freebsd-skq/sys/amd64/vmm/amd/svm.c
Neel Natu 501f03eba2 Remove gratuitous forward declarations.
Remove tabs on empty lines.
2014-09-09 23:39:43 +00:00

1717 lines
42 KiB
C

/*-
* Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/smp.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/cpufunc.h>
#include <machine/psl.h>
#include <machine/pmap.h>
#include <machine/md_var.h>
#include <machine/vmparam.h>
#include <machine/specialreg.h>
#include <machine/segments.h>
#include <machine/vmm.h>
#include <machine/vmm_dev.h>
#include <machine/vmm_instruction_emul.h>
#include <x86/apicreg.h>
#include "vmm_lapic.h"
#include "vmm_msr.h"
#include "vmm_stat.h"
#include "vmm_ktr.h"
#include "vmm_ioport.h"
#include "vatpic.h"
#include "vlapic.h"
#include "vlapic_priv.h"
#include "x86.h"
#include "vmcb.h"
#include "svm.h"
#include "svm_softc.h"
#include "npt.h"
/*
* SVM CPUID function 0x8000_000A, edx bit decoding.
*/
#define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */
#define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */
#define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */
#define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */
#define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */
#define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */
#define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */
#define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */
#define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */
#define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */
#define VMCB_CACHE_DEFAULT \
(VMCB_CACHE_ASID | VMCB_CACHE_IOPM | VMCB_CACHE_NP)
MALLOC_DEFINE(M_SVM, "svm", "svm");
MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
/* Per-CPU context area. */
extern struct pcpu __pcpu[];
static int svm_getdesc(void *arg, int vcpu, int type, struct seg_desc *desc);
static uint32_t svm_feature; /* AMD SVM features. */
/* Maximum ASIDs supported by the processor */
static uint32_t nasid;
/* Current ASID generation for each host cpu */
static struct asid asid[MAXCPU];
/*
* SVM host state saved area of size 4KB for each core.
*/
static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
/*
* S/w saved host context.
*/
static struct svm_regctx host_ctx[MAXCPU];
static VMM_STAT_AMD(VCPU_EXITINTINFO, "Valid VMCB EXITINTINFO");
static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "VMM pending exception injected");
/*
* Common function to enable or disabled SVM for a CPU.
*/
static int
cpu_svm_enable_disable(boolean_t enable)
{
uint64_t efer_msr;
efer_msr = rdmsr(MSR_EFER);
if (enable)
efer_msr |= EFER_SVM;
else
efer_msr &= ~EFER_SVM;
wrmsr(MSR_EFER, efer_msr);
return(0);
}
/*
* Disable SVM on a CPU.
*/
static void
svm_disable(void *arg __unused)
{
(void)cpu_svm_enable_disable(FALSE);
}
/*
* Disable SVM for all CPUs.
*/
static int
svm_cleanup(void)
{
smp_rendezvous(NULL, svm_disable, NULL, NULL);
return (0);
}
/*
* Check for required BHyVe SVM features in a CPU.
*/
static int
svm_cpuid_features(void)
{
u_int regs[4];
/* CPUID Fn8000_000A is for SVM */
do_cpuid(0x8000000A, regs);
svm_feature = regs[3];
printf("SVM rev: 0x%x NASID:0x%x\n", regs[0] & 0xFF, regs[1]);
nasid = regs[1];
KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
printf("SVM Features:0x%b\n", svm_feature,
"\020"
"\001NP" /* Nested paging */
"\002LbrVirt" /* LBR virtualization */
"\003SVML" /* SVM lock */
"\004NRIPS" /* NRIP save */
"\005TscRateMsr" /* MSR based TSC rate control */
"\006VmcbClean" /* VMCB clean bits */
"\007FlushByAsid" /* Flush by ASID */
"\010DecodeAssist" /* Decode assist */
"\011<b20>"
"\012<b20>"
"\013PauseFilter"
"\014<b20>"
"\015PauseFilterThreshold"
"\016AVIC"
);
/* SVM Lock */
if (!(svm_feature & AMD_CPUID_SVM_SVML)) {
printf("SVM is disabled by BIOS, please enable in BIOS.\n");
return (ENXIO);
}
/*
* bhyve need RVI to work.
