freebsd-skq/sys/vm/vm_page.h
John Dyson 4f4d35edf0 This commit is meant to solve a couple of VM system problems or
performance issues.

	1) The pmap module has had too many inlines, and so the
	   object file is simply bigger than it needs to be.
	   Some common code is also merged into subroutines.
	2) Removal of some *evil* PHYS_TO_VM_PAGE macro calls.
	   Unfortunately, a few have needed to be added also.
	   The removal caused the need for more vm_page_lookups.
	   I added lookup hints to minimize the need for the
	   page table lookup operations.
	3) Removal of some bogus performance improvements, that
	   mostly made the code more complex (tracking individual
	   page table page updates unnecessarily).  Those improvements
	   actually hurt 386 processors perf (not that people who
	   worry about perf use 386 processors anymore :-)).
	4) Changed pv queue manipulations/structures to be TAILQ's.
	5) The pv queue code has had some performance problems since
	   day one.  Some significant scalability issues are resolved
	   by threading the pv entries from the pmap AND the physical
	   address instead of just the physical address.  This makes
	   certain pmap operations run much faster.  This does
	   not affect most micro-benchmarks, but should help loaded system
	   performance *significantly*.  DG helped and came up with most
	   of the solution for this one.
	6) Most if not all pmap bit operations follow the pattern:
		pmap_test_bit();
		pmap_clear_bit();
	   That made for twice the necessary pv list traversal.   The
	   pmap interface now supports only pmap_tc_bit type operations:
	   pmap_[test/clear]_modified, pmap_[test/clear]_referenced.
	   Additionally, the modified routine now takes a vm_page_t arg
	   instead of a phys address.  This eliminates a PHYS_TO_VM_PAGE
	   operation.
	7) Several rewrites of routines that contain redundant code to
	   use common routines, so that there is a greater likelihood of
	   keeping the cache footprint smaller.
1996-07-27 03:24:10 +00:00

