4fc18ff9bb
This makes VMWare VAAI Thin Provisioning Stun primitive activate, pausing the virtual machine, when backing storage (ZFS pool) is getting overflowed. MFC after: 1 week Sponsored by: iXsystems, Inc.
7648 lines
219 KiB
C
7648 lines
219 KiB
C
/*-
|
|
* Implementation of Utility functions for all SCSI device types.
|
|
*
|
|
* Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
|
|
* Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stdint.h>
|
|
|
|
#ifdef _KERNEL
|
|
#include <opt_scsi.h>
|
|
|
|
#include <sys/systm.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/ctype.h>
|
|
#else
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#endif
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_queue.h>
|
|
#include <cam/cam_xpt.h>
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <sys/ata.h>
|
|
#include <sys/sbuf.h>
|
|
|
|
#ifdef _KERNEL
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_xpt_sim.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
#include <cam/cam_xpt_internal.h>
|
|
#else
|
|
#include <camlib.h>
|
|
#include <stddef.h>
|
|
|
|
#ifndef FALSE
|
|
#define FALSE 0
|
|
#endif /* FALSE */
|
|
#ifndef TRUE
|
|
#define TRUE 1
|
|
#endif /* TRUE */
|
|
#define ERESTART -1 /* restart syscall */
|
|
#define EJUSTRETURN -2 /* don't modify regs, just return */
|
|
#endif /* !_KERNEL */
|
|
|
|
/*
|
|
* This is the default number of milliseconds we wait for devices to settle
|
|
* after a SCSI bus reset.
|
|
*/
|
|
#ifndef SCSI_DELAY
|
|
#define SCSI_DELAY 2000
|
|
#endif
|
|
/*
|
|
* All devices need _some_ sort of bus settle delay, so we'll set it to
|
|
* a minimum value of 100ms. Note that this is pertinent only for SPI-
|
|
* not transport like Fibre Channel or iSCSI where 'delay' is completely
|
|
* meaningless.
|
|
*/
|
|
#ifndef SCSI_MIN_DELAY
|
|
#define SCSI_MIN_DELAY 100
|
|
#endif
|
|
/*
|
|
* Make sure the user isn't using seconds instead of milliseconds.
|
|
*/
|
|
#if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
|
|
#error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value"
|
|
#endif
|
|
|
|
int scsi_delay;
|
|
|
|
static int ascentrycomp(const void *key, const void *member);
|
|
static int senseentrycomp(const void *key, const void *member);
|
|
static void fetchtableentries(int sense_key, int asc, int ascq,
|
|
struct scsi_inquiry_data *,
|
|
const struct sense_key_table_entry **,
|
|
const struct asc_table_entry **);
|
|
#ifdef _KERNEL
|
|
static void init_scsi_delay(void);
|
|
static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
|
|
static int set_scsi_delay(int delay);
|
|
#endif
|
|
|
|
#if !defined(SCSI_NO_OP_STRINGS)
|
|
|
|
#define D (1 << T_DIRECT)
|
|
#define T (1 << T_SEQUENTIAL)
|
|
#define L (1 << T_PRINTER)
|
|
#define P (1 << T_PROCESSOR)
|
|
#define W (1 << T_WORM)
|
|
#define R (1 << T_CDROM)
|
|
#define O (1 << T_OPTICAL)
|
|
#define M (1 << T_CHANGER)
|
|
#define A (1 << T_STORARRAY)
|
|
#define E (1 << T_ENCLOSURE)
|
|
#define B (1 << T_RBC)
|
|
#define K (1 << T_OCRW)
|
|
#define V (1 << T_ADC)
|
|
#define F (1 << T_OSD)
|
|
#define S (1 << T_SCANNER)
|
|
#define C (1 << T_COMM)
|
|
|
|
#define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
|
|
|
|
static struct op_table_entry plextor_cd_ops[] = {
|
|
{ 0xD8, R, "CD-DA READ" }
|
|
};
|
|
|
|
static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
|
|
{
|
|
/*
|
|
* I believe that 0xD8 is the Plextor proprietary command
|
|
* to read CD-DA data. I'm not sure which Plextor CDROM
|
|
* models support the command, though. I know for sure
|
|
* that the 4X, 8X, and 12X models do, and presumably the
|
|
* 12-20X does. I don't know about any earlier models,
|
|
* though. If anyone has any more complete information,
|
|
* feel free to change this quirk entry.
|
|
*/
|
|
{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
|
|
sizeof(plextor_cd_ops)/sizeof(struct op_table_entry),
|
|
plextor_cd_ops
|
|
}
|
|
};
|
|
|
|
static struct op_table_entry scsi_op_codes[] = {
|
|
/*
|
|
* From: http://www.t10.org/lists/op-num.txt
|
|
* Modifications by Kenneth Merry (ken@FreeBSD.ORG)
|
|
* and Jung-uk Kim (jkim@FreeBSD.org)
|
|
*
|
|
* Note: order is important in this table, scsi_op_desc() currently
|
|
* depends on the opcodes in the table being in order to save
|
|
* search time.
|
|
* Note: scanner and comm. devices are carried over from the previous
|
|
* version because they were removed in the latest spec.
|
|
*/
|
|
/* File: OP-NUM.TXT
|
|
*
|
|
* SCSI Operation Codes
|
|
* Numeric Sorted Listing
|
|
* as of 3/11/08
|
|
*
|
|
* D - DIRECT ACCESS DEVICE (SBC-2) device column key
|
|
* .T - SEQUENTIAL ACCESS DEVICE (SSC-2) -----------------
|
|
* . L - PRINTER DEVICE (SSC) M = Mandatory
|
|
* . P - PROCESSOR DEVICE (SPC) O = Optional
|
|
* . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
|
|
* . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete
|
|
* . . O - OPTICAL MEMORY DEVICE (SBC-2)
|
|
* . . .M - MEDIA CHANGER DEVICE (SMC-2)
|
|
* . . . A - STORAGE ARRAY DEVICE (SCC-2)
|
|
* . . . .E - ENCLOSURE SERVICES DEVICE (SES)
|
|
* . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
|
|
* . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
|
|
* . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
|
|
* . . . . .F - OBJECT-BASED STORAGE (OSD)
|
|
* OP DTLPWROMAEBKVF Description
|
|
* -- -------------- ---------------------------------------------- */
|
|
/* 00 MMMMMMMMMMMMMM TEST UNIT READY */
|
|
{ 0x00, ALL, "TEST UNIT READY" },
|
|
/* 01 M REWIND */
|
|
{ 0x01, T, "REWIND" },
|
|
/* 01 Z V ZZZZ REZERO UNIT */
|
|
{ 0x01, D | W | R | O | M, "REZERO UNIT" },
|
|
/* 02 VVVVVV V */
|
|
/* 03 MMMMMMMMMMOMMM REQUEST SENSE */
|
|
{ 0x03, ALL, "REQUEST SENSE" },
|
|
/* 04 M OO FORMAT UNIT */
|
|
{ 0x04, D | R | O, "FORMAT UNIT" },
|
|
/* 04 O FORMAT MEDIUM */
|
|
{ 0x04, T, "FORMAT MEDIUM" },
|
|
/* 04 O FORMAT */
|
|
{ 0x04, L, "FORMAT" },
|
|
/* 05 VMVVVV V READ BLOCK LIMITS */
|
|
{ 0x05, T, "READ BLOCK LIMITS" },
|
|
/* 06 VVVVVV V */
|
|
/* 07 OVV O OV REASSIGN BLOCKS */
|
|
{ 0x07, D | W | O, "REASSIGN BLOCKS" },
|
|
/* 07 O INITIALIZE ELEMENT STATUS */
|
|
{ 0x07, M, "INITIALIZE ELEMENT STATUS" },
|
|
/* 08 MOV O OV READ(6) */
|
|
{ 0x08, D | T | W | O, "READ(6)" },
|
|
/* 08 O RECEIVE */
|
|
{ 0x08, P, "RECEIVE" },
|
|
/* 08 GET MESSAGE(6) */
|
|
{ 0x08, C, "GET MESSAGE(6)" },
|
|
/* 09 VVVVVV V */
|
|
/* 0A OO O OV WRITE(6) */
|
|
{ 0x0A, D | T | W | O, "WRITE(6)" },
|
|
/* 0A M SEND(6) */
|
|
{ 0x0A, P, "SEND(6)" },
|
|
/* 0A SEND MESSAGE(6) */
|
|
{ 0x0A, C, "SEND MESSAGE(6)" },
|
|
/* 0A M PRINT */
|
|
{ 0x0A, L, "PRINT" },
|
|
/* 0B Z ZOZV SEEK(6) */
|
|
{ 0x0B, D | W | R | O, "SEEK(6)" },
|
|
/* 0B O SET CAPACITY */
|
|
{ 0x0B, T, "SET CAPACITY" },
|
|
/* 0B O SLEW AND PRINT */
|
|
{ 0x0B, L, "SLEW AND PRINT" },
|
|
/* 0C VVVVVV V */
|
|
/* 0D VVVVVV V */
|
|
/* 0E VVVVVV V */
|
|
/* 0F VOVVVV V READ REVERSE(6) */
|
|
{ 0x0F, T, "READ REVERSE(6)" },
|
|
/* 10 VM VVV WRITE FILEMARKS(6) */
|
|
{ 0x10, T, "WRITE FILEMARKS(6)" },
|
|
/* 10 O SYNCHRONIZE BUFFER */
|
|
{ 0x10, L, "SYNCHRONIZE BUFFER" },
|
|
/* 11 VMVVVV SPACE(6) */
|
|
{ 0x11, T, "SPACE(6)" },
|
|
/* 12 MMMMMMMMMMMMMM INQUIRY */
|
|
{ 0x12, ALL, "INQUIRY" },
|
|
/* 13 V VVVV */
|
|
/* 13 O VERIFY(6) */
|
|
{ 0x13, T, "VERIFY(6)" },
|
|
/* 14 VOOVVV RECOVER BUFFERED DATA */
|
|
{ 0x14, T | L, "RECOVER BUFFERED DATA" },
|
|
/* 15 OMO O OOOO OO MODE SELECT(6) */
|
|
{ 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" },
|
|
/* 16 ZZMZO OOOZ O RESERVE(6) */
|
|
{ 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" },
|
|
/* 16 Z RESERVE ELEMENT(6) */
|
|
{ 0x16, M, "RESERVE ELEMENT(6)" },
|
|
/* 17 ZZMZO OOOZ O RELEASE(6) */
|
|
{ 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" },
|
|
/* 17 Z RELEASE ELEMENT(6) */
|
|
{ 0x17, M, "RELEASE ELEMENT(6)" },
|
|
/* 18 ZZZZOZO Z COPY */
|
|
{ 0x18, D | T | L | P | W | R | O | K | S, "COPY" },
|
|
/* 19 VMVVVV ERASE(6) */
|
|
{ 0x19, T, "ERASE(6)" },
|
|
/* 1A OMO O OOOO OO MODE SENSE(6) */
|
|
{ 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" },
|
|
/* 1B O OOO O MO O START STOP UNIT */
|
|
{ 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" },
|
|
/* 1B O M LOAD UNLOAD */
|
|
{ 0x1B, T | V, "LOAD UNLOAD" },
|
|
/* 1B SCAN */
|
|
{ 0x1B, S, "SCAN" },
|
|
/* 1B O STOP PRINT */
|
|
{ 0x1B, L, "STOP PRINT" },
|
|
/* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */
|
|
{ 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
|
|
/* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */
|
|
{ 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
|
|
/* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */
|
|
{ 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" },
|
|
/* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */
|
|
{ 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
|
|
/* 1F */
|
|
/* 20 V VVV V */
|
|
/* 21 V VVV V */
|
|
/* 22 V VVV V */
|
|
/* 23 V V V V */
|
|
/* 23 O READ FORMAT CAPACITIES */
|
|
{ 0x23, R, "READ FORMAT CAPACITIES" },
|
|
/* 24 V VV SET WINDOW */
|
|
{ 0x24, S, "SET WINDOW" },
|
|
/* 25 M M M M READ CAPACITY(10) */
|
|
{ 0x25, D | W | O | B, "READ CAPACITY(10)" },
|
|
/* 25 O READ CAPACITY */
|
|
{ 0x25, R, "READ CAPACITY" },
|
|
/* 25 M READ CARD CAPACITY */
|
|
{ 0x25, K, "READ CARD CAPACITY" },
|
|
/* 25 GET WINDOW */
|
|
{ 0x25, S, "GET WINDOW" },
|
|
/* 26 V VV */
|
|
/* 27 V VV */
|
|
/* 28 M MOM MM READ(10) */
|
|
{ 0x28, D | W | R | O | B | K | S, "READ(10)" },
|
|
/* 28 GET MESSAGE(10) */
|
|
{ 0x28, C, "GET MESSAGE(10)" },
|
|
/* 29 V VVO READ GENERATION */
|
|
{ 0x29, O, "READ GENERATION" },
|
|
/* 2A O MOM MO WRITE(10) */
|
|
{ 0x2A, D | W | R | O | B | K, "WRITE(10)" },
|
|
/* 2A SEND(10) */
|
|
{ 0x2A, S, "SEND(10)" },
|
|
/* 2A SEND MESSAGE(10) */
|
|
{ 0x2A, C, "SEND MESSAGE(10)" },
|
|
/* 2B Z OOO O SEEK(10) */
|
|
{ 0x2B, D | W | R | O | K, "SEEK(10)" },
|
|
/* 2B O LOCATE(10) */
|
|
{ 0x2B, T, "LOCATE(10)" },
|
|
/* 2B O POSITION TO ELEMENT */
|
|
{ 0x2B, M, "POSITION TO ELEMENT" },
|
|
/* 2C V OO ERASE(10) */
|
|
{ 0x2C, R | O, "ERASE(10)" },
|
|
/* 2D O READ UPDATED BLOCK */
|
|
{ 0x2D, O, "READ UPDATED BLOCK" },
|
|
/* 2D V */
|
|
/* 2E O OOO MO WRITE AND VERIFY(10) */
|
|
{ 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
|
|
/* 2F O OOO VERIFY(10) */
|
|
{ 0x2F, D | W | R | O, "VERIFY(10)" },
|
|
/* 30 Z ZZZ SEARCH DATA HIGH(10) */
|
|
{ 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" },
|
|
/* 31 Z ZZZ SEARCH DATA EQUAL(10) */
|
|
{ 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" },
|
|
/* 31 OBJECT POSITION */
|
|
{ 0x31, S, "OBJECT POSITION" },
|
|
/* 32 Z ZZZ SEARCH DATA LOW(10) */
|
|
{ 0x32, D | W | R | O, "SEARCH DATA LOW(10)" },
|
|
/* 33 Z OZO SET LIMITS(10) */
|
|
{ 0x33, D | W | R | O, "SET LIMITS(10)" },
|
|
/* 34 O O O O PRE-FETCH(10) */
|
|
{ 0x34, D | W | O | K, "PRE-FETCH(10)" },
|
|
/* 34 M READ POSITION */
|
|
{ 0x34, T, "READ POSITION" },
|
|
/* 34 GET DATA BUFFER STATUS */
|
|
{ 0x34, S, "GET DATA BUFFER STATUS" },
|
|
/* 35 O OOO MO SYNCHRONIZE CACHE(10) */
|
|
{ 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
|
|
/* 36 Z O O O LOCK UNLOCK CACHE(10) */
|
|
{ 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" },
|
|
/* 37 O O READ DEFECT DATA(10) */
|
|
{ 0x37, D | O, "READ DEFECT DATA(10)" },
|
|
/* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */
|
|
{ 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
|
|
/* 38 O O O MEDIUM SCAN */
|
|
{ 0x38, W | O | K, "MEDIUM SCAN" },
|
|
/* 39 ZZZZOZO Z COMPARE */
|
|
{ 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" },
|
|
/* 3A ZZZZOZO Z COPY AND VERIFY */
|
|
{ 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
|
|
/* 3B OOOOOOOOOOMOOO WRITE BUFFER */
|
|
{ 0x3B, ALL, "WRITE BUFFER" },
|
|
/* 3C OOOOOOOOOO OOO READ BUFFER */
|
|
{ 0x3C, ALL & ~(B), "READ BUFFER" },
|
|
/* 3D O UPDATE BLOCK */
|
|
{ 0x3D, O, "UPDATE BLOCK" },
|
|
/* 3E O O O READ LONG(10) */
|
|
{ 0x3E, D | W | O, "READ LONG(10)" },
|
|
/* 3F O O O WRITE LONG(10) */
|
|
{ 0x3F, D | W | O, "WRITE LONG(10)" },
|
|
/* 40 ZZZZOZOZ CHANGE DEFINITION */
|
|
{ 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
|
|
/* 41 O WRITE SAME(10) */
|
|
{ 0x41, D, "WRITE SAME(10)" },
|
|
/* 42 O UNMAP */
|
|
{ 0x42, D, "UNMAP" },
|
|
/* 42 O READ SUB-CHANNEL */
|
|
{ 0x42, R, "READ SUB-CHANNEL" },
|
|
/* 43 O READ TOC/PMA/ATIP */
|
|
{ 0x43, R, "READ TOC/PMA/ATIP" },
|
|
/* 44 M M REPORT DENSITY SUPPORT */
|
|
{ 0x44, T | V, "REPORT DENSITY SUPPORT" },
|
|
/* 44 READ HEADER */
|
|
/* 45 O PLAY AUDIO(10) */
|
|
{ 0x45, R, "PLAY AUDIO(10)" },
|
|
/* 46 M GET CONFIGURATION */
|
|
{ 0x46, R, "GET CONFIGURATION" },
|
|
/* 47 O PLAY AUDIO MSF */
|
|
{ 0x47, R, "PLAY AUDIO MSF" },
|
|
/* 48 */
|
|
/* 49 */
|
|
/* 4A M GET EVENT STATUS NOTIFICATION */
|
|
{ 0x4A, R, "GET EVENT STATUS NOTIFICATION" },
|
|
/* 4B O PAUSE/RESUME */
|
|
{ 0x4B, R, "PAUSE/RESUME" },
|
|
/* 4C OOOOO OOOO OOO LOG SELECT */
|
|
{ 0x4C, ALL & ~(R | B), "LOG SELECT" },
|
|
/* 4D OOOOO OOOO OMO LOG SENSE */
|
|
{ 0x4D, ALL & ~(R | B), "LOG SENSE" },
|
|
/* 4E O STOP PLAY/SCAN */
|
|
{ 0x4E, R, "STOP PLAY/SCAN" },
|
|
/* 4F */
|
|
/* 50 O XDWRITE(10) */
|
|
{ 0x50, D, "XDWRITE(10)" },
|
|
/* 51 O XPWRITE(10) */
|
|
{ 0x51, D, "XPWRITE(10)" },
|
|
/* 51 O READ DISC INFORMATION */
|
|
{ 0x51, R, "READ DISC INFORMATION" },
|
|
/* 52 O XDREAD(10) */
|
|
{ 0x52, D, "XDREAD(10)" },
|
|
/* 52 O READ TRACK INFORMATION */
|
|
{ 0x52, R, "READ TRACK INFORMATION" },
|
|
/* 53 O RESERVE TRACK */
|
|
{ 0x53, R, "RESERVE TRACK" },
|
|
/* 54 O SEND OPC INFORMATION */
|
|
{ 0x54, R, "SEND OPC INFORMATION" },
|
|
/* 55 OOO OMOOOOMOMO MODE SELECT(10) */
|
|
{ 0x55, ALL & ~(P), "MODE SELECT(10)" },
|
|
/* 56 ZZMZO OOOZ RESERVE(10) */
|
|
{ 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
|
|
/* 56 Z RESERVE ELEMENT(10) */
|
|
{ 0x56, M, "RESERVE ELEMENT(10)" },
|
|
/* 57 ZZMZO OOOZ RELEASE(10) */
|
|
{ 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
|
|
/* 57 Z RELEASE ELEMENT(10) */
|
|
{ 0x57, M, "RELEASE ELEMENT(10)" },
|
|
/* 58 O REPAIR TRACK */
|
|
{ 0x58, R, "REPAIR TRACK" },
|
|
/* 59 */
|
|
/* 5A OOO OMOOOOMOMO MODE SENSE(10) */
|
|
{ 0x5A, ALL & ~(P), "MODE SENSE(10)" },
|
|
/* 5B O CLOSE TRACK/SESSION */
|
|
{ 0x5B, R, "CLOSE TRACK/SESSION" },
|
|
/* 5C O READ BUFFER CAPACITY */
|
|
{ 0x5C, R, "READ BUFFER CAPACITY" },
|
|
/* 5D O SEND CUE SHEET */
|
|
{ 0x5D, R, "SEND CUE SHEET" },
|
|
/* 5E OOOOO OOOO M PERSISTENT RESERVE IN */
|
|
{ 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
|
|
/* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */
|
|
{ 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
|
|
/* 7E OO O OOOO O extended CDB */
|
|
{ 0x7E, D | T | R | M | A | E | B | V, "extended CDB" },
|
|
/* 7F O M variable length CDB (more than 16 bytes) */
|
|
{ 0x7F, D | F, "variable length CDB (more than 16 bytes)" },
|
|
/* 80 Z XDWRITE EXTENDED(16) */
|
|
{ 0x80, D, "XDWRITE EXTENDED(16)" },
|
|
/* 80 M WRITE FILEMARKS(16) */
|
|
{ 0x80, T, "WRITE FILEMARKS(16)" },
|
|
/* 81 Z REBUILD(16) */
|
|
{ 0x81, D, "REBUILD(16)" },
|
|
/* 81 O READ REVERSE(16) */
|
|
{ 0x81, T, "READ REVERSE(16)" },
|
|
/* 82 Z REGENERATE(16) */
|
|
{ 0x82, D, "REGENERATE(16)" },
|
|
/* 83 OOOOO O OO EXTENDED COPY */
|
|
{ 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" },
|
|
/* 84 OOOOO O OO RECEIVE COPY RESULTS */
|
|
{ 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
|
|
/* 85 O O O ATA COMMAND PASS THROUGH(16) */
|
|
{ 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" },
|
|
/* 86 OO OO OOOOOOO ACCESS CONTROL IN */
|
|
{ 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" },
|
|
/* 87 OO OO OOOOOOO ACCESS CONTROL OUT */
|
|
{ 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
|
|
/*
|
|
* XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt
|
|
* but we had it since r1.40. Do we really want them?
|
|
*/
|
|
/* 88 MM O O O READ(16) */
|
|
{ 0x88, D | T | W | O | B, "READ(16)" },
|
|
/* 89 O COMPARE AND WRITE*/
|
|
{ 0x89, D, "COMPARE AND WRITE" },
|
|
/* 8A OM O O O WRITE(16) */
|
|
{ 0x8A, D | T | W | O | B, "WRITE(16)" },
|
|
/* 8B O ORWRITE */
|
|
{ 0x8B, D, "ORWRITE" },
|
|
/* 8C OO O OO O M READ ATTRIBUTE */
|
|
{ 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" },
|
|
/* 8D OO O OO O O WRITE ATTRIBUTE */
|
|
{ 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
|
|
/* 8E O O O O WRITE AND VERIFY(16) */
|
|
{ 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" },
|
|
/* 8F OO O O O VERIFY(16) */
|
|
{ 0x8F, D | T | W | O | B, "VERIFY(16)" },
|
|
/* 90 O O O O PRE-FETCH(16) */
|
|
{ 0x90, D | W | O | B, "PRE-FETCH(16)" },
|
|
/* 91 O O O O SYNCHRONIZE CACHE(16) */
|
|
{ 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" },
|
|
/* 91 O SPACE(16) */
|
|
{ 0x91, T, "SPACE(16)" },
|
|
/* 92 Z O O LOCK UNLOCK CACHE(16) */
|
|
{ 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" },
|
|
/* 92 O LOCATE(16) */
|
|
{ 0x92, T, "LOCATE(16)" },
|
|
/* 93 O WRITE SAME(16) */
|
|
{ 0x93, D, "WRITE SAME(16)" },
|
|
/* 93 M ERASE(16) */
|
|
{ 0x93, T, "ERASE(16)" },
|
|
/* 94 [usage proposed by SCSI Socket Services project] */
|
|
/* 95 [usage proposed by SCSI Socket Services project] */
|
|
/* 96 [usage proposed by SCSI Socket Services project] */
|
|
/* 97 [usage proposed by SCSI Socket Services project] */
|
|
/* 98 */
|
|
/* 99 */
|
|
/* 9A */
|
|
/* 9B */
|
|
/* 9C */
|
|
/* 9D */
|
|
/* XXX KDM ALL for this? op-num.txt defines it for none.. */
|
|
/* 9E SERVICE ACTION IN(16) */
|
|
{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
|
|
/* XXX KDM ALL for this? op-num.txt defines it for ADC.. */
|
|
/* 9F M SERVICE ACTION OUT(16) */
|
|
{ 0x9F, ALL, "SERVICE ACTION OUT(16)" },
|
|
/* A0 MMOOO OMMM OMO REPORT LUNS */
|
|
{ 0xA0, ALL & ~(R | B), "REPORT LUNS" },
|
|
/* A1 O BLANK */
|
|
{ 0xA1, R, "BLANK" },
|
|
/* A1 O O ATA COMMAND PASS THROUGH(12) */
|
|
{ 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" },
|
|
/* A2 OO O O SECURITY PROTOCOL IN */
|
|
{ 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" },
|
|
/* A3 OOO O OOMOOOM MAINTENANCE (IN) */
|
|
{ 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" },
|
|
/* A3 O SEND KEY */
|
|
{ 0xA3, R, "SEND KEY" },
|
|
/* A4 OOO O OOOOOOO MAINTENANCE (OUT) */
|
|
{ 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
|
|
/* A4 O REPORT KEY */
|
|
{ 0xA4, R, "REPORT KEY" },
|
|
/* A5 O O OM MOVE MEDIUM */
|
|
{ 0xA5, T | W | O | M, "MOVE MEDIUM" },
|
|
/* A5 O PLAY AUDIO(12) */
|
|
{ 0xA5, R, "PLAY AUDIO(12)" },
|
|
/* A6 O EXCHANGE MEDIUM */
|
|
{ 0xA6, M, "EXCHANGE MEDIUM" },
|
|
/* A6 O LOAD/UNLOAD C/DVD */
|
|
{ 0xA6, R, "LOAD/UNLOAD C/DVD" },
|
|
/* A7 ZZ O O MOVE MEDIUM ATTACHED */
|
|
{ 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" },
|
|
/* A7 O SET READ AHEAD */
|
|
{ 0xA7, R, "SET READ AHEAD" },
|
|
/* A8 O OOO READ(12) */
|
|
{ 0xA8, D | W | R | O, "READ(12)" },
|
|
/* A8 GET MESSAGE(12) */
|
|
{ 0xA8, C, "GET MESSAGE(12)" },
|
|
/* A9 O SERVICE ACTION OUT(12) */
|
|
{ 0xA9, V, "SERVICE ACTION OUT(12)" },
|
|
/* AA O OOO WRITE(12) */
|
|
{ 0xAA, D | W | R | O, "WRITE(12)" },
|
|
/* AA SEND MESSAGE(12) */
|
|
{ 0xAA, C, "SEND MESSAGE(12)" },
|
|
/* AB O O SERVICE ACTION IN(12) */
|
|
{ 0xAB, R | V, "SERVICE ACTION IN(12)" },
|
|
/* AC O ERASE(12) */
|
|
{ 0xAC, O, "ERASE(12)" },
|
|
/* AC O GET PERFORMANCE */
|
|
{ 0xAC, R, "GET PERFORMANCE" },
|
|
/* AD O READ DVD STRUCTURE */
|
|
{ 0xAD, R, "READ DVD STRUCTURE" },
|
|
/* AE O O O WRITE AND VERIFY(12) */
|
|
{ 0xAE, D | W | O, "WRITE AND VERIFY(12)" },
|
|
/* AF O OZO VERIFY(12) */
|
|
{ 0xAF, D | W | R | O, "VERIFY(12)" },
|
|
/* B0 ZZZ SEARCH DATA HIGH(12) */
|
|
{ 0xB0, W | R | O, "SEARCH DATA HIGH(12)" },
|
|
/* B1 ZZZ SEARCH DATA EQUAL(12) */
|
|
{ 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" },
|
|
/* B2 ZZZ SEARCH DATA LOW(12) */
|
|
{ 0xB2, W | R | O, "SEARCH DATA LOW(12)" },
|
|
/* B3 Z OZO SET LIMITS(12) */
|
|
{ 0xB3, D | W | R | O, "SET LIMITS(12)" },
|
|
/* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */
|
|
{ 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
|
|
/* B5 OO O O SECURITY PROTOCOL OUT */
|
|
{ 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" },
|
|
/* B5 O REQUEST VOLUME ELEMENT ADDRESS */
|
|
{ 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" },
|
|
/* B6 O SEND VOLUME TAG */
|
|
{ 0xB6, M, "SEND VOLUME TAG" },
|
|
/* B6 O SET STREAMING */
|
|
{ 0xB6, R, "SET STREAMING" },
|
|
/* B7 O O READ DEFECT DATA(12) */
|
|
{ 0xB7, D | O, "READ DEFECT DATA(12)" },
|
|
/* B8 O OZOM READ ELEMENT STATUS */
|
|
{ 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" },
|
|
/* B9 O READ CD MSF */
|
|
{ 0xB9, R, "READ CD MSF" },
|
|
/* BA O O OOMO REDUNDANCY GROUP (IN) */
|
|
{ 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
|
|
/* BA O SCAN */
|
|
{ 0xBA, R, "SCAN" },
|
|
/* BB O O OOOO REDUNDANCY GROUP (OUT) */
|
|
{ 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
|
|
/* BB O SET CD SPEED */
|
|
{ 0xBB, R, "SET CD SPEED" },
|
|
/* BC O O OOMO SPARE (IN) */
|
|
{ 0xBC, D | W | O | M | A | E, "SPARE (IN)" },
|
|
/* BD O O OOOO SPARE (OUT) */
|
|
{ 0xBD, D | W | O | M | A | E, "SPARE (OUT)" },
|
|
/* BD O MECHANISM STATUS */
|
|
{ 0xBD, R, "MECHANISM STATUS" },
|
|
/* BE O O OOMO VOLUME SET (IN) */
|
|
{ 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" },
|
|
/* BE O READ CD */
|
|
{ 0xBE, R, "READ CD" },
|
|
/* BF O O OOOO VOLUME SET (OUT) */
|
|
{ 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" },
|
|
/* BF O SEND DVD STRUCTURE */
|
|
{ 0xBF, R, "SEND DVD STRUCTURE" }
|
|
};
|
|
|
|
const char *
|
|
scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
|
|
{
|
|
caddr_t match;
|
|
int i, j;
|
|
u_int32_t opmask;
|
|
u_int16_t pd_type;
|
|
int num_ops[2];
|
|
struct op_table_entry *table[2];
|
|
int num_tables;
|
|
|
|
/*
|
|
* If we've got inquiry data, use it to determine what type of
|
|
* device we're dealing with here. Otherwise, assume direct
|
|
* access.
|
|
*/
|
|
if (inq_data == NULL) {
|
|
pd_type = T_DIRECT;
|
|
match = NULL;
|
|
} else {
|
|
pd_type = SID_TYPE(inq_data);
|
|
|
|
match = cam_quirkmatch((caddr_t)inq_data,
|
|
(caddr_t)scsi_op_quirk_table,
|
|
sizeof(scsi_op_quirk_table)/
|
|
sizeof(*scsi_op_quirk_table),
|
|
sizeof(*scsi_op_quirk_table),
|
|
scsi_inquiry_match);
|
|
}
|
|
|
|
if (match != NULL) {
|
|
table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
|
|
num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
|
|
table[1] = scsi_op_codes;
|
|
num_ops[1] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]);
|
|
num_tables = 2;
|
|
} else {
|
|
/*
|
|
* If this is true, we have a vendor specific opcode that
|
|
* wasn't covered in the quirk table.