*/
if (!(svm_feature & AMD_CPUID_SVM_NP)) {
printf("Missing Nested paging or RVI SVM support in processor.\n");
return (EIO);
}
if (svm_feature & AMD_CPUID_SVM_NRIP_SAVE)
return (0);
return (EIO);
}
static __inline int
flush_by_asid(void)
{
return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
}
/*
* Enable SVM for a CPU.
*/
static void
svm_enable(void *arg __unused)
{
uint64_t hsave_pa;
(void)cpu_svm_enable_disable(TRUE);
hsave_pa = vtophys(hsave[curcpu]);
wrmsr(MSR_VM_HSAVE_PA, hsave_pa);
if (rdmsr(MSR_VM_HSAVE_PA) != hsave_pa) {
panic("VM_HSAVE_PA is wrong on CPU%d\n", curcpu);
}
}
/*
* Check if a processor support SVM.
*/
static int
is_svm_enabled(void)
{
uint64_t msr;
/* Section 15.4 Enabling SVM from APM2. */
if ((amd_feature2 & AMDID2_SVM) == 0) {
printf("SVM is not supported on this processor.\n");
return (ENXIO);
}
msr = rdmsr(MSR_VM_CR);
/* Make sure SVM is not disabled by BIOS. */
if ((msr & VM_CR_SVMDIS) == 0) {
return svm_cpuid_features();
}
printf("SVM disabled by Key, consult TPM/BIOS manual.\n");
return (ENXIO);
}
/*
* Enable SVM on CPU and initialize nested page table h/w.
*/
static int
svm_init(int ipinum)
{
int err, cpu;
err = is_svm_enabled();
if (err)
return (err);
for (cpu = 0; cpu < MAXCPU; cpu++) {
/*
* Initialize the host ASIDs to their "highest" valid values.
*
* The next ASID allocation will rollover both 'gen' and 'num'
* and start off the sequence at {1,1}.
*/
asid[cpu].gen = ~0UL;
asid[cpu].num = nasid - 1;
}
svm_npt_init(ipinum);
/* Start SVM on all CPUs */
smp_rendezvous(NULL, svm_enable, NULL, NULL);
return (0);
}
static void
svm_restore(void)
{
svm_enable(NULL);
}
/*
* Get index and bit position for a MSR in MSR permission
* bitmap. Two bits are used for each MSR, lower bit is
* for read and higher bit is for write.
*/
static int
svm_msr_index(uint64_t msr, int *index, int *bit)
{
uint32_t base, off;
/* Pentium compatible MSRs */
#define MSR_PENTIUM_START 0
#define MSR_PENTIUM_END 0x1FFF
/* AMD 6th generation and Intel compatible MSRs */
#define MSR_AMD6TH_START 0xC0000000UL
#define MSR_AMD6TH_END 0xC0001FFFUL
/* AMD 7th and 8th generation compatible MSRs */
#define MSR_AMD7TH_START 0xC0010000UL
#define MSR_AMD7TH_END 0xC0011FFFUL
*index = -1;
*bit = (msr % 4) * 2;
base = 0;
if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
*index = msr / 4;
return (0);
}
base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
off = (msr - MSR_AMD6TH_START);
*index = (off + base) / 4;
return (0);
}
base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
off = (msr - MSR_AMD7TH_START);
*index = (off + base) / 4;
return (0);
}
return (EIO);
}
/*
* Give virtual cpu the complete access to MSR(read & write).
