freebsd-skq/sys/geom/vinum/geom_vinum_raid5.c
le 9eb205c8da Add a function to clean up RAID5 packets and use it when I/O has
finished or when building the complete packet fails.
2004-06-23 23:52:55 +00:00

641 lines
17 KiB
C

/*-
* Copyright (c) 2004 Lukas Ertl
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/libkern.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/systm.h>
#include <geom/geom.h>
#include <geom/vinum/geom_vinum_var.h>
#include <geom/vinum/geom_vinum_raid5.h>
#include <geom/vinum/geom_vinum.h>
int gv_raid5_parity(struct gv_raid5_packet *);
int gv_stripe_active(struct gv_raid5_packet *, struct gv_plex *);
struct gv_raid5_bit *
gv_new_raid5_bit(void)
{
struct gv_raid5_bit *r;
r = g_malloc(sizeof(*r), M_NOWAIT | M_ZERO);
KASSERT(r != NULL, ("gv_new_raid5_bit: NULL r"));
return (r);
}
struct gv_raid5_packet *
gv_new_raid5_packet(void)
{
struct gv_raid5_packet *wp;
wp = g_malloc(sizeof(*wp), M_NOWAIT | M_ZERO);
KASSERT(wp != NULL, ("gv_new_raid5_packet: NULL wp"));
wp->state = SETUP;
wp->type = JUNK;
TAILQ_INIT(&wp->bits);
return (wp);
}
void
gv_free_raid5_packet(struct gv_raid5_packet *wp)
{
struct gv_raid5_bit *r, *r2;
/* Remove all the bits from this work packet. */
TAILQ_FOREACH_SAFE(r, &wp->bits, list, r2) {
TAILQ_REMOVE(&wp->bits, r, list);
if (r->malloc)
g_free(r->buf);
if (r->bio != NULL)
g_destroy_bio(r->bio);
g_free(r);
}
if (wp->bufmalloc == 1)
g_free(wp->buf);
g_free(wp);
}
/*
* Check if the stripe that the work packet wants is already being used by
* some other work packet.
*/
int
gv_stripe_active(struct gv_raid5_packet *wp, struct gv_plex *sc)
{
struct gv_raid5_packet *wpa;
TAILQ_FOREACH(wpa, &sc->worklist, list) {
if (wpa->lockbase == wp->lockbase) {
if (wpa->bio == wp->bio)
return (0);
return (1);
}
}
return (0);
}
/*
* The "worker" thread that runs through the worklist and fires off the
* "subrequests" needed to fulfill a RAID5 read or write request.
*/
void
gv_raid5_worker(void *arg)
{
struct bio *bp;
struct g_geom *gp;
struct gv_plex *p;
struct gv_raid5_packet *wp, *wpt;
struct gv_raid5_bit *rbp, *rbpt;
int error, restart;
gp = arg;
p = gp->softc;
mtx_lock(&p->worklist_mtx);
for (;;) {
restart = 0;
TAILQ_FOREACH_SAFE(wp, &p->worklist, list, wpt) {
/* This request packet is already being processed. */
if (wp->state == IO)
continue;
/* This request packet is ready for processing. */
if (wp->state == VALID) {
/* Couldn't get the lock, try again. */
if ((wp->lockbase != -1) &&
gv_stripe_active(wp, p))
continue;
wp->state = IO;
mtx_unlock(&p->worklist_mtx);
TAILQ_FOREACH_SAFE(rbp, &wp->bits, list, rbpt)
g_io_request(rbp->bio, rbp->consumer);
mtx_lock(&p->worklist_mtx);
continue;
}
if (wp->state == FINISH) {
bp = wp->bio;
bp->bio_completed += wp->length;
/*
* Deliver the original request if we have
* finished.