|
|
*/
|
|
if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
|
|
return("Vendor Specific Command");
|
|
|
|
table[0] = scsi_op_codes;
|
|
num_ops[0] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]);
|
|
num_tables = 1;
|
|
}
|
|
|
|
/* RBC is 'Simplified' Direct Access Device */
|
|
if (pd_type == T_RBC)
|
|
pd_type = T_DIRECT;
|
|
|
|
/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
|
|
if (pd_type == T_NODEVICE)
|
|
pd_type = T_DIRECT;
|
|
|
|
opmask = 1 << pd_type;
|
|
|
|
for (j = 0; j < num_tables; j++) {
|
|
for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
|
|
if ((table[j][i].opcode == opcode)
|
|
&& ((table[j][i].opmask & opmask) != 0))
|
|
return(table[j][i].desc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we can't find a match for the command in the table, we just
|
|
* assume it's a vendor specifc command.
|
|
*/
|
|
return("Vendor Specific Command");
|
|
|
|
}
|
|
|
|
#else /* SCSI_NO_OP_STRINGS */
|
|
|
|
const char *
|
|
scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
|
|
{
|
|
return("");
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#if !defined(SCSI_NO_SENSE_STRINGS)
|
|
#define SST(asc, ascq, action, desc) \
|
|
asc, ascq, action, desc
|
|
#else
|
|
const char empty_string[] = "";
|
|
|
|
#define SST(asc, ascq, action, desc) \
|
|
asc, ascq, action, empty_string
|
|
#endif
|
|
|
|
const struct sense_key_table_entry sense_key_table[] =
|
|
{
|
|
{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
|
|
{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
|
|
{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
|
|
{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
|
|
{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
|
|
{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
|
|
{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
|
|
{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
|
|
{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
|
|
{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
|
|
{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
|
|
{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
|
|
{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
|
|
{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
|
|
{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
|
|
{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
|
|
};
|
|
|
|
const int sense_key_table_size =
|
|
sizeof(sense_key_table)/sizeof(sense_key_table[0]);
|
|
|
|
static struct asc_table_entry quantum_fireball_entries[] = {
|
|
{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
|
|
"Logical unit not ready, initializing cmd. required") }
|
|
};
|
|
|
|
static struct asc_table_entry sony_mo_entries[] = {
|
|
{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
|
|
"Logical unit not ready, cause not reportable") }
|
|
};
|
|
|
|
static struct asc_table_entry hgst_entries[] = {
|
|
{ SST(0x04, 0xF0, SS_RDEF,
|
|
"Vendor Unique - Logical Unit Not Ready") },
|
|
{ SST(0x0A, 0x01, SS_RDEF,
|
|
"Unrecovered Super Certification Log Write Error") },
|
|
{ SST(0x0A, 0x02, SS_RDEF,
|
|
"Unrecovered Super Certification Log Read Error") },
|
|
{ SST(0x15, 0x03, SS_RDEF,
|
|
"Unrecovered Sector Error") },
|
|
{ SST(0x3E, 0x04, SS_RDEF,
|
|
"Unrecovered Self-Test Hard-Cache Test Fail") },
|
|
{ SST(0x3E, 0x05, SS_RDEF,
|
|
"Unrecovered Self-Test OTF-Cache Fail") },
|
|
{ SST(0x40, 0x00, SS_RDEF,
|
|
"Unrecovered SAT No Buffer Overflow Error") },
|
|
{ SST(0x40, 0x01, SS_RDEF,
|
|
"Unrecovered SAT Buffer Overflow Error") },
|
|
{ SST(0x40, 0x02, SS_RDEF,
|
|
"Unrecovered SAT No Buffer Overflow With ECS Fault") },
|
|
{ SST(0x40, 0x03, SS_RDEF,
|
|
"Unrecovered SAT Buffer Overflow With ECS Fault") },
|
|
{ SST(0x40, 0x81, SS_RDEF,
|
|
"DRAM Failure") },
|
|
{ SST(0x44, 0x0B, SS_RDEF,
|
|
"Vendor Unique - Internal Target Failure") },
|
|
{ SST(0x44, 0xF2, SS_RDEF,
|
|
"Vendor Unique - Internal Target Failure") },
|
|
{ SST(0x44, 0xF6, SS_RDEF,
|
|
"Vendor Unique - Internal Target Failure") },
|
|
{ SST(0x44, 0xF9, SS_RDEF,
|
|
"Vendor Unique - Internal Target Failure") },
|
|
{ SST(0x44, 0xFA, SS_RDEF,
|
|
"Vendor Unique - Internal Target Failure") },
|
|
{ SST(0x5D, 0x22, SS_RDEF,
|
|
"Extreme Over-Temperature Warning") },
|
|
{ SST(0x5D, 0x50, SS_RDEF,
|
|
"Load/Unload cycle Count Warning") },
|
|
{ SST(0x81, 0x00, SS_RDEF,
|
|
"Vendor Unique - Internal Logic Error") },
|
|
{ SST(0x85, 0x00, SS_RDEF,
|
|
"Vendor Unique - Internal Key Seed Error") },
|
|
};
|
|
|
|
static struct asc_table_entry seagate_entries[] = {
|
|
{ SST(0x04, 0xF0, SS_RDEF,
|
|
"Logical Unit Not Ready, super certify in Progress") },
|
|
{ SST(0x08, 0x86, SS_RDEF,
|
|
"Write Fault Data Corruption") },
|
|
{ SST(0x09, 0x0D, SS_RDEF,
|
|
"Tracking Failure") },
|
|
{ SST(0x09, 0x0E, SS_RDEF,
|
|
"ETF Failure") },
|
|
{ SST(0x0B, 0x5D, SS_RDEF,
|
|
"Pre-SMART Warning") },
|
|
{ SST(0x0B, 0x85, SS_RDEF,
|
|
"5V Voltage Warning") },
|
|
{ SST(0x0B, 0x8C, SS_RDEF,
|
|
"12V Voltage Warning") },
|
|
{ SST(0x0C, 0xFF, SS_RDEF,
|
|
"Write Error - Too many error recovery revs") },
|
|
{ SST(0x11, 0xFF, SS_RDEF,
|
|
"Unrecovered Read Error - Too many error recovery revs") },
|
|
{ SST(0x19, 0x0E, SS_RDEF,
|
|
"Fewer than 1/2 defect list copies") },
|
|
{ SST(0x20, 0xF3, SS_RDEF,
|
|
"Illegal CDB linked to skip mask cmd") },
|
|
{ SST(0x24, 0xF0, SS_RDEF,
|
|
"Illegal byte in CDB, LBA not matching") },
|
|
{ SST(0x24, 0xF1, SS_RDEF,
|
|
"Illegal byte in CDB, LEN not matching") },
|
|
{ SST(0x24, 0xF2, SS_RDEF,
|
|
"Mask not matching transfer length") },
|
|
{ SST(0x24, 0xF3, SS_RDEF,
|
|
"Drive formatted without plist") },
|
|
{ SST(0x26, 0x95, SS_RDEF,
|
|
"Invalid Field Parameter - CAP File") },
|
|
{ SST(0x26, 0x96, SS_RDEF,
|
|
"Invalid Field Parameter - RAP File") },
|
|
{ SST(0x26, 0x97, SS_RDEF,
|
|
"Invalid Field Parameter - TMS Firmware Tag") },
|
|
{ SST(0x26, 0x98, SS_RDEF,
|
|
"Invalid Field Parameter - Check Sum") },
|
|
{ SST(0x26, 0x99, SS_RDEF,
|
|
"Invalid Field Parameter - Firmware Tag") },
|
|
{ SST(0x29, 0x08, SS_RDEF,
|
|
"Write Log Dump data") },
|
|
{ SST(0x29, 0x09, SS_RDEF,
|
|
"Write Log Dump data") },
|
|
{ SST(0x29, 0x0A, SS_RDEF,
|
|
"Reserved disk space") },
|
|
{ SST(0x29, 0x0B, SS_RDEF,
|
|
"SDBP") },
|
|
{ SST(0x29, 0x0C, SS_RDEF,
|
|
"SDBP") },
|
|
{ SST(0x31, 0x91, SS_RDEF,
|
|
"Format Corrupted World Wide Name (WWN) is Invalid") },
|
|
{ SST(0x32, 0x03, SS_RDEF,
|
|
"Defect List - Length exceeds Command Allocated Length") },
|
|
{ SST(0x33, 0x00, SS_RDEF,
|
|
"Flash not ready for access") },
|
|
{ SST(0x3F, 0x70, SS_RDEF,
|
|
"Invalid RAP block") },
|
|
{ SST(0x3F, 0x71, SS_RDEF,
|
|
"RAP/ETF mismatch") },
|
|
{ SST(0x3F, 0x90, SS_RDEF,
|
|
"Invalid CAP block") },
|
|
{ SST(0x3F, 0x91, SS_RDEF,
|
|
"World Wide Name (WWN) Mismatch") },
|
|
{ SST(0x40, 0x01, SS_RDEF,
|
|
"DRAM Parity Error") },
|
|
{ SST(0x40, 0x02, SS_RDEF,
|
|
"DRAM Parity Error") },
|
|
{ SST(0x42, 0x0A, SS_RDEF,
|
|
"Loopback Test") },
|
|
{ SST(0x42, 0x0B, SS_RDEF,
|
|
"Loopback Test") },
|
|
{ SST(0x44, 0xF2, SS_RDEF,
|
|
"Compare error during data integrity check") },
|
|
{ SST(0x44, 0xF6, SS_RDEF,
|
|
"Unrecoverable error during data integrity check") },
|
|
{ SST(0x47, 0x80, SS_RDEF,
|
|
"Fibre Channel Sequence Error") },
|
|
{ SST(0x4E, 0x01, SS_RDEF,
|
|
"Information Unit Too Short") },
|
|
{ SST(0x80, 0x00, SS_RDEF,
|
|
"General Firmware Error / Command Timeout") },
|
|
{ SST(0x80, 0x01, SS_RDEF,
|
|
"Command Timeout") },
|
|
{ SST(0x80, 0x02, SS_RDEF,
|
|
"Command Timeout") },
|
|
{ SST(0x80, 0x80, SS_RDEF,
|
|
"FC FIFO Error During Read Transfer") },
|
|
{ SST(0x80, 0x81, SS_RDEF,
|
|
"FC FIFO Error During Write Transfer") },
|
|
{ SST(0x80, 0x82, SS_RDEF,
|
|
"DISC FIFO Error During Read Transfer") },
|
|
{ SST(0x80, 0x83, SS_RDEF,
|
|
"DISC FIFO Error During Write Transfer") },
|
|
{ SST(0x80, 0x84, SS_RDEF,
|
|
"LBA Seeded LRC Error on Read") },
|
|
{ SST(0x80, 0x85, SS_RDEF,
|
|
"LBA Seeded LRC Error on Write") },
|
|
{ SST(0x80, 0x86, SS_RDEF,
|
|
"IOEDC Error on Read") },
|
|
{ SST(0x80, 0x87, SS_RDEF,
|
|
"IOEDC Error on Write") },
|
|
{ SST(0x80, 0x88, SS_RDEF,
|
|
"Host Parity Check Failed") },
|
|
{ SST(0x80, 0x89, SS_RDEF,
|
|
"IOEDC error on read detected by formatter") },
|
|
{ SST(0x80, 0x8A, SS_RDEF,
|
|
"Host Parity Errors / Host FIFO Initialization Failed") },
|
|
{ SST(0x80, 0x8B, SS_RDEF,
|
|
"Host Parity Errors") },
|
|
{ SST(0x80, 0x8C, SS_RDEF,
|
|
"Host Parity Errors") },
|
|
{ SST(0x80, 0x8D, SS_RDEF,
|
|
"Host Parity Errors") },
|
|
{ SST(0x81, 0x00, SS_RDEF,
|
|
"LA Check Failed") },
|
|
{ SST(0x82, 0x00, SS_RDEF,
|
|
"Internal client detected insufficient buffer") },
|
|
{ SST(0x84, 0x00, SS_RDEF,
|
|
"Scheduled Diagnostic And Repair") },
|
|
};
|
|
|
|
static struct scsi_sense_quirk_entry sense_quirk_table[] = {
|
|
{
|
|
/*
|
|
* XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
|
|
* when they really should return 0x04 0x02.
|
|
*/
|
|
{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
|
|
/*num_sense_keys*/0,
|
|
sizeof(quantum_fireball_entries)/sizeof(struct asc_table_entry),
|
|
/*sense key entries*/NULL,
|
|
quantum_fireball_entries
|
|
},
|
|
{
|
|
/*
|
|
* This Sony MO drive likes to return 0x04, 0x00 when it
|
|
* isn't spun up.
|
|
*/
|
|
{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
|
|
/*num_sense_keys*/0,
|
|
sizeof(sony_mo_entries)/sizeof(struct asc_table_entry),
|
|
/*sense key entries*/NULL,
|
|
sony_mo_entries
|
|
},
|
|
{
|
|
/*
|
|
* HGST vendor-specific error codes
|
|
*/
|
|
{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
|
|
/*num_sense_keys*/0,
|
|
sizeof(hgst_entries)/sizeof(struct asc_table_entry),
|
|
/*sense key entries*/NULL,
|
|
hgst_entries
|
|
},
|
|
{
|
|
/*
|
|
* SEAGATE vendor-specific error codes
|
|
*/
|
|
{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
|
|
/*num_sense_keys*/0,
|
|
sizeof(seagate_entries)/sizeof(struct asc_table_entry),
|
|
/*sense key entries*/NULL,
|
|
seagate_entries
|
|
}
|
|
};
|
|
|
|
const int sense_quirk_table_size =
|
|
sizeof(sense_quirk_table)/sizeof(sense_quirk_table[0]);
|
|
|
|
static struct asc_table_entry asc_table[] = {
|
|
/*
|
|
* From: http://www.t10.org/lists/asc-num.txt
|
|
* Modifications by Jung-uk Kim (jkim@FreeBSD.org)
|
|
*/
|
|
/*
|
|
* File: ASC-NUM.TXT
|
|
*
|
|
* SCSI ASC/ASCQ Assignments
|
|
* Numeric Sorted Listing
|
|
* as of 5/20/12
|
|
*
|
|
* D - DIRECT ACCESS DEVICE (SBC-2) device column key
|
|
* .T - SEQUENTIAL ACCESS DEVICE (SSC) -------------------
|
|
* . L - PRINTER DEVICE (SSC) blank = reserved
|
|
* . P - PROCESSOR DEVICE (SPC) not blank = allowed
|
|
* . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
|
|
* . . R - CD DEVICE (MMC)
|
|
* . . O - OPTICAL MEMORY DEVICE (SBC-2)
|
|
* . . .M - MEDIA CHANGER DEVICE (SMC)
|
|
* . . . A - STORAGE ARRAY DEVICE (SCC)
|
|
* . . . E - ENCLOSURE SERVICES DEVICE (SES)
|
|
* . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
|
|
* . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
|
|
* . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
|
|
* . . . . .F - OBJECT-BASED STORAGE (OSD)
|
|
* DTLPWROMAEBKVF
|
|
* ASC ASCQ Action
|
|
* Description
|
|
*/
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x00, 0x00, SS_NOP,
|
|
"No additional sense information") },
|
|
/* T */
|
|
{ SST(0x00, 0x01, SS_RDEF,
|
|
"Filemark detected") },
|
|
/* T */
|
|
{ SST(0x00, 0x02, SS_RDEF,
|
|
"End-of-partition/medium detected") },
|
|
/* T */
|
|
{ SST(0x00, 0x03, SS_RDEF,
|
|
"Setmark detected") },
|
|
/* T */
|
|
{ SST(0x00, 0x04, SS_RDEF,
|
|
"Beginning-of-partition/medium detected") },
|
|
/* TL */
|
|
{ SST(0x00, 0x05, SS_RDEF,
|
|
"End-of-data detected") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x00, 0x06, SS_RDEF,
|
|
"I/O process terminated") },
|
|
/* T */
|
|
{ SST(0x00, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Programmable early warning detected") },
|
|
/* R */
|
|
{ SST(0x00, 0x11, SS_FATAL | EBUSY,
|
|
"Audio play operation in progress") },
|
|
/* R */
|
|
{ SST(0x00, 0x12, SS_NOP,
|
|
"Audio play operation paused") },
|
|
/* R */
|
|
{ SST(0x00, 0x13, SS_NOP,
|
|
"Audio play operation successfully completed") },
|
|
/* R */
|
|
{ SST(0x00, 0x14, SS_RDEF,
|
|
"Audio play operation stopped due to error") },
|
|
/* R */
|
|
{ SST(0x00, 0x15, SS_NOP,
|
|
"No current audio status to return") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x00, 0x16, SS_FATAL | EBUSY,
|
|
"Operation in progress") },
|
|
/* DTL WROMAEBKVF */
|
|
{ SST(0x00, 0x17, SS_RDEF,
|
|
"Cleaning requested") },
|
|
/* T */
|
|
{ SST(0x00, 0x18, SS_RDEF, /* XXX TBD */
|
|
"Erase operation in progress") },
|
|
/* T */
|
|
{ SST(0x00, 0x19, SS_RDEF, /* XXX TBD */
|
|
"Locate operation in progress") },
|
|
/* T */
|
|
{ SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */
|
|
"Rewind operation in progress") },
|
|
/* T */
|
|
{ SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */
|
|
"Set capacity operation in progress") },
|
|
/* T */
|
|
{ SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */
|
|
"Verify operation in progress") },
|
|
/* DT B */
|
|
{ SST(0x00, 0x1D, SS_RDEF, /* XXX TBD */
|
|
"ATA pass through information available") },
|
|
/* DT R MAEBKV */
|
|
{ SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */
|
|
"Conflicting SA creation request") },
|
|
/* DT B */
|
|
{ SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */
|
|
"Logical unit transitioning to another power condition") },
|
|
/* DT P B */
|
|
{ SST(0x00, 0x20, SS_RDEF, /* XXX TBD */
|
|
"Extended copy information available") },
|
|
/* D W O BK */
|
|
{ SST(0x01, 0x00, SS_RDEF,
|
|
"No index/sector signal") },
|
|
/* D WRO BK */
|
|
{ SST(0x02, 0x00, SS_RDEF,
|
|
"No seek complete") },
|
|
/* DTL W O BK */
|
|
{ SST(0x03, 0x00, SS_RDEF,
|
|
"Peripheral device write fault") },
|
|
/* T */
|
|
{ SST(0x03, 0x01, SS_RDEF,
|
|
"No write current") },
|
|
/* T */
|
|
{ SST(0x03, 0x02, SS_RDEF,
|
|
"Excessive write errors") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x04, 0x00, SS_RDEF,
|
|
"Logical unit not ready, cause not reportable") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x04, 0x01, SS_TUR | SSQ_MANY | SSQ_DECREMENT_COUNT | EBUSY,
|
|
"Logical unit is in process of becoming ready") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
|
|
"Logical unit not ready, initializing command required") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x04, 0x03, SS_FATAL | ENXIO,
|
|
"Logical unit not ready, manual intervention required") },
|
|
/* DTL RO B */
|
|
{ SST(0x04, 0x04, SS_FATAL | EBUSY,
|
|
"Logical unit not ready, format in progress") },
|
|
/* DT W O A BK F */
|
|
{ SST(0x04, 0x05, SS_FATAL | EBUSY,
|
|
"Logical unit not ready, rebuild in progress") },
|
|
/* DT W O A BK */
|
|
{ SST(0x04, 0x06, SS_FATAL | EBUSY,
|
|
"Logical unit not ready, recalculation in progress") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x04, 0x07, SS_FATAL | EBUSY,
|
|
"Logical unit not ready, operation in progress") },
|
|
/* R */
|
|
{ SST(0x04, 0x08, SS_FATAL | EBUSY,
|
|
"Logical unit not ready, long write in progress") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x04, 0x09, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, self-test in progress") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x04, 0x0A, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not accessible, asymmetric access state transition")},
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x04, 0x0B, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not accessible, target port in standby state") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x04, 0x0C, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not accessible, target port in unavailable state") },
|
|
/* F */
|
|
{ SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, structure check required") },
|
|
/* DT WROM B */
|
|
{ SST(0x04, 0x10, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, auxiliary memory not accessible") },
|
|
/* DT WRO AEB VF */
|
|
{ SST(0x04, 0x11, SS_TUR | SSQ_MANY | SSQ_DECREMENT_COUNT | EBUSY,
|
|
"Logical unit not ready, notify (enable spinup) required") },
|
|
/* M V */
|
|
{ SST(0x04, 0x12, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, offline") },
|
|
/* DT R MAEBKV */
|
|
{ SST(0x04, 0x13, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, SA creation in progress") },
|
|
/* D B */
|
|
{ SST(0x04, 0x14, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, space allocation in progress") },
|
|
/* M */
|
|
{ SST(0x04, 0x15, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, robotics disabled") },
|
|
/* M */
|
|
{ SST(0x04, 0x16, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, configuration required") },
|
|
/* M */
|
|
{ SST(0x04, 0x17, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, calibration required") },
|
|
/* M */
|
|
{ SST(0x04, 0x18, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, a door is open") },
|
|
/* M */
|
|
{ SST(0x04, 0x19, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, operating in sequential mode") },
|
|
/* DT B */
|
|
{ SST(0x04, 0x1A, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, START/STOP UNIT command in progress") },
|
|
/* D B */
|
|
{ SST(0x04, 0x1B, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, sanitize in progress") },
|
|
/* DT MAEB */
|
|
{ SST(0x04, 0x1C, SS_RDEF, /* XXX TBD */
|
|
"Logical unit not ready, additional power use not yet granted") },
|
|
/* DTL WROMAEBKVF */
|
|
{ SST(0x05, 0x00, SS_RDEF,
|
|
"Logical unit does not respond to selection") },
|
|
/* D WROM BK */
|
|
{ SST(0x06, 0x00, SS_RDEF,
|
|
"No reference position found") },
|
|
/* DTL WROM BK */
|
|
{ SST(0x07, 0x00, SS_RDEF,
|
|
"Multiple peripheral devices selected") },
|
|
/* DTL WROMAEBKVF */
|
|
{ SST(0x08, 0x00, SS_RDEF,
|
|
"Logical unit communication failure") },
|
|
/* DTL WROMAEBKVF */
|
|
{ SST(0x08, 0x01, SS_RDEF,
|
|
"Logical unit communication time-out") },
|
|
/* DTL WROMAEBKVF */
|
|
{ SST(0x08, 0x02, SS_RDEF,
|
|
"Logical unit communication parity error") },
|
|
/* DT ROM BK */
|
|
{ SST(0x08, 0x03, SS_RDEF,
|
|
"Logical unit communication CRC error (Ultra-DMA/32)") },
|
|
/* DTLPWRO K */
|
|
{ SST(0x08, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Unreachable copy target") },
|
|
/* DT WRO B */
|
|
{ SST(0x09, 0x00, SS_RDEF,
|
|
"Track following error") },
|
|
/* WRO K */
|
|
{ SST(0x09, 0x01, SS_RDEF,
|
|
"Tracking servo failure") },
|
|
/* WRO K */
|
|
{ SST(0x09, 0x02, SS_RDEF,
|
|
"Focus servo failure") },
|
|
/* WRO */
|
|
{ SST(0x09, 0x03, SS_RDEF,
|
|
"Spindle servo failure") },
|
|
/* DT WRO B */
|
|
{ SST(0x09, 0x04, SS_RDEF,
|
|
"Head select fault") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
|
|
"Error log overflow") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x0B, 0x00, SS_RDEF,
|
|
"Warning") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x0B, 0x01, SS_RDEF,
|
|
"Warning - specified temperature exceeded") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x0B, 0x02, SS_RDEF,
|
|
"Warning - enclosure degraded") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x0B, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Warning - background self-test failed") },
|
|
/* DTLPWRO AEBKVF */
|
|
{ SST(0x0B, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Warning - background pre-scan detected medium error") },
|
|
/* DTLPWRO AEBKVF */
|
|
{ SST(0x0B, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Warning - background medium scan detected medium error") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x0B, 0x06, SS_RDEF, /* XXX TBD */
|
|
"Warning - non-volatile cache now volatile") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x0B, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Warning - degraded power to non-volatile cache") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x0B, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Warning - power loss expected") },
|
|
/* D */
|
|
{ SST(0x0B, 0x09, SS_RDEF, /* XXX TBD */
|
|
"Warning - device statistics notification available") },
|
|
/* T R */
|
|
{ SST(0x0C, 0x00, SS_RDEF,
|
|
"Write error") },
|
|
/* K */
|
|
{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Write error - recovered with auto reallocation") },
|
|
/* D W O BK */
|
|
{ SST(0x0C, 0x02, SS_RDEF,
|
|
"Write error - auto reallocation failed") },
|
|
/* D W O BK */
|
|
{ SST(0x0C, 0x03, SS_RDEF,
|
|
"Write error - recommend reassignment") },
|
|
/* DT W O B */
|
|
{ SST(0x0C, 0x04, SS_RDEF,
|
|
"Compression check miscompare error") },
|
|
/* DT W O B */
|
|
{ SST(0x0C, 0x05, SS_RDEF,
|
|
"Data expansion occurred during compression") },
|
|
/* DT W O B */
|
|
{ SST(0x0C, 0x06, SS_RDEF,
|
|
"Block not compressible") },
|
|
/* R */
|
|
{ SST(0x0C, 0x07, SS_RDEF,
|
|
"Write error - recovery needed") },
|
|
/* R */
|
|
{ SST(0x0C, 0x08, SS_RDEF,
|
|
"Write error - recovery failed") },
|
|
/* R */
|
|
{ SST(0x0C, 0x09, SS_RDEF,
|
|
"Write error - loss of streaming") },
|
|
/* R */
|
|
{ SST(0x0C, 0x0A, SS_RDEF,
|
|
"Write error - padding blocks added") },
|
|
/* DT WROM B */
|
|
{ SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */
|
|
"Auxiliary memory write error") },
|
|
/* DTLPWRO AEBKVF */
|
|
{ SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */
|
|
"Write error - unexpected unsolicited data") },
|
|
/* DTLPWRO AEBKVF */
|
|
{ SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */
|
|
"Write error - not enough unsolicited data") },
|
|
/* DT W O BK */
|
|
{ SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */
|
|
"Multiple write errors") },
|
|
/* R */
|
|
{ SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */
|
|
"Defects in error window") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */
|
|
"Error detected by third party temporary initiator") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Third party device failure") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Copy target device not reachable") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Incorrect copy target device type") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Copy target device data underrun") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Copy target device data overrun") },
|
|
/* DT PWROMAEBK F */
|
|
{ SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */
|
|
"Invalid information unit") },
|
|
/* DT PWROMAEBK F */
|
|
{ SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Information unit too short") },
|
|
/* DT PWROMAEBK F */
|
|
{ SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Information unit too long") },
|
|
/* DT P R MAEBK F */
|
|
{ SST(0x0E, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Invalid field in command information unit") },
|
|
/* D W O BK */
|
|
{ SST(0x10, 0x00, SS_RDEF,
|
|
"ID CRC or ECC error") },
|
|
/* DT W O */
|
|
{ SST(0x10, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Logical block guard check failed") },
|
|
/* DT W O */
|
|
{ SST(0x10, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Logical block application tag check failed") },
|
|
/* DT W O */
|
|
{ SST(0x10, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Logical block reference tag check failed") },
|
|
/* T */
|
|
{ SST(0x10, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Logical block protection error on recovered buffer data") },
|
|
/* T */
|
|
{ SST(0x10, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Logical block protection method error") },
|
|
/* DT WRO BK */
|
|
{ SST(0x11, 0x00, SS_FATAL|EIO,
|
|
"Unrecovered read error") },
|
|
/* DT WRO BK */
|
|
{ SST(0x11, 0x01, SS_FATAL|EIO,
|
|
"Read retries exhausted") },
|
|
/* DT WRO BK */
|
|
{ SST(0x11, 0x02, SS_FATAL|EIO,
|
|
"Error too long to correct") },
|
|
/* DT W O BK */
|
|
{ SST(0x11, 0x03, SS_FATAL|EIO,
|
|
"Multiple read errors") },
|
|
/* D W O BK */
|
|
{ SST(0x11, 0x04, SS_FATAL|EIO,
|
|
"Unrecovered read error - auto reallocate failed") },
|
|
/* WRO B */
|
|
{ SST(0x11, 0x05, SS_FATAL|EIO,
|
|
"L-EC uncorrectable error") },
|
|
/* WRO B */
|
|
{ SST(0x11, 0x06, SS_FATAL|EIO,
|
|
"CIRC unrecovered error") },
|
|
/* W O B */
|
|
{ SST(0x11, 0x07, SS_RDEF,
|
|
"Data re-synchronization error") },
|
|
/* T */
|
|
{ SST(0x11, 0x08, SS_RDEF,
|
|
"Incomplete block read") },
|
|
/* T */
|
|
{ SST(0x11, 0x09, SS_RDEF,
|
|
"No gap found") },
|
|
/* DT O BK */
|
|
{ SST(0x11, 0x0A, SS_RDEF,
|
|
"Miscorrected error") },
|
|
/* D W O BK */
|
|
{ SST(0x11, 0x0B, SS_FATAL|EIO,
|
|
"Unrecovered read error - recommend reassignment") },
|
|
/* D W O BK */
|
|
{ SST(0x11, 0x0C, SS_FATAL|EIO,
|
|
"Unrecovered read error - recommend rewrite the data") },
|
|
/* DT WRO B */
|
|
{ SST(0x11, 0x0D, SS_RDEF,
|
|
"De-compression CRC error") },
|
|
/* DT WRO B */
|
|
{ SST(0x11, 0x0E, SS_RDEF,
|
|
"Cannot decompress using declared algorithm") },
|
|
/* R */
|
|
{ SST(0x11, 0x0F, SS_RDEF,
|
|
"Error reading UPC/EAN number") },
|
|
/* R */
|
|
{ SST(0x11, 0x10, SS_RDEF,
|
|
"Error reading ISRC number") },
|
|
/* R */
|
|
{ SST(0x11, 0x11, SS_RDEF,
|
|
"Read error - loss of streaming") },
|
|
/* DT WROM B */
|
|
{ SST(0x11, 0x12, SS_RDEF, /* XXX TBD */
|
|
"Auxiliary memory read error") },
|
|
/* DTLPWRO AEBKVF */
|
|
{ SST(0x11, 0x13, SS_RDEF, /* XXX TBD */
|
|
"Read error - failed retransmission request") },
|
|
/* D */
|
|
{ SST(0x11, 0x14, SS_RDEF, /* XXX TBD */
|
|
"Read error - LBA marked bad by application client") },
|
|
/* D W O BK */
|
|
{ SST(0x12, 0x00, SS_RDEF,
|
|
"Address mark not found for ID field") },
|
|
/* D W O BK */
|
|
{ SST(0x13, 0x00, SS_RDEF,
|
|
"Address mark not found for data field") },
|
|
/* DTL WRO BK */
|
|
{ SST(0x14, 0x00, SS_RDEF,
|
|
"Recorded entity not found") },
|
|
/* DT WRO BK */
|
|
{ SST(0x14, 0x01, SS_RDEF,
|
|
"Record not found") },
|
|
/* T */
|
|
{ SST(0x14, 0x02, SS_RDEF,
|
|
"Filemark or setmark not found") },
|
|
/* T */
|
|
{ SST(0x14, 0x03, SS_RDEF,
|
|
"End-of-data not found") },
|
|
/* T */
|
|
{ SST(0x14, 0x04, SS_RDEF,
|
|
"Block sequence error") },
|
|
/* DT W O BK */
|
|
{ SST(0x14, 0x05, SS_RDEF,
|
|
"Record not found - recommend reassignment") },
|
|
/* DT W O BK */
|
|
{ SST(0x14, 0x06, SS_RDEF,
|
|
"Record not found - data auto-reallocated") },
|
|
/* T */
|
|
{ SST(0x14, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Locate operation failure") },
|
|
/* DTL WROM BK */
|
|
{ SST(0x15, 0x00, SS_RDEF,
|
|
"Random positioning error") },
|
|
/* DTL WROM BK */
|
|
{ SST(0x15, 0x01, SS_RDEF,
|
|
"Mechanical positioning error") },
|
|
/* DT WRO BK */
|
|
{ SST(0x15, 0x02, SS_RDEF,
|
|
"Positioning error detected by read of medium") },
|
|
/* D W O BK */
|
|
{ SST(0x16, 0x00, SS_RDEF,
|
|
"Data synchronization mark error") },
|
|
/* D W O BK */
|
|
{ SST(0x16, 0x01, SS_RDEF,
|
|
"Data sync error - data rewritten") },
|
|
/* D W O BK */
|
|
{ SST(0x16, 0x02, SS_RDEF,
|
|
"Data sync error - recommend rewrite") },
|
|
/* D W O BK */
|
|
{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Data sync error - data auto-reallocated") },
|
|
/* D W O BK */
|
|
{ SST(0x16, 0x04, SS_RDEF,
|
|
"Data sync error - recommend reassignment") },
|
|
/* DT WRO BK */
|
|
{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data with no error correction applied") },
|
|
/* DT WRO BK */
|
|
{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data with retries") },
|
|
/* DT WRO BK */
|
|
{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data with positive head offset") },
|
|
/* DT WRO BK */
|
|
{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data with negative head offset") },
|
|
/* WRO B */
|
|
{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data with retries and/or CIRC applied") },
|
|
/* D WRO BK */
|
|
{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data using previous sector ID") },
|
|
/* D W O BK */
|
|
{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data without ECC - data auto-reallocated") },
|
|
/* D WRO BK */
|
|
{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data without ECC - recommend reassignment") },
|
|
/* D WRO BK */
|
|
{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data without ECC - recommend rewrite") },
|
|
/* D WRO BK */
|
|
{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data without ECC - data rewritten") },
|
|
/* DT WRO BK */
|
|
{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data with error correction applied") },
|
|
/* D WRO BK */
|
|
{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data with error corr. & retries applied") },
|
|
/* D WRO BK */
|
|
{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data - data auto-reallocated") },
|
|
/* R */
|
|
{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data with CIRC") },
|
|
/* R */
|
|
{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data with L-EC") },
|
|
/* D WRO BK */
|
|
{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data - recommend reassignment") },
|
|
/* D WRO BK */
|
|
{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data - recommend rewrite") },
|
|
/* D W O BK */
|
|
{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered data with ECC - data rewritten") },
|
|
/* R */
|
|
{ SST(0x18, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Recovered data with linking") },
|
|
/* D O K */
|
|
{ SST(0x19, 0x00, SS_RDEF,
|
|
"Defect list error") },
|
|
/* D O K */
|
|
{ SST(0x19, 0x01, SS_RDEF,
|
|
"Defect list not available") },
|
|
/* D O K */
|
|
{ SST(0x19, 0x02, SS_RDEF,
|
|
"Defect list error in primary list") },
|
|
/* D O K */
|
|
{ SST(0x19, 0x03, SS_RDEF,
|
|
"Defect list error in grown list") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x1A, 0x00, SS_RDEF,
|
|
"Parameter list length error") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x1B, 0x00, SS_RDEF,
|
|
"Synchronous data transfer error") },
|
|
/* D O BK */
|
|
{ SST(0x1C, 0x00, SS_RDEF,
|
|
"Defect list not found") },
|
|
/* D O BK */
|
|
{ SST(0x1C, 0x01, SS_RDEF,
|
|
"Primary defect list not found") },
|
|
/* D O BK */
|
|
{ SST(0x1C, 0x02, SS_RDEF,
|
|
"Grown defect list not found") },
|
|
/* DT WRO BK */
|
|
{ SST(0x1D, 0x00, SS_FATAL,
|
|
"Miscompare during verify operation") },
|
|
/* D B */
|
|
{ SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Miscomparable verify of unmapped LBA") },
|
|
/* D W O BK */
|
|
{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Recovered ID with ECC correction") },
|
|
/* D O K */
|
|
{ SST(0x1F, 0x00, SS_RDEF,
|
|
"Partial defect list transfer") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x20, 0x00, SS_FATAL | EINVAL,
|
|