*/
static int
svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
{
int index, bit, err;
err = svm_msr_index(msr, &index, &bit);
if (err) {
ERR("MSR 0x%lx is not writeable by guest.\n", msr);
return (err);
}
if (index < 0 || index > (SVM_MSR_BITMAP_SIZE)) {
ERR("MSR 0x%lx index out of range(%d).\n", msr, index);
return (EINVAL);
}
if (bit < 0 || bit > 8) {
ERR("MSR 0x%lx bit out of range(%d).\n", msr, bit);
return (EINVAL);
}
/* Disable intercept for read and write. */
if (read)
perm_bitmap[index] &= ~(1UL << bit);
if (write)
perm_bitmap[index] &= ~(2UL << bit);
CTR2(KTR_VMM, "Guest has control:0x%x on SVM:MSR(0x%lx).\n",
(perm_bitmap[index] >> bit) & 0x3, msr);
return (0);
}
static int
svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
{
return svm_msr_perm(perm_bitmap, msr, true, true);
}
static int
svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
{
return svm_msr_perm(perm_bitmap, msr, true, false);
}
static __inline void
vcpu_set_dirty(struct svm_vcpu *vcpustate, uint32_t dirtybits)
{
vcpustate->dirty |= dirtybits;
}
/*
* Initialise a virtual machine.
*/
static void *
svm_vminit(struct vm *vm, pmap_t pmap)
{
struct svm_softc *svm_sc;
struct svm_vcpu *vcpu;
vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
int i;
svm_sc = (struct svm_softc *)malloc(sizeof (struct svm_softc),
M_SVM, M_WAITOK | M_ZERO);
svm_sc->vm = vm;
svm_sc->svm_feature = svm_feature;
svm_sc->vcpu_cnt = VM_MAXCPU;
svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
/*
* Intercept MSR access to all MSRs except GSBASE, FSBASE,... etc.
*/
memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
/*
* Following MSR can be completely controlled by virtual machines
* since access to following are translated to access to VMCB.
*/
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
/* For Nested Paging/RVI only. */
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
/* Intercept access to all I/O ports. */
memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
/* Cache physical address for multiple vcpus. */
iopm_pa = vtophys(svm_sc->iopm_bitmap);
msrpm_pa = vtophys(svm_sc->msr_bitmap);
pml4_pa = svm_sc->nptp;
for (i = 0; i < svm_sc->vcpu_cnt; i++) {
vcpu = svm_get_vcpu(svm_sc, i);
vcpu->lastcpu = NOCPU;
vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
svm_init_vmcb(&vcpu->vmcb, iopm_pa, msrpm_pa, pml4_pa);
}
return (svm_sc);
}
static int
svm_cpl(struct vmcb_state *state)
{
/*
* From APMv2:
* "Retrieve the CPL from the CPL field in the VMCB, not
* from any segment DPL"
*/
return (state->cpl);
}
static enum vm_cpu_mode
svm_vcpu_mode(struct vmcb *vmcb)
{
struct vmcb_segment *seg;
struct vmcb_state *state;
state = &vmcb->state;
if (state->efer & EFER_LMA) {
seg = vmcb_seg(vmcb, VM_REG_GUEST_CS);
/*
* Section 4.8.1 for APM2, check if Code Segment has
* Long attribute set in descriptor.
