freebsd-skq/lib/libmemstat/memstat_uma.c
Jeff Roberson fc03d22b17 Refine UMA bucket allocation to reduce space consumption and improve
performance.

 - Always free to the alloc bucket if there is space.  This gives LIFO
   allocation order to improve hot-cache performance.  This also allows
   for zones with a single bucket per-cpu rather than a pair if the entire
   working set fits in one bucket.
 - Enable per-cpu caches of buckets.  To prevent recursive bucket
   allocation one bucket zone still has per-cpu caches disabled.
 - Pick the initial bucket size based on a table driven maximum size
   per-bucket rather than the number of items per-page.  This gives
   more sane initial sizes.
 - Only grow the bucket size when we face contention on the zone lock, this
   causes bucket sizes to grow more slowly.
 - Adjust the number of items per-bucket to account for the header space.
   This packs the buckets more efficiently per-page while making them
   not quite powers of two.
 - Eliminate the per-zone free bucket list.  Always return buckets back
   to the bucket zone.  This ensures that as zones grow into larger
   bucket sizes they eventually discard the smaller sizes.  It persists
   fewer buckets in the system.  The locking is slightly trickier.
 - Only switch buckets in zalloc, not zfree, this eliminates pathological
   cases where we ping-pong between two buckets.
 - Ensure that the thread that fills a new bucket gets to allocate from
   it to give a better upper bound on allocation time.

Sponsored by:	EMC / Isilon Storage Division
2013-06-18 04:50:20 +00:00

465 lines
12 KiB
C

/*-
* Copyright (c) 2005-2006 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/cpuset.h>
#include <sys/sysctl.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/uma.h>
#include <vm/uma_int.h>
#include <err.h>
#include <errno.h>
#include <kvm.h>
#include <nlist.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "memstat.h"
#include "memstat_internal.h"
static struct nlist namelist[] = {
#define X_UMA_KEGS 0
{ .n_name = "_uma_kegs" },
#define X_MP_MAXID 1
{ .n_name = "_mp_maxid" },
#define X_ALL_CPUS 2
{ .n_name = "_all_cpus" },
{ .n_name = "" },
};
/*
* Extract uma(9) statistics from the running kernel, and store all memory
* type information in the passed list. For each type, check the list for an
* existing entry with the right name/allocator -- if present, update that
* entry. Otherwise, add a new entry. On error, the entire list will be
* cleared, as entries will be in an inconsistent state.
*
* To reduce the level of work for a list that starts empty, we keep around a
* hint as to whether it was empty when we began, so we can avoid searching
* the list for entries to update. Updates are O(n^2) due to searching for
* each entry before adding it.
*/
int
memstat_sysctl_uma(struct memory_type_list *list, int flags)
{
struct uma_stream_header *ushp;
struct uma_type_header *uthp;
struct uma_percpu_stat *upsp;
struct memory_type *mtp;
int count, hint_dontsearch, i, j, maxcpus, maxid;
char *buffer, *p;
size_t size;
hint_dontsearch = LIST_EMPTY(&list->mtl_list);
/*
* Query the number of CPUs, number of malloc types so that we can
* guess an initial buffer size. We loop until we succeed or really
* fail. Note that the value of maxcpus we query using sysctl is not
* the version we use when processing the real data -- that is read
* from the header.
*/
retry:
size = sizeof(maxid);
if (sysctlbyname("kern.smp.maxid", &maxid, &size, NULL, 0) < 0) {
if (errno == EACCES || errno == EPERM)
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
else
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
return (-1);
}
if (size != sizeof(maxid)) {
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
return (-1);
}
size = sizeof(count);
if (sysctlbyname("vm.zone_count", &count, &size, NULL, 0) < 0) {
if (errno == EACCES || errno == EPERM)
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
else
list->mtl_error = MEMSTAT_ERROR_VERSION;
return (-1);
}
if (size != sizeof(count)) {
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
return (-1);
}
size = sizeof(*uthp) + count * (sizeof(*uthp) + sizeof(*upsp) *
(maxid + 1));
buffer = malloc(size);
if (buffer == NULL) {
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
if (sysctlbyname("vm.zone_stats", buffer, &size, NULL, 0) < 0) {
/*
* XXXRW: ENOMEM is an ambiguous return, we should bound the
* number of loops, perhaps.