"Invalid command operation code") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x20, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Access denied - initiator pending-enrolled") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x20, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Access denied - no access rights") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x20, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Access denied - invalid mgmt ID key") },
|
|
/* T */
|
|
{ SST(0x20, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Illegal command while in write capable state") },
|
|
/* T */
|
|
{ SST(0x20, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Obsolete") },
|
|
/* T */
|
|
{ SST(0x20, 0x06, SS_RDEF, /* XXX TBD */
|
|
"Illegal command while in explicit address mode") },
|
|
/* T */
|
|
{ SST(0x20, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Illegal command while in implicit address mode") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x20, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Access denied - enrollment conflict") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x20, 0x09, SS_RDEF, /* XXX TBD */
|
|
"Access denied - invalid LU identifier") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */
|
|
"Access denied - invalid proxy token") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */
|
|
"Access denied - ACL LUN conflict") },
|
|
/* T */
|
|
{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
|
|
"Illegal command when not in append-only mode") },
|
|
/* DT WRO BK */
|
|
{ SST(0x21, 0x00, SS_FATAL | EINVAL,
|
|
"Logical block address out of range") },
|
|
/* DT WROM BK */
|
|
{ SST(0x21, 0x01, SS_FATAL | EINVAL,
|
|
"Invalid element address") },
|
|
/* R */
|
|
{ SST(0x21, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Invalid address for write") },
|
|
/* R */
|
|
{ SST(0x21, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Invalid write crossing layer jump") },
|
|
/* D */
|
|
{ SST(0x22, 0x00, SS_FATAL | EINVAL,
|
|
"Illegal function (use 20 00, 24 00, or 26 00)") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x00, SS_FATAL | EINVAL,
|
|
"Invalid token operation, cause not reportable") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x01, SS_FATAL | EINVAL,
|
|
"Invalid token operation, unsupported token type") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x02, SS_FATAL | EINVAL,
|
|
"Invalid token operation, remote token usage not supported") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x03, SS_FATAL | EINVAL,
|
|
"Invalid token operation, remote ROD token creation not supported") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x04, SS_FATAL | EINVAL,
|
|
"Invalid token operation, token unknown") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x05, SS_FATAL | EINVAL,
|
|
"Invalid token operation, token corrupt") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x06, SS_FATAL | EINVAL,
|
|
"Invalid token operation, token revoked") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x07, SS_FATAL | EINVAL,
|
|
"Invalid token operation, token expired") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x08, SS_FATAL | EINVAL,
|
|
"Invalid token operation, token cancelled") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x09, SS_FATAL | EINVAL,
|
|
"Invalid token operation, token deleted") },
|
|
/* DT P B */
|
|
{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
|
|
"Invalid token operation, invalid token length") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x24, 0x00, SS_FATAL | EINVAL,
|
|
"Invalid field in CDB") },
|
|
/* DTLPWRO AEBKVF */
|
|
{ SST(0x24, 0x01, SS_RDEF, /* XXX TBD */
|
|
"CDB decryption error") },
|
|
/* T */
|
|
{ SST(0x24, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Obsolete") },
|
|
/* T */
|
|
{ SST(0x24, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Obsolete") },
|
|
/* F */
|
|
{ SST(0x24, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Security audit value frozen") },
|
|
/* F */
|
|
{ SST(0x24, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Security working key frozen") },
|
|
/* F */
|
|
{ SST(0x24, 0x06, SS_RDEF, /* XXX TBD */
|
|
"NONCE not unique") },
|
|
/* F */
|
|
{ SST(0x24, 0x07, SS_RDEF, /* XXX TBD */
|
|
"NONCE timestamp out of range") },
|
|
/* DT R MAEBKV */
|
|
{ SST(0x24, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Invalid XCDB") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
|
|
"Logical unit not supported") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x26, 0x00, SS_FATAL | EINVAL,
|
|
"Invalid field in parameter list") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x26, 0x01, SS_FATAL | EINVAL,
|
|
"Parameter not supported") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x26, 0x02, SS_FATAL | EINVAL,
|
|
"Parameter value invalid") },
|
|
/* DTLPWROMAE K */
|
|
{ SST(0x26, 0x03, SS_FATAL | EINVAL,
|
|
"Threshold parameters not supported") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x26, 0x04, SS_FATAL | EINVAL,
|
|
"Invalid release of persistent reservation") },
|
|
/* DTLPWRO A BK */
|
|
{ SST(0x26, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Data decryption error") },
|
|
/* DTLPWRO K */
|
|
{ SST(0x26, 0x06, SS_FATAL | EINVAL,
|
|
"Too many target descriptors") },
|
|
/* DTLPWRO K */
|
|
{ SST(0x26, 0x07, SS_FATAL | EINVAL,
|
|
"Unsupported target descriptor type code") },
|
|
/* DTLPWRO K */
|
|
{ SST(0x26, 0x08, SS_FATAL | EINVAL,
|
|
"Too many segment descriptors") },
|
|
/* DTLPWRO K */
|
|
{ SST(0x26, 0x09, SS_FATAL | EINVAL,
|
|
"Unsupported segment descriptor type code") },
|
|
/* DTLPWRO K */
|
|
{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
|
|
"Unexpected inexact segment") },
|
|
/* DTLPWRO K */
|
|
{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
|
|
"Inline data length exceeded") },
|
|
/* DTLPWRO K */
|
|
{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
|
|
"Invalid operation for copy source or destination") },
|
|
/* DTLPWRO K */
|
|
{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
|
|
"Copy segment granularity violation") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */
|
|
"Invalid parameter while port is enabled") },
|
|
/* F */
|
|
{ SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */
|
|
"Invalid data-out buffer integrity check value") },
|
|
/* T */
|
|
{ SST(0x26, 0x10, SS_RDEF, /* XXX TBD */
|
|
"Data decryption key fail limit reached") },
|
|
/* T */
|
|
{ SST(0x26, 0x11, SS_RDEF, /* XXX TBD */
|
|
"Incomplete key-associated data set") },
|
|
/* T */
|
|
{ SST(0x26, 0x12, SS_RDEF, /* XXX TBD */
|
|
"Vendor specific key reference not found") },
|
|
/* DT WRO BK */
|
|
{ SST(0x27, 0x00, SS_FATAL | EACCES,
|
|
"Write protected") },
|
|
/* DT WRO BK */
|
|
{ SST(0x27, 0x01, SS_FATAL | EACCES,
|
|
"Hardware write protected") },
|
|
/* DT WRO BK */
|
|
{ SST(0x27, 0x02, SS_FATAL | EACCES,
|
|
"Logical unit software write protected") },
|
|
/* T R */
|
|
{ SST(0x27, 0x03, SS_FATAL | EACCES,
|
|
"Associated write protect") },
|
|
/* T R */
|
|
{ SST(0x27, 0x04, SS_FATAL | EACCES,
|
|
"Persistent write protect") },
|
|
/* T R */
|
|
{ SST(0x27, 0x05, SS_FATAL | EACCES,
|
|
"Permanent write protect") },
|
|
/* R F */
|
|
{ SST(0x27, 0x06, SS_RDEF, /* XXX TBD */
|
|
"Conditional write protect") },
|
|
/* D B */
|
|
{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
|
|
"Space allocation failed write protect") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x28, 0x00, SS_FATAL | ENXIO,
|
|
"Not ready to ready change, medium may have changed") },
|
|
/* DT WROM B */
|
|
{ SST(0x28, 0x01, SS_FATAL | ENXIO,
|
|
"Import or export element accessed") },
|
|
/* R */
|
|
{ SST(0x28, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Format-layer may have changed") },
|
|
/* M */
|
|
{ SST(0x28, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Import/export element accessed, medium changed") },
|
|
/*
|
|
* XXX JGibbs - All of these should use the same errno, but I don't
|
|
* think ENXIO is the correct choice. Should we borrow from
|
|
* the networking errnos? ECONNRESET anyone?
|
|
*/
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x29, 0x00, SS_FATAL | ENXIO,
|
|
"Power on, reset, or bus device reset occurred") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x29, 0x01, SS_RDEF,
|
|
"Power on occurred") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x29, 0x02, SS_RDEF,
|
|
"SCSI bus reset occurred") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x29, 0x03, SS_RDEF,
|
|
"Bus device reset function occurred") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x29, 0x04, SS_RDEF,
|
|
"Device internal reset") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x29, 0x05, SS_RDEF,
|
|
"Transceiver mode changed to single-ended") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x29, 0x06, SS_RDEF,
|
|
"Transceiver mode changed to LVD") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x29, 0x07, SS_RDEF, /* XXX TBD */
|
|
"I_T nexus loss occurred") },
|
|
/* DTL WROMAEBKVF */
|
|
{ SST(0x2A, 0x00, SS_RDEF,
|
|
"Parameters changed") },
|
|
/* DTL WROMAEBKVF */
|
|
{ SST(0x2A, 0x01, SS_RDEF,
|
|
"Mode parameters changed") },
|
|
/* DTL WROMAE K */
|
|
{ SST(0x2A, 0x02, SS_RDEF,
|
|
"Log parameters changed") },
|
|
/* DTLPWROMAE K */
|
|
{ SST(0x2A, 0x03, SS_RDEF,
|
|
"Reservations preempted") },
|
|
/* DTLPWROMAE */
|
|
{ SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Reservations released") },
|
|
/* DTLPWROMAE */
|
|
{ SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Registrations preempted") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */
|
|
"Asymmetric access state changed") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Implicit asymmetric access state transition failed") },
|
|
/* DT WROMAEBKVF */
|
|
{ SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Priority changed") },
|
|
/* D */
|
|
{ SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */
|
|
"Capacity data has changed") },
|
|
/* DT */
|
|
{ SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */
|
|
"Error history I_T nexus cleared") },
|
|
/* DT */
|
|
{ SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */
|
|
"Error history snapshot released") },
|
|
/* F */
|
|
{ SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */
|
|
"Error recovery attributes have changed") },
|
|
/* T */
|
|
{ SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */
|
|
"Data encryption capabilities changed") },
|
|
/* DT M E V */
|
|
{ SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */
|
|
"Timestamp changed") },
|
|
/* T */
|
|
{ SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */
|
|
"Data encryption parameters changed by another I_T nexus") },
|
|
/* T */
|
|
{ SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */
|
|
"Data encryption parameters changed by vendor specific event") },
|
|
/* T */
|
|
{ SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */
|
|
"Data encryption key instance counter has changed") },
|
|
/* DT R MAEBKV */
|
|
{ SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */
|
|
"SA creation capabilities data has changed") },
|
|
/* T M V */
|
|
{ SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */
|
|
"Medium removal prevention preempted") },
|
|
/* DTLPWRO K */
|
|
{ SST(0x2B, 0x00, SS_RDEF,
|
|
"Copy cannot execute since host cannot disconnect") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x2C, 0x00, SS_RDEF,
|
|
"Command sequence error") },
|
|
/* */
|
|
{ SST(0x2C, 0x01, SS_RDEF,
|
|
"Too many windows specified") },
|
|
/* */
|
|
{ SST(0x2C, 0x02, SS_RDEF,
|
|
"Invalid combination of windows specified") },
|
|
/* R */
|
|
{ SST(0x2C, 0x03, SS_RDEF,
|
|
"Current program area is not empty") },
|
|
/* R */
|
|
{ SST(0x2C, 0x04, SS_RDEF,
|
|
"Current program area is empty") },
|
|
/* B */
|
|
{ SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Illegal power condition request") },
|
|
/* R */
|
|
{ SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */
|
|
"Persistent prevent conflict") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Previous busy status") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Previous task set full status") },
|
|
/* DTLPWROM EBKVF */
|
|
{ SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */
|
|
"Previous reservation conflict status") },
|
|
/* F */
|
|
{ SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */
|
|
"Partition or collection contains user objects") },
|
|
/* T */
|
|
{ SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */
|
|
"Not reserved") },
|
|
/* D */
|
|
{ SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */
|
|
"ORWRITE generation does not match") },
|
|
/* T */
|
|
{ SST(0x2D, 0x00, SS_RDEF,
|
|
"Overwrite error on update in place") },
|
|
/* R */
|
|
{ SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */
|
|
"Insufficient time for operation") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x2F, 0x00, SS_RDEF,
|
|
"Commands cleared by another initiator") },
|
|
/* D */
|
|
{ SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Commands cleared by power loss notification") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Commands cleared by device server") },
|
|
/* DT WROM BK */
|
|
{ SST(0x30, 0x00, SS_RDEF,
|
|
"Incompatible medium installed") },
|
|
/* DT WRO BK */
|
|
{ SST(0x30, 0x01, SS_RDEF,
|
|
"Cannot read medium - unknown format") },
|
|
/* DT WRO BK */
|
|
{ SST(0x30, 0x02, SS_RDEF,
|
|
"Cannot read medium - incompatible format") },
|
|
/* DT R K */
|
|
{ SST(0x30, 0x03, SS_RDEF,
|
|
"Cleaning cartridge installed") },
|
|
/* DT WRO BK */
|
|
{ SST(0x30, 0x04, SS_RDEF,
|
|
"Cannot write medium - unknown format") },
|
|
/* DT WRO BK */
|
|
{ SST(0x30, 0x05, SS_RDEF,
|
|
"Cannot write medium - incompatible format") },
|
|
/* DT WRO B */
|
|
{ SST(0x30, 0x06, SS_RDEF,
|
|
"Cannot format medium - incompatible medium") },
|
|
/* DTL WROMAEBKVF */
|
|
{ SST(0x30, 0x07, SS_RDEF,
|
|
"Cleaning failure") },
|
|
/* R */
|
|
{ SST(0x30, 0x08, SS_RDEF,
|
|
"Cannot write - application code mismatch") },
|
|
/* R */
|
|
{ SST(0x30, 0x09, SS_RDEF,
|
|
"Current session not fixated for append") },
|
|
/* DT WRO AEBK */
|
|
{ SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */
|
|
"Cleaning request rejected") },
|
|
/* T */
|
|
{ SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */
|
|
"WORM medium - overwrite attempted") },
|
|
/* T */
|
|
{ SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */
|
|
"WORM medium - integrity check") },
|
|
/* R */
|
|
{ SST(0x30, 0x10, SS_RDEF, /* XXX TBD */
|
|
"Medium not formatted") },
|
|
/* M */
|
|
{ SST(0x30, 0x11, SS_RDEF, /* XXX TBD */
|
|
"Incompatible volume type") },
|
|
/* M */
|
|
{ SST(0x30, 0x12, SS_RDEF, /* XXX TBD */
|
|
"Incompatible volume qualifier") },
|
|
/* M */
|
|
{ SST(0x30, 0x13, SS_RDEF, /* XXX TBD */
|
|
"Cleaning volume expired") },
|
|
/* DT WRO BK */
|
|
{ SST(0x31, 0x00, SS_RDEF,
|
|
"Medium format corrupted") },
|
|
/* D L RO B */
|
|
{ SST(0x31, 0x01, SS_RDEF,
|
|
"Format command failed") },
|
|
/* R */
|
|
{ SST(0x31, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Zoned formatting failed due to spare linking") },
|
|
/* D B */
|
|
{ SST(0x31, 0x03, SS_RDEF, /* XXX TBD */
|
|
"SANITIZE command failed") },
|
|
/* D W O BK */
|
|
{ SST(0x32, 0x00, SS_RDEF,
|
|
"No defect spare location available") },
|
|
/* D W O BK */
|
|
{ SST(0x32, 0x01, SS_RDEF,
|
|
"Defect list update failure") },
|
|
/* T */
|
|
{ SST(0x33, 0x00, SS_RDEF,
|
|
"Tape length error") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x34, 0x00, SS_RDEF,
|
|
"Enclosure failure") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x35, 0x00, SS_RDEF,
|
|
"Enclosure services failure") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x35, 0x01, SS_RDEF,
|
|
"Unsupported enclosure function") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x35, 0x02, SS_RDEF,
|
|
"Enclosure services unavailable") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x35, 0x03, SS_RDEF,
|
|
"Enclosure services transfer failure") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x35, 0x04, SS_RDEF,
|
|
"Enclosure services transfer refused") },
|
|
/* DTL WROMAEBKVF */
|
|
{ SST(0x35, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Enclosure services checksum error") },
|
|
/* L */
|
|
{ SST(0x36, 0x00, SS_RDEF,
|
|
"Ribbon, ink, or toner failure") },
|
|
/* DTL WROMAEBKVF */
|
|
{ SST(0x37, 0x00, SS_RDEF,
|
|
"Rounded parameter") },
|
|
/* B */
|
|
{ SST(0x38, 0x00, SS_RDEF, /* XXX TBD */
|
|
"Event status notification") },
|
|
/* B */
|
|
{ SST(0x38, 0x02, SS_RDEF, /* XXX TBD */
|
|
"ESN - power management class event") },
|
|
/* B */
|
|
{ SST(0x38, 0x04, SS_RDEF, /* XXX TBD */
|
|
"ESN - media class event") },
|
|
/* B */
|
|
{ SST(0x38, 0x06, SS_RDEF, /* XXX TBD */
|
|
"ESN - device busy class event") },
|
|
/* D */
|
|
{ SST(0x38, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Thin provisioning soft threshold reached") },
|
|
/* DTL WROMAE K */
|
|
{ SST(0x39, 0x00, SS_RDEF,
|
|
"Saving parameters not supported") },
|
|
/* DTL WROM BK */
|
|
{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
|
|
"Medium not present") },
|
|
/* DT WROM BK */
|
|
{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
|
|
"Medium not present - tray closed") },
|
|
/* DT WROM BK */
|
|
{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
|
|
"Medium not present - tray open") },
|
|
/* DT WROM B */
|
|
{ SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Medium not present - loadable") },
|
|
/* DT WRO B */
|
|
{ SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Medium not present - medium auxiliary memory accessible") },
|
|
/* TL */
|
|
{ SST(0x3B, 0x00, SS_RDEF,
|
|
"Sequential positioning error") },
|
|
/* T */
|
|
{ SST(0x3B, 0x01, SS_RDEF,
|
|
"Tape position error at beginning-of-medium") },
|
|
/* T */
|
|
{ SST(0x3B, 0x02, SS_RDEF,
|
|
"Tape position error at end-of-medium") },
|
|
/* L */
|
|
{ SST(0x3B, 0x03, SS_RDEF,
|
|
"Tape or electronic vertical forms unit not ready") },
|
|
/* L */
|
|
{ SST(0x3B, 0x04, SS_RDEF,
|
|
"Slew failure") },
|
|
/* L */
|
|
{ SST(0x3B, 0x05, SS_RDEF,
|
|
"Paper jam") },
|
|
/* L */
|
|
{ SST(0x3B, 0x06, SS_RDEF,
|
|
"Failed to sense top-of-form") },
|
|
/* L */
|
|
{ SST(0x3B, 0x07, SS_RDEF,
|
|
"Failed to sense bottom-of-form") },
|
|
/* T */
|
|
{ SST(0x3B, 0x08, SS_RDEF,
|
|
"Reposition error") },
|
|
/* */
|
|
{ SST(0x3B, 0x09, SS_RDEF,
|
|
"Read past end of medium") },
|
|
/* */
|
|
{ SST(0x3B, 0x0A, SS_RDEF,
|
|
"Read past beginning of medium") },
|
|
/* */
|
|
{ SST(0x3B, 0x0B, SS_RDEF,
|
|
"Position past end of medium") },
|
|
/* T */
|
|
{ SST(0x3B, 0x0C, SS_RDEF,
|
|
"Position past beginning of medium") },
|
|
/* DT WROM BK */
|
|
{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
|
|
"Medium destination element full") },
|
|
/* DT WROM BK */
|
|
{ SST(0x3B, 0x0E, SS_RDEF,
|
|
"Medium source element empty") },
|
|
/* R */
|
|
{ SST(0x3B, 0x0F, SS_RDEF,
|
|
"End of medium reached") },
|
|
/* DT WROM BK */
|
|
{ SST(0x3B, 0x11, SS_RDEF,
|
|
"Medium magazine not accessible") },
|
|
/* DT WROM BK */
|
|
{ SST(0x3B, 0x12, SS_RDEF,
|
|
"Medium magazine removed") },
|
|
/* DT WROM BK */
|
|
{ SST(0x3B, 0x13, SS_RDEF,
|
|
"Medium magazine inserted") },
|
|
/* DT WROM BK */
|
|
{ SST(0x3B, 0x14, SS_RDEF,
|
|
"Medium magazine locked") },
|
|
/* DT WROM BK */
|
|
{ SST(0x3B, 0x15, SS_RDEF,
|
|
"Medium magazine unlocked") },
|
|
/* R */
|
|
{ SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */
|
|
"Mechanical positioning or changer error") },
|
|
/* F */
|
|
{ SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */
|
|
"Read past end of user object") },
|
|
/* M */
|
|
{ SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */
|
|
"Element disabled") },
|
|
/* M */
|
|
{ SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */
|
|
"Element enabled") },
|
|
/* M */
|
|
{ SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */
|
|
"Data transfer device removed") },
|
|
/* M */
|
|
{ SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */
|
|
"Data transfer device inserted") },
|
|
/* T */
|
|
{ SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */
|
|
"Too many logical objects on partition to support operation") },
|
|
/* DTLPWROMAE K */
|
|
{ SST(0x3D, 0x00, SS_RDEF,
|
|
"Invalid bits in IDENTIFY message") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x3E, 0x00, SS_RDEF,
|
|
"Logical unit has not self-configured yet") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x3E, 0x01, SS_RDEF,
|
|
"Logical unit failure") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x3E, 0x02, SS_RDEF,
|
|
"Timeout on logical unit") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Logical unit failed self-test") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Logical unit unable to update self-test log") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x3F, 0x00, SS_RDEF,
|
|
"Target operating conditions have changed") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x3F, 0x01, SS_RDEF,
|
|
"Microcode has been changed") },
|
|
/* DTLPWROM BK */
|
|
{ SST(0x3F, 0x02, SS_RDEF,
|
|
"Changed operating definition") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x3F, 0x03, SS_RDEF,
|
|
"INQUIRY data has changed") },
|
|
/* DT WROMAEBK */
|
|
{ SST(0x3F, 0x04, SS_RDEF,
|
|
"Component device attached") },
|
|
/* DT WROMAEBK */
|
|
{ SST(0x3F, 0x05, SS_RDEF,
|
|
"Device identifier changed") },
|
|
/* DT WROMAEB */
|
|
{ SST(0x3F, 0x06, SS_RDEF,
|
|
"Redundancy group created or modified") },
|
|
/* DT WROMAEB */
|
|
{ SST(0x3F, 0x07, SS_RDEF,
|
|
"Redundancy group deleted") },
|
|
/* DT WROMAEB */
|
|
{ SST(0x3F, 0x08, SS_RDEF,
|
|
"Spare created or modified") },
|
|
/* DT WROMAEB */
|
|
{ SST(0x3F, 0x09, SS_RDEF,
|
|
"Spare deleted") },
|
|
/* DT WROMAEBK */
|
|
{ SST(0x3F, 0x0A, SS_RDEF,
|
|
"Volume set created or modified") },
|
|
/* DT WROMAEBK */
|
|
{ SST(0x3F, 0x0B, SS_RDEF,
|
|
"Volume set deleted") },
|
|
/* DT WROMAEBK */
|
|
{ SST(0x3F, 0x0C, SS_RDEF,
|
|
"Volume set deassigned") },
|
|
/* DT WROMAEBK */
|
|
{ SST(0x3F, 0x0D, SS_RDEF,
|
|
"Volume set reassigned") },
|
|
/* DTLPWROMAE */
|
|
{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
|
|
"Reported LUNs data has changed") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */
|
|
"Echo buffer overwritten") },
|
|
/* DT WROM B */
|
|
{ SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */
|
|
"Medium loadable") },
|
|
/* DT WROM B */
|
|
{ SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */
|
|
"Medium auxiliary memory accessible") },
|
|
/* DTLPWR MAEBK F */
|
|
{ SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */
|
|
"iSCSI IP address added") },
|
|
/* DTLPWR MAEBK F */
|
|
{ SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */
|
|
"iSCSI IP address removed") },
|
|
/* DTLPWR MAEBK F */
|
|
{ SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */
|
|
"iSCSI IP address changed") },
|
|
/* D */
|
|
{ SST(0x40, 0x00, SS_RDEF,
|
|
"RAM failure") }, /* deprecated - use 40 NN instead */
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x40, 0x80, SS_RDEF,
|
|
"Diagnostic failure: ASCQ = Component ID") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
|
|
NULL) }, /* Range 0x80->0xFF */
|
|
/* D */
|
|
{ SST(0x41, 0x00, SS_RDEF,
|
|
"Data path failure") }, /* deprecated - use 40 NN instead */
|
|
/* D */
|
|
{ SST(0x42, 0x00, SS_RDEF,
|
|
"Power-on or self-test failure") },
|
|
/* deprecated - use 40 NN instead */
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x43, 0x00, SS_RDEF,
|
|
"Message error") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x44, 0x00, SS_RDEF,
|
|
"Internal target failure") },
|
|
/* DT P MAEBKVF */
|
|
{ SST(0x44, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Persistent reservation information lost") },
|
|
/* DT B */
|
|
{ SST(0x44, 0x71, SS_RDEF, /* XXX TBD */
|
|
"ATA device failed set features") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x45, 0x00, SS_RDEF,
|
|
"Select or reselect failure") },
|
|
/* DTLPWROM BK */
|
|
{ SST(0x46, 0x00, SS_RDEF,
|
|
"Unsuccessful soft reset") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x47, 0x00, SS_RDEF,
|
|
"SCSI parity error") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x47, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Data phase CRC error detected") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x47, 0x02, SS_RDEF, /* XXX TBD */
|
|
"SCSI parity error detected during ST data phase") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x47, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Information unit iuCRC error detected") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x47, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Asynchronous information protection error detected") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x47, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Protocol service CRC error") },
|
|
/* DT MAEBKVF */
|
|
{ SST(0x47, 0x06, SS_RDEF, /* XXX TBD */
|
|
"PHY test function in progress") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */
|
|
"Some commands cleared by iSCSI protocol event") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x48, 0x00, SS_RDEF,
|
|
"Initiator detected error message received") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x49, 0x00, SS_RDEF,
|
|
"Invalid message error") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x4A, 0x00, SS_RDEF,
|
|
"Command phase error") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x4B, 0x00, SS_RDEF,
|
|
"Data phase error") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Invalid target port transfer tag received") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Too much write data") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */
|
|
"ACK/NAK timeout") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */
|
|
"NAK received") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Data offset error") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */
|
|
"Initiator response timeout") },
|
|
/* DT PWROMAEBK F */
|
|
{ SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Connection lost") },
|
|
/* DT PWROMAEBK F */
|
|
{ SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Data-in buffer overflow - data buffer size") },
|
|
/* DT PWROMAEBK F */
|
|
{ SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */
|
|
"Data-in buffer overflow - data buffer descriptor area") },
|
|
/* DT PWROMAEBK F */
|
|
{ SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */
|
|
"Data-in buffer error") },
|
|
/* DT PWROMAEBK F */
|
|
{ SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */
|
|
"Data-out buffer overflow - data buffer size") },
|
|
/* DT PWROMAEBK F */
|
|
{ SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */
|
|
"Data-out buffer overflow - data buffer descriptor area") },
|
|
/* DT PWROMAEBK F */
|
|
{ SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */
|
|
"Data-out buffer error") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x4C, 0x00, SS_RDEF,
|
|
"Logical unit failed self-configuration") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x4D, 0x00, SS_RDEF,
|
|
"Tagged overlapped commands: ASCQ = Queue tag ID") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
|
|
NULL) }, /* Range 0x00->0xFF */
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x4E, 0x00, SS_RDEF,
|
|
"Overlapped commands attempted") },
|
|
/* T */
|
|
{ SST(0x50, 0x00, SS_RDEF,
|
|
"Write append error") },
|
|
/* T */
|
|
{ SST(0x50, 0x01, SS_RDEF,
|
|
"Write append position error") },
|
|
/* T */
|
|
{ SST(0x50, 0x02, SS_RDEF,
|
|
"Position error related to timing") },
|
|
/* T RO */
|
|
{ SST(0x51, 0x00, SS_RDEF,
|
|
"Erase failure") },
|
|
/* R */
|
|
{ SST(0x51, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Erase failure - incomplete erase operation detected") },
|
|
/* T */
|
|
{ SST(0x52, 0x00, SS_RDEF,
|
|
"Cartridge fault") },
|
|
/* DTL WROM BK */
|
|
{ SST(0x53, 0x00, SS_RDEF,
|
|
"Media load or eject failed") },
|
|
/* T */
|
|
{ SST(0x53, 0x01, SS_RDEF,
|
|
"Unload tape failure") },
|
|
/* DT WROM BK */
|
|
{ SST(0x53, 0x02, SS_RDEF,
|
|
"Medium removal prevented") },
|
|
/* M */
|
|
{ SST(0x53, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Medium removal prevented by data transfer element") },
|
|
/* T */
|
|
{ SST(0x53, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Medium thread or unthread failure") },
|
|
/* M */
|
|
{ SST(0x53, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Volume identifier invalid") },
|
|
/* T */
|
|
{ SST(0x53, 0x06, SS_RDEF, /* XXX TBD */
|
|
"Volume identifier missing") },
|
|
/* M */
|
|
{ SST(0x53, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Duplicate volume identifier") },
|
|
/* M */
|
|
{ SST(0x53, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Element status unknown") },
|
|
/* P */
|
|
{ SST(0x54, 0x00, SS_RDEF,
|
|
"SCSI to host system interface failure") },
|
|
/* P */
|
|
{ SST(0x55, 0x00, SS_RDEF,
|
|
"System resource failure") },
|
|
/* D O BK */
|
|
{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
|
|
"System buffer full") },
|
|
/* DTLPWROMAE K */
|
|
{ SST(0x55, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Insufficient reservation resources") },
|
|
/* DTLPWROMAE K */
|
|
{ SST(0x55, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Insufficient resources") },
|
|
/* DTLPWROMAE K */
|
|
{ SST(0x55, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Insufficient registration resources") },
|
|
/* DT PWROMAEBK */
|
|
{ SST(0x55, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Insufficient access control resources") },
|
|
/* DT WROM B */
|
|
{ SST(0x55, 0x06, SS_RDEF, /* XXX TBD */
|
|
"Auxiliary memory out of space") },
|
|
/* F */
|
|
{ SST(0x55, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Quota error") },
|
|
/* T */
|
|
{ SST(0x55, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Maximum number of supplemental decryption keys exceeded") },
|
|
/* M */
|
|
{ SST(0x55, 0x09, SS_RDEF, /* XXX TBD */
|
|
"Medium auxiliary memory not accessible") },
|
|
/* M */
|
|
{ SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */
|
|
"Data currently unavailable") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */
|
|
"Insufficient power for operation") },
|
|
/* DT P B */
|
|
{ SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */
|
|
"Insufficient resources to create ROD") },
|
|
/* DT P B */
|
|
{ SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */
|
|
"Insufficient resources to create ROD token") },
|
|
/* R */
|
|
{ SST(0x57, 0x00, SS_RDEF,
|
|
"Unable to recover table-of-contents") },
|
|
/* O */
|
|
{ SST(0x58, 0x00, SS_RDEF,
|
|
"Generation does not exist") },
|
|
/* O */
|
|
{ SST(0x59, 0x00, SS_RDEF,
|
|
"Updated block read") },
|
|
/* DTLPWRO BK */
|
|
{ SST(0x5A, 0x00, SS_RDEF,
|
|
"Operator request or state change input") },
|
|
/* DT WROM BK */
|
|
{ SST(0x5A, 0x01, SS_RDEF,