*/
if (seg->attrib & VMCB_CS_ATTRIB_L)
return (CPU_MODE_64BIT);
else
return (CPU_MODE_COMPATIBILITY);
} else if (state->cr0 & CR0_PE) {
return (CPU_MODE_PROTECTED);
} else {
return (CPU_MODE_REAL);
}
}
static enum vm_paging_mode
svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
{
if ((cr0 & CR0_PG) == 0)
return (PAGING_MODE_FLAT);
if ((cr4 & CR4_PAE) == 0)
return (PAGING_MODE_32);
if (efer & EFER_LME)
return (PAGING_MODE_64);
else
return (PAGING_MODE_PAE);
}
/*
* ins/outs utility routines
*/
static uint64_t
svm_inout_str_index(struct svm_regctx *regs, int in)
{
uint64_t val;
val = in ? regs->e.g.sctx_rdi : regs->e.g.sctx_rsi;
return (val);
}
static uint64_t
svm_inout_str_count(struct svm_regctx *regs, int rep)
{
uint64_t val;
val = rep ? regs->sctx_rcx : 1;
return (val);
}
static void
svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
int in, struct vm_inout_str *vis)
{
int error, s;
if (in) {
vis->seg_name = VM_REG_GUEST_ES;
} else {
/* The segment field has standard encoding */
s = (info1 >> 10) & 0x7;
vis->seg_name = vm_segment_name(s);
}
error = svm_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
}
static int
svm_inout_str_addrsize(uint64_t info1)
{
uint32_t size;
size = (info1 >> 7) & 0x7;
switch (size) {
case 1:
return (2); /* 16 bit */
case 2:
return (4); /* 32 bit */
case 4:
return (8); /* 64 bit */
default:
panic("%s: invalid size encoding %d", __func__, size);
}
}
static void
svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
{
struct vmcb_state *state;
state = &vmcb->state;
paging->cr3 = state->cr3;
paging->cpl = svm_cpl(state);
paging->cpu_mode = svm_vcpu_mode(vmcb);
paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
state->efer);
}
/*
* Handle guest I/O intercept.
*/
static bool
svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
{
struct vmcb_ctrl *ctrl;
struct vmcb_state *state;
struct svm_regctx *regs;
struct vm_inout_str *vis;
uint64_t info1;
state = svm_get_vmcb_state(svm_sc, vcpu);
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
regs = svm_get_guest_regctx(svm_sc, vcpu);
info1 = ctrl->exitinfo1;
vmexit->exitcode = VM_EXITCODE_INOUT;
vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0;
vmexit->u.inout.string = (info1 & BIT(2)) ? 1 : 0;
vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0;
vmexit->u.inout.bytes = (info1 >> 4) & 0x7;
vmexit->u.inout.port = (uint16_t)(info1 >> 16);
vmexit->u.inout.eax = (uint32_t)(state->rax);
if (vmexit->u.inout.string) {
vmexit->exitcode = VM_EXITCODE_INOUT_STR;
vis = &vmexit->u.inout_str;
svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
vis->rflags = state->rflags;
vis->cr0 = state->cr0;
vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
vis->addrsize = svm_inout_str_addrsize(info1);
svm_inout_str_seginfo(svm_sc, vcpu, info1,
vmexit->u.inout.in, vis);
}
return (false);
}
static int
svm_npf_paging(uint64_t exitinfo1)
{
if (exitinfo1 & VMCB_NPF_INFO1_W)
return (VM_PROT_WRITE);
return (VM_PROT_READ);
}
static bool
svm_npf_emul_fault(uint64_t exitinfo1)
{
if (exitinfo1 & VMCB_NPF_INFO1_ID) {
return (false);
}
if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
return (false);
}
if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
return (false);
}
return (true);
}
static void
svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
{
struct vm_guest_paging *paging;
struct vmcb_segment *seg;
paging = &vmexit->u.inst_emul.paging;
vmexit->exitcode = VM_EXITCODE_INST_EMUL;
vmexit->u.inst_emul.gpa = gpa;
vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
svm_paging_info(vmcb, paging);
/*
* If DecodeAssist SVM feature doesn't exist, we don't have NPF
* instuction length. RIP will be calculated based on the length
* determined by instruction emulation.
*/
vmexit->inst_length = VIE_INST_SIZE;
seg = vmcb_seg(vmcb, VM_REG_GUEST_CS);
switch(paging->cpu_mode) {
case CPU_MODE_PROTECTED:
case CPU_MODE_COMPATIBILITY:
/*
* Section 4.8.1 of APM2, Default Operand Size or D bit.
*/
vmexit->u.inst_emul.cs_d = (seg->attrib & VMCB_CS_ATTRIB_D) ?
