace __lsan
using namespace __lsan;
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_free_bytes() { return 0; }
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_unmapped_bytes() { return 0; }
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
SANITIZER_INTERFACE_ATTRIBUTE
int __sanitizer_get_ownership(const void *p) { return Metadata(p) != 0; }
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_allocated_size(const void *p) {
return GetMallocUsableSize(p);
}
} // extern "C"