|
|
"Operator medium removal request") },
|
|
/* DT WRO A BK */
|
|
{ SST(0x5A, 0x02, SS_RDEF,
|
|
"Operator selected write protect") },
|
|
/* DT WRO A BK */
|
|
{ SST(0x5A, 0x03, SS_RDEF,
|
|
"Operator selected write permit") },
|
|
/* DTLPWROM K */
|
|
{ SST(0x5B, 0x00, SS_RDEF,
|
|
"Log exception") },
|
|
/* DTLPWROM K */
|
|
{ SST(0x5B, 0x01, SS_RDEF,
|
|
"Threshold condition met") },
|
|
/* DTLPWROM K */
|
|
{ SST(0x5B, 0x02, SS_RDEF,
|
|
"Log counter at maximum") },
|
|
/* DTLPWROM K */
|
|
{ SST(0x5B, 0x03, SS_RDEF,
|
|
"Log list codes exhausted") },
|
|
/* D O */
|
|
{ SST(0x5C, 0x00, SS_RDEF,
|
|
"RPL status change") },
|
|
/* D O */
|
|
{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
|
|
"Spindles synchronized") },
|
|
/* D O */
|
|
{ SST(0x5C, 0x02, SS_RDEF,
|
|
"Spindles not synchronized") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x5D, 0x00, SS_RDEF,
|
|
"Failure prediction threshold exceeded") },
|
|
/* R B */
|
|
{ SST(0x5D, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Media failure prediction threshold exceeded") },
|
|
/* R */
|
|
{ SST(0x5D, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Logical unit failure prediction threshold exceeded") },
|
|
/* R */
|
|
{ SST(0x5D, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Spare area exhaustion prediction threshold exceeded") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x10, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure general hard drive failure") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x11, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure drive error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x12, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure data error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x13, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure seek error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x14, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure too many block reassigns") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x15, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure access times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x16, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure start unit times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x17, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure channel parametrics") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x18, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure controller detected") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x19, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure throughput performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x1A, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure seek time performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x1B, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure spin-up retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x1C, SS_RDEF, /* XXX TBD */
|
|
"Hardware impending failure drive calibration retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x20, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure general hard drive failure") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x21, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure drive error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x22, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure data error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x23, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure seek error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x24, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure too many block reassigns") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x25, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure access times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x26, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure start unit times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x27, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure channel parametrics") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x28, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure controller detected") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x29, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure throughput performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x2A, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure seek time performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x2B, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure spin-up retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x2C, SS_RDEF, /* XXX TBD */
|
|
"Controller impending failure drive calibration retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x30, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure general hard drive failure") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x31, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure drive error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x32, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure data error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x33, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure seek error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x34, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure too many block reassigns") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x35, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure access times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x36, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure start unit times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x37, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure channel parametrics") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x38, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure controller detected") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x39, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure throughput performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x3A, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure seek time performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x3B, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure spin-up retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x3C, SS_RDEF, /* XXX TBD */
|
|
"Data channel impending failure drive calibration retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x40, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure general hard drive failure") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x41, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure drive error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x42, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure data error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x43, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure seek error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x44, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure too many block reassigns") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x45, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure access times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x46, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure start unit times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x47, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure channel parametrics") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x48, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure controller detected") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x49, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure throughput performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x4A, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure seek time performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x4B, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure spin-up retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x4C, SS_RDEF, /* XXX TBD */
|
|
"Servo impending failure drive calibration retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x50, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure general hard drive failure") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x51, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure drive error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x52, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure data error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x53, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure seek error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x54, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure too many block reassigns") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x55, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure access times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x56, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure start unit times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x57, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure channel parametrics") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x58, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure controller detected") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x59, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure throughput performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x5A, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure seek time performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x5B, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure spin-up retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x5C, SS_RDEF, /* XXX TBD */
|
|
"Spindle impending failure drive calibration retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x60, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure general hard drive failure") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x61, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure drive error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x62, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure data error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x63, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure seek error rate too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x64, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure too many block reassigns") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x65, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure access times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x66, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure start unit times too high") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x67, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure channel parametrics") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x68, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure controller detected") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x69, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure throughput performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x6A, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure seek time performance") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x6B, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure spin-up retry count") },
|
|
/* D B */
|
|
{ SST(0x5D, 0x6C, SS_RDEF, /* XXX TBD */
|
|
"Firmware impending failure drive calibration retry count") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x5D, 0xFF, SS_RDEF,
|
|
"Failure prediction threshold exceeded (false)") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x00, SS_RDEF,
|
|
"Low power condition on") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x01, SS_RDEF,
|
|
"Idle condition activated by timer") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x02, SS_RDEF,
|
|
"Standby condition activated by timer") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x03, SS_RDEF,
|
|
"Idle condition activated by command") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x04, SS_RDEF,
|
|
"Standby condition activated by command") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x05, SS_RDEF,
|
|
"Idle-B condition activated by timer") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x06, SS_RDEF,
|
|
"Idle-B condition activated by command") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x07, SS_RDEF,
|
|
"Idle-C condition activated by timer") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x08, SS_RDEF,
|
|
"Idle-C condition activated by command") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x09, SS_RDEF,
|
|
"Standby-Y condition activated by timer") },
|
|
/* DTLPWRO A K */
|
|
{ SST(0x5E, 0x0A, SS_RDEF,
|
|
"Standby-Y condition activated by command") },
|
|
/* B */
|
|
{ SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */
|
|
"Power state change to active") },
|
|
/* B */
|
|
{ SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */
|
|
"Power state change to idle") },
|
|
/* B */
|
|
{ SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */
|
|
"Power state change to standby") },
|
|
/* B */
|
|
{ SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */
|
|
"Power state change to sleep") },
|
|
/* BK */
|
|
{ SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */
|
|
"Power state change to device control") },
|
|
/* */
|
|
{ SST(0x60, 0x00, SS_RDEF,
|
|
"Lamp failure") },
|
|
/* */
|
|
{ SST(0x61, 0x00, SS_RDEF,
|
|
"Video acquisition error") },
|
|
/* */
|
|
{ SST(0x61, 0x01, SS_RDEF,
|
|
"Unable to acquire video") },
|
|
/* */
|
|
{ SST(0x61, 0x02, SS_RDEF,
|
|
"Out of focus") },
|
|
/* */
|
|
{ SST(0x62, 0x00, SS_RDEF,
|
|
"Scan head positioning error") },
|
|
/* R */
|
|
{ SST(0x63, 0x00, SS_RDEF,
|
|
"End of user area encountered on this track") },
|
|
/* R */
|
|
{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
|
|
"Packet does not fit in available space") },
|
|
/* R */
|
|
{ SST(0x64, 0x00, SS_FATAL | ENXIO,
|
|
"Illegal mode for this track") },
|
|
/* R */
|
|
{ SST(0x64, 0x01, SS_RDEF,
|
|
"Invalid packet size") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x65, 0x00, SS_RDEF,
|
|
"Voltage fault") },
|
|
/* */
|
|
{ SST(0x66, 0x00, SS_RDEF,
|
|
"Automatic document feeder cover up") },
|
|
/* */
|
|
{ SST(0x66, 0x01, SS_RDEF,
|
|
"Automatic document feeder lift up") },
|
|
/* */
|
|
{ SST(0x66, 0x02, SS_RDEF,
|
|
"Document jam in automatic document feeder") },
|
|
/* */
|
|
{ SST(0x66, 0x03, SS_RDEF,
|
|
"Document miss feed automatic in document feeder") },
|
|
/* A */
|
|
{ SST(0x67, 0x00, SS_RDEF,
|
|
"Configuration failure") },
|
|
/* A */
|
|
{ SST(0x67, 0x01, SS_RDEF,
|
|
"Configuration of incapable logical units failed") },
|
|
/* A */
|
|
{ SST(0x67, 0x02, SS_RDEF,
|
|
"Add logical unit failed") },
|
|
/* A */
|
|
{ SST(0x67, 0x03, SS_RDEF,
|
|
"Modification of logical unit failed") },
|
|
/* A */
|
|
{ SST(0x67, 0x04, SS_RDEF,
|
|
"Exchange of logical unit failed") },
|
|
/* A */
|
|
{ SST(0x67, 0x05, SS_RDEF,
|
|
"Remove of logical unit failed") },
|
|
/* A */
|
|
{ SST(0x67, 0x06, SS_RDEF,
|
|
"Attachment of logical unit failed") },
|
|
/* A */
|
|
{ SST(0x67, 0x07, SS_RDEF,
|
|
"Creation of logical unit failed") },
|
|
/* A */
|
|
{ SST(0x67, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Assign failure occurred") },
|
|
/* A */
|
|
{ SST(0x67, 0x09, SS_RDEF, /* XXX TBD */
|
|
"Multiply assigned logical unit") },
|
|
/* DTLPWROMAEBKVF */
|
|
{ SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */
|
|
"Set target port groups command failed") },
|
|
/* DT B */
|
|
{ SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */
|
|
"ATA device feature not enabled") },
|
|
/* A */
|
|
{ SST(0x68, 0x00, SS_RDEF,
|
|
"Logical unit not configured") },
|
|
/* A */
|
|
{ SST(0x69, 0x00, SS_RDEF,
|
|
"Data loss on logical unit") },
|
|
/* A */
|
|
{ SST(0x69, 0x01, SS_RDEF,
|
|
"Multiple logical unit failures") },
|
|
/* A */
|
|
{ SST(0x69, 0x02, SS_RDEF,
|
|
"Parity/data mismatch") },
|
|
/* A */
|
|
{ SST(0x6A, 0x00, SS_RDEF,
|
|
"Informational, refer to log") },
|
|
/* A */
|
|
{ SST(0x6B, 0x00, SS_RDEF,
|
|
"State change has occurred") },
|
|
/* A */
|
|
{ SST(0x6B, 0x01, SS_RDEF,
|
|
"Redundancy level got better") },
|
|
/* A */
|
|
{ SST(0x6B, 0x02, SS_RDEF,
|
|
"Redundancy level got worse") },
|
|
/* A */
|
|
{ SST(0x6C, 0x00, SS_RDEF,
|
|
"Rebuild failure occurred") },
|
|
/* A */
|
|
{ SST(0x6D, 0x00, SS_RDEF,
|
|
"Recalculate failure occurred") },
|
|
/* A */
|
|
{ SST(0x6E, 0x00, SS_RDEF,
|
|
"Command to logical unit failed") },
|
|
/* R */
|
|
{ SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */
|
|
"Copy protection key exchange failure - authentication failure") },
|
|
/* R */
|
|
{ SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Copy protection key exchange failure - key not present") },
|
|
/* R */
|
|
{ SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Copy protection key exchange failure - key not established") },
|
|
/* R */
|
|
{ SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Read of scrambled sector without authentication") },
|
|
/* R */
|
|
{ SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Media region code is mismatched to logical unit region") },
|
|
/* R */
|
|
{ SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Drive region must be permanent/region reset count error") },
|
|
/* R */
|
|
{ SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */
|
|
"Insufficient block count for binding NONCE recording") },
|
|
/* R */
|
|
{ SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Conflict in binding NONCE recording") },
|
|
/* T */
|
|
{ SST(0x70, 0x00, SS_RDEF,
|
|
"Decompression exception short: ASCQ = Algorithm ID") },
|
|
/* T */
|
|
{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
|
|
NULL) }, /* Range 0x00 -> 0xFF */
|
|
/* T */
|
|
{ SST(0x71, 0x00, SS_RDEF,
|
|
"Decompression exception long: ASCQ = Algorithm ID") },
|
|
/* T */
|
|
{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
|
|
NULL) }, /* Range 0x00 -> 0xFF */
|
|
/* R */
|
|
{ SST(0x72, 0x00, SS_RDEF,
|
|
"Session fixation error") },
|
|
/* R */
|
|
{ SST(0x72, 0x01, SS_RDEF,
|
|
"Session fixation error writing lead-in") },
|
|
/* R */
|
|
{ SST(0x72, 0x02, SS_RDEF,
|
|
"Session fixation error writing lead-out") },
|
|
/* R */
|
|
{ SST(0x72, 0x03, SS_RDEF,
|
|
"Session fixation error - incomplete track in session") },
|
|
/* R */
|
|
{ SST(0x72, 0x04, SS_RDEF,
|
|
"Empty or partially written reserved track") },
|
|
/* R */
|
|
{ SST(0x72, 0x05, SS_RDEF, /* XXX TBD */
|
|
"No more track reservations allowed") },
|
|
/* R */
|
|
{ SST(0x72, 0x06, SS_RDEF, /* XXX TBD */
|
|
"RMZ extension is not allowed") },
|
|
/* R */
|
|
{ SST(0x72, 0x07, SS_RDEF, /* XXX TBD */
|
|
"No more test zone extensions are allowed") },
|
|
/* R */
|
|
{ SST(0x73, 0x00, SS_RDEF,
|
|
"CD control error") },
|
|
/* R */
|
|
{ SST(0x73, 0x01, SS_RDEF,
|
|
"Power calibration area almost full") },
|
|
/* R */
|
|
{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
|
|
"Power calibration area is full") },
|
|
/* R */
|
|
{ SST(0x73, 0x03, SS_RDEF,
|
|
"Power calibration area error") },
|
|
/* R */
|
|
{ SST(0x73, 0x04, SS_RDEF,
|
|
"Program memory area update failure") },
|
|
/* R */
|
|
{ SST(0x73, 0x05, SS_RDEF,
|
|
"Program memory area is full") },
|
|
/* R */
|
|
{ SST(0x73, 0x06, SS_RDEF, /* XXX TBD */
|
|
"RMA/PMA is almost full") },
|
|
/* R */
|
|
{ SST(0x73, 0x10, SS_RDEF, /* XXX TBD */
|
|
"Current power calibration area almost full") },
|
|
/* R */
|
|
{ SST(0x73, 0x11, SS_RDEF, /* XXX TBD */
|
|
"Current power calibration area is full") },
|
|
/* R */
|
|
{ SST(0x73, 0x17, SS_RDEF, /* XXX TBD */
|
|
"RDZ is full") },
|
|
/* T */
|
|
{ SST(0x74, 0x00, SS_RDEF, /* XXX TBD */
|
|
"Security error") },
|
|
/* T */
|
|
{ SST(0x74, 0x01, SS_RDEF, /* XXX TBD */
|
|
"Unable to decrypt data") },
|
|
/* T */
|
|
{ SST(0x74, 0x02, SS_RDEF, /* XXX TBD */
|
|
"Unencrypted data encountered while decrypting") },
|
|
/* T */
|
|
{ SST(0x74, 0x03, SS_RDEF, /* XXX TBD */
|
|
"Incorrect data encryption key") },
|
|
/* T */
|
|
{ SST(0x74, 0x04, SS_RDEF, /* XXX TBD */
|
|
"Cryptographic integrity validation failed") },
|
|
/* T */
|
|
{ SST(0x74, 0x05, SS_RDEF, /* XXX TBD */
|
|
"Error decrypting data") },
|
|
/* T */
|
|
{ SST(0x74, 0x06, SS_RDEF, /* XXX TBD */
|
|
"Unknown signature verification key") },
|
|
/* T */
|
|
{ SST(0x74, 0x07, SS_RDEF, /* XXX TBD */
|
|
"Encryption parameters not useable") },
|
|
/* DT R M E VF */
|
|
{ SST(0x74, 0x08, SS_RDEF, /* XXX TBD */
|
|
"Digital signature validation failure") },
|
|
/* T */
|
|
{ SST(0x74, 0x09, SS_RDEF, /* XXX TBD */
|
|
"Encryption mode mismatch on read") },
|
|
/* T */
|
|
{ SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */
|
|
"Encrypted block not raw read enabled") },
|
|
/* T */
|
|
{ SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */
|
|
"Incorrect encryption parameters") },
|
|
/* DT R MAEBKV */
|
|
{ SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */
|
|
"Unable to decrypt parameter list") },
|
|
/* T */
|
|
{ SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */
|
|
"Encryption algorithm disabled") },
|
|
/* DT R MAEBKV */
|
|
{ SST(0x74, 0x10, SS_RDEF, /* XXX TBD */
|
|
"SA creation parameter value invalid") },
|
|
/* DT R MAEBKV */
|
|
{ SST(0x74, 0x11, SS_RDEF, /* XXX TBD */
|
|
"SA creation parameter value rejected") },
|
|
/* DT R MAEBKV */
|
|
{ SST(0x74, 0x12, SS_RDEF, /* XXX TBD */
|
|
"Invalid SA usage") },
|
|
/* T */
|
|
{ SST(0x74, 0x21, SS_RDEF, /* XXX TBD */
|
|
"Data encryption configuration prevented") },
|
|
/* DT R MAEBKV */
|
|
{ SST(0x74, 0x30, SS_RDEF, /* XXX TBD */
|
|
"SA creation parameter not supported") },
|
|
/* DT R MAEBKV */
|
|
{ SST(0x74, 0x40, SS_RDEF, /* XXX TBD */
|
|
"Authentication failed") },
|
|
/* V */
|
|
{ SST(0x74, 0x61, SS_RDEF, /* XXX TBD */
|
|
"External data encryption key manager access error") },
|
|
/* V */
|
|
{ SST(0x74, 0x62, SS_RDEF, /* XXX TBD */
|
|
"External data encryption key manager error") },
|
|
/* V */
|
|
{ SST(0x74, 0x63, SS_RDEF, /* XXX TBD */
|
|
"External data encryption key not found") },
|
|
/* V */
|
|
{ SST(0x74, 0x64, SS_RDEF, /* XXX TBD */
|
|
"External data encryption request not authorized") },
|
|
/* T */
|
|
{ SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */
|
|
"External data encryption control timeout") },
|
|
/* T */
|
|
{ SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */
|
|
"External data encryption control error") },
|
|
/* DT R M E V */
|
|
{ SST(0x74, 0x71, SS_RDEF, /* XXX TBD */
|
|
"Logical unit access not authorized") },
|
|
/* D */
|
|
{ SST(0x74, 0x79, SS_RDEF, /* XXX TBD */
|
|
"Security conflict in translated device") }
|
|
};
|
|
|
|
const int asc_table_size = sizeof(asc_table)/sizeof(asc_table[0]);
|
|
|
|
struct asc_key
|
|
{
|
|
int asc;
|
|
int ascq;
|
|
};
|
|
|
|
static int
|
|
ascentrycomp(const void *key, const void *member)
|
|
{
|
|
int asc;
|
|
int ascq;
|
|
const struct asc_table_entry *table_entry;
|
|
|
|
asc = ((const struct asc_key *)key)->asc;
|
|
ascq = ((const struct asc_key *)key)->ascq;
|
|
table_entry = (const struct asc_table_entry *)member;
|
|
|
|
if (asc >= table_entry->asc) {
|
|
|
|
if (asc > table_entry->asc)
|
|
return (1);
|
|
|
|
if (ascq <= table_entry->ascq) {
|
|
/* Check for ranges */
|
|
if (ascq == table_entry->ascq
|
|
|| ((table_entry->action & SSQ_RANGE) != 0
|
|
&& ascq >= (table_entry - 1)->ascq))
|
|
return (0);
|
|
return (-1);
|
|
}
|
|
return (1);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
static int
|
|
senseentrycomp(const void *key, const void *member)
|
|
{
|
|
int sense_key;
|
|
const struct sense_key_table_entry *table_entry;
|
|
|
|
sense_key = *((const int *)key);
|
|
table_entry = (const struct sense_key_table_entry *)member;
|
|
|
|
if (sense_key >= table_entry->sense_key) {
|
|
if (sense_key == table_entry->sense_key)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
static void
|
|
fetchtableentries(int sense_key, int asc, int ascq,
|
|
struct scsi_inquiry_data *inq_data,
|
|
const struct sense_key_table_entry **sense_entry,
|
|
const struct asc_table_entry **asc_entry)
|
|
{
|
|
caddr_t match;
|
|
const struct asc_table_entry *asc_tables[2];
|
|
const struct sense_key_table_entry *sense_tables[2];
|
|
struct asc_key asc_ascq;
|
|
size_t asc_tables_size[2];
|
|
size_t sense_tables_size[2];
|
|
int num_asc_tables;
|
|
int num_sense_tables;
|
|
int i;
|
|
|
|
/* Default to failure */
|
|
*sense_entry = NULL;
|
|
*asc_entry = NULL;
|
|
match = NULL;
|
|
if (inq_data != NULL)
|
|
match = cam_quirkmatch((caddr_t)inq_data,
|
|
(caddr_t)sense_quirk_table,
|
|
sense_quirk_table_size,
|
|
sizeof(*sense_quirk_table),
|
|
scsi_inquiry_match);
|
|
|
|
if (match != NULL) {
|
|
struct scsi_sense_quirk_entry *quirk;
|
|
|
|
quirk = (struct scsi_sense_quirk_entry *)match;
|
|
asc_tables[0] = quirk->asc_info;
|
|
asc_tables_size[0] = quirk->num_ascs;
|
|
asc_tables[1] = asc_table;
|
|
asc_tables_size[1] = asc_table_size;
|
|
num_asc_tables = 2;
|
|
sense_tables[0] = quirk->sense_key_info;
|
|
sense_tables_size[0] = quirk->num_sense_keys;
|
|
sense_tables[1] = sense_key_table;
|
|
sense_tables_size[1] = sense_key_table_size;
|
|
num_sense_tables = 2;
|
|
} else {
|
|
asc_tables[0] = asc_table;
|
|
asc_tables_size[0] = asc_table_size;
|
|
num_asc_tables = 1;
|
|
sense_tables[0] = sense_key_table;
|
|
sense_tables_size[0] = sense_key_table_size;
|
|
num_sense_tables = 1;
|
|
}
|
|
|
|
asc_ascq.asc = asc;
|
|
asc_ascq.ascq = ascq;
|
|
for (i = 0; i < num_asc_tables; i++) {
|
|
void *found_entry;
|
|
|
|
found_entry = bsearch(&asc_ascq, asc_tables[i],
|
|
asc_tables_size[i],
|
|
sizeof(**asc_tables),
|
|
ascentrycomp);
|
|
|
|
if (found_entry) {
|
|
*asc_entry = (struct asc_table_entry *)found_entry;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_sense_tables; i++) {
|
|
void *found_entry;
|
|
|
|
found_entry = bsearch(&sense_key, sense_tables[i],
|
|
sense_tables_size[i],
|
|
sizeof(**sense_tables),
|
|
senseentrycomp);
|
|
|
|
if (found_entry) {
|
|
*sense_entry =
|
|
(struct sense_key_table_entry *)found_entry;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
scsi_sense_desc(int sense_key, int asc, int ascq,
|
|
struct scsi_inquiry_data *inq_data,
|
|
const char **sense_key_desc, const char **asc_desc)
|
|
{
|
|
const struct asc_table_entry *asc_entry;
|
|
const struct sense_key_table_entry *sense_entry;
|
|
|
|
fetchtableentries(sense_key, asc, ascq,
|
|
inq_data,
|
|
&sense_entry,
|
|
&asc_entry);
|
|
|
|
if (sense_entry != NULL)
|
|
*sense_key_desc = sense_entry->desc;
|
|
else
|
|
*sense_key_desc = "Invalid Sense Key";
|
|
|
|
if (asc_entry != NULL)
|
|
*asc_desc = asc_entry->desc;
|
|
else if (asc >= 0x80 && asc <= 0xff)
|
|
*asc_desc = "Vendor Specific ASC";
|
|
else if (ascq >= 0x80 && ascq <= 0xff)
|
|
*asc_desc = "Vendor Specific ASCQ";
|
|
else
|
|
*asc_desc = "Reserved ASC/ASCQ pair";
|
|
}
|
|
|
|
/*
|
|
* Given sense and device type information, return the appropriate action.
|
|
* If we do not understand the specific error as identified by the ASC/ASCQ
|
|
* pair, fall back on the more generic actions derived from the sense key.
|
|
*/
|
|
scsi_sense_action
|
|
scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
|
|
u_int32_t sense_flags)
|
|
{
|
|
const struct asc_table_entry *asc_entry;
|
|
const struct sense_key_table_entry *sense_entry;
|
|
int error_code, sense_key, asc, ascq;
|
|
scsi_sense_action action;
|
|
|
|
if (!scsi_extract_sense_ccb((union ccb *)csio,
|
|
&error_code, &sense_key, &asc, &ascq)) {
|
|
action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO;
|
|
} else if ((error_code == SSD_DEFERRED_ERROR)
|
|
|| (error_code == SSD_DESC_DEFERRED_ERROR)) {
|
|
/*
|
|
* XXX dufault@FreeBSD.org
|
|
* This error doesn't relate to the command associated
|
|
* with this request sense. A deferred error is an error
|
|
* for a command that has already returned GOOD status
|
|
* (see SCSI2 8.2.14.2).
|
|
*
|
|
* By my reading of that section, it looks like the current
|
|
* command has been cancelled, we should now clean things up
|
|
* (hopefully recovering any lost data) and then retry the
|
|
* current command. There are two easy choices, both wrong:
|
|
*
|
|
* 1. Drop through (like we had been doing), thus treating
|
|
* this as if the error were for the current command and
|
|
* return and stop the current command.
|
|
*
|
|
* 2. Issue a retry (like I made it do) thus hopefully
|
|
* recovering the current transfer, and ignoring the
|
|
* fact that we've dropped a command.
|
|
*
|
|
* These should probably be handled in a device specific
|
|
* sense handler or punted back up to a user mode daemon
|
|
*/
|
|
action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
|
|
} else {
|
|
fetchtableentries(sense_key, asc, ascq,
|
|
inq_data,
|
|
&sense_entry,
|
|
&asc_entry);
|
|
|
|
/*
|
|
* Override the 'No additional Sense' entry (0,0)
|
|
* with the error action of the sense key.
|
|
*/
|
|
if (asc_entry != NULL
|
|
&& (asc != 0 || ascq != 0))
|
|
action = asc_entry->action;
|
|
else if (sense_entry != NULL)
|
|
action = sense_entry->action;
|
|
else
|
|
action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
|
|
|
|
if (sense_key == SSD_KEY_RECOVERED_ERROR) {
|
|
/*
|
|
* The action succeeded but the device wants
|
|
* the user to know that some recovery action
|
|
* was required.
|
|
*/
|
|
action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
|
|
action |= SS_NOP|SSQ_PRINT_SENSE;
|
|
} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
|
|
if ((sense_flags & SF_QUIET_IR) != 0)
|
|
action &= ~SSQ_PRINT_SENSE;
|
|
} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
|
|
if ((sense_flags & SF_RETRY_UA) != 0
|
|
&& (action & SS_MASK) == SS_FAIL) {
|
|
action &= ~(SS_MASK|SSQ_MASK);
|
|
action |= SS_RETRY|SSQ_DECREMENT_COUNT|
|
|
SSQ_PRINT_SENSE;
|
|
}
|
|
action |= SSQ_UA;
|
|
}
|
|
}
|
|
if ((action & SS_MASK) >= SS_START &&
|
|
(sense_flags & SF_NO_RECOVERY)) {
|
|
action &= ~SS_MASK;
|
|
action |= SS_FAIL;
|
|
} else if ((action & SS_MASK) == SS_RETRY &&
|
|
(sense_flags & SF_NO_RETRY)) {
|
|
action &= ~SS_MASK;
|
|
action |= SS_FAIL;
|
|
}
|
|
if ((sense_flags & SF_PRINT_ALWAYS) != 0)
|
|
action |= SSQ_PRINT_SENSE;
|
|
else if ((sense_flags & SF_NO_PRINT) != 0)
|
|
action &= ~SSQ_PRINT_SENSE;
|
|
|
|
return (action);
|
|
}
|
|
|
|
char *
|
|
scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len)
|
|
{
|
|
u_int8_t cdb_len;
|
|
int i;
|
|
|
|
if (cdb_ptr == NULL)
|
|
return("");
|
|
|
|
/* Silence warnings */
|
|
cdb_len = 0;
|
|
|
|
/*
|
|
* This is taken from the SCSI-3 draft spec.