1 : 0;
break;
default:
vmexit->u.inst_emul.cs_d = 0;
break;
}
}
/*
* Special handling of EFER MSR.
* SVM guest must have SVM EFER bit set, prohibit guest from cleareing SVM
* enable bit in EFER.
*/
static void
svm_efer(struct svm_softc *svm_sc, int vcpu, boolean_t write)
{
struct svm_regctx *swctx;
struct vmcb_state *state;
state = svm_get_vmcb_state(svm_sc, vcpu);
swctx = svm_get_guest_regctx(svm_sc, vcpu);
if (write) {
state->efer = ((swctx->e.g.sctx_rdx & (uint32_t)~0) << 32) |
((uint32_t)state->rax) | EFER_SVM;
} else {
state->rax = (uint32_t)state->efer;
swctx->e.g.sctx_rdx = (uint32_t)(state->efer >> 32);
}
}
static void
svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
{
struct vmcb_ctrl *ctrl;
uint64_t intinfo;
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
intinfo = ctrl->exitintinfo;
if (!VMCB_EXITINTINFO_VALID(intinfo))
return;
/*
* From APMv2, Section "Intercepts during IDT interrupt delivery"
*
* If a #VMEXIT happened during event delivery then record the event
* that was being delivered.
*/
VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
}
/*
* Determine the cause of virtual cpu exit and handle VMEXIT.
* Return: false - Break vcpu execution loop and handle vmexit
* in kernel or user space.
* true - Continue vcpu run.
*/
static bool
svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
{
struct vmcb_state *state;
struct vmcb_ctrl *ctrl;
struct svm_regctx *ctx;
uint64_t code, info1, info2, val;
uint32_t eax, ecx, edx;
bool update_rip, loop, retu;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
state = svm_get_vmcb_state(svm_sc, vcpu);
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
ctx = svm_get_guest_regctx(svm_sc, vcpu);
code = ctrl->exitcode;
info1 = ctrl->exitinfo1;
info2 = ctrl->exitinfo2;
update_rip = true;
loop = true;
vmexit->exitcode = VM_EXITCODE_VMX;
vmexit->u.vmx.status = 0;
KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
"injection valid bit is set %#lx", __func__, ctrl->eventinj));
svm_save_intinfo(svm_sc, vcpu);
switch (code) {
case VMCB_EXIT_MC: /* Machine Check. */
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_MTRAP, 1);
vmexit->exitcode = VM_EXITCODE_MTRAP;
loop = false;
break;
case VMCB_EXIT_MSR: /* MSR access. */
eax = state->rax;
ecx = ctx->sctx_rcx;
edx = ctx->e.g.sctx_rdx;
if (ecx == MSR_EFER) {
VCPU_CTR0(svm_sc->vm, vcpu,"VMEXIT EFER\n");
svm_efer(svm_sc, vcpu, info1);
break;
}
retu = false;
if (info1) {
/* VM exited because of write MSR */
vmm_stat_incr(svm_sc->vm, vcpu,
VMEXIT_WRMSR, 1);
vmexit->exitcode = VM_EXITCODE_WRMSR;
vmexit->u.msr.code = ecx;
val = (uint64_t)edx << 32 | eax;
if (emulate_wrmsr(svm_sc->vm, vcpu, ecx, val,
&retu)) {
vmexit->u.msr.wval = val;
loop = false;
} else
loop = retu ? false : true;
VCPU_CTR3(svm_sc->vm, vcpu,
"VMEXIT WRMSR(%s handling) 0x%lx @0x%x",
loop ? "kernel" : "user", val, ecx);
} else {
vmm_stat_incr(svm_sc->vm, vcpu,
VMEXIT_RDMSR, 1);
vmexit->exitcode = VM_EXITCODE_RDMSR;
vmexit->u.msr.code = ecx;
if (emulate_rdmsr(svm_sc->vm, vcpu, ecx,
&retu)) {
loop = false;
} else
loop = retu ? false : true;
VCPU_CTR3(svm_sc->vm, vcpu, "SVM:VMEXIT RDMSR"
" MSB=0x%08x, LSB=%08x @0x%x",
ctx->e.g.sctx_rdx, state->rax, ecx);
}
#define MSR_AMDK8_IPM 0xc0010055
/*
* We can't hide AMD C1E idle capability since its
* based on CPU generation, for now ignore access to
* this MSR by vcpus
* XXX: special handling of AMD C1E - Ignore.