*/
if (bp->bio_completed == bp->bio_length) {
mtx_unlock(&p->worklist_mtx);
g_io_deliver(bp, 0);
mtx_lock(&p->worklist_mtx);
}
TAILQ_REMOVE(&p->worklist, wp, list);
gv_free_raid5_packet(wp);
restart++;
/*break;*/
}
}
if (!restart) {
/* Self-destruct. */
if (p->flags & GV_PLEX_THREAD_DIE)
break;
error = msleep(p, &p->worklist_mtx, PRIBIO, "-",
hz/100);
}
}
mtx_unlock(&p->worklist_mtx);
g_trace(G_T_TOPOLOGY, "gv_raid5_worker die");
/* Signal our plex that we are dead. */
p->flags |= GV_PLEX_THREAD_DEAD;
wakeup(p);
kthread_exit(0);
}
/* Final bio transaction to write out the parity data. */
int
gv_raid5_parity(struct gv_raid5_packet *wp)
{
struct bio *bp;
bp = g_new_bio();
if (bp == NULL)
return (ENOMEM);
wp->type = ISPARITY;
bp->bio_cmd = BIO_WRITE;
bp->bio_data = wp->buf;
bp->bio_offset = wp->offset;
bp->bio_length = wp->length;
bp->bio_done = gv_raid5_done;
bp->bio_caller1 = wp;
bp->bio_caller2 = NULL;
g_io_request(bp, wp->parity);
return (0);
}
/* We end up here after each subrequest. */
void
gv_raid5_done(struct bio *bp)
{
struct bio *obp;
struct g_geom *gp;
struct gv_plex *p;
struct gv_raid5_packet *wp;
struct gv_raid5_bit *rbp;
off_t i;
int error;
wp = bp->bio_caller1;
rbp = bp->bio_caller2;
obp = wp->bio;
gp = bp->bio_from->geom;
p = gp->softc;
/* One less active subrequest. */
wp->active--;
switch (obp->bio_cmd) {
case BIO_READ:
/* Degraded reads need to handle parity data. */
if (wp->type == DEGRADED) {
for (i = 0; i < wp->length; i++)
wp->buf[i] ^= bp->bio_data[i];
/* When we're finished copy back the data we want. */
if (wp->active == 0)
bcopy(wp->buf, wp->data, wp->length);
}
break;
case BIO_WRITE:
/* Handle the parity data, if needed. */
if ((wp->type != NOPARITY) && (wp->type != ISPARITY)) {
for (i = 0; i < wp->length; i++)
wp->buf[i] ^= bp->bio_data[i];
/* Write out the parity data we calculated. */
if (wp->active == 0) {
wp->active++;
error = gv_raid5_parity(wp);
}
}
break;
}
/* This request group is done. */
if (wp->active == 0)
wp->state = FINISH;
}
/* Build a request group to perform (part of) a RAID5 request. */
int
gv_build_raid5_req(struct gv_raid5_packet *wp, struct bio *bp, caddr_t addr,
long bcount, off_t boff)
{
struct g_geom *gp;
struct gv_plex *p;
struct gv_raid5_bit *rbp;
struct gv_sd *broken, *original, *parity, *s;
int i, psdno, sdno;
off_t len_left, real_off, stripeend, stripeoff, stripestart;
gp = bp->bio_to->geom;
p = gp->softc;
if (p == NULL || LIST_EMPTY(&p->subdisks))
return (ENXIO);
/* We are optimistic and assume that this request will be OK. */
wp->type = NORMAL;
original = parity = broken = NULL;
/* The number of the subdisk containing the parity stripe. */
psdno = p->sdcount - 1 - ( boff / (p->stripesize * (p->sdcount - 1))) %
p->sdcount;
KASSERT(psdno >= 0, ("gv_build_raid5_request: psdno < 0"));
/* Offset of the start address from the start of the stripe. */
stripeoff = boff % (p->stripesize * (p->sdcount - 1));
KASSERT(stripeoff >= 0, ("gv_build_raid5_request: stripeoff < 0"));
/* The number of the subdisk where the stripe resides. */
sdno = stripeoff / p->stripesize;
KASSERT(sdno >= 0, ("gv_build_raid5_request: sdno < 0"));
/* At or past parity subdisk. */
if (sdno >= psdno)