*/
if (errno == ENOMEM) {
free(buffer);
goto retry;
}
if (errno == EACCES || errno == EPERM)
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
else
list->mtl_error = MEMSTAT_ERROR_VERSION;
free(buffer);
return (-1);
}
if (size == 0) {
free(buffer);
return (0);
}
if (size < sizeof(*ushp)) {
list->mtl_error = MEMSTAT_ERROR_VERSION;
free(buffer);
return (-1);
}
p = buffer;
ushp = (struct uma_stream_header *)p;
p += sizeof(*ushp);
if (ushp->ush_version != UMA_STREAM_VERSION) {
list->mtl_error = MEMSTAT_ERROR_VERSION;
free(buffer);
return (-1);
}
/*
* For the remainder of this function, we are quite trusting about
* the layout of structures and sizes, since we've determined we have
* a matching version and acceptable CPU count.
*/
maxcpus = ushp->ush_maxcpus;
count = ushp->ush_count;
for (i = 0; i < count; i++) {
uthp = (struct uma_type_header *)p;
p += sizeof(*uthp);
if (hint_dontsearch == 0) {
mtp = memstat_mtl_find(list, ALLOCATOR_UMA,
uthp->uth_name);
} else
mtp = NULL;
if (mtp == NULL)
mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA,
uthp->uth_name, maxid + 1);
if (mtp == NULL) {
_memstat_mtl_empty(list);
free(buffer);
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
/*
* Reset the statistics on a current node.
*/
_memstat_mt_reset_stats(mtp, maxid + 1);
mtp->mt_numallocs = uthp->uth_allocs;
mtp->mt_numfrees = uthp->uth_frees;
mtp->mt_failures = uthp->uth_fails;
mtp->mt_sleeps = uthp->uth_sleeps;
for (j = 0; j < maxcpus; j++) {
upsp = (struct uma_percpu_stat *)p;
p += sizeof(*upsp);
mtp->mt_percpu_cache[j].mtp_free =
upsp->ups_cache_free;
mtp->mt_free += upsp->ups_cache_free;
mtp->mt_numallocs += upsp->ups_allocs;
mtp->mt_numfrees += upsp->ups_frees;
}
mtp->mt_size = uthp->uth_size;
mtp->mt_memalloced = mtp->mt_numallocs * uthp->uth_size;
mtp->mt_memfreed = mtp->mt_numfrees * uthp->uth_size;
mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
mtp->mt_countlimit = uthp->uth_limit;
mtp->mt_byteslimit = uthp->uth_limit * uthp->uth_size;
mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
mtp->mt_zonefree = uthp->uth_zone_free;
/*
* UMA secondary zones share a keg with the primary zone. To
* avoid double-reporting of free items, report keg free
* items only in the primary zone.
*/
if (!(uthp->uth_zone_flags & UTH_ZONE_SECONDARY)) {
mtp->mt_kegfree = uthp->uth_keg_free;
mtp->mt_free += mtp->mt_kegfree;
}
mtp->mt_free += mtp->mt_zonefree;
}
free(buffer);
return (0);
}
static int
kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
size_t offset)
{
ssize_t ret;
ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
size);
if (ret < 0)
return (MEMSTAT_ERROR_KVM);
if ((size_t)ret != size)
return (MEMSTAT_ERROR_KVM_SHORTREAD);
return (0);
}
static int
kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen)
{
ssize_t ret;
int i;
for (i = 0; i < buflen; i++) {
ret = kvm_read(kvm, (unsigned long)kvm_pointer + i,
&(buffer[i]), sizeof(char));
if (ret < 0)
return (MEMSTAT_ERROR_KVM);
if ((size_t)ret != sizeof(char))
return (MEMSTAT_ERROR_KVM_SHORTREAD);
if (buffer[i] == '\0')
return (0);
}
/* Truncate. */
buffer[i-1] = '\0';
return (0);
}
static int
kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
size_t offset)
{
ssize_t ret;
ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
if (ret < 0)
return (MEMSTAT_ERROR_KVM);
if ((size_t)ret != size)
return (MEMSTAT_ERROR_KVM_SHORTREAD);
return (0);
}
/*
* memstat_kvm_uma() is similar to memstat_sysctl_uma(), only it extracts
* UMA(9) statistics from a kernel core/memory file.