*/
if (ecx == MSR_AMDK8_IPM)
loop = true;
break;
case VMCB_EXIT_INTR:
/*
* Exit on External Interrupt.
* Give host interrupt handler to run and if its guest
* interrupt, local APIC will inject event in guest.
*/
update_rip = false;
VCPU_CTR1(svm_sc->vm, vcpu, "SVM:VMEXIT ExtInt"
" RIP:0x%lx.\n", state->rip);
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
break;
case VMCB_EXIT_IO:
loop = svm_handle_io(svm_sc, vcpu, vmexit);
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
break;
case VMCB_EXIT_CPUID:
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
(void)x86_emulate_cpuid(svm_sc->vm, vcpu,
(uint32_t *)&state->rax,
(uint32_t *)&ctx->sctx_rbx,
(uint32_t *)&ctx->sctx_rcx,
(uint32_t *)&ctx->e.g.sctx_rdx);
VCPU_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT CPUID\n");
break;
case VMCB_EXIT_HLT:
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
if (ctrl->v_irq) {
/* Interrupt is pending, can't halt guest. */
vmm_stat_incr(svm_sc->vm, vcpu,
VMEXIT_HLT_IGNORED, 1);
VCPU_CTR0(svm_sc->vm, vcpu,
"VMEXIT halt ignored.");
} else {
VCPU_CTR0(svm_sc->vm, vcpu,
"VMEXIT halted CPU.");
vmexit->exitcode = VM_EXITCODE_HLT;
vmexit->u.hlt.rflags = state->rflags;
loop = false;
}
break;
case VMCB_EXIT_PAUSE:
VCPU_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT pause");
vmexit->exitcode = VM_EXITCODE_PAUSE;
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
break;
case VMCB_EXIT_NPF:
loop = false;
update_rip = false;
if (info1 & VMCB_NPF_INFO1_RSV) {
VCPU_CTR2(svm_sc->vm, vcpu, "SVM_ERR:NPT"
" reserved bit is set,"
"INFO1:0x%lx INFO2:0x%lx .\n",
info1, info2);
break;
}
/* EXITINFO2 has the physical fault address (GPA). */
if(vm_mem_allocated(svm_sc->vm, info2)) {
VCPU_CTR3(svm_sc->vm, vcpu, "SVM:NPF-paging,"
"RIP:0x%lx INFO1:0x%lx INFO2:0x%lx .\n",
state->rip, info1, info2);
vmexit->exitcode = VM_EXITCODE_PAGING;
vmexit->u.paging.gpa = info2;
vmexit->u.paging.fault_type =
svm_npf_paging(info1);
vmm_stat_incr(svm_sc->vm, vcpu,
VMEXIT_NESTED_FAULT, 1);
} else if (svm_npf_emul_fault(info1)) {
VCPU_CTR3(svm_sc->vm, vcpu, "SVM:NPF inst_emul,"
"RIP:0x%lx INFO1:0x%lx INFO2:0x%lx .\n",
state->rip, info1, info2);
svm_handle_inst_emul(svm_get_vmcb(svm_sc, vcpu),
info2, vmexit);
vmm_stat_incr(svm_sc->vm, vcpu,
VMEXIT_INST_EMUL, 1);
}
break;
case VMCB_EXIT_SHUTDOWN:
VCPU_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT shutdown.");
loop = false;
break;
case VMCB_EXIT_INVALID:
VCPU_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT INVALID.");
loop = false;
break;
default:
/* Return to user space. */
loop = false;
update_