sdno++;
/* The offset of the stripe on this subdisk. */
stripestart = (boff - stripeoff) / (p->sdcount - 1);
KASSERT(stripestart >= 0, ("gv_build_raid5_request: stripestart < 0"));
stripeoff %= p->stripesize;
/* The offset of the request on this subdisk. */
real_off = stripestart + stripeoff;
stripeend = stripestart + p->stripesize;
len_left = stripeend - real_off;
KASSERT(len_left >= 0, ("gv_build_raid5_request: len_left < 0"));
/* Find the right subdisks. */
i = 0;
LIST_FOREACH(s, &p->subdisks, in_plex) {
if (i == sdno)
original = s;
if (i == psdno)
parity = s;
if (s->state != GV_SD_UP)
broken = s;
i++;
}
if ((original == NULL) || (parity == NULL))
return (ENXIO);
/* Our data stripe is missing. */
if (original->state != GV_SD_UP)
wp->type = DEGRADED;
/* Our parity stripe is missing. */
if (parity->state != GV_SD_UP) {
/* We cannot take another failure if we're already degraded. */
if (wp->type != NORMAL)
return (ENXIO);
else
wp->type = NOPARITY;
}
/*
* A combined write is necessary when the original data subdisk and the
* parity subdisk are both up, but one of the other subdisks isn't.
*/
if ((broken != NULL) && (broken != parity) && (broken != original))
wp->type = COMBINED;
wp->offset = real_off;
wp->length = (bcount <= len_left) ? bcount : len_left;
wp->data = addr;
wp->original = original->consumer;
wp->parity = parity->consumer;
wp->lockbase = stripestart;
KASSERT(wp->length >= 0, ("gv_build_raid5_request: wp->length < 0"));
switch (bp->bio_cmd) {
case BIO_READ:
/*
* For a degraded read we need to read in all stripes except
* the broken one plus the parity stripe and then recalculate
* the desired data.
*/
if (wp->type == DEGRADED) {
wp->buf = g_malloc(wp->length, M_NOWAIT | M_ZERO);
if (wp->buf == NULL)
return (ENOMEM);
wp->bufmalloc = 1;
LIST_FOREACH(s, &p->subdisks, in_plex) {
/* Skip the broken subdisk. */
if (s == broken)
continue;
rbp = gv_new_raid5_bit();
rbp->consumer = s->consumer;
rbp->bio = g_new_bio();
if (rbp->bio == NULL)
return (ENOMEM);
rbp->buf = g_malloc(wp->length,
M_NOWAIT | M_ZERO);
if (rbp->buf == NULL)
return (ENOMEM);
rbp->malloc = 1;
rbp->bio->bio_cmd = BIO_READ;
rbp->bio->bio_offset = wp->offset;
rbp->bio->bio_length = wp->length;
rbp->bio->bio_data = rbp->buf;
rbp->bio->bio_done = gv_raid5_done;
rbp->bio->bio_caller1 = wp;
rbp->bio->bio_caller2 = rbp;
TAILQ_INSERT_HEAD(&wp->bits, rbp, list);
wp->active++;
wp->rqcount++;
}
/* A normal read can be fulfilled with the original subdisk. */
} else {
rbp = gv_new_raid5_bit();
rbp->consumer = wp->original;
rbp->bio = g_new_bio();
if (rbp->bio == NULL)
return (ENOMEM);
rbp->bio->bio_cmd = BIO_READ;
rbp->bio->bio_offset = wp->offset;
rbp->bio->bio_length = wp->length;
rbp->buf = addr;
rbp->bio->bio_data = rbp->buf;
rbp->bio->bio_done = gv_raid5_done;
rbp->bio->bio_caller1 = wp;
rbp->bio->bio_caller2 = rbp;
TAILQ_INSERT_HEAD(&wp->bits, rbp, list);
wp->active++;
wp->rqcount++;
}
if (wp->type != COMBINED)
wp->lockbase = -1;
break;
case BIO_WRITE:
/*
* A degraded write means we cannot write to the original data
* subdisk. Thus we need to read in all valid stripes,
* recalculate the parity from the original data, and then
* write the parity stripe back out.