335 lines
10 KiB
C

/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*
* $Id: vm_page.h,v 1.29 1996/06/26 05:39:25 dyson Exp $
*/
/*
* Resident memory system definitions.
*/
#ifndef _VM_PAGE_
#define _VM_PAGE_
#include <vm/pmap.h>
/*
* Management of resident (logical) pages.
*
* A small structure is kept for each resident
* page, indexed by page number. Each structure
* is an element of several lists:
*
* A hash table bucket used to quickly
* perform object/offset lookups
*
* A list of all pages for a given object,
* so they can be quickly deactivated at
* time of deallocation.
*
* An ordered list of pages due for pageout.
*
* In addition, the structure contains the object
* and offset to which this page belongs (for pageout),
* and sundry status bits.
*
* Fields in this structure are locked either by the lock on the
* object that the page belongs to (O) or by the lock on the page
* queues (P).
*/
TAILQ_HEAD(pglist, vm_page);
struct vm_page {
TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO queue or free list (P) */
TAILQ_ENTRY(vm_page) hashq; /* hash table links (O) */
TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */
vm_object_t object; /* which object am I in (O,P) */
vm_pindex_t pindex; /* offset into object (O,P) */
vm_offset_t phys_addr; /* physical address of page */
u_short queue:4, /* page queue index */
flags:12; /* see below */
u_short wire_count; /* wired down maps refs (P) */
short hold_count; /* page hold count */
u_char act_count; /* page usage count */
u_char busy; /* page busy count */
/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
/* so, on normal X86 kernels, they must be at least 8 bits wide */
u_char valid; /* map of valid DEV_BSIZE chunks */
u_char dirty; /* map of dirty DEV_BSIZE chunks */
};
#define PQ_NONE 0
#define PQ_FREE 1
#define PQ_ZERO 2
#define PQ_INACTIVE 3
#define PQ_ACTIVE 4
#define PQ_CACHE 5
/*
* These are the flags defined for vm_page.
*
* Note: PG_FILLED and PG_DIRTY are added for the filesystems.
*/
#define PG_BUSY 0x01 /* page is in transit (O) */
#define PG_WANTED 0x02 /* someone is waiting for page (O) */
#define PG_TABLED 0x04 /* page is in VP table (O) */
#define PG_FICTITIOUS 0x08 /* physical page doesn't exist (O) */
#define PG_WRITEABLE 0x10 /* page is mapped writeable */
#define PG_MAPPED 0x20 /* page is mapped */
#define PG_ZERO 0x40 /* page is zeroed */
#define PG_REFERENCED 0x80 /* page has been referenced */
#define PG_CLEANCHK 0x100 /* page has been checked for cleaning */
/*
* Misc constants.
*/
#define ACT_DECLINE 1
#define ACT_ADVANCE 3
#define ACT_INIT 5
#define ACT_MAX 32
#define PFCLUSTER_BEHIND 3
#define PFCLUSTER_AHEAD 3
#ifdef KERNEL
/*
* Each pageable resident page falls into one of four lists:
*
* free
* Available for allocation now.
*
* The following are all LRU sorted:
*
* cache
* Almost available for allocation. Still in an
* object, but clean and immediately freeable at
* non-interrupt times.
*
* inactive
* Low activity, candidates for reclamation.
* This is the list of pages that should be
* paged out next.
*
* active
* Pages that are "active" i.e. they have been
* recently referenced.
*
* zero
* Pages that are really free and have been pre-zeroed
*
*/
extern struct pglist vm_page_queue_free; /* memory free queue */
extern struct pglist vm_page_queue_zero; /* zeroed memory free queue */
extern struct pglist vm_page_queue_active; /* active memory queue */
extern struct pglist vm_page_queue_inactive; /* inactive memory queue */
extern struct pglist vm_page_queue_cache; /* cache memory queue */
extern int vm_page_zero_count;
extern vm_page_t vm_page_array; /* First resident page in table */
extern long first_page; /* first physical page number */
/* ... represented in vm_page_array */
extern long last_page; /* last physical page number */
/* ... represented in vm_page_array */
/* [INCLUSIVE] */
extern vm_offset_t first_phys_addr; /* physical address for first_page */
extern vm_offset_t last_phys_addr; /* physical address for last_page */
#define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
#define IS_VM_PHYSADDR(pa) \
((pa) >= first_phys_addr && (pa) <= last_phys_addr)
#define PHYS_TO_VM_PAGE(pa) \
(&vm_page_array[atop(pa) - first_page ])
/*
* Functions implemented as macros
*/
#define PAGE_ASSERT_WAIT(m, interruptible) { \
(m)->flags |= PG_WANTED; \
assert_wait((int) (m), (interruptible)); \
}
#define PAGE_WAKEUP(m) { \
(m)->flags &= ~PG_BUSY; \
if ((m)->flags & PG_WANTED) { \
(m)->flags &= ~PG_WANTED; \
(m)->flags |= PG_REFERENCED; \
wakeup((caddr_t) (m)); \
} \
}
#if PAGE_SIZE == 4096
#define VM_PAGE_BITS_ALL 0xff
#endif
#if PAGE_SIZE == 8192
#define VM_PAGE_BITS_ALL 0xffff
#endif
#define VM_ALLOC_NORMAL 0
#define VM_ALLOC_INTERRUPT 1
#define VM_ALLOC_SYSTEM 2
#define VM_ALLOC_ZERO 3
void vm_page_activate __P((vm_page_t));
vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
void vm_page_cache __P((register vm_page_t));
static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
void vm_page_deactivate __P((vm_page_t));
void vm_page_free __P((vm_page_t));
void vm_page_free_zero __P((vm_page_t));
void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
void vm_page_remove __P((vm_page_t));
void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
void vm_page_unwire __P((vm_page_t));
void vm_page_wire __P((vm_page_t));
void vm_page_unqueue __P((vm_page_t, int));
void vm_page_set_validclean __P((vm_page_t, int, int));
void vm_page_set_invalid __P((vm_page_t, int, int));
static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
int vm_page_is_valid __P((vm_page_t, int, int));
void vm_page_test_dirty __P((vm_page_t));
int vm_page_bits __P((int, int));
/*
* Keep page from being freed by the page daemon
* much of the same effect as wiring, except much lower
* overhead and should be used only for *very* temporary
* holding ("wiring").
*/
static __inline void
vm_page_hold(vm_page_t mem)
{
mem->hold_count++;
}
#ifdef DIAGNOSTIC
#include <sys/systm.h> /* make GCC shut up */
#endif
static __inline void
vm_page_unhold(vm_page_t mem)
{
#ifdef DIAGNOSTIC
if (--mem->hold_count < 0)
panic("vm_page_unhold: hold count < 0!!!");
#else
--mem->hold_count;
#endif
}
static __inline void
vm_page_protect(vm_page_t mem, int prot)
{
if (prot == VM_PROT_NONE) {
if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
pmap_page_protect(mem, prot);
mem->flags &= ~(PG_WRITEABLE|PG_MAPPED);
}
} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
pmap_page_protect(mem, prot);
mem->flags &= ~PG_WRITEABLE;
}
}
/*
* vm_page_zero_fill:
*
* Zero-fill the specified page.
* Written as a standard pagein routine, to
* be used by the zero-fill object.
*/
static __inline boolean_t
vm_page_zero_fill(m)
vm_page_t m;
{
pmap_zero_page(VM_PAGE_TO_PHYS(m));
return (TRUE);
}
/*
* vm_page_copy:
*
* Copy one page to another
*/
static __inline void
vm_page_copy(src_m, dest_m)
vm_page_t src_m;
vm_page_t dest_m;
{
pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
dest_m->valid = VM_PAGE_BITS_ALL;
}
#endif /* KERNEL */
#endif /* !_VM_PAGE_ */