|
|
* (T10/1157D revision 0.3)
|
|
* The top 3 bits of an opcode are the group code. The next 5 bits
|
|
* are the command code.
|
|
* Group 0: six byte commands
|
|
* Group 1: ten byte commands
|
|
* Group 2: ten byte commands
|
|
* Group 3: reserved
|
|
* Group 4: sixteen byte commands
|
|
* Group 5: twelve byte commands
|
|
* Group 6: vendor specific
|
|
* Group 7: vendor specific
|
|
*/
|
|
switch((*cdb_ptr >> 5) & 0x7) {
|
|
case 0:
|
|
cdb_len = 6;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
cdb_len = 10;
|
|
break;
|
|
case 3:
|
|
case 6:
|
|
case 7:
|
|
/* in this case, just print out the opcode */
|
|
cdb_len = 1;
|
|
break;
|
|
case 4:
|
|
cdb_len = 16;
|
|
break;
|
|
case 5:
|
|
cdb_len = 12;
|
|
break;
|
|
}
|
|
*cdb_string = '\0';
|
|
for (i = 0; i < cdb_len; i++)
|
|
snprintf(cdb_string + strlen(cdb_string),
|
|
len - strlen(cdb_string), "%02hhx ", cdb_ptr[i]);
|
|
|
|
return(cdb_string);
|
|
}
|
|
|
|
const char *
|
|
scsi_status_string(struct ccb_scsiio *csio)
|
|
{
|
|
switch(csio->scsi_status) {
|
|
case SCSI_STATUS_OK:
|
|
return("OK");
|
|
case SCSI_STATUS_CHECK_COND:
|
|
return("Check Condition");
|
|
case SCSI_STATUS_BUSY:
|
|
return("Busy");
|
|
case SCSI_STATUS_INTERMED:
|
|
return("Intermediate");
|
|
case SCSI_STATUS_INTERMED_COND_MET:
|
|
return("Intermediate-Condition Met");
|
|
case SCSI_STATUS_RESERV_CONFLICT:
|
|
return("Reservation Conflict");
|
|
case SCSI_STATUS_CMD_TERMINATED:
|
|
return("Command Terminated");
|
|
case SCSI_STATUS_QUEUE_FULL:
|
|
return("Queue Full");
|
|
case SCSI_STATUS_ACA_ACTIVE:
|
|
return("ACA Active");
|
|
case SCSI_STATUS_TASK_ABORTED:
|
|
return("Task Aborted");
|
|
default: {
|
|
static char unkstr[64];
|
|
snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
|
|
csio->scsi_status);
|
|
return(unkstr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* scsi_command_string() returns 0 for success and -1 for failure.
|
|
*/
|
|
#ifdef _KERNEL
|
|
int
|
|
scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
|
|
#else /* !_KERNEL */
|
|
int
|
|
scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
|
|
struct sbuf *sb)
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
{
|
|
struct scsi_inquiry_data *inq_data;
|
|
char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
|
|
#ifdef _KERNEL
|
|
struct ccb_getdev *cgd;
|
|
#endif /* _KERNEL */
|
|
|
|
#ifdef _KERNEL
|
|
if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
|
|
return(-1);
|
|
/*
|
|
* Get the device information.
|
|
*/
|
|
xpt_setup_ccb(&cgd->ccb_h,
|
|
csio->ccb_h.path,
|
|
CAM_PRIORITY_NORMAL);
|
|
cgd->ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action((union ccb *)cgd);
|
|
|
|
/*
|
|
* If the device is unconfigured, just pretend that it is a hard
|
|
* drive. scsi_op_desc() needs this.
|
|
*/
|
|
if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
|
|
cgd->inq_data.device = T_DIRECT;
|
|
|
|
inq_data = &cgd->inq_data;
|
|
|
|
#else /* !_KERNEL */
|
|
|
|
inq_data = &device->inq_data;
|
|
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
|
|
if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) {
|
|
sbuf_printf(sb, "%s. CDB: %s",
|
|
scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data),
|
|
scsi_cdb_string(csio->cdb_io.cdb_ptr, cdb_str,
|
|
sizeof(cdb_str)));
|
|
} else {
|
|
sbuf_printf(sb, "%s. CDB: %s",
|
|
scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data),
|
|
scsi_cdb_string(csio->cdb_io.cdb_bytes, cdb_str,
|
|
sizeof(cdb_str)));
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
xpt_free_ccb((union ccb *)cgd);
|
|
#endif
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Iterate over sense descriptors. Each descriptor is passed into iter_func().
|
|
* If iter_func() returns 0, list traversal continues. If iter_func()
|
|
* returns non-zero, list traversal is stopped.
|
|
*/
|
|
void
|
|
scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
|
|
int (*iter_func)(struct scsi_sense_data_desc *sense,
|
|
u_int, struct scsi_sense_desc_header *,
|
|
void *), void *arg)
|
|
{
|
|
int cur_pos;
|
|
int desc_len;
|
|
|
|
/*
|
|
* First make sure the extra length field is present.
|
|
*/
|
|
if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
|
|
return;
|
|
|
|
/*
|
|
* The length of data actually returned may be different than the
|
|
* extra_len recorded in the sturcture.
|
|
*/
|
|
desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
|
|
|
|
/*
|
|
* Limit this further by the extra length reported, and the maximum
|
|
* allowed extra length.
|
|
*/
|
|
desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
|
|
|
|
/*
|
|
* Subtract the size of the header from the descriptor length.
|
|
* This is to ensure that we have at least the header left, so we
|
|
* don't have to check that inside the loop. This can wind up
|
|
* being a negative value.
|
|
*/
|
|
desc_len -= sizeof(struct scsi_sense_desc_header);
|
|
|
|
for (cur_pos = 0; cur_pos < desc_len;) {
|
|
struct scsi_sense_desc_header *header;
|
|
|
|
header = (struct scsi_sense_desc_header *)
|
|
&sense->sense_desc[cur_pos];
|
|
|
|
/*
|
|
* Check to make sure we have the entire descriptor. We
|
|
* don't call iter_func() unless we do.
|
|
*
|
|
* Note that although cur_pos is at the beginning of the
|
|
* descriptor, desc_len already has the header length
|
|
* subtracted. So the comparison of the length in the
|
|
* header (which does not include the header itself) to
|
|
* desc_len - cur_pos is correct.
|
|
*/
|
|
if (header->length > (desc_len - cur_pos))
|
|
break;
|
|
|
|
if (iter_func(sense, sense_len, header, arg) != 0)
|
|
break;
|
|
|
|
cur_pos += sizeof(*header) + header->length;
|
|
}
|
|
}
|
|
|
|
struct scsi_find_desc_info {
|
|
uint8_t desc_type;
|
|
struct scsi_sense_desc_header *header;
|
|
};
|
|
|
|
static int
|
|
scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
|
|
struct scsi_sense_desc_header *header, void *arg)
|
|
{
|
|
struct scsi_find_desc_info *desc_info;
|
|
|
|
desc_info = (struct scsi_find_desc_info *)arg;
|
|
|
|
if (header->desc_type == desc_info->desc_type) {
|
|
desc_info->header = header;
|
|
|
|
/* We found the descriptor, tell the iterator to stop. */
|
|
return (1);
|
|
} else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given a descriptor type, return a pointer to it if it is in the sense
|
|
* data and not truncated. Avoiding truncating sense data will simplify
|
|
* things significantly for the caller.
|
|
*/
|
|
uint8_t *
|
|
scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
|
|
uint8_t desc_type)
|
|
{
|
|
struct scsi_find_desc_info desc_info;
|
|
|
|
desc_info.desc_type = desc_type;
|
|
desc_info.header = NULL;
|
|
|
|
scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
|
|
|
|
return ((uint8_t *)desc_info.header);
|
|
}
|
|
|
|
/*
|
|
* Fill in SCSI sense data with the specified parameters. This routine can
|
|
* fill in either fixed or descriptor type sense data.
|
|
*/
|
|
void
|
|
scsi_set_sense_data_va(struct scsi_sense_data *sense_data,
|
|
scsi_sense_data_type sense_format, int current_error,
|
|
int sense_key, int asc, int ascq, va_list ap)
|
|
{
|
|
int descriptor_sense;
|
|
scsi_sense_elem_type elem_type;
|
|
|
|
/*
|
|
* Determine whether to return fixed or descriptor format sense
|
|
* data. If the user specifies SSD_TYPE_NONE for some reason,
|
|
* they'll just get fixed sense data.
|
|
*/
|
|
if (sense_format == SSD_TYPE_DESC)
|
|
descriptor_sense = 1;
|
|
else
|
|
descriptor_sense = 0;
|
|
|
|
/*
|
|
* Zero the sense data, so that we don't pass back any garbage data
|
|
* to the user.
|
|
*/
|
|
memset(sense_data, 0, sizeof(*sense_data));
|
|
|
|
if (descriptor_sense != 0) {
|
|
struct scsi_sense_data_desc *sense;
|
|
|
|
sense = (struct scsi_sense_data_desc *)sense_data;
|
|
/*
|
|
* The descriptor sense format eliminates the use of the
|
|
* valid bit.
|
|
*/
|
|
if (current_error != 0)
|
|
sense->error_code = SSD_DESC_CURRENT_ERROR;
|
|
else
|
|
sense->error_code = SSD_DESC_DEFERRED_ERROR;
|
|
sense->sense_key = sense_key;
|
|
sense->add_sense_code = asc;
|
|
sense->add_sense_code_qual = ascq;
|
|
/*
|
|
* Start off with no extra length, since the above data
|
|
* fits in the standard descriptor sense information.
|
|
*/
|
|
sense->extra_len = 0;
|
|
while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
|
|
scsi_sense_elem_type)) != SSD_ELEM_NONE) {
|
|
int sense_len, len_to_copy;
|
|
uint8_t *data;
|
|
|
|
if (elem_type >= SSD_ELEM_MAX) {
|
|
printf("%s: invalid sense type %d\n", __func__,
|
|
elem_type);
|
|
break;
|
|
}
|
|
|
|
sense_len = (int)va_arg(ap, int);
|
|
len_to_copy = MIN(sense_len, SSD_EXTRA_MAX -
|
|
sense->extra_len);
|
|
data = (uint8_t *)va_arg(ap, uint8_t *);
|
|
|
|
/*
|
|
* We've already consumed the arguments for this one.
|
|
*/
|
|
if (elem_type == SSD_ELEM_SKIP)
|
|
continue;
|
|
|
|
switch (elem_type) {
|
|
case SSD_ELEM_DESC: {
|
|
|
|
/*
|
|
* This is a straight descriptor. All we
|
|
* need to do is copy the data in.
|
|
*/
|
|
bcopy(data, &sense->sense_desc[
|
|
sense->extra_len], len_to_copy);
|
|
sense->extra_len += len_to_copy;
|
|
break;
|
|
}
|
|
case SSD_ELEM_SKS: {
|
|
struct scsi_sense_sks sks;
|
|
|
|
bzero(&sks, sizeof(sks));
|
|
|
|
/*
|
|
* This is already-formatted sense key
|
|
* specific data. We just need to fill out
|
|
* the header and copy everything in.
|
|
*/
|
|
bcopy(data, &sks.sense_key_spec,
|
|
MIN(len_to_copy,
|
|
sizeof(sks.sense_key_spec)));
|
|
|
|
sks.desc_type = SSD_DESC_SKS;
|
|
sks.length = sizeof(sks) -
|
|
offsetof(struct scsi_sense_sks, reserved1);
|
|
bcopy(&sks,&sense->sense_desc[sense->extra_len],
|
|
sizeof(sks));
|
|
sense->extra_len += sizeof(sks);
|
|
break;
|
|
}
|
|
case SSD_ELEM_INFO:
|
|
case SSD_ELEM_COMMAND: {
|
|
struct scsi_sense_command cmd;
|
|
struct scsi_sense_info info;
|
|
uint8_t *data_dest;
|
|
uint8_t *descriptor;
|
|
int descriptor_size, i, copy_len;
|
|
|
|
bzero(&cmd, sizeof(cmd));
|
|
bzero(&info, sizeof(info));
|
|
|
|
/*
|
|
* Command or information data. The
|
|
* operate in pretty much the same way.
|
|
*/
|
|
if (elem_type == SSD_ELEM_COMMAND) {
|
|
len_to_copy = MIN(len_to_copy,
|
|
sizeof(cmd.command_info));
|
|
descriptor = (uint8_t *)&cmd;
|
|
descriptor_size = sizeof(cmd);
|
|
data_dest =(uint8_t *)&cmd.command_info;
|
|
cmd.desc_type = SSD_DESC_COMMAND;
|
|
cmd.length = sizeof(cmd) -
|
|
offsetof(struct scsi_sense_command,
|
|
reserved);
|
|
} else {
|
|
len_to_copy = MIN(len_to_copy,
|
|
sizeof(info.info));
|
|
descriptor = (uint8_t *)&info;
|
|
descriptor_size = sizeof(cmd);
|
|
data_dest = (uint8_t *)&info.info;
|
|
info.desc_type = SSD_DESC_INFO;
|
|
info.byte2 = SSD_INFO_VALID;
|
|
info.length = sizeof(info) -
|
|
offsetof(struct scsi_sense_info,
|
|
byte2);
|
|
}
|
|
|
|
/*
|
|
* Copy this in reverse because the spec
|
|
* (SPC-4) says that when 4 byte quantities
|
|
* are stored in this 8 byte field, the
|
|
* first four bytes shall be 0.
|
|
*
|
|
* So we fill the bytes in from the end, and
|
|
* if we have less than 8 bytes to copy,
|
|
* the initial, most significant bytes will
|
|
* be 0.
|
|
*/
|
|
for (i = sense_len - 1; i >= 0 &&
|
|
len_to_copy > 0; i--, len_to_copy--)
|
|
data_dest[len_to_copy - 1] = data[i];
|
|
|
|
/*
|
|
* This calculation looks much like the
|
|
* initial len_to_copy calculation, but
|
|
* we have to do it again here, because
|
|
* we're looking at a larger amount that
|
|
* may or may not fit. It's not only the
|
|
* data the user passed in, but also the
|
|
* rest of the descriptor.
|
|
*/
|
|
copy_len = MIN(descriptor_size,
|
|
SSD_EXTRA_MAX - sense->extra_len);
|
|
bcopy(descriptor, &sense->sense_desc[
|
|
sense->extra_len], copy_len);
|
|
sense->extra_len += copy_len;
|
|
break;
|
|
}
|
|
case SSD_ELEM_FRU: {
|
|
struct scsi_sense_fru fru;
|
|
int copy_len;
|
|
|
|
bzero(&fru, sizeof(fru));
|
|
|
|
fru.desc_type = SSD_DESC_FRU;
|
|
fru.length = sizeof(fru) -
|
|
offsetof(struct scsi_sense_fru, reserved);
|
|
fru.fru = *data;
|
|
|
|
copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX -
|
|
sense->extra_len);
|
|
bcopy(&fru, &sense->sense_desc[
|
|
sense->extra_len], copy_len);
|
|
sense->extra_len += copy_len;
|
|
break;
|
|
}
|
|
case SSD_ELEM_STREAM: {
|
|
struct scsi_sense_stream stream_sense;
|
|
int copy_len;
|
|
|
|
bzero(&stream_sense, sizeof(stream_sense));
|
|
stream_sense.desc_type = SSD_DESC_STREAM;
|
|
stream_sense.length = sizeof(stream_sense) -
|
|
offsetof(struct scsi_sense_stream, reserved);
|
|
stream_sense.byte3 = *data;
|
|
|
|
copy_len = MIN(sizeof(stream_sense),
|
|
SSD_EXTRA_MAX - sense->extra_len);
|
|
bcopy(&stream_sense, &sense->sense_desc[
|
|
sense->extra_len], copy_len);
|
|
sense->extra_len += copy_len;
|
|
break;
|
|
}
|
|
default:
|
|
/*
|
|
* We shouldn't get here, but if we do, do
|
|
* nothing. We've already consumed the
|
|
* arguments above.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
struct scsi_sense_data_fixed *sense;
|
|
|
|
sense = (struct scsi_sense_data_fixed *)sense_data;
|
|
|
|
if (current_error != 0)
|
|
sense->error_code = SSD_CURRENT_ERROR;
|
|
else
|
|
sense->error_code = SSD_DEFERRED_ERROR;
|
|
|
|
sense->flags = sense_key;
|
|
sense->add_sense_code = asc;
|
|
sense->add_sense_code_qual = ascq;
|
|
/*
|
|
* We've set the ASC and ASCQ, so we have 6 more bytes of
|
|
* valid data. If we wind up setting any of the other
|
|
* fields, we'll bump this to 10 extra bytes.
|
|
*/
|
|
sense->extra_len = 6;
|
|
|
|
while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
|
|
scsi_sense_elem_type)) != SSD_ELEM_NONE) {
|
|
int sense_len, len_to_copy;
|
|
uint8_t *data;
|
|
|
|
if (elem_type >= SSD_ELEM_MAX) {
|
|
printf("%s: invalid sense type %d\n", __func__,
|
|
elem_type);
|
|
break;
|
|
}
|
|
/*
|
|
* If we get in here, just bump the extra length to
|
|
* 10 bytes. That will encompass anything we're
|
|
* going to set here.
|
|
*/
|
|
sense->extra_len = 10;
|
|
sense_len = (int)va_arg(ap, int);
|
|
len_to_copy = MIN(sense_len, SSD_EXTRA_MAX -
|
|
sense->extra_len);
|
|
data = (uint8_t *)va_arg(ap, uint8_t *);
|
|
|
|
switch (elem_type) {
|
|
case SSD_ELEM_SKS:
|
|
/*
|
|
* The user passed in pre-formatted sense
|
|
* key specific data.
|
|
*/
|
|
bcopy(data, &sense->sense_key_spec[0],
|
|
MIN(sizeof(sense->sense_key_spec),
|
|
sense_len));
|
|
break;
|
|
case SSD_ELEM_INFO:
|
|
case SSD_ELEM_COMMAND: {
|
|
uint8_t *data_dest;
|
|
int i;
|
|
|
|
if (elem_type == SSD_ELEM_COMMAND)
|
|
data_dest = &sense->cmd_spec_info[0];
|
|
else {
|
|
data_dest = &sense->info[0];
|
|
/*
|
|
* We're setting the info field, so
|
|
* set the valid bit.
|
|
*/
|
|
sense->error_code |= SSD_ERRCODE_VALID;
|
|
}
|
|
|
|
/*
|
|
* Copy this in reverse so that if we have
|
|
* less than 4 bytes to fill, the least
|
|
* significant bytes will be at the end.
|
|
* If we have more than 4 bytes, only the
|
|
* least significant bytes will be included.
|
|
*/
|
|
for (i = sense_len - 1; i >= 0 &&
|
|
len_to_copy > 0; i--, len_to_copy--)
|
|
data_dest[len_to_copy - 1] = data[i];
|
|
|
|
break;
|
|
}
|
|
case SSD_ELEM_FRU:
|
|
sense->fru = *data;
|
|
break;
|
|
case SSD_ELEM_STREAM:
|
|
sense->flags |= *data;
|
|
break;
|
|
case SSD_ELEM_DESC:
|
|
default:
|
|
|
|
/*
|
|
* If the user passes in descriptor sense,
|
|
* we can't handle that in fixed format.
|
|
* So just skip it, and any unknown argument
|
|
* types.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
scsi_set_sense_data(struct scsi_sense_data *sense_data,
|
|
scsi_sense_data_type sense_format, int current_error,
|
|
int sense_key, int asc, int ascq, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, ascq);
|
|
scsi_set_sense_data_va(sense_data, sense_format, current_error,
|
|
sense_key, asc, ascq, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
/*
|
|
* Get sense information for three similar sense data types.
|
|
*/
|
|
int
|
|
scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
|
|
uint8_t info_type, uint64_t *info, int64_t *signed_info)
|
|
{
|
|
scsi_sense_data_type sense_type;
|
|
|
|
if (sense_len == 0)
|
|
goto bailout;
|
|
|
|
sense_type = scsi_sense_type(sense_data);
|
|
|
|
switch (sense_type) {
|
|
case SSD_TYPE_DESC: {
|
|
struct scsi_sense_data_desc *sense;
|
|
uint8_t *desc;
|
|
|
|
sense = (struct scsi_sense_data_desc *)sense_data;
|
|
|
|
desc = scsi_find_desc(sense, sense_len, info_type);
|
|
if (desc == NULL)
|
|
goto bailout;
|
|
|
|
switch (info_type) {
|
|
case SSD_DESC_INFO: {
|
|
struct scsi_sense_info *info_desc;
|
|
|
|
info_desc = (struct scsi_sense_info *)desc;
|
|
*info = scsi_8btou64(info_desc->info);
|
|
if (signed_info != NULL)
|
|
*signed_info = *info;
|
|
break;
|
|
}
|
|
case SSD_DESC_COMMAND: {
|
|
struct scsi_sense_command *cmd_desc;
|
|
|
|
cmd_desc = (struct scsi_sense_command *)desc;
|
|
|
|
*info = scsi_8btou64(cmd_desc->command_info);
|
|
if (signed_info != NULL)
|
|
*signed_info = *info;
|
|
break;
|
|
}
|
|
case SSD_DESC_FRU: {
|
|
struct scsi_sense_fru *fru_desc;
|
|
|
|
fru_desc = (struct scsi_sense_fru *)desc;
|
|
|
|
*info = fru_desc->fru;
|
|
if (signed_info != NULL)
|
|
*signed_info = (int8_t)fru_desc->fru;
|
|
break;
|
|
}
|
|
default:
|
|
goto bailout;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case SSD_TYPE_FIXED: {
|
|
struct scsi_sense_data_fixed *sense;
|
|
|
|
sense = (struct scsi_sense_data_fixed *)sense_data;
|
|
|
|
switch (info_type) {
|
|
case SSD_DESC_INFO: {
|
|
uint32_t info_val;
|
|
|
|
if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
|
|
goto bailout;
|
|
|
|
if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
|
|
goto bailout;
|
|
|
|
info_val = scsi_4btoul(sense->info);
|
|
|
|
*info = info_val;
|
|
if (signed_info != NULL)
|
|
*signed_info = (int32_t)info_val;
|
|
break;
|
|
}
|
|
case SSD_DESC_COMMAND: {
|
|
uint32_t cmd_val;
|
|
|
|
if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
|
|
cmd_spec_info) == 0)
|
|
|| (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
|
|
goto bailout;
|
|
|
|
cmd_val = scsi_4btoul(sense->cmd_spec_info);
|
|
if (cmd_val == 0)
|
|
goto bailout;
|
|
|
|
*info = cmd_val;
|
|
if (signed_info != NULL)
|
|
*signed_info = (int32_t)cmd_val;
|
|
break;
|
|
}
|
|
case SSD_DESC_FRU:
|
|
if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
|
|
|| (SSD_FIXED_IS_FILLED(sense, fru) == 0))
|
|
goto bailout;
|
|
|
|
if (sense->fru == 0)
|
|
goto bailout;
|
|
|
|
*info = sense->fru;
|
|
if (signed_info != NULL)
|
|
*signed_info = (int8_t)sense->fru;
|
|
break;
|
|
default:
|
|
goto bailout;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
goto bailout;
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
bailout:
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
|
|
{
|
|
scsi_sense_data_type sense_type;
|
|
|
|
if (sense_len == 0)
|
|
goto bailout;
|
|
|
|
sense_type = scsi_sense_type(sense_data);
|
|
|
|
switch (sense_type) {
|
|
case SSD_TYPE_DESC: {
|
|
struct scsi_sense_data_desc *sense;
|
|
struct scsi_sense_sks *desc;
|
|
|
|
sense = (struct scsi_sense_data_desc *)sense_data;
|
|
|
|
desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
|
|
SSD_DESC_SKS);
|
|
if (desc == NULL)
|
|
goto bailout;
|
|
|
|
/*
|
|
* No need to check the SKS valid bit for descriptor sense.
|
|
* If the descriptor is present, it is valid.
|
|
*/
|
|
bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
|
|
break;
|
|
}
|
|
case SSD_TYPE_FIXED: {
|
|
struct scsi_sense_data_fixed *sense;
|
|
|
|
sense = (struct scsi_sense_data_fixed *)sense_data;
|
|
|
|
if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
|
|
|| (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
|
|
goto bailout;
|
|
|
|
if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
|
|
goto bailout;
|
|
|
|
bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
|
|
break;
|
|
}
|
|
default:
|
|
goto bailout;
|
|
break;
|
|
}
|
|
return (0);
|
|
bailout:
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Provide a common interface for fixed and descriptor sense to detect
|
|
* whether we have block-specific sense information. It is clear by the
|
|
* presence of the block descriptor in descriptor mode, but we have to
|
|
* infer from the inquiry data and ILI bit in fixed mode.
|
|
*/
|
|
int
|
|
scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
|
|
struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
|
|
{
|
|
scsi_sense_data_type sense_type;
|
|
|
|
if (inq_data != NULL) {
|
|
switch (SID_TYPE(inq_data)) {
|
|
case T_DIRECT:
|
|
case T_RBC:
|
|
break;
|
|
default:
|
|
goto bailout;
|
|
break;
|
|
}
|
|
}
|
|
|
|
sense_type = scsi_sense_type(sense_data);
|
|
|
|
switch (sense_type) {
|
|
case SSD_TYPE_DESC: {
|
|
struct scsi_sense_data_desc *sense;
|
|
struct scsi_sense_block *block;
|
|
|
|
sense = (struct scsi_sense_data_desc *)sense_data;
|
|
|
|
block = (struct scsi_sense_block *)scsi_find_desc(sense,
|
|
sense_len, SSD_DESC_BLOCK);
|
|
if (block == NULL)
|
|
goto bailout;
|
|
|
|
*block_bits = block->byte3;
|
|
break;
|
|
}
|
|
case SSD_TYPE_FIXED: {
|
|
struct scsi_sense_data_fixed *sense;
|
|
|
|
sense = (struct scsi_sense_data_fixed *)sense_data;
|
|
|
|
if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
|
|
goto bailout;
|
|
|
|
if ((sense->flags & SSD_ILI) == 0)
|
|
goto bailout;
|
|
|
|
*block_bits = sense->flags & SSD_ILI;
|
|
break;
|
|
}
|
|
default:
|
|
goto bailout;
|
|
break;
|
|
}
|
|
return (0);
|
|
bailout:
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
|
|
struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
|
|
{
|
|
scsi_sense_data_type sense_type;
|
|
|
|
if (inq_data != NULL) {
|
|
switch (SID_TYPE(inq_data)) {
|
|
case T_SEQUENTIAL:
|
|
break;
|
|
default:
|
|
goto bailout;
|
|
break;
|
|
}
|
|
}
|
|
|
|
sense_type = scsi_sense_type(sense_data);
|
|
|
|
switch (sense_type) {
|
|
case SSD_TYPE_DESC: {
|
|
struct scsi_sense_data_desc *sense;
|
|
struct scsi_sense_stream *stream;
|
|
|
|
sense = (struct scsi_sense_data_desc *)sense_data;
|
|
|
|
stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
|
|
sense_len, SSD_DESC_STREAM);
|
|
if (stream == NULL)
|
|
goto bailout;
|
|
|
|
*stream_bits = stream->byte3;
|
|
break;
|
|
}
|
|
case SSD_TYPE_FIXED: {
|
|
struct scsi_sense_data_fixed *sense;
|
|
|
|
sense = (struct scsi_sense_data_fixed *)sense_data;
|
|
|
|
if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
|
|
goto bailout;
|
|
|
|
if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0)
|
|
goto bailout;
|
|
|
|
*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
|
|
break;
|
|
}
|
|
default:
|
|
goto bailout;
|
|
break;
|
|
}
|
|
return (0);
|
|
bailout:
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data, uint64_t info)
|
|
{
|
|
sbuf_printf(sb, "Info: %#jx", info);
|
|
}
|
|
|
|
void
|
|
scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data, uint64_t csi)
|
|
{
|
|
sbuf_printf(sb, "Command Specific Info: %#jx", csi);
|
|
}
|
|
|
|
|
|
void
|
|
scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
|
|
{
|
|
sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
|
|
(progress * 100) / SSD_SKS_PROGRESS_DENOM,
|
|
progress, SSD_SKS_PROGRESS_DENOM);
|
|
}
|
|
|
|
/*
|
|
* Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
|
|
*/
|
|
int
|
|
scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
|
|
{
|
|
if ((sks[0] & SSD_SKS_VALID) == 0)
|
|
return (1);
|
|
|
|
switch (sense_key) {
|
|
case SSD_KEY_ILLEGAL_REQUEST: {
|
|
struct scsi_sense_sks_field *field;
|
|
int bad_command;
|
|
char tmpstr[40];
|
|
|
|
/*Field Pointer*/
|
|
field = (struct scsi_sense_sks_field *)sks;
|
|
|
|
if (field->byte0 & SSD_SKS_FIELD_CMD)
|
|
bad_command = 1;
|
|
else
|
|
bad_command = 0;
|
|
|
|
tmpstr[0] = '\0';
|
|
|
|
/* Bit pointer is valid */
|
|
if (field->byte0 & SSD_SKS_BPV)
|
|
snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
|
|
field->byte0 & SSD_SKS_BIT_VALUE);
|
|
|
|
sbuf_printf(sb, "%s byte %d %sis invalid",
|
|
bad_command ? "Command" : "Data",
|
|
scsi_2btoul(field->field), tmpstr);
|
|
break;
|
|
}
|
|
case SSD_KEY_UNIT_ATTENTION: {
|
|
struct scsi_sense_sks_overflow *overflow;
|
|
|
|
overflow = (struct scsi_sense_sks_overflow *)sks;
|
|
|
|
/*UA Condition Queue Overflow*/
|
|
sbuf_printf(sb, "Unit Attention Condition Queue %s",
|
|
(overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
|
|
"Overflowed" : "Did Not Overflow??");
|
|
break;
|
|
}
|
|
case SSD_KEY_RECOVERED_ERROR:
|
|
case SSD_KEY_HARDWARE_ERROR:
|
|
case SSD_KEY_MEDIUM_ERROR: {
|
|
struct scsi_sense_sks_retry *retry;
|
|
|
|
/*Actual Retry Count*/
|
|
retry = (struct scsi_sense_sks_retry *)sks;
|
|
|
|
sbuf_printf(sb, "Actual Retry Count: %d",
|
|
scsi_2btoul(retry->actual_retry_count));
|
|
break;
|
|
}
|
|
case SSD_KEY_NO_SENSE:
|
|
case SSD_KEY_NOT_READY: {
|
|
struct scsi_sense_sks_progress *progress;
|
|
int progress_val;
|
|
|
|
/*Progress Indication*/
|
|
progress = (struct scsi_sense_sks_progress *)sks;
|
|
progress_val = scsi_2btoul(progress->progress);
|
|
|
|
scsi_progress_sbuf(sb, progress_val);
|
|
break;
|
|
}
|
|
case SSD_KEY_COPY_ABORTED: {
|
|
struct scsi_sense_sks_segment *segment;
|
|
char tmpstr[40];
|
|
|
|
/*Segment Pointer*/
|
|
segment = (struct scsi_sense_sks_segment *)sks;
|
|
|
|
tmpstr[0] = '\0';
|
|
|
|
if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
|
|
snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
|
|
segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
|
|
|
|
sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
|
|
SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
|
|
scsi_2btoul(segment->field), tmpstr);
|
|
break;
|
|
}
|
|
default:
|
|
sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
|
|
scsi_2btoul(&sks[1]));
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
|
|
{
|
|
sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
|
|
}
|
|
|
|
void
|
|
scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info)
|
|
{
|
|
int need_comma;
|
|
|
|
need_comma = 0;
|
|
/*
|
|
* XXX KDM this needs more descriptive decoding.