*/
if (wp->type == DEGRADED) {
wp->buf = g_malloc(wp->length, M_NOWAIT | M_ZERO);
if (wp->buf == NULL)
return (ENOMEM);
wp->bufmalloc = 1;
/* Copy the original data. */
bcopy(wp->data, wp->buf, wp->length);
LIST_FOREACH(s, &p->subdisks, in_plex) {
/* Skip the broken and the parity subdisk. */
if ((s == broken) ||
(s->consumer == wp->parity))
continue;
rbp = gv_new_raid5_bit();
rbp->consumer = s->consumer;
rbp->bio = g_new_bio();
if (rbp->bio == NULL)
return (ENOMEM);
rbp->buf = g_malloc(wp->length,
M_NOWAIT | M_ZERO);
if (rbp->buf == NULL)
return (ENOMEM);
rbp->malloc = 1;
rbp->bio->bio_cmd = BIO_READ;
rbp->bio->bio_data = rbp->buf;
rbp->bio->bio_offset = wp->offset;
rbp->bio->bio_length = wp->length;
rbp->bio->bio_done = gv_raid5_done;
rbp->bio->bio_caller1 = wp;
rbp->bio->bio_caller2 = rbp;
TAILQ_INSERT_HEAD(&wp->bits, rbp, list);
wp->active++;
wp->rqcount++;
}
/*
* When we don't have the parity stripe we just write out the
* data.
*/
} else if (wp->type == NOPARITY) {
rbp = gv_new_raid5_bit();
rbp->consumer = wp->original;
rbp->bio = g_new_bio();
if (rbp->bio == NULL)
return (ENOMEM);
rbp->bio->bio_cmd = BIO_WRITE;
rbp->bio->bio_offset = wp->offset;
rbp->bio->bio_length = wp->length;
rbp->bio->bio_data = addr;
rbp->bio->bio_done = gv_raid5_done;
rbp->bio->bio_caller1 = wp;
rbp->bio->bio_caller2 = rbp;
TAILQ_INSERT_HEAD(&wp->bits, rbp, list);
wp->active++;
wp->rqcount++;
/*
* A combined write means that our data subdisk and the parity
* subdisks are both up, but another subdisk isn't. We need to
* read all valid stripes including the parity to recalculate
* the data of the stripe that is missing. Then we write our
* original data, and together with the other data stripes
* recalculate the parity again.
*/
} else if (wp->type == COMBINED) {
wp->buf = g_malloc(wp->length, M_NOWAIT | M_ZERO);
if (wp->buf == NULL)
return (ENOMEM);
wp->bufmalloc = 1;
/* Get the data from all subdisks. */
LIST_FOREACH(s, &p->subdisks, in_plex) {
/* Skip the broken subdisk. */
if (s == broken)
continue;
rbp = gv_new_raid5_bit();
rbp->consumer = s->consumer;
rbp->bio = g_new_bio();
if (rbp->bio == NULL)
return (ENOMEM);
rbp->bio->bio_cmd = BIO_READ;
rbp->buf = g_malloc(wp->length,
M_NOWAIT | M_ZERO);
if (rbp->buf == NULL)
return (ENOMEM);
rbp->malloc = 1;
rbp->bio->bio_data = rbp->buf;
rbp->bio->bio_offset = wp->offset;
rbp->bio->bio_length = wp->length;
rbp->bio->bio_done = gv_raid5_done;
rbp->bio->bio_caller1 = wp;
rbp->bio->bio_caller2 = rbp;
TAILQ_INSERT_HEAD(&wp->bits, rbp, list);
wp->active++;
wp->rqcount++;
}
/* Write the original data. */
rbp = gv_new_raid5_bit();
rbp->consumer = wp->original;
rbp->buf = addr;
rbp->bio = g_new_bio();
if (rbp->bio == NULL)
return (ENOMEM);
rbp->bio->bio_cmd = BIO_WRITE;
rbp->bio->bio_data = rbp->buf;
rbp->bio->bio_offset = wp->offset;
rbp->bio->bio_length = wp->length;
rbp->bio->bio_done = gv_raid5_done;
rbp->bio->bio_caller1 = wp;
rbp->bio->bio_caller2 = rbp;
/*
* Insert at the tail, because we want to read the old
* data first.