*/
int
memstat_kvm_uma(struct memory_type_list *list, void *kvm_handle)
{
LIST_HEAD(, uma_keg) uma_kegs;
struct memory_type *mtp;
struct uma_bucket *ubp, ub;
struct uma_cache *ucp, *ucp_array;
struct uma_zone *uzp, uz;
struct uma_keg *kzp, kz;
int hint_dontsearch, i, mp_maxid, ret;
char name[MEMTYPE_MAXNAME];
cpuset_t all_cpus;
long cpusetsize;
kvm_t *kvm;
kvm = (kvm_t *)kvm_handle;
hint_dontsearch = LIST_EMPTY(&list->mtl_list);
if (kvm_nlist(kvm, namelist) != 0) {
list->mtl_error = MEMSTAT_ERROR_KVM;
return (-1);
}
if (namelist[X_UMA_KEGS].n_type == 0 ||
namelist[X_UMA_KEGS].n_value == 0) {
list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
return (-1);
}
ret = kread_symbol(kvm, X_MP_MAXID, &mp_maxid, sizeof(mp_maxid), 0);
if (ret != 0) {
list->mtl_error = ret;
return (-1);
}
ret = kread_symbol(kvm, X_UMA_KEGS, &uma_kegs, sizeof(uma_kegs), 0);
if (ret != 0) {
list->mtl_error = ret;
return (-1);
}
cpusetsize = sysconf(_SC_CPUSET_SIZE);
if (cpusetsize == -1 || (u_long)cpusetsize > sizeof(cpuset_t)) {
list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
return (-1);
}
CPU_ZERO(&all_cpus);
ret = kread_symbol(kvm, X_ALL_CPUS, &all_cpus, cpusetsize, 0);
if (ret != 0) {
list->mtl_error = ret;
return (-1);
}
ucp_array = malloc(sizeof(struct uma_cache) * (mp_maxid + 1));
if (ucp_array == NULL) {
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
for (kzp = LIST_FIRST(&uma_kegs); kzp != NULL; kzp =
LIST_NEXT(&kz, uk_link)) {
ret = kread(kvm, kzp, &kz, sizeof(kz), 0);
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
for (uzp = LIST_FIRST(&kz.uk_zones); uzp != NULL; uzp =
LIST_NEXT(&uz, uz_link)) {
ret = kread(kvm, uzp, &uz, sizeof(uz), 0);
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
ret = kread(kvm, uzp, ucp_array,
sizeof(struct uma_cache) * (mp_maxid + 1),
offsetof(struct uma_zone, uz_cpu[0]));
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
ret = kread_string(kvm, uz.uz_name, name,
MEMTYPE_MAXNAME);
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
if (hint_dontsearch == 0) {
mtp = memstat_mtl_find(list, ALLOCATOR_UMA,
name);
} else
mtp = NULL;
if (mtp == NULL)
mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA,
name, mp_maxid + 1);
if (mtp == NULL) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
/*
* Reset the statistics on a current node.
*/
_memstat_mt_reset_stats(mtp, mp_maxid + 1);
mtp->mt_numallocs = uz.uz_allocs;
mtp->mt_numfrees = uz.uz_frees;
mtp->mt_failures = uz.uz_fails;
mtp->mt_sleeps = uz.uz_sleeps;
if (kz.uk_flags & UMA_ZFLAG_INTERNAL)
goto skip_percpu;
for (i = 0; i < mp_maxid + 1; i++) {
if (!CPU_ISSET(i, &all_cpus))
continue;
ucp = &ucp_array[i];
mtp->mt_numallocs += ucp->uc_allocs;
mtp->mt_numfrees += ucp->uc_frees;
if (ucp->uc_allocbucket != NULL) {
ret = kread(kvm, ucp->uc_allocbucket,
&ub, sizeof(ub), 0);
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
mtp->mt_free += ub.ub_cnt;
}
if (ucp->uc_freebucket != NULL) {
ret = kread(kvm, ucp->uc_freebucket,
&ub, sizeof(ub), 0);
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
mtp->mt_free += ub.ub_cnt;
}
}
skip_percpu:
mtp->mt_size = kz.uk_size;
mtp->mt_memalloced = mtp->mt_numallocs * mtp->mt_size;
mtp->mt_memfreed = mtp->mt_numfrees * mtp->mt_size;
mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
if (kz.uk_ppera > 1)
mtp->mt_countlimit = kz.uk_maxpages /
kz.uk_ipers;
else
mtp->mt_countlimit = kz.uk_maxpages *
kz.uk_ipers;
mtp->mt_byteslimit = mtp->mt_countlimit * mtp->mt_size;
mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
for (ubp = LIST_FIRST(&uz.uz_buckets); ubp !=
NULL; ubp = LIST_NEXT(&ub, ub_link)) {
ret = kread(kvm, ubp, &ub, sizeof(ub), 0);
mtp->mt_zonefree += ub.ub_cnt;
}
if (!((kz.uk_flags & UMA_ZONE_SECONDARY) &&
LIST_FIRST(&kz.uk_zones) != uzp)) {
mtp->mt_kegfree = kz.uk_free;
mtp->mt_free += mtp->mt_kegfree;
}
mtp->mt_free += mtp->mt_zonefree;
}
}
free(ucp_array);
return (0);
}