|
|
*/
|
|
if (stream_bits & SSD_DESC_STREAM_FM) {
|
|
sbuf_printf(sb, "Filemark");
|
|
need_comma = 1;
|
|
}
|
|
|
|
if (stream_bits & SSD_DESC_STREAM_EOM) {
|
|
sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
|
|
need_comma = 1;
|
|
}
|
|
|
|
if (stream_bits & SSD_DESC_STREAM_ILI)
|
|
sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
|
|
|
|
sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info);
|
|
}
|
|
|
|
void
|
|
scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info)
|
|
{
|
|
if (block_bits & SSD_DESC_BLOCK_ILI)
|
|
sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info);
|
|
}
|
|
|
|
void
|
|
scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
|
|
u_int sense_len, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data,
|
|
struct scsi_sense_desc_header *header)
|
|
{
|
|
struct scsi_sense_info *info;
|
|
|
|
info = (struct scsi_sense_info *)header;
|
|
|
|
scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
|
|
}
|
|
|
|
void
|
|
scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
|
|
u_int sense_len, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data,
|
|
struct scsi_sense_desc_header *header)
|
|
{
|
|
struct scsi_sense_command *command;
|
|
|
|
command = (struct scsi_sense_command *)header;
|
|
|
|
scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
|
|
scsi_8btou64(command->command_info));
|
|
}
|
|
|
|
void
|
|
scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
|
|
u_int sense_len, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data,
|
|
struct scsi_sense_desc_header *header)
|
|
{
|
|
struct scsi_sense_sks *sks;
|
|
int error_code, sense_key, asc, ascq;
|
|
|
|
sks = (struct scsi_sense_sks *)header;
|
|
|
|
scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
|
|
&asc, &ascq, /*show_errors*/ 1);
|
|
|
|
scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
|
|
}
|
|
|
|
void
|
|
scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
|
|
u_int sense_len, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data,
|
|
struct scsi_sense_desc_header *header)
|
|
{
|
|
struct scsi_sense_fru *fru;
|
|
|
|
fru = (struct scsi_sense_fru *)header;
|
|
|
|
scsi_fru_sbuf(sb, (uint64_t)fru->fru);
|
|
}
|
|
|
|
void
|
|
scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
|
|
u_int sense_len, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data,
|
|
struct scsi_sense_desc_header *header)
|
|
{
|
|
struct scsi_sense_stream *stream;
|
|
uint64_t info;
|
|
|
|
stream = (struct scsi_sense_stream *)header;
|
|
info = 0;
|
|
|
|
scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
|
|
|
|
scsi_stream_sbuf(sb, stream->byte3, info);
|
|
}
|
|
|
|
void
|
|
scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
|
|
u_int sense_len, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data,
|
|
struct scsi_sense_desc_header *header)
|
|
{
|
|
struct scsi_sense_block *block;
|
|
uint64_t info;
|
|
|
|
block = (struct scsi_sense_block *)header;
|
|
info = 0;
|
|
|
|
scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
|
|
|
|
scsi_block_sbuf(sb, block->byte3, info);
|
|
}
|
|
|
|
void
|
|
scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
|
|
u_int sense_len, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data,
|
|
struct scsi_sense_desc_header *header)
|
|
{
|
|
struct scsi_sense_progress *progress;
|
|
const char *sense_key_desc;
|
|
const char *asc_desc;
|
|
int progress_val;
|
|
|
|
progress = (struct scsi_sense_progress *)header;
|
|
|
|
/*
|
|
* Get descriptions for the sense key, ASC, and ASCQ in the
|
|
* progress descriptor. These could be different than the values
|
|
* in the overall sense data.
|
|
*/
|
|
scsi_sense_desc(progress->sense_key, progress->add_sense_code,
|
|
progress->add_sense_code_qual, inq_data,
|
|
&sense_key_desc, &asc_desc);
|
|
|
|
progress_val = scsi_2btoul(progress->progress);
|
|
|
|
/*
|
|
* The progress indicator is for the operation described by the
|
|
* sense key, ASC, and ASCQ in the descriptor.
|
|
*/
|
|
sbuf_cat(sb, sense_key_desc);
|
|
sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
|
|
progress->add_sense_code_qual, asc_desc);
|
|
scsi_progress_sbuf(sb, progress_val);
|
|
}
|
|
|
|
/*
|
|
* Generic sense descriptor printing routine. This is used when we have
|
|
* not yet implemented a specific printing routine for this descriptor.
|
|
*/
|
|
void
|
|
scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
|
|
u_int sense_len, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data,
|
|
struct scsi_sense_desc_header *header)
|
|
{
|
|
int i;
|
|
uint8_t *buf_ptr;
|
|
|
|
sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
|
|
|
|
buf_ptr = (uint8_t *)&header[1];
|
|
|
|
for (i = 0; i < header->length; i++, buf_ptr++)
|
|
sbuf_printf(sb, " %02x", *buf_ptr);
|
|
}
|
|
|
|
/*
|
|
* Keep this list in numeric order. This speeds the array traversal.
|
|
*/
|
|
struct scsi_sense_desc_printer {
|
|
uint8_t desc_type;
|
|
/*
|
|
* The function arguments here are the superset of what is needed
|
|
* to print out various different descriptors. Command and
|
|
* information descriptors need inquiry data and command type.
|
|
* Sense key specific descriptors need the sense key.
|
|
*
|
|
* The sense, cdb, and inquiry data arguments may be NULL, but the
|
|
* information printed may not be fully decoded as a result.
|
|
*/
|
|
void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
|
|
u_int sense_len, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data,
|
|
struct scsi_sense_desc_header *header);
|
|
} scsi_sense_printers[] = {
|
|
{SSD_DESC_INFO, scsi_sense_info_sbuf},
|
|
{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
|
|
{SSD_DESC_SKS, scsi_sense_sks_sbuf},
|
|
{SSD_DESC_FRU, scsi_sense_fru_sbuf},
|
|
{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
|
|
{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
|
|
{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}
|
|
};
|
|
|
|
void
|
|
scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
|
|
u_int sense_len, uint8_t *cdb, int cdb_len,
|
|
struct scsi_inquiry_data *inq_data,
|
|
struct scsi_sense_desc_header *header)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < (sizeof(scsi_sense_printers) /
|
|
sizeof(scsi_sense_printers[0])); i++) {
|
|
struct scsi_sense_desc_printer *printer;
|
|
|
|
printer = &scsi_sense_printers[i];
|
|
|
|
/*
|
|
* The list is sorted, so quit if we've passed our
|
|
* descriptor number.
|
|
*/
|
|
if (printer->desc_type > header->desc_type)
|
|
break;
|
|
|
|
if (printer->desc_type != header->desc_type)
|
|
continue;
|
|
|
|
printer->print_func(sb, sense, sense_len, cdb, cdb_len,
|
|
inq_data, header);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* No specific printing routine, so use the generic routine.
|
|
*/
|
|
scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
|
|
inq_data, header);
|
|
}
|
|
|
|
scsi_sense_data_type
|
|
scsi_sense_type(struct scsi_sense_data *sense_data)
|
|
{
|
|
switch (sense_data->error_code & SSD_ERRCODE) {
|
|
case SSD_DESC_CURRENT_ERROR:
|
|
case SSD_DESC_DEFERRED_ERROR:
|
|
return (SSD_TYPE_DESC);
|
|
break;
|
|
case SSD_CURRENT_ERROR:
|
|
case SSD_DEFERRED_ERROR:
|
|
return (SSD_TYPE_FIXED);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (SSD_TYPE_NONE);
|
|
}
|
|
|
|
struct scsi_print_sense_info {
|
|
struct sbuf *sb;
|
|
char *path_str;
|
|
uint8_t *cdb;
|
|
int cdb_len;
|
|
struct scsi_inquiry_data *inq_data;
|
|
};
|
|
|
|
static int
|
|
scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
|
|
struct scsi_sense_desc_header *header, void *arg)
|
|
{
|
|
struct scsi_print_sense_info *print_info;
|
|
|
|
print_info = (struct scsi_print_sense_info *)arg;
|
|
|
|
switch (header->desc_type) {
|
|
case SSD_DESC_INFO:
|
|
case SSD_DESC_FRU:
|
|
case SSD_DESC_COMMAND:
|
|
case SSD_DESC_SKS:
|
|
case SSD_DESC_BLOCK:
|
|
case SSD_DESC_STREAM:
|
|
/*
|
|
* We have already printed these descriptors, if they are
|
|
* present.
|
|
*/
|
|
break;
|
|
default: {
|
|
sbuf_printf(print_info->sb, "%s", print_info->path_str);
|
|
scsi_sense_desc_sbuf(print_info->sb,
|
|
(struct scsi_sense_data *)sense, sense_len,
|
|
print_info->cdb, print_info->cdb_len,
|
|
print_info->inq_data, header);
|
|
sbuf_printf(print_info->sb, "\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tell the iterator that we want to see more descriptors if they
|
|
* are present.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
|
|
struct sbuf *sb, char *path_str,
|
|
struct scsi_inquiry_data *inq_data, uint8_t *cdb,
|
|
int cdb_len)
|
|
{
|
|
int error_code, sense_key, asc, ascq;
|
|
|
|
sbuf_cat(sb, path_str);
|
|
|
|
scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
|
|
&asc, &ascq, /*show_errors*/ 1);
|
|
|
|
sbuf_printf(sb, "SCSI sense: ");
|
|
switch (error_code) {
|
|
case SSD_DEFERRED_ERROR:
|
|
case SSD_DESC_DEFERRED_ERROR:
|
|
sbuf_printf(sb, "Deferred error: ");
|
|
|
|
/* FALLTHROUGH */
|
|
case SSD_CURRENT_ERROR:
|
|
case SSD_DESC_CURRENT_ERROR:
|
|
{
|
|
struct scsi_sense_data_desc *desc_sense;
|
|
struct scsi_print_sense_info print_info;
|
|
const char *sense_key_desc;
|
|
const char *asc_desc;
|
|
uint8_t sks[3];
|
|
uint64_t val;
|
|
int info_valid;
|
|
|
|
/*
|
|
* Get descriptions for the sense key, ASC, and ASCQ. If
|
|
* these aren't present in the sense data (i.e. the sense
|
|
* data isn't long enough), the -1 values that
|
|
* scsi_extract_sense_len() returns will yield default
|
|
* or error descriptions.
|
|
*/
|
|
scsi_sense_desc(sense_key, asc, ascq, inq_data,
|
|
&sense_key_desc, &asc_desc);
|
|
|
|
/*
|
|
* We first print the sense key and ASC/ASCQ.
|
|
*/
|
|
sbuf_cat(sb, sense_key_desc);
|
|
sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
|
|
|
|
/*
|
|
* Get the info field if it is valid.
|
|
*/
|
|
if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
|
|
&val, NULL) == 0)
|
|
info_valid = 1;
|
|
else
|
|
info_valid = 0;
|
|
|
|
if (info_valid != 0) {
|
|
uint8_t bits;
|
|
|
|
/*
|
|
* Determine whether we have any block or stream
|
|
* device-specific information.
|
|
*/
|
|
if (scsi_get_block_info(sense, sense_len, inq_data,
|
|
&bits) == 0) {
|
|
sbuf_cat(sb, path_str);
|
|
scsi_block_sbuf(sb, bits, val);
|
|
sbuf_printf(sb, "\n");
|
|
} else if (scsi_get_stream_info(sense, sense_len,
|
|
inq_data, &bits) == 0) {
|
|
sbuf_cat(sb, path_str);
|
|
scsi_stream_sbuf(sb, bits, val);
|
|
sbuf_printf(sb, "\n");
|
|
} else if (val != 0) {
|
|
/*
|
|
* The information field can be valid but 0.
|
|
* If the block or stream bits aren't set,
|
|
* and this is 0, it isn't terribly useful
|
|
* to print it out.
|
|
*/
|
|
sbuf_cat(sb, path_str);
|
|
scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
|
|
sbuf_printf(sb, "\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Print the FRU.
|
|
*/
|
|
if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
|
|
&val, NULL) == 0) {
|
|
sbuf_cat(sb, path_str);
|
|
scsi_fru_sbuf(sb, val);
|
|
sbuf_printf(sb, "\n");
|
|
}
|
|
|
|
/*
|
|
* Print any command-specific information.
|
|
*/
|
|
if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
|
|
&val, NULL) == 0) {
|
|
sbuf_cat(sb, path_str);
|
|
scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
|
|
sbuf_printf(sb, "\n");
|
|
}
|
|
|
|
/*
|
|
* Print out any sense-key-specific information.
|
|
*/
|
|
if (scsi_get_sks(sense, sense_len, sks) == 0) {
|
|
sbuf_cat(sb, path_str);
|
|
scsi_sks_sbuf(sb, sense_key, sks);
|
|
sbuf_printf(sb, "\n");
|
|
}
|
|
|
|
/*
|
|
* If this is fixed sense, we're done. If we have
|
|
* descriptor sense, we might have more information
|
|
* available.
|
|
*/
|
|
if (scsi_sense_type(sense) != SSD_TYPE_DESC)
|
|
break;
|
|
|
|
desc_sense = (struct scsi_sense_data_desc *)sense;
|
|
|
|
print_info.sb = sb;
|
|
print_info.path_str = path_str;
|
|
print_info.cdb = cdb;
|
|
print_info.cdb_len = cdb_len;
|
|
print_info.inq_data = inq_data;
|
|
|
|
/*
|
|
* Print any sense descriptors that we have not already printed.
|
|
*/
|
|
scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
|
|
&print_info);
|
|
break;
|
|
|
|
}
|
|
case -1:
|
|
/*
|
|
* scsi_extract_sense_len() sets values to -1 if the
|
|
* show_errors flag is set and they aren't present in the
|
|
* sense data. This means that sense_len is 0.
|
|
*/
|
|
sbuf_printf(sb, "No sense data present\n");
|
|
break;
|
|
default: {
|
|
sbuf_printf(sb, "Error code 0x%x", error_code);
|
|
if (sense->error_code & SSD_ERRCODE_VALID) {
|
|
struct scsi_sense_data_fixed *fixed_sense;
|
|
|
|
fixed_sense = (struct scsi_sense_data_fixed *)sense;
|
|
|
|
if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
|
|
uint32_t info;
|
|
|
|
info = scsi_4btoul(fixed_sense->info);
|
|
|
|
sbuf_printf(sb, " at block no. %d (decimal)",
|
|
info);
|
|
}
|
|
}
|
|
sbuf_printf(sb, "\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* scsi_sense_sbuf() returns 0 for success and -1 for failure.
|
|
*/
|
|
#ifdef _KERNEL
|
|
int
|
|
scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
|
|
scsi_sense_string_flags flags)
|
|
#else /* !_KERNEL */
|
|
int
|
|
scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
|
|
struct sbuf *sb, scsi_sense_string_flags flags)
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
{
|
|
struct scsi_sense_data *sense;
|
|
struct scsi_inquiry_data *inq_data;
|
|
#ifdef _KERNEL
|
|
struct ccb_getdev *cgd;
|
|
#endif /* _KERNEL */
|
|
char path_str[64];
|
|
uint8_t *cdb;
|
|
|
|
#ifndef _KERNEL
|
|
if (device == NULL)
|
|
return(-1);
|
|
#endif /* !_KERNEL */
|
|
if ((csio == NULL) || (sb == NULL))
|
|
return(-1);
|
|
|
|
/*
|
|
* If the CDB is a physical address, we can't deal with it..
|
|
*/
|
|
if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
|
|
flags &= ~SSS_FLAG_PRINT_COMMAND;
|
|
|
|
#ifdef _KERNEL
|
|
xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
|
|
#else /* !_KERNEL */
|
|
cam_path_string(device, path_str, sizeof(path_str));
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
|
|
#ifdef _KERNEL
|
|
if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
|
|
return(-1);
|
|
/*
|
|
* Get the device information.
|
|
*/
|
|
xpt_setup_ccb(&cgd->ccb_h,
|
|
csio->ccb_h.path,
|
|
CAM_PRIORITY_NORMAL);
|
|
cgd->ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action((union ccb *)cgd);
|
|
|
|
/*
|
|
* If the device is unconfigured, just pretend that it is a hard
|
|
* drive. scsi_op_desc() needs this.
|
|
*/
|
|
if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
|
|
cgd->inq_data.device = T_DIRECT;
|
|
|
|
inq_data = &cgd->inq_data;
|
|
|
|
#else /* !_KERNEL */
|
|
|
|
inq_data = &device->inq_data;
|
|
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
|
|
sense = NULL;
|
|
|
|
if (flags & SSS_FLAG_PRINT_COMMAND) {
|
|
|
|
sbuf_cat(sb, path_str);
|
|
|
|
#ifdef _KERNEL
|
|
scsi_command_string(csio, sb);
|
|
#else /* !_KERNEL */
|
|
scsi_command_string(device, csio, sb);
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
sbuf_printf(sb, "\n");
|
|
}
|
|
|
|
/*
|
|
* If the sense data is a physical pointer, forget it.
|
|
*/
|
|
if (csio->ccb_h.flags & CAM_SENSE_PTR) {
|
|
if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
|
|
#ifdef _KERNEL
|
|
xpt_free_ccb((union ccb*)cgd);
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
return(-1);
|
|
} else {
|
|
/*
|
|
* bcopy the pointer to avoid unaligned access
|
|
* errors on finicky architectures. We don't
|
|
* ensure that the sense data is pointer aligned.
|
|
*/
|
|
bcopy(&csio->sense_data, &sense,
|
|
sizeof(struct scsi_sense_data *));
|
|
}
|
|
} else {
|
|
/*
|
|
* If the physical sense flag is set, but the sense pointer
|
|
* is not also set, we assume that the user is an idiot and
|
|
* return. (Well, okay, it could be that somehow, the
|
|
* entire csio is physical, but we would have probably core
|
|
* dumped on one of the bogus pointer deferences above
|
|
* already.)
|
|
*/
|
|
if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
|
|
#ifdef _KERNEL
|
|
xpt_free_ccb((union ccb*)cgd);
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
return(-1);
|
|
} else
|
|
sense = &csio->sense_data;
|
|
}
|
|
|
|
if (csio->ccb_h.flags & CAM_CDB_POINTER)
|
|
cdb = csio->cdb_io.cdb_ptr;
|
|
else
|
|
cdb = csio->cdb_io.cdb_bytes;
|
|
|
|
scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
|
|
path_str, inq_data, cdb, csio->cdb_len);
|
|
|
|
#ifdef _KERNEL
|
|
xpt_free_ccb((union ccb*)cgd);
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
return(0);
|
|
}
|
|
|
|
|
|
|
|
#ifdef _KERNEL
|
|
char *
|
|
scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
|
|
#else /* !_KERNEL */
|
|
char *
|
|
scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
|
|
char *str, int str_len)
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
{
|
|
struct sbuf sb;
|
|
|
|
sbuf_new(&sb, str, str_len, 0);
|
|
|
|
#ifdef _KERNEL
|
|
scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
|
|
#else /* !_KERNEL */
|
|
scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
|
|
sbuf_finish(&sb);
|
|
|
|
return(sbuf_data(&sb));
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
void
|
|
scsi_sense_print(struct ccb_scsiio *csio)
|
|
{
|
|
struct sbuf sb;
|
|
char str[512];
|
|
|
|
sbuf_new(&sb, str, sizeof(str), 0);
|
|
|
|
scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
|
|
|
|
sbuf_finish(&sb);
|
|
|
|
printf("%s", sbuf_data(&sb));
|
|
}
|
|
|
|
#else /* !_KERNEL */
|
|
void
|
|
scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
|
|
FILE *ofile)
|
|
{
|
|
struct sbuf sb;
|
|
char str[512];
|
|
|
|
if ((device == NULL) || (csio == NULL) || (ofile == NULL))
|
|
return;
|
|
|
|
sbuf_new(&sb, str, sizeof(str), 0);
|
|
|
|
scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
|
|
|
|
sbuf_finish(&sb);
|
|
|
|
fprintf(ofile, "%s", sbuf_data(&sb));
|
|
}
|
|
|
|
#endif /* _KERNEL/!_KERNEL */
|
|
|
|
/*
|
|
* Extract basic sense information. This is backward-compatible with the
|
|
* previous implementation. For new implementations,
|
|
* scsi_extract_sense_len() is recommended.
|
|
*/
|
|
void
|
|
scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
|
|
int *sense_key, int *asc, int *ascq)
|
|
{
|
|
scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
|
|
sense_key, asc, ascq, /*show_errors*/ 0);
|
|
}
|
|
|
|
/*
|
|
* Extract basic sense information from SCSI I/O CCB structure.
|
|
*/
|
|
int
|
|
scsi_extract_sense_ccb(union ccb *ccb,
|
|
int *error_code, int *sense_key, int *asc, int *ascq)
|
|
{
|
|
struct scsi_sense_data *sense_data;
|
|
|
|
/* Make sure there are some sense data we can access. */
|
|
if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
|
|
(ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
|
|
(ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
|
|
(ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
|
|
(ccb->ccb_h.flags & CAM_SENSE_PHYS))
|
|
return (0);
|
|
|
|
if (ccb->ccb_h.flags & CAM_SENSE_PTR)
|
|
bcopy(&ccb->csio.sense_data, &sense_data,
|
|
sizeof(struct scsi_sense_data *));
|
|
else
|
|
sense_data = &ccb->csio.sense_data;
|
|
scsi_extract_sense_len(sense_data,
|
|
ccb->csio.sense_len - ccb->csio.sense_resid,
|
|
error_code, sense_key, asc, ascq, 1);
|
|
if (*error_code == -1)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Extract basic sense information. If show_errors is set, sense values
|
|
* will be set to -1 if they are not present.
|
|
*/
|
|
void
|
|
scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
|
|
int *error_code, int *sense_key, int *asc, int *ascq,
|
|
int show_errors)
|
|
{
|
|
/*
|
|
* If we have no length, we have no sense.
|
|
*/
|
|
if (sense_len == 0) {
|
|
if (show_errors == 0) {
|
|
*error_code = 0;
|
|
*sense_key = 0;
|
|
*asc = 0;
|
|
*ascq = 0;
|
|
} else {
|
|
*error_code = -1;
|
|
*sense_key = -1;
|
|
*asc = -1;
|
|
*ascq = -1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
*error_code = sense_data->error_code & SSD_ERRCODE;
|
|
|
|
switch (*error_code) {
|
|
case SSD_DESC_CURRENT_ERROR:
|
|
case SSD_DESC_DEFERRED_ERROR: {
|
|
struct scsi_sense_data_desc *sense;
|
|
|
|
sense = (struct scsi_sense_data_desc *)sense_data;
|
|
|
|
if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
|
|
*sense_key = sense->sense_key & SSD_KEY;
|
|
else
|
|
*sense_key = (show_errors) ? -1 : 0;
|
|
|
|
if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
|
|
*asc = sense->add_sense_code;
|
|
else
|
|
*asc = (show_errors) ? -1 : 0;
|
|
|
|
if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
|
|
*ascq = sense->add_sense_code_qual;
|
|
else
|
|
*ascq = (show_errors) ? -1 : 0;
|
|
break;
|
|
}
|
|
case SSD_CURRENT_ERROR:
|
|
case SSD_DEFERRED_ERROR:
|
|
default: {
|
|
struct scsi_sense_data_fixed *sense;
|
|
|
|
sense = (struct scsi_sense_data_fixed *)sense_data;
|
|
|
|
if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
|
|
*sense_key = sense->flags & SSD_KEY;
|
|
else
|
|
*sense_key = (show_errors) ? -1 : 0;
|
|
|
|
if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
|
|
&& (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
|
|
*asc = sense->add_sense_code;
|
|
else
|
|
*asc = (show_errors) ? -1 : 0;
|
|
|
|
if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
|
|
&& (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
|
|
*ascq = sense->add_sense_code_qual;
|
|
else
|
|
*ascq = (show_errors) ? -1 : 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
|
|
int show_errors)
|
|
{
|
|
int error_code, sense_key, asc, ascq;
|
|
|
|
scsi_extract_sense_len(sense_data, sense_len, &error_code,
|
|
&sense_key, &asc, &ascq, show_errors);
|
|
|
|
return (sense_key);
|
|
}
|
|
|
|
int
|
|
scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
|
|
int show_errors)
|
|
{
|
|
int error_code, sense_key, asc, ascq;
|
|
|
|
scsi_extract_sense_len(sense_data, sense_len, &error_code,
|
|
&sense_key, &asc, &ascq, show_errors);
|
|
|
|
return (asc);
|
|
}
|
|
|
|
int
|
|
scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
|
|
int show_errors)
|
|
{
|
|
int error_code, sense_key, asc, ascq;
|
|
|
|
scsi_extract_sense_len(sense_data, sense_len, &error_code,
|
|
&sense_key, &asc, &ascq, show_errors);
|
|
|
|
return (ascq);
|
|
}
|
|
|
|
/*
|
|
* This function currently requires at least 36 bytes, or
|
|
* SHORT_INQUIRY_LENGTH, worth of data to function properly. If this
|
|
* function needs more or less data in the future, another length should be
|
|
* defined in scsi_all.h to indicate the minimum amount of data necessary
|
|
* for this routine to function properly.
|
|
*/
|
|
void
|
|
scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
|
|
{
|
|
u_int8_t type;
|
|
char *dtype, *qtype;
|
|
char vendor[16], product[48], revision[16], rstr[4];
|
|
|
|
type = SID_TYPE(inq_data);
|
|
|
|
/*
|
|
* Figure out basic device type and qualifier.
|
|
*/
|
|
if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
|
|
qtype = "(vendor-unique qualifier)";
|
|
} else {
|
|
switch (SID_QUAL(inq_data)) {
|
|
case SID_QUAL_LU_CONNECTED:
|
|
qtype = "";
|
|
break;
|
|
|
|
case SID_QUAL_LU_OFFLINE:
|
|
qtype = "(offline)";
|
|
break;
|
|
|
|
case SID_QUAL_RSVD:
|
|
qtype = "(reserved qualifier)";
|
|
break;
|
|
default:
|
|
case SID_QUAL_BAD_LU:
|
|
qtype = "(LUN not supported)";
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (type) {
|
|
case T_DIRECT:
|
|
dtype = "Direct Access";
|
|
break;
|
|
case T_SEQUENTIAL:
|
|
dtype = "Sequential Access";
|
|
break;
|
|
case T_PRINTER:
|
|
dtype = "Printer";
|
|
break;
|
|
case T_PROCESSOR:
|
|
dtype = "Processor";
|
|
break;
|
|
case T_WORM:
|
|
dtype = "WORM";
|
|
break;
|
|
case T_CDROM:
|
|
dtype = "CD-ROM";
|
|
break;
|
|
case T_SCANNER:
|
|
dtype = "Scanner";
|
|
break;
|
|
case T_OPTICAL:
|
|
dtype = "Optical";
|
|
break;
|
|
case T_CHANGER:
|
|
dtype = "Changer";
|
|
break;
|
|
case T_COMM:
|
|
dtype = "Communication";
|
|
break;
|
|
case T_STORARRAY:
|
|
dtype = "Storage Array";
|
|
break;
|
|
case T_ENCLOSURE:
|
|
dtype = "Enclosure Services";
|
|
break;
|
|
case T_RBC:
|
|
dtype = "Simplified Direct Access";
|
|
break;
|
|
case T_OCRW:
|
|
dtype = "Optical Card Read/Write";
|
|
break;
|
|
case T_OSD:
|
|
dtype = "Object-Based Storage";
|
|
break;
|
|
case T_ADC:
|
|
dtype = "Automation/Drive Interface";
|
|
break;
|
|
case T_NODEVICE:
|
|
dtype = "Uninstalled";
|
|
break;
|
|
default:
|
|
dtype = "unknown";
|
|
break;
|
|
}
|
|
|
|
cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
|
|
sizeof(vendor));
|
|
cam_strvis(product, inq_data->product, sizeof(inq_data->product),
|
|
sizeof(product));
|
|
cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
|
|
sizeof(revision));
|
|
|
|
if (SID_ANSI_REV(inq_data) == SCSI_REV_CCS)
|
|
bcopy("CCS", rstr, 4);
|
|
else
|
|
snprintf(rstr, sizeof (rstr), "%d", SID_ANSI_REV(inq_data));
|
|
printf("<%s %s %s> %s %s SCSI-%s device %s\n",
|
|
vendor, product, revision,
|
|
SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed",
|
|
dtype, rstr, qtype);
|
|
}
|
|
|
|
void
|
|
scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
|
|
{
|
|
char vendor[16], product[48], revision[16];
|
|
|
|
cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
|
|
sizeof(vendor));
|
|
cam_strvis(product, inq_data->product, sizeof(inq_data->product),
|
|
sizeof(product));
|
|
cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
|
|
sizeof(revision));
|
|
|
|
printf("<%s %s %s>", vendor, product, revision);
|
|
}
|
|
|
|
/*
|
|
* Table of syncrates that don't follow the "divisible by 4"
|
|
* rule. This table will be expanded in future SCSI specs.
|
|
*/
|
|
static struct {
|
|
u_int period_factor;
|
|
u_int period; /* in 100ths of ns */
|
|
} scsi_syncrates[] = {
|
|
{ 0x08, 625 }, /* FAST-160 */
|
|
{ 0x09, 1250 }, /* FAST-80 */
|
|
{ 0x0a, 2500 }, /* FAST-40 40MHz */
|
|
{ 0x0b, 3030 }, /* FAST-40 33MHz */
|
|
{ 0x0c, 5000 } /* FAST-20 */
|
|
};
|
|
|
|
/*
|
|
* Return the frequency in kHz corresponding to the given
|
|
* sync period factor.
|
|
*/
|
|
u_int
|
|
scsi_calc_syncsrate(u_int period_factor)
|
|
{
|
|
int i;
|
|
int num_syncrates;
|
|
|
|
/*
|
|
* It's a bug if period is zero, but if it is anyway, don't
|
|
* die with a divide fault- instead return something which
|
|
* 'approximates' async
|
|
*/
|
|
if (period_factor == 0) {
|
|
return (3300);
|
|
}
|
|
|
|
num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]);
|
|
/* See if the period is in the "exception" table */
|
|
for (i = 0; i < num_syncrates; i++) {
|
|
|
|
if (period_factor == scsi_syncrates[i].period_factor) {
|
|
/* Period in kHz */
|
|
return (100000000 / scsi_syncrates[i].period);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wasn't in the table, so use the standard
|
|
* 4 times conversion.
|
|
*/
|
|
return (10000000 / (period_factor * 4 * 10));
|
|
}
|
|
|
|
/*
|
|
* Return the SCSI sync parameter that corresponsd to
|
|
* the passed in period in 10ths of ns.
|
|
*/
|
|
u_int
|
|
scsi_calc_syncparam(u_int period)
|
|
{
|
|
int i;
|
|
int num_syncrates;
|
|
|
|
if (period == 0)
|
|
return (~0); /* Async */
|
|
|
|
/* Adjust for exception table being in 100ths. */
|
|
period *= 10;
|
|
num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]);
|
|
/* See if the period is in the "exception" table */
|
|
for (i = 0; i < num_syncrates; i++) {
|
|
|
|
if (period <= scsi_syncrates[i].period) {
|
|
/* Period in 100ths of ns */
|
|
return (scsi_syncrates[i].period_factor);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wasn't in the table, so use the standard
|
|
* 1/4 period in ns conversion.
|
|
*/
|
|
return (period/400);
|
|
}
|
|
|
|
int
|
|
scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
|
|
{
|
|
struct scsi_vpd_id_descriptor *descr;
|
|
struct scsi_vpd_id_naa_basic *naa;
|
|
|
|
descr = (struct scsi_vpd_id_descriptor *)bufp;
|
|
naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
|
|
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
|
|
return 0;
|
|
if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
|
|
return 0;
|
|
if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
scsi_devid_is_sas_target(uint8_t *bufp)
|
|
{
|
|
struct scsi_vpd_id_descriptor *descr;
|
|
|
|
descr = (struct scsi_vpd_id_descriptor *)bufp;
|
|
if (!scsi_devid_is_naa_ieee_reg(bufp))
|
|
return 0;
|
|
if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
|
|
return 0;
|
|
if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
scsi_devid_is_lun_eui64(uint8_t *bufp)
|
|
{
|
|
struct scsi_vpd_id_descriptor *descr;
|
|
|
|
descr = (struct scsi_vpd_id_descriptor *)bufp;
|
|
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
|
|
return 0;
|
|
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
scsi_devid_is_lun_naa(uint8_t *bufp)
|
|
{
|
|
struct scsi_vpd_id_descriptor *descr;
|
|
|
|
descr = (struct scsi_vpd_id_descriptor *)bufp;
|
|
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
|
|
return 0;
|
|
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
scsi_devid_is_lun_t10(uint8_t *bufp)
|
|
{
|
|
struct scsi_vpd_id_descriptor *descr;
|
|
|
|
descr = (struct scsi_vpd_id_descriptor *)bufp;
|
|
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
|
|
return 0;
|
|
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
scsi_devid_is_lun_name(uint8_t *bufp)
|
|
{
|
|
struct scsi_vpd_id_descriptor *descr;
|
|
|
|
descr = (struct scsi_vpd_id_descriptor *)bufp;
|
|
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
|
|
return 0;
|
|
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
struct scsi_vpd_id_descriptor *
|
|
scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
|
|
scsi_devid_checkfn_t ck_fn)
|
|
{
|
|
uint8_t *desc_buf_end;
|
|
|
|
desc_buf_end = (uint8_t *)desc + len;
|
|
|
|
for (; desc->identifier <= desc_buf_end &&
|
|
desc->identifier + desc->length <= desc_buf_end;
|
|
desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
|
|
+ desc->length)) {
|
|
|
|
if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
|
|
return (desc);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
struct scsi_vpd_id_descriptor *
|
|
scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
|
|
scsi_devid_checkfn_t ck_fn)
|
|
{
|
|
uint32_t len;
|
|
|
|
if (page_len < sizeof(*id))
|
|
return (NULL);
|
|
len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
|
|
return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
|
|
id->desc_list, len, ck_fn));
|
|
}
|
|
|
|
int
|
|
scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
|
|
uint32_t valid_len)
|
|
{
|
|
switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
|
|
case SCSI_PROTO_FC: {
|
|
struct scsi_transportid_fcp *fcp;
|
|
uint64_t n_port_name;
|
|
|
|
fcp = (struct scsi_transportid_fcp *)hdr;
|
|
|
|
n_port_name = scsi_8btou64(fcp->n_port_name);
|
|
|
|
sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
|
|
break;
|
|
}
|
|
case SCSI_PROTO_SPI: {
|
|
struct scsi_transportid_spi *spi;
|
|
|
|
spi = (struct scsi_transportid_spi *)hdr;
|
|
|
|
sbuf_printf(sb, "SPI address: %u,%u",
|
|
scsi_2btoul(spi->scsi_addr),
|
|
scsi_2btoul(spi->rel_trgt_port_id));
|
|
break;
|
|
}
|
|
case SCSI_PROTO_SSA:
|
|
/*
|
|
* XXX KDM there is no transport ID defined in SPC-4 for
|
|
* SSA.
|
|
*/
|
|
break;
|
|
case SCSI_PROTO_1394: {
|
|
struct scsi_transportid_1394 *sbp;
|
|
uint64_t eui64;
|
|
|
|
sbp = (struct scsi_transportid_1394 *)hdr;
|
|
|
|
eui64 = scsi_8btou64(sbp->eui64);
|
|
sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
|
|
break;
|
|
}
|
|
case SCSI_PROTO_RDMA: {
|
|
struct scsi_transportid_rdma *rdma;
|
|
unsigned int i;
|
|
|
|
rdma = (struct scsi_transportid_rdma *)hdr;
|
|
|
|
sbuf_printf(sb, "RDMA address: 0x");
|
|
for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
|
|
sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
|
|
break;
|
|
}
|
|
case SCSI_PROTO_ISCSI: {
|
|
uint32_t add_len, i;
|
|
uint8_t *iscsi_name = NULL;
|
|
int nul_found = 0;
|
|
|
|
sbuf_printf(sb, "iSCSI address: ");
|
|
if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
|
|
SCSI_TRN_ISCSI_FORMAT_DEVICE) {
|
|
struct scsi_transportid_iscsi_device *dev;
|
|
|
|
dev = (struct scsi_transportid_iscsi_device *)hdr;
|
|
|
|
/*
|
|
* Verify how much additional data we really have.
|
|
*/
|
|
add_len = scsi_2btoul(dev->additional_length);
|
|
add_len = MIN(add_len, valid_len -
|
|
__offsetof(struct scsi_transportid_iscsi_device,
|
|
iscsi_name));
|
|
iscsi_name = &dev->iscsi_name[0];
|
|
|
|
} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
|
|
SCSI_TRN_ISCSI_FORMAT_PORT) {
|
|
struct scsi_transportid_iscsi_port *port;
|
|
|
|
port = (struct scsi_transportid_iscsi_port *)hdr;
|
|
|
|
add_len = scsi_2btoul(port->additional_length);
|
|
add_len = MIN(add_len, valid_len -
|
|
__offsetof(struct scsi_transportid_iscsi_port,
|
|
iscsi_name));
|
|
iscsi_name = &port->iscsi_name[0];
|
|
} else {
|
|
sbuf_printf(sb, "unknown format %x",
|
|
(hdr->format_protocol &
|
|
SCSI_TRN_FORMAT_MASK) >>
|
|
SCSI_TRN_FORMAT_SHIFT);
|
|
break;
|
|
}
|
|
if (add_len == 0) {
|
|
sbuf_printf(sb, "not enough data");
|
|
break;
|
|
}
|
|
/*
|
|
* This is supposed to be a NUL-terminated ASCII
|
|
* string, but you never know. So we're going to
|
|
* check. We need to do this because there is no
|
|
* sbuf equivalent of strncat().
|
|
*/
|
|
for (i = 0; i < add_len; i++) {
|
|
if (iscsi_name[i] == '\0') {
|
|
nul_found = 1;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* If there is a NUL in the name, we can just use
|
|
* sbuf_cat(). Otherwise we need to use sbuf_bcat().
|
|
*/
|
|
if (nul_found != 0)
|
|
sbuf_cat(sb, iscsi_name);
|
|
else
|
|
sbuf_bcat(sb, iscsi_name, add_len);
|
|
break;
|
|
}
|
|
case SCSI_PROTO_SAS: {
|
|
struct scsi_transportid_sas *sas;
|
|
uint64_t sas_addr;
|
|
|
|
sas = (struct scsi_transportid_sas *)hdr;
|
|
|
|
sas_addr = scsi_8btou64(sas->sas_address);
|
|
sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
|
|
break;
|
|
}
|
|
case SCSI_PROTO_ADITP:
|
|
case SCSI_PROTO_ATA:
|
|
case SCSI_PROTO_UAS:
|
|
/*
|
|
* No Transport ID format for ADI, ATA or USB is defined in
|
|
* SPC-4.
|
|
*/
|
|
sbuf_printf(sb, "No known Transport ID format for protocol "
|
|
"%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
|
|
break;
|
|
case SCSI_PROTO_SOP: {
|
|
struct scsi_transportid_sop *sop;
|
|
struct scsi_sop_routing_id_norm *rid;
|
|
|
|
sop = (struct scsi_transportid_sop *)hdr;
|
|
rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
|
|
|
|
/*
|
|
* Note that there is no alternate format specified in SPC-4
|
|
* for the PCIe routing ID, so we don't really have a way
|
|
* to know whether the second byte of the routing ID is
|
|
* a device and function or just a function. So we just
|
|
* assume bus,device,function.
|
|
*/
|
|
sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
|
|
rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
|
|
rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
|
|
break;
|
|
}
|
|
case SCSI_PROTO_NONE:
|
|
default:
|
|
sbuf_printf(sb, "Unknown protocol %#x",
|
|
hdr->format_protocol & SCSI_TRN_PROTO_MASK);
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct scsi_nv scsi_proto_map[] = {
|
|
{ "fcp", SCSI_PROTO_FC },
|
|
{ "spi", SCSI_PROTO_SPI },
|
|
{ "ssa", SCSI_PROTO_SSA },
|
|
{ "sbp", SCSI_PROTO_1394 },
|
|
{ "1394", SCSI_PROTO_1394 },
|
|
{ "srp", SCSI_PROTO_RDMA },
|
|
{ "rdma", SCSI_PROTO_RDMA },
|
|
{ "iscsi", SCSI_PROTO_ISCSI },
|
|
{ "iqn", SCSI_PROTO_ISCSI },
|
|
{ "sas", SCSI_PROTO_SAS },
|
|
{ "aditp", SCSI_PROTO_ADITP },
|
|
{ "ata", SCSI_PROTO_ATA },
|
|
{ "uas", SCSI_PROTO_UAS },
|
|
{ "usb", SCSI_PROTO_UAS },
|
|
{ "sop", SCSI_PROTO_SOP }
|
|
};
|
|
|
|
const char *
|
|
scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_table_entries; i++) {
|
|
if (table[i].value == value)
|
|
return (table[i].name);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Given a name/value table, find a value matching the given name.
|
|
* Return values:
|
|
* SCSI_NV_FOUND - match found
|
|
* SCSI_NV_AMBIGUOUS - more than one match, none of them exact
|
|
* SCSI_NV_NOT_FOUND - no match found
|
|
*/
|
|
scsi_nv_status
|
|
scsi_get_nv(struct scsi_nv *table, int num_table_entries,
|
|
char *name, int *table_entry, scsi_nv_flags flags)
|
|
{
|
|
int i, num_matches = 0;
|
|
|
|
for (i = 0; i < num_table_entries; i++) {
|
|
size_t table_len, name_len;
|
|
|
|
table_len = strlen(table[i].name);
|
|
name_len = strlen(name);
|
|
|
|
if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
|
|
&& (strncasecmp(table[i].name, name, name_len) == 0))
|
|
|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
|
|
&& (strncmp(table[i].name, name, name_len) == 0))) {
|
|
*table_entry = i;
|
|
|
|
/*
|
|
* Check for an exact match. If we have the same
|
|
* number of characters in the table as the argument,
|
|
* and we already know they're the same, we have
|
|
* an exact match.
|
|
*/
|
|
if (table_len == name_len)
|
|
return (SCSI_NV_FOUND);
|
|
|
|
/*
|
|
* Otherwise, bump up the number of matches. We'll
|
|
* see later how many we have.
|
|
*/
|
|
num_matches++;
|
|
}
|
|
}
|
|
|
|
if (num_matches > 1)
|
|
return (SCSI_NV_AMBIGUOUS);
|
|
else if (num_matches == 1)
|
|
return (SCSI_NV_FOUND);
|
|
else
|
|
return (SCSI_NV_NOT_FOUND);
|
|
}
|
|
|
|
/*
|
|
* Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are
|
|
* all 64-bit numbers, the code is similar.
|
|
*/
|
|
int
|
|
scsi_parse_transportid_64bit(int proto_id, char *id_str,
|
|
struct scsi_transportid_header **hdr,
|
|
unsigned int *alloc_len,
|
|
#ifdef _KERNEL
|
|
struct malloc_type *type, int flags,
|
|
#endif
|
|
char *error_str, int error_str_len)
|
|
{
|
|
uint64_t value;
|
|
char *endptr;
|
|
int retval;
|
|
size_t alloc_size;
|
|
|
|
retval = 0;
|
|
|
|
value = strtouq(id_str, &endptr, 0);
|
|
if (*endptr != '\0') {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: error "
|
|
"parsing ID %s, 64-bit number required",
|
|
__func__, id_str);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
switch (proto_id) {
|
|
case SCSI_PROTO_FC:
|
|
alloc_size = sizeof(struct scsi_transportid_fcp);
|
|
break;
|
|
case SCSI_PROTO_1394:
|
|
alloc_size = sizeof(struct scsi_transportid_1394);
|
|
break;
|
|
case SCSI_PROTO_SAS:
|
|
alloc_size = sizeof(struct scsi_transportid_sas);
|
|
break;
|
|
default:
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: unsupoprted "
|
|
"protocol %d", __func__, proto_id);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
break; /* NOTREACHED */
|
|
}
|
|
#ifdef _KERNEL
|
|
*hdr = malloc(alloc_size, type, flags);
|
|
#else /* _KERNEL */
|
|
*hdr = malloc(alloc_size);
|
|
#endif /*_KERNEL */
|
|
if (*hdr == NULL) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: unable to "
|
|
"allocate %zu bytes", __func__, alloc_size);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
*alloc_len = alloc_size;
|
|
|
|
bzero(*hdr, alloc_size);
|
|
|
|
switch (proto_id) {
|
|
case SCSI_PROTO_FC: {
|
|
struct scsi_transportid_fcp *fcp;
|
|
|
|
fcp = (struct scsi_transportid_fcp *)(*hdr);
|
|
fcp->format_protocol = SCSI_PROTO_FC |
|
|
SCSI_TRN_FCP_FORMAT_DEFAULT;
|
|
scsi_u64to8b(value, fcp->n_port_name);
|
|
break;
|
|
}
|
|
case SCSI_PROTO_1394: {
|
|
struct scsi_transportid_1394 *sbp;
|
|
|
|
sbp = (struct scsi_transportid_1394 *)(*hdr);
|
|
sbp->format_protocol = SCSI_PROTO_1394 |
|
|
SCSI_TRN_1394_FORMAT_DEFAULT;
|
|
scsi_u64to8b(value, sbp->eui64);
|
|
break;
|
|
}
|
|
case SCSI_PROTO_SAS: {
|
|
struct scsi_transportid_sas *sas;
|
|
|
|
sas = (struct scsi_transportid_sas *)(*hdr);
|
|
sas->format_protocol = SCSI_PROTO_SAS |
|
|
SCSI_TRN_SAS_FORMAT_DEFAULT;
|
|
scsi_u64to8b(value, sas->sas_address);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
bailout:
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
|
|
*/
|
|
int
|
|
scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
|
|
unsigned int *alloc_len,
|
|
#ifdef _KERNEL
|
|
struct malloc_type *type, int flags,
|
|
#endif
|
|
char *error_str, int error_str_len)
|
|
{
|
|
unsigned long scsi_addr, target_port;
|
|
struct scsi_transportid_spi *spi;
|
|
char *tmpstr, *endptr;
|
|
int retval;
|
|
|
|
retval = 0;
|
|
|
|
tmpstr = strsep(&id_str, ",");
|
|
if (tmpstr == NULL) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len,
|
|
"%s: no ID found", __func__);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
scsi_addr = strtoul(tmpstr, &endptr, 0);
|
|
if (*endptr != '\0') {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: error "
|
|
"parsing SCSI ID %s, number required",
|
|
__func__, tmpstr);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
if (id_str == NULL) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: no relative "
|
|
"target port found", __func__);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
target_port = strtoul(id_str, &endptr, 0);
|
|
if (*endptr != '\0') {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: error "
|
|
"parsing relative target port %s, number "
|
|
"required", __func__, id_str);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
#ifdef _KERNEL
|
|
spi = malloc(sizeof(*spi), type, flags);
|
|
#else
|
|
spi = malloc(sizeof(*spi));
|
|
#endif
|
|
if (spi == NULL) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: unable to "
|
|
"allocate %zu bytes", __func__,
|
|
sizeof(*spi));
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
*alloc_len = sizeof(*spi);
|
|
bzero(spi, sizeof(*spi));
|
|
|
|
spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
|
|
scsi_ulto2b(scsi_addr, spi->scsi_addr);
|
|
scsi_ulto2b(target_port, spi->rel_trgt_port_id);
|
|
|
|
*hdr = (struct scsi_transportid_header *)spi;
|
|
bailout:
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits,
|
|
* optionally prefixed by "0x" or "0X".
|
|
*/
|
|
int
|
|
scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
|
|
unsigned int *alloc_len,
|
|
#ifdef _KERNEL
|
|
struct malloc_type *type, int flags,
|
|
#endif
|
|
char *error_str, int error_str_len)
|
|
{
|
|
struct scsi_transportid_rdma *rdma;
|
|
int retval;
|
|
size_t id_len, rdma_id_size;
|
|
uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
|
|
char *tmpstr;
|
|
unsigned int i, j;
|
|
|
|
retval = 0;
|
|
id_len = strlen(id_str);
|
|
rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
|
|
|
|
/*
|
|
* Check the size. It needs to be either 32 or 34 characters long.
|
|
*/
|
|
if ((id_len != (rdma_id_size * 2))
|
|
&& (id_len != ((rdma_id_size * 2) + 2))) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: RDMA ID "
|
|
"must be 32 hex digits (0x prefix "
|
|
"optional), only %zu seen", __func__, id_len);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
tmpstr = id_str;
|
|
/*
|
|
* If the user gave us 34 characters, the string needs to start
|
|
* with '0x'.
|
|
*/
|
|
if (id_len == ((rdma_id_size * 2) + 2)) {
|
|
if ((tmpstr[0] == '0')
|
|
&& ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
|
|
tmpstr += 2;
|
|
} else {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: RDMA "
|
|
"ID prefix, if used, must be \"0x\", "
|
|
"got %s", __func__, tmpstr);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
}
|
|
bzero(rdma_id, sizeof(rdma_id));
|
|
|
|
/*
|
|
* Convert ASCII hex into binary bytes. There is no standard
|
|
* 128-bit integer type, and so no strtou128t() routine to convert
|
|
* from hex into a large integer. In the end, we're not going to
|
|
* an integer, but rather to a byte array, so that and the fact
|
|
* that we require the user to give us 32 hex digits simplifies the
|
|
* logic.
|
|
*/
|
|
for (i = 0; i < (rdma_id_size * 2); i++) {
|
|
int cur_shift;
|
|
unsigned char c;
|
|
|
|
/* Increment the byte array one for every 2 hex digits */
|
|
j = i >> 1;
|
|
|
|
/*
|
|
* The first digit in every pair is the most significant
|
|
* 4 bits. The second is the least significant 4 bits.
|
|
*/
|
|
if ((i % 2) == 0)
|
|
cur_shift = 4;
|
|
else
|
|
cur_shift = 0;
|
|
|
|
c = tmpstr[i];
|
|
/* Convert the ASCII hex character into a number */
|
|
if (isdigit(c))
|
|
c -= '0';
|
|
else if (isalpha(c))
|
|
c -= isupper(c) ? 'A' - 10 : 'a' - 10;
|
|
else {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: "
|
|
"RDMA ID must be hex digits, got "
|
|
"invalid character %c", __func__,
|
|
tmpstr[i]);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
/*
|
|
* The converted number can't be less than 0; the type is
|
|
* unsigned, and the subtraction logic will not give us
|
|
* a negative number. So we only need to make sure that
|
|
* the value is not greater than 0xf. (i.e. make sure the
|
|
* user didn't give us a value like "0x12jklmno").
|
|
*/
|
|
if (c > 0xf) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: "
|
|
"RDMA ID must be hex digits, got "
|
|
"invalid character %c", __func__,
|
|
tmpstr[i]);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
rdma_id[j] |= c << cur_shift;
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
rdma = malloc(sizeof(*rdma), type, flags);
|
|
#else
|
|
rdma = malloc(sizeof(*rdma));
|
|
#endif
|
|
if (rdma == NULL) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: unable to "
|
|
"allocate %zu bytes", __func__,
|
|
sizeof(*rdma));
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
*alloc_len = sizeof(*rdma);
|
|
bzero(rdma, sizeof(rdma));
|
|
|
|
rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
|
|
bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
|
|
|
|
*hdr = (struct scsi_transportid_header *)rdma;
|
|
|
|
bailout:
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Parse an iSCSI name. The format is either just the name:
|
|
*
|
|
* iqn.2012-06.com.example:target0
|
|
* or the name, separator and initiator session ID:
|
|
*
|
|
* iqn.2012-06.com.example:target0,i,0x123
|
|
*
|
|
* The separator format is exact.
|
|
*/
|
|
int
|
|
scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
|
|
unsigned int *alloc_len,
|
|
#ifdef _KERNEL
|
|
struct malloc_type *type, int flags,
|
|
#endif
|
|
char *error_str, int error_str_len)
|
|
{
|
|
size_t id_len, sep_len, id_size, name_len;
|
|
int retval;
|
|
unsigned int i, sep_pos, sep_found;
|
|
const char *sep_template = ",i,0x";
|
|
const char *iqn_prefix = "iqn.";
|
|
struct scsi_transportid_iscsi_device *iscsi;
|
|
|
|
retval = 0;
|
|
sep_found = 0;
|
|
|
|
id_len = strlen(id_str);
|
|
sep_len = strlen(sep_template);
|
|
|
|
/*
|
|
* The separator is defined as exactly ',i,0x'. Any other commas,
|
|
* or any other form, is an error. So look for a comma, and once
|
|
* we find that, the next few characters must match the separator
|
|
* exactly. Once we get through the separator, there should be at
|
|
* least one character.
|
|
*/
|
|
for (i = 0, sep_pos = 0; i < id_len; i++) {
|
|
if (sep_pos == 0) {
|
|
if (id_str[i] == sep_template[sep_pos])
|
|
sep_pos++;
|
|
|
|
continue;
|
|
}
|
|
if (sep_pos < sep_len) {
|
|
if (id_str[i] == sep_template[sep_pos]) {
|
|
sep_pos++;
|
|
continue;
|
|
}
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: "
|
|
"invalid separator in iSCSI name "
|
|
"\"%s\"",
|
|
__func__, id_str);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
} else {
|
|
sep_found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see whether we have a separator but no digits after it.
|
|
*/
|
|
if ((sep_pos != 0)
|
|
&& (sep_found == 0)) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: no digits "
|
|
"found after separator in iSCSI name \"%s\"",
|
|
__func__, id_str);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* The incoming ID string has the "iqn." prefix stripped off. We
|
|
* need enough space for the base structure (the structures are the
|
|
* same for the two iSCSI forms), the prefix, the ID string and a
|
|
* terminating NUL.
|
|
*/
|
|
id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
|
|
|
|
#ifdef _KERNEL
|
|
iscsi = malloc(id_size, type, flags);
|
|
#else
|
|
iscsi = malloc(id_size);
|
|
#endif
|
|
if (iscsi == NULL) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: unable to "
|
|
"allocate %zu bytes", __func__, id_size);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
*alloc_len = id_size;
|
|
bzero(iscsi, id_size);
|
|
|
|
iscsi->format_protocol = SCSI_PROTO_ISCSI;
|
|
if (sep_found == 0)
|
|
iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
|
|
else
|
|
iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
|
|
name_len = id_size - sizeof(*iscsi);
|
|
scsi_ulto2b(name_len, iscsi->additional_length);
|
|
snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
|
|
|
|
*hdr = (struct scsi_transportid_header *)iscsi;
|
|
|
|
bailout:
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be
|
|
* of the form 'bus,device,function' or 'bus,function'.
|
|
*/
|
|
int
|
|
scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
|
|
unsigned int *alloc_len,
|
|
#ifdef _KERNEL
|
|
struct malloc_type *type, int flags,
|
|
#endif
|
|
char *error_str, int error_str_len)
|
|
{
|
|
struct scsi_transportid_sop *sop;
|
|
unsigned long bus, device, function;
|
|
char *tmpstr, *endptr;
|
|
int retval, device_spec;
|
|
|
|
retval = 0;
|
|
device_spec = 0;
|
|
device = 0;
|
|
|
|
tmpstr = strsep(&id_str, ",");
|
|
if ((tmpstr == NULL)
|
|
|| (*tmpstr == '\0')) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: no ID found",
|
|
__func__);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
bus = strtoul(tmpstr, &endptr, 0);
|
|
if (*endptr != '\0') {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: error "
|
|
"parsing PCIe bus %s, number required",
|
|
__func__, tmpstr);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
if ((id_str == NULL)
|
|
|| (*id_str == '\0')) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: no PCIe "
|
|
"device or function found", __func__);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
tmpstr = strsep(&id_str, ",");
|
|
function = strtoul(tmpstr, &endptr, 0);
|
|
if (*endptr != '\0') {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: error "
|
|
"parsing PCIe device/function %s, number "
|
|
"required", __func__, tmpstr);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
/*
|
|
* Check to see whether the user specified a third value. If so,
|
|
* the second is the device.
|
|
*/
|
|
if (id_str != NULL) {
|
|
if (*id_str == '\0') {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: "
|
|
"no PCIe function found", __func__);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
device = function;
|
|
device_spec = 1;
|
|
function = strtoul(id_str, &endptr, 0);
|
|
if (*endptr != '\0') {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: "
|
|
"error parsing PCIe function %s, "
|
|
"number required", __func__, id_str);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
}
|
|
if (bus > SCSI_TRN_SOP_BUS_MAX) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: bus value "
|
|
"%lu greater than maximum %u", __func__,
|
|
bus, SCSI_TRN_SOP_BUS_MAX);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
if ((device_spec != 0)
|
|
&& (device > SCSI_TRN_SOP_DEV_MASK)) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: device value "
|
|
"%lu greater than maximum %u", __func__,
|
|
device, SCSI_TRN_SOP_DEV_MAX);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
if (((device_spec != 0)
|
|
&& (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
|
|
|| ((device_spec == 0)
|
|
&& (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: function value "
|
|
"%lu greater than maximum %u", __func__,
|
|
function, (device_spec == 0) ?
|
|
SCSI_TRN_SOP_FUNC_ALT_MAX :
|
|
SCSI_TRN_SOP_FUNC_NORM_MAX);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
sop = malloc(sizeof(*sop), type, flags);
|
|
#else
|
|
sop = malloc(sizeof(*sop));
|
|
#endif
|
|
if (sop == NULL) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: unable to "
|
|
"allocate %zu bytes", __func__, sizeof(*sop));
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
*alloc_len = sizeof(*sop);
|
|
bzero(sop, sizeof(*sop));
|
|
sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
|
|
if (device_spec != 0) {
|
|
struct scsi_sop_routing_id_norm rid;
|
|
|
|
rid.bus = bus;
|
|
rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
|
|
bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
|
|
sizeof(sop->routing_id)));
|
|
} else {
|
|
struct scsi_sop_routing_id_alt rid;
|
|
|
|
rid.bus = bus;
|
|
rid.function = function;
|
|
bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
|
|
sizeof(sop->routing_id)));
|
|
}
|
|
|
|
*hdr = (struct scsi_transportid_header *)sop;
|
|
bailout:
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* transportid_str: NUL-terminated string with format: protcol,id
|
|
* The ID is protocol specific.
|
|
* hdr: Storage will be allocated for the transport ID.
|
|
* alloc_len: The amount of memory allocated is returned here.
|
|
* type: Malloc bucket (kernel only).
|
|
* flags: Malloc flags (kernel only).
|
|
* error_str: If non-NULL, it will contain error information (without
|
|
* a terminating newline) if an error is returned.
|
|
* error_str_len: Allocated length of the error string.
|
|
*
|
|
* Returns 0 for success, non-zero for failure.
|
|
*/
|
|
int
|
|
scsi_parse_transportid(char *transportid_str,
|
|
struct scsi_transportid_header **hdr,
|
|
unsigned int *alloc_len,
|
|
#ifdef _KERNEL
|
|
struct malloc_type *type, int flags,
|
|
#endif
|
|
char *error_str, int error_str_len)
|
|
{
|
|
char *tmpstr;
|
|
scsi_nv_status status;
|
|
int retval, num_proto_entries, table_entry;
|
|
|
|
retval = 0;
|
|
table_entry = 0;
|
|
|
|
/*
|
|
* We do allow a period as well as a comma to separate the protocol
|
|
* from the ID string. This is to accommodate iSCSI names, which
|
|
* start with "iqn.".
|
|
*/
|
|
tmpstr = strsep(&transportid_str, ",.");
|
|
if (tmpstr == NULL) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len,
|
|
"%s: transportid_str is NULL", __func__);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
num_proto_entries = sizeof(scsi_proto_map) /
|
|
sizeof(scsi_proto_map[0]);
|
|
status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
|
|
&table_entry, SCSI_NV_FLAG_IG_CASE);
|
|
if (status != SCSI_NV_FOUND) {
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: %s protocol "
|
|
"name %s", __func__,
|
|
(status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
|
|
"invalid", tmpstr);
|
|
}
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
switch (scsi_proto_map[table_entry].value) {
|
|
case SCSI_PROTO_FC:
|
|
case SCSI_PROTO_1394:
|
|
case SCSI_PROTO_SAS:
|
|
retval = scsi_parse_transportid_64bit(
|
|
scsi_proto_map[table_entry].value, transportid_str, hdr,
|
|
alloc_len,
|
|
#ifdef _KERNEL
|
|
type, flags,
|
|
#endif
|
|
error_str, error_str_len);
|
|
break;
|
|
case SCSI_PROTO_SPI:
|
|
retval = scsi_parse_transportid_spi(transportid_str, hdr,
|
|
alloc_len,
|
|
#ifdef _KERNEL
|
|
type, flags,
|
|
#endif
|
|
error_str, error_str_len);
|
|
break;
|
|
case SCSI_PROTO_RDMA:
|
|
retval = scsi_parse_transportid_rdma(transportid_str, hdr,
|
|
alloc_len,
|
|
#ifdef _KERNEL
|
|
type, flags,
|
|
#endif
|
|
error_str, error_str_len);
|
|
break;
|
|
case SCSI_PROTO_ISCSI:
|
|
retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
|
|
alloc_len,
|
|
#ifdef _KERNEL
|
|
type, flags,
|
|
#endif
|
|
error_str, error_str_len);
|
|
break;
|
|
case SCSI_PROTO_SOP:
|
|
retval = scsi_parse_transportid_sop(transportid_str, hdr,
|
|
alloc_len,
|
|
#ifdef _KERNEL
|
|
type, flags,
|
|
#endif
|
|
error_str, error_str_len);
|
|
break;
|
|
case SCSI_PROTO_SSA:
|
|
case SCSI_PROTO_ADITP:
|
|
case SCSI_PROTO_ATA:
|
|
case SCSI_PROTO_UAS:
|
|
case SCSI_PROTO_NONE:
|
|
default:
|
|
/*
|
|
* There is no format defined for a Transport ID for these
|
|
* protocols. So even if the user gives us something, we
|
|
* have no way to turn it into a standard SCSI Transport ID.
|
|
*/
|
|
retval = 1;
|
|
if (error_str != NULL) {
|
|
snprintf(error_str, error_str_len, "%s: no Transport "
|
|
"ID format exists for protocol %s",
|
|
__func__, tmpstr);
|
|
}
|
|
goto bailout;
|
|
break; /* NOTREACHED */
|
|
}
|
|
bailout:
|
|
return (retval);
|
|
}
|
|
|
|
void
|
|
scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
struct scsi_test_unit_ready *scsi_cmd;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
CAM_DIR_NONE,
|
|
tag_action,
|
|
/*data_ptr*/NULL,
|
|
/*dxfer_len*/0,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
|
|
scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = TEST_UNIT_READY;
|
|
}
|
|
|
|
void
|
|
scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action,
|
|
u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
struct scsi_request_sense *scsi_cmd;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
CAM_DIR_IN,
|
|
tag_action,
|
|
data_ptr,
|
|
dxfer_len,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
|
|
scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = REQUEST_SENSE;
|
|
scsi_cmd->length = dxfer_len;
|
|
}
|
|
|
|
void
|
|
scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len,
|
|
int evpd, u_int8_t page_code, u_int8_t sense_len,
|
|
u_int32_t timeout)
|
|
{
|
|
struct scsi_inquiry *scsi_cmd;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_IN,
|
|
tag_action,
|
|
/*data_ptr*/inq_buf,
|
|
/*dxfer_len*/inq_len,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
|
|
scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = INQUIRY;
|
|
if (evpd) {
|
|
scsi_cmd->byte2 |= SI_EVPD;
|
|
scsi_cmd->page_code = page_code;
|
|
}
|
|
scsi_ulto2b(inq_len, scsi_cmd->length);
|
|
}
|
|
|
|
void
|
|
scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, int dbd, u_int8_t page_code,
|
|
u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
|
|
u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
|
|
scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd,
|
|
page_code, page, param_buf, param_len, 0,
|
|
sense_len, timeout);
|
|
}
|
|
|
|
void
|
|
scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, int dbd, u_int8_t page_code,
|
|
u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
|
|
int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
u_int8_t cdb_len;
|
|
|
|
/*
|
|
* Use the smallest possible command to perform the operation.
|
|
*/
|
|
if ((param_len < 256)
|
|
&& (minimum_cmd_size < 10)) {
|
|
/*
|
|
* We can fit in a 6 byte cdb.
|
|
*/
|
|
struct scsi_mode_sense_6 *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = MODE_SENSE_6;
|
|
if (dbd != 0)
|
|
scsi_cmd->byte2 |= SMS_DBD;
|
|
scsi_cmd->page = page_code | page;
|
|
scsi_cmd->length = param_len;
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
} else {
|
|
/*
|
|
* Need a 10 byte cdb.
|
|
*/
|
|
struct scsi_mode_sense_10 *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = MODE_SENSE_10;
|
|
if (dbd != 0)
|
|
scsi_cmd->byte2 |= SMS_DBD;
|
|
scsi_cmd->page = page_code | page;
|
|
scsi_ulto2b(param_len, scsi_cmd->length);
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
}
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
CAM_DIR_IN,
|
|
tag_action,
|
|
param_buf,
|
|
param_len,
|
|
sense_len,
|
|
cdb_len,
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, int scsi_page_fmt, int save_pages,
|
|
u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
|
|
u_int32_t timeout)
|
|
{
|
|
scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
|
|
scsi_page_fmt, save_pages, param_buf,
|
|
param_len, 0, sense_len, timeout);
|
|
}
|
|
|
|
void
|
|
scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, int scsi_page_fmt, int save_pages,
|
|
u_int8_t *param_buf, u_int32_t param_len,
|
|
int minimum_cmd_size, u_int8_t sense_len,
|
|
u_int32_t timeout)
|
|
{
|
|
u_int8_t cdb_len;
|
|
|
|
/*
|
|
* Use the smallest possible command to perform the operation.
|
|
*/
|
|
if ((param_len < 256)
|
|
&& (minimum_cmd_size < 10)) {
|
|
/*
|
|
* We can fit in a 6 byte cdb.
|
|
*/
|
|
struct scsi_mode_select_6 *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = MODE_SELECT_6;
|
|
if (scsi_page_fmt != 0)
|
|
scsi_cmd->byte2 |= SMS_PF;
|
|
if (save_pages != 0)
|
|
scsi_cmd->byte2 |= SMS_SP;
|
|
scsi_cmd->length = param_len;
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
} else {
|
|
/*
|
|
* Need a 10 byte cdb.
|
|
*/
|
|
struct scsi_mode_select_10 *scsi_cmd;
|
|
|
|
scsi_cmd =
|
|
(struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = MODE_SELECT_10;
|
|
if (scsi_page_fmt != 0)
|
|
scsi_cmd->byte2 |= SMS_PF;
|
|
if (save_pages != 0)
|
|
scsi_cmd->byte2 |= SMS_SP;
|
|
scsi_ulto2b(param_len, scsi_cmd->length);
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
}
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
CAM_DIR_OUT,
|
|
tag_action,
|
|
param_buf,
|
|
param_len,
|
|
sense_len,
|
|
cdb_len,
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int8_t page_code, u_int8_t page,
|
|
int save_pages, int ppc, u_int32_t paramptr,
|
|
u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
|
|
u_int32_t timeout)
|
|
{
|
|
struct scsi_log_sense *scsi_cmd;
|
|
u_int8_t cdb_len;
|
|
|
|
scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = LOG_SENSE;
|
|
scsi_cmd->page = page_code | page;
|
|
if (save_pages != 0)
|
|
scsi_cmd->byte2 |= SLS_SP;
|
|
if (ppc != 0)
|
|
scsi_cmd->byte2 |= SLS_PPC;
|
|
scsi_ulto2b(paramptr, scsi_cmd->paramptr);
|
|
scsi_ulto2b(param_len, scsi_cmd->length);
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_IN,
|
|
tag_action,
|
|
/*data_ptr*/param_buf,
|
|
/*dxfer_len*/param_len,
|
|
sense_len,
|
|
cdb_len,
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int8_t page_code, int save_pages,
|
|
int pc_reset, u_int8_t *param_buf, u_int32_t param_len,
|
|
u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
struct scsi_log_select *scsi_cmd;
|
|
u_int8_t cdb_len;
|
|
|
|
scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = LOG_SELECT;
|
|
scsi_cmd->page = page_code & SLS_PAGE_CODE;
|
|
if (save_pages != 0)
|
|
scsi_cmd->byte2 |= SLS_SP;
|
|
if (pc_reset != 0)
|
|
scsi_cmd->byte2 |= SLS_PCR;
|
|
scsi_ulto2b(param_len, scsi_cmd->length);
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_OUT,
|
|
tag_action,
|
|
/*data_ptr*/param_buf,
|
|
/*dxfer_len*/param_len,
|
|
sense_len,
|
|
cdb_len,
|
|
timeout);
|
|
}
|
|
|
|
/*
|
|
* Prevent or allow the user to remove the media
|
|
*/
|
|
void
|
|
scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int8_t action,
|
|
u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
struct scsi_prevent *scsi_cmd;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_NONE,
|
|
tag_action,
|
|
/*data_ptr*/NULL,
|
|
/*dxfer_len*/0,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
|
|
scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = PREVENT_ALLOW;
|
|
scsi_cmd->how = action;
|
|
}
|
|
|
|
/* XXX allow specification of address and PMI bit and LBA */
|
|
void
|
|
scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action,
|
|
struct scsi_read_capacity_data *rcap_buf,
|
|
u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
struct scsi_read_capacity *scsi_cmd;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_IN,
|
|
tag_action,
|
|
/*data_ptr*/(u_int8_t *)rcap_buf,
|
|
/*dxfer_len*/sizeof(*rcap_buf),
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
|
|
scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = READ_CAPACITY;
|
|
}
|
|
|
|
void
|
|
scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
uint8_t tag_action, uint64_t lba, int reladr, int pmi,
|
|
uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
|
|
uint32_t timeout)
|
|
{
|
|
struct scsi_read_capacity_16 *scsi_cmd;
|
|
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_IN,
|
|
tag_action,
|
|
/*data_ptr*/(u_int8_t *)rcap_buf,
|
|
/*dxfer_len*/rcap_buf_len,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = SERVICE_ACTION_IN;
|
|
scsi_cmd->service_action = SRC16_SERVICE_ACTION;
|
|
scsi_u64to8b(lba, scsi_cmd->addr);
|
|
scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
|
|
if (pmi)
|
|
reladr |= SRC16_PMI;
|
|
if (reladr)
|
|
reladr |= SRC16_RELADR;
|
|
}
|
|
|
|
void
|
|
scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int8_t select_report,
|
|
struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len,
|
|
u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
struct scsi_report_luns *scsi_cmd;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_IN,
|
|
tag_action,
|
|
/*data_ptr*/(u_int8_t *)rpl_buf,
|
|
/*dxfer_len*/alloc_len,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = REPORT_LUNS;
|
|
scsi_cmd->select_report = select_report;
|
|
scsi_ulto4b(alloc_len, scsi_cmd->length);
|
|
}
|
|
|
|
void
|
|
scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int8_t pdf,
|
|
void *buf, u_int32_t alloc_len,
|
|
u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
struct scsi_target_group *scsi_cmd;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_IN,
|
|
tag_action,
|
|
/*data_ptr*/(u_int8_t *)buf,
|
|
/*dxfer_len*/alloc_len,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = MAINTENANCE_IN;
|
|
scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
|
|
scsi_ulto4b(alloc_len, scsi_cmd->length);
|
|
}
|
|
|
|
void
|
|
scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, void *buf, u_int32_t alloc_len,
|
|
u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
struct scsi_target_group *scsi_cmd;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_OUT,
|
|
tag_action,
|
|
/*data_ptr*/(u_int8_t *)buf,
|
|
/*dxfer_len*/alloc_len,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = MAINTENANCE_OUT;
|
|
scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
|
|
scsi_ulto4b(alloc_len, scsi_cmd->length);
|
|
}
|
|
|
|
/*
|
|
* Syncronize the media to the contents of the cache for
|
|
* the given lba/count pair. Specifying 0/0 means sync
|
|
* the whole cache.
|
|
*/
|
|
void
|
|
scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int32_t begin_lba,
|
|
u_int16_t lb_count, u_int8_t sense_len,
|
|
u_int32_t timeout)
|
|
{
|
|
struct scsi_sync_cache *scsi_cmd;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_NONE,
|
|
tag_action,
|
|
/*data_ptr*/NULL,
|
|
/*dxfer_len*/0,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
|
|
scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = SYNCHRONIZE_CACHE;
|
|
scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
|
|
scsi_ulto2b(lb_count, scsi_cmd->lb_count);
|
|
}
|
|
|
|
void
|
|
scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, int readop, u_int8_t byte2,
|
|
int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
|
|
u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
|
|
u_int32_t timeout)
|
|
{
|
|
int read;
|
|
u_int8_t cdb_len;
|
|
|
|
read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
|
|
|
|
/*
|
|
* Use the smallest possible command to perform the operation
|
|
* as some legacy hardware does not support the 10 byte commands.
|
|
* If any of the bits in byte2 is set, we have to go with a larger
|
|
* command.
|
|
*/
|
|
if ((minimum_cmd_size < 10)
|
|
&& ((lba & 0x1fffff) == lba)
|
|
&& ((block_count & 0xff) == block_count)
|
|
&& (byte2 == 0)) {
|
|
/*
|
|
* We can fit in a 6 byte cdb.
|
|
*/
|
|
struct scsi_rw_6 *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
|
|
scsi_cmd->opcode = read ? READ_6 : WRITE_6;
|
|
scsi_ulto3b(lba, scsi_cmd->addr);
|
|
scsi_cmd->length = block_count & 0xff;
|
|
scsi_cmd->control = 0;
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
|
|
CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
|
|
("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
|
|
scsi_cmd->addr[1], scsi_cmd->addr[2],
|
|
scsi_cmd->length, dxfer_len));
|
|
} else if ((minimum_cmd_size < 12)
|
|
&& ((block_count & 0xffff) == block_count)
|
|
&& ((lba & 0xffffffff) == lba)) {
|
|
/*
|
|
* Need a 10 byte cdb.
|
|
*/
|
|
struct scsi_rw_10 *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
|
|
scsi_cmd->opcode = read ? READ_10 : WRITE_10;
|
|
scsi_cmd->byte2 = byte2;
|
|
scsi_ulto4b(lba, scsi_cmd->addr);
|
|
scsi_cmd->reserved = 0;
|
|
scsi_ulto2b(block_count, scsi_cmd->length);
|
|
scsi_cmd->control = 0;
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
|
|
CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
|
|
("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
|
|
scsi_cmd->addr[1], scsi_cmd->addr[2],
|
|
scsi_cmd->addr[3], scsi_cmd->length[0],
|
|
scsi_cmd->length[1], dxfer_len));
|
|
} else if ((minimum_cmd_size < 16)
|
|
&& ((block_count & 0xffffffff) == block_count)
|
|
&& ((lba & 0xffffffff) == lba)) {
|
|
/*
|
|
* The block count is too big for a 10 byte CDB, use a 12
|
|
* byte CDB.
|
|
*/
|
|
struct scsi_rw_12 *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
|
|
scsi_cmd->opcode = read ? READ_12 : WRITE_12;
|
|
scsi_cmd->byte2 = byte2;
|
|
scsi_ulto4b(lba, scsi_cmd->addr);
|
|
scsi_cmd->reserved = 0;
|
|
scsi_ulto4b(block_count, scsi_cmd->length);
|
|
scsi_cmd->control = 0;
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
|
|
CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
|
|
("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
|
|
scsi_cmd->addr[1], scsi_cmd->addr[2],
|
|
scsi_cmd->addr[3], scsi_cmd->length[0],
|
|
scsi_cmd->length[1], scsi_cmd->length[2],
|
|
scsi_cmd->length[3], dxfer_len));
|
|
} else {
|
|
/*
|
|
* 16 byte CDB. We'll only get here if the LBA is larger
|
|
* than 2^32, or if the user asks for a 16 byte command.
|
|
*/
|
|
struct scsi_rw_16 *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
|
|
scsi_cmd->opcode = read ? READ_16 : WRITE_16;
|
|
scsi_cmd->byte2 = byte2;
|
|
scsi_u64to8b(lba, scsi_cmd->addr);
|
|
scsi_cmd->reserved = 0;
|
|
scsi_ulto4b(block_count, scsi_cmd->length);
|
|
scsi_cmd->control = 0;
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
}
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
(read ? CAM_DIR_IN : CAM_DIR_OUT) |
|
|
((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
|
|
tag_action,
|
|
data_ptr,
|
|
dxfer_len,
|
|
sense_len,
|
|
cdb_len,
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int8_t byte2,
|
|
int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
|
|
u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
|
|
u_int32_t timeout)
|
|
{
|
|
u_int8_t cdb_len;
|
|
if ((minimum_cmd_size < 16) &&
|
|
((block_count & 0xffff) == block_count) &&
|
|
((lba & 0xffffffff) == lba)) {
|
|
/*
|
|
* Need a 10 byte cdb.
|
|
*/
|
|
struct scsi_write_same_10 *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
|
|
scsi_cmd->opcode = WRITE_SAME_10;
|
|
scsi_cmd->byte2 = byte2;
|
|
scsi_ulto4b(lba, scsi_cmd->addr);
|
|
scsi_cmd->group = 0;
|
|
scsi_ulto2b(block_count, scsi_cmd->length);
|
|
scsi_cmd->control = 0;
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
|
|
CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
|
|
("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
|
|
scsi_cmd->addr[1], scsi_cmd->addr[2],
|
|
scsi_cmd->addr[3], scsi_cmd->length[0],
|
|
scsi_cmd->length[1], dxfer_len));
|
|
} else {
|
|
/*
|
|
* 16 byte CDB. We'll only get here if the LBA is larger
|
|
* than 2^32, or if the user asks for a 16 byte command.
|
|
*/
|
|
struct scsi_write_same_16 *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
|
|
scsi_cmd->opcode = WRITE_SAME_16;
|
|
scsi_cmd->byte2 = byte2;
|
|
scsi_u64to8b(lba, scsi_cmd->addr);
|
|
scsi_ulto4b(block_count, scsi_cmd->length);
|
|
scsi_cmd->group = 0;
|
|
scsi_cmd->control = 0;
|
|
cdb_len = sizeof(*scsi_cmd);
|
|
|
|
CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
|
|
("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
|
|
scsi_cmd->addr[0], scsi_cmd->addr[1],
|
|
scsi_cmd->addr[2], scsi_cmd->addr[3],
|
|
scsi_cmd->addr[4], scsi_cmd->addr[5],
|
|
scsi_cmd->addr[6], scsi_cmd->addr[7],
|
|
scsi_cmd->length[0], scsi_cmd->length[1],
|
|
scsi_cmd->length[2], scsi_cmd->length[3],
|
|
dxfer_len));
|
|
}
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_OUT,
|
|
tag_action,
|
|
data_ptr,
|
|
dxfer_len,
|
|
sense_len,
|
|
cdb_len,
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int8_t *data_ptr,
|
|
u_int16_t dxfer_len, u_int8_t sense_len,
|
|
u_int32_t timeout)
|
|
{
|
|
scsi_ata_pass_16(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_IN,
|
|
tag_action,
|
|
/*protocol*/AP_PROTO_PIO_IN,
|
|
/*ata_flags*/AP_FLAG_TDIR_FROM_DEV|
|
|
AP_FLAG_BYT_BLOK_BYTES|AP_FLAG_TLEN_SECT_CNT,
|
|
/*features*/0,
|
|
/*sector_count*/dxfer_len,
|
|
/*lba*/0,
|
|
/*command*/ATA_ATA_IDENTIFY,
|
|
/*control*/0,
|
|
data_ptr,
|
|
dxfer_len,
|
|
sense_len,
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int16_t block_count,
|
|
u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
|
|
u_int32_t timeout)
|
|
{
|
|
scsi_ata_pass_16(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_OUT,
|
|
tag_action,
|
|
/*protocol*/AP_EXTEND|AP_PROTO_DMA,
|
|
/*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
|
|
/*features*/ATA_DSM_TRIM,
|
|
/*sector_count*/block_count,
|
|
/*lba*/0,
|
|
/*command*/ATA_DATA_SET_MANAGEMENT,
|
|
/*control*/0,
|
|
data_ptr,
|
|
dxfer_len,
|
|
sense_len,
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int32_t flags, u_int8_t tag_action,
|
|
u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
|
|
u_int16_t sector_count, uint64_t lba, u_int8_t command,
|
|
u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
|
|
u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
struct ata_pass_16 *ata_cmd;
|
|
|
|
ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
|
|
ata_cmd->opcode = ATA_PASS_16;
|
|
ata_cmd->protocol = protocol;
|
|
ata_cmd->flags = ata_flags;
|
|
ata_cmd->features_ext = features >> 8;
|
|
ata_cmd->features = features;
|
|
ata_cmd->sector_count_ext = sector_count >> 8;
|
|
ata_cmd->sector_count = sector_count;
|
|
ata_cmd->lba_low = lba;
|
|
ata_cmd->lba_mid = lba >> 8;
|
|
ata_cmd->lba_high = lba >> 16;
|
|
ata_cmd->device = ATA_DEV_LBA;
|
|
if (protocol & AP_EXTEND) {
|
|
ata_cmd->lba_low_ext = lba >> 24;
|
|
ata_cmd->lba_mid_ext = lba >> 32;
|
|
ata_cmd->lba_high_ext = lba >> 40;
|
|
} else
|
|
ata_cmd->device |= (lba >> 24) & 0x0f;
|
|
ata_cmd->command = command;
|
|
ata_cmd->control = control;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
flags,
|
|
tag_action,
|
|
data_ptr,
|
|
dxfer_len,
|
|
sense_len,
|
|
sizeof(*ata_cmd),
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, u_int8_t byte2,
|
|
u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
|
|
u_int32_t timeout)
|
|
{
|
|
struct scsi_unmap *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
|
|
scsi_cmd->opcode = UNMAP;
|
|
scsi_cmd->byte2 = byte2;
|
|
scsi_ulto4b(0, scsi_cmd->reserved);
|
|
scsi_cmd->group = 0;
|
|
scsi_ulto2b(dxfer_len, scsi_cmd->length);
|
|
scsi_cmd->control = 0;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_OUT,
|
|
tag_action,
|
|
data_ptr,
|
|
dxfer_len,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb*),
|
|
uint8_t tag_action, int pcv, uint8_t page_code,
|
|
uint8_t *data_ptr, uint16_t allocation_length,
|
|
uint8_t sense_len, uint32_t timeout)
|
|
{
|
|
struct scsi_receive_diag *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
|
|
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
|
|
if (pcv) {
|
|
scsi_cmd->byte2 |= SRD_PCV;
|
|
scsi_cmd->page_code = page_code;
|
|
}
|
|
scsi_ulto2b(allocation_length, scsi_cmd->length);
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_IN,
|
|
tag_action,
|
|
data_ptr,
|
|
allocation_length,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
uint8_t tag_action, int unit_offline, int device_offline,
|
|
int self_test, int page_format, int self_test_code,
|
|
uint8_t *data_ptr, uint16_t param_list_length,
|
|
uint8_t sense_len, uint32_t timeout)
|
|
{
|
|
struct scsi_send_diag *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
|
|
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = SEND_DIAGNOSTIC;
|
|
|
|
/*
|
|
* The default self-test mode control and specific test
|
|
* control are mutually exclusive.
|
|
*/
|
|
if (self_test)
|
|
self_test_code = SSD_SELF_TEST_CODE_NONE;
|
|
|
|
scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
|
|
& SSD_SELF_TEST_CODE_MASK)
|
|
| (unit_offline ? SSD_UNITOFFL : 0)
|
|
| (device_offline ? SSD_DEVOFFL : 0)
|
|
| (self_test ? SSD_SELFTEST : 0)
|
|
| (page_format ? SSD_PF : 0);
|
|
scsi_ulto2b(param_list_length, scsi_cmd->length);
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
|
|
tag_action,
|
|
data_ptr,
|
|
param_list_length,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb*),
|
|
uint8_t tag_action, int mode,
|
|
uint8_t buffer_id, u_int32_t offset,
|
|
uint8_t *data_ptr, uint32_t allocation_length,
|
|
uint8_t sense_len, uint32_t timeout)
|
|
{
|
|
struct scsi_read_buffer *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
|
|
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = READ_BUFFER;
|
|
scsi_cmd->byte2 = mode;
|
|
scsi_cmd->buffer_id = buffer_id;
|
|
scsi_ulto3b(offset, scsi_cmd->offset);
|
|
scsi_ulto3b(allocation_length, scsi_cmd->length);
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_IN,
|
|
tag_action,
|
|
data_ptr,
|
|
allocation_length,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
uint8_t tag_action, int mode,
|
|
uint8_t buffer_id, u_int32_t offset,
|
|
uint8_t *data_ptr, uint32_t param_list_length,
|
|
uint8_t sense_len, uint32_t timeout)
|
|
{
|
|
struct scsi_write_buffer *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
|
|
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = WRITE_BUFFER;
|
|
scsi_cmd->byte2 = mode;
|
|
scsi_cmd->buffer_id = buffer_id;
|
|
scsi_ulto3b(offset, scsi_cmd->offset);
|
|
scsi_ulto3b(param_list_length, scsi_cmd->length);
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
|
|
tag_action,
|
|
data_ptr,
|
|
param_list_length,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
u_int8_t tag_action, int start, int load_eject,
|
|
int immediate, u_int8_t sense_len, u_int32_t timeout)
|
|
{
|
|
struct scsi_start_stop_unit *scsi_cmd;
|
|
int extra_flags = 0;
|
|
|
|
scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
scsi_cmd->opcode = START_STOP_UNIT;
|
|
if (start != 0) {
|
|
scsi_cmd->how |= SSS_START;
|
|
/* it takes a lot of power to start a drive */
|
|
extra_flags |= CAM_HIGH_POWER;
|
|
}
|
|
if (load_eject != 0)
|
|
scsi_cmd->how |= SSS_LOEJ;
|
|
if (immediate != 0)
|
|
scsi_cmd->byte2 |= SSS_IMMED;
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_NONE | extra_flags,
|
|
tag_action,
|
|
/*data_ptr*/NULL,
|
|
/*dxfer_len*/0,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
}
|
|
|
|
|
|
void
|
|
scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
uint8_t tag_action, int service_action,
|
|
uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
|
|
int timeout)
|
|
{
|
|
struct scsi_per_res_in *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
|
|
scsi_cmd->opcode = PERSISTENT_RES_IN;
|
|
scsi_cmd->action = service_action;
|
|
scsi_ulto2b(dxfer_len, scsi_cmd->length);
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_IN,
|
|
tag_action,
|
|
data_ptr,
|
|
dxfer_len,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
}
|
|
|
|
void
|
|
scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
|
|
void (*cbfcnp)(struct cam_periph *, union ccb *),
|
|
uint8_t tag_action, int service_action,
|
|
int scope, int res_type, uint8_t *data_ptr,
|
|
uint32_t dxfer_len, int sense_len, int timeout)
|
|
{
|
|
struct scsi_per_res_out *scsi_cmd;
|
|
|
|
scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
|
|
bzero(scsi_cmd, sizeof(*scsi_cmd));
|
|
|
|
scsi_cmd->opcode = PERSISTENT_RES_OUT;
|
|
scsi_cmd->action = service_action;
|
|
scsi_cmd->scope_type = scope | res_type;
|
|
scsi_ulto4b(dxfer_len, scsi_cmd->length);
|
|
|
|
cam_fill_csio(csio,
|
|
retries,
|
|
cbfcnp,
|
|
/*flags*/CAM_DIR_OUT,
|
|
tag_action,
|
|
data_ptr,
|
|
dxfer_len,
|
|
sense_len,
|
|
sizeof(*scsi_cmd),
|
|
timeout);
|
|
}
|
|
|
|
/*
|
|
* Try make as good a match as possible with
|
|
* available sub drivers
|
|
*/
|
|
int
|
|
scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
|
|
{
|
|
struct scsi_inquiry_pattern *entry;
|
|
struct scsi_inquiry_data *inq;
|
|
|
|
entry = (struct scsi_inquiry_pattern *)table_entry;
|
|
inq = (struct scsi_inquiry_data *)inqbuffer;
|
|
|
|
if (((SID_TYPE(inq) == entry->type)
|
|
|| (entry->type == T_ANY))
|
|
&& (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
|
|
: entry->media_type & SIP_MEDIA_FIXED)
|
|
&& (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
|
|
&& (cam_strmatch(inq->product, entry->product,
|
|
sizeof(inq->product)) == 0)
|
|
&& (cam_strmatch(inq->revision, entry->revision,
|
|
sizeof(inq->revision)) == 0)) {
|
|
return (0);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Try make as good a match as possible with
|
|
* available sub drivers
|
|
*/
|
|
int
|
|
scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
|
|
{
|
|
struct scsi_static_inquiry_pattern *entry;
|
|
struct scsi_inquiry_data *inq;
|
|
|
|
entry = (struct scsi_static_inquiry_pattern *)table_entry;
|
|
inq = (struct scsi_inquiry_data *)inqbuffer;
|
|
|
|
if (((SID_TYPE(inq) == entry->type)
|
|
|| (entry->type == T_ANY))
|
|
&& (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
|
|
: entry->media_type & SIP_MEDIA_FIXED)
|
|
&& (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
|
|
&& (cam_strmatch(inq->product, entry->product,
|
|
sizeof(inq->product)) == 0)
|
|
&& (cam_strmatch(inq->revision, entry->revision,
|
|
sizeof(inq->revision)) == 0)) {
|
|
return (0);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
/**
|
|
* Compare two buffers of vpd device descriptors for a match.
|
|
*
|
|
* \param lhs Pointer to first buffer of descriptors to compare.
|
|
* \param lhs_len The length of the first buffer.
|
|
* \param rhs Pointer to second buffer of descriptors to compare.
|
|
* \param rhs_len The length of the second buffer.
|
|
*
|
|
* \return 0 on a match, -1 otherwise.
|
|
*
|
|
* Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching
|
|
* agains each element in rhs until all data are exhausted or we have found
|
|
* a match.
|
|
*/
|
|
int
|
|
scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
|
|
{
|
|
struct scsi_vpd_id_descriptor *lhs_id;
|
|
struct scsi_vpd_id_descriptor *lhs_last;
|
|
struct scsi_vpd_id_descriptor *rhs_last;
|
|
uint8_t *lhs_end;
|
|
uint8_t *rhs_end;
|
|
|
|
lhs_end = lhs + lhs_len;
|
|
rhs_end = rhs + rhs_len;
|
|
|
|
/*
|
|
* rhs_last and lhs_last are the last posible position of a valid
|
|
* descriptor assuming it had a zero length identifier. We use
|
|
* these variables to insure we can safely dereference the length
|
|
* field in our loop termination tests.
|
|
*/
|
|
lhs_last = (struct scsi_vpd_id_descriptor *)
|
|
(lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
|
|
rhs_last = (struct scsi_vpd_id_descriptor *)
|
|
(rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
|
|
|
|
lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
|
|
while (lhs_id <= lhs_last
|
|
&& (lhs_id->identifier + lhs_id->length) <= lhs_end) {
|
|
struct scsi_vpd_id_descriptor *rhs_id;
|
|
|
|
rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
|
|
while (rhs_id <= rhs_last
|
|
&& (rhs_id->identifier + rhs_id->length) <= rhs_end) {
|
|
|
|
if ((rhs_id->id_type &
|
|
(SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
|
|
(lhs_id->id_type &
|
|
(SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
|
|
&& rhs_id->length == lhs_id->length
|
|
&& memcmp(rhs_id->identifier, lhs_id->identifier,
|
|
rhs_id->length) == 0)
|
|
return (0);
|
|
|
|
rhs_id = (struct scsi_vpd_id_descriptor *)
|
|
(rhs_id->identifier + rhs_id->length);
|
|
}
|
|
lhs_id = (struct scsi_vpd_id_descriptor *)
|
|
(lhs_id->identifier + lhs_id->length);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
int
|
|
scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
|
|
{
|
|
struct cam_ed *device;
|
|
struct scsi_vpd_supported_pages *vpds;
|
|
int i, num_pages;
|
|
|
|
device = periph->path->device;
|
|
vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
|
|
|
|
if (vpds != NULL) {
|
|
num_pages = device->supported_vpds_len -
|
|
SVPD_SUPPORTED_PAGES_HDR_LEN;
|
|
for (i = 0; i < num_pages; i++) {
|
|
if (vpds->page_list[i] == page_id)
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
init_scsi_delay(void)
|
|
{
|
|
int delay;
|
|
|
|
delay = SCSI_DELAY;
|
|
TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
|
|
|
|
if (set_scsi_delay(delay) != 0) {
|
|
printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
|
|
set_scsi_delay(SCSI_DELAY);
|
|
}
|
|
}
|
|
SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
|
|
|
|
static int
|
|
sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, delay;
|
|
|
|
delay = scsi_delay;
|
|
error = sysctl_handle_int(oidp, &delay, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
return (set_scsi_delay(delay));
|
|
}
|
|
SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW,
|
|
0, 0, sysctl_scsi_delay, "I",
|
|
"Delay to allow devices to settle after a SCSI bus reset (ms)");
|
|
|
|
static int
|
|
set_scsi_delay(int delay)
|
|
{
|
|
/*
|
|
* If someone sets this to 0, we assume that they want the
|
|
* minimum allowable bus settle delay.
|
|
*/
|
|
if (delay == 0) {
|
|
printf("cam: using minimum scsi_delay (%dms)\n",
|
|
SCSI_MIN_DELAY);
|
|
delay = SCSI_MIN_DELAY;
|
|
}
|
|
if (delay < SCSI_MIN_DELAY)
|
|
return (EINVAL);
|
|
scsi_delay = delay;
|
|
return (0);
|
|
}
|
|
#endif /* _KERNEL */
|