*/
TAILQ_INSERT_TAIL(&wp->bits, rbp, list);
wp->active++;
wp->rqcount++;
/* Get the rest of the data again. */
LIST_FOREACH(s, &p->subdisks, in_plex) {
/*
* Skip the broken subdisk, the parity, and the
* one we just wrote.
*/
if ((s == broken) ||
(s->consumer == wp->parity) ||
(s->consumer == wp->original))
continue;
rbp = gv_new_raid5_bit();
rbp->consumer = s->consumer;
rbp->bio = g_new_bio();
if (rbp->bio == NULL)
return (ENOMEM);
rbp->bio->bio_cmd = BIO_READ;
rbp->buf = g_malloc(wp->length,
M_NOWAIT | M_ZERO);
if (rbp->buf == NULL)
return (ENOMEM);
rbp->malloc = 1;
rbp->bio->bio_data = rbp->buf;
rbp->bio->bio_offset = wp->offset;
rbp->bio->bio_length = wp->length;
rbp->bio->bio_done = gv_raid5_done;
rbp->bio->bio_caller1 = wp;
rbp->bio->bio_caller2 = rbp;
/*
* Again, insert at the tail to keep correct
* order.
*/
TAILQ_INSERT_TAIL(&wp->bits, rbp, list);
wp->active++;
wp->rqcount++;
}
/*
* A normal write request goes to the original subdisk, then we
* read in all other stripes, recalculate the parity and write
* out the parity again.
*/
} else {
wp->buf = g_malloc(wp->length, M_NOWAIT | M_ZERO);
if (wp->buf == NULL)
return (ENOMEM);
wp->bufmalloc = 1;
LIST_FOREACH(s, &p->subdisks, in_plex) {
/* Skip the parity stripe. */
if (s->consumer == wp->parity)
continue;
rbp = gv_new_raid5_bit();
rbp->consumer = s->consumer;
rbp->bio = g_new_bio();
if (rbp->bio == NULL)
return (ENOMEM);
/*
* The data for the original stripe is written,
* the others need to be read in for the parity
* calculation.
*/
if (s->consumer == wp->original) {
rbp->bio->bio_cmd = BIO_WRITE;
rbp->buf = addr;
} else {
rbp->bio->bio_cmd = BIO_READ;
rbp->buf = g_malloc(wp->length,
M_NOWAIT | M_ZERO);
if (rbp->buf == NULL)
return (ENOMEM);
rbp->malloc = 1;
}
rbp->bio->bio_data = rbp->buf;
rbp->bio->bio_offset = wp->offset;
rbp->bio->bio_length = wp->length;
rbp->bio->bio_done = gv_raid5_done;
rbp->bio->bio_caller1 = wp;
rbp->bio->bio_caller2 = rbp;
TAILQ_INSERT_HEAD(&wp->bits, rbp, list);
wp->active++;
wp->rqcount++;
}
}
break;
default:
return (EINVAL);
}
wp->state = VALID;
return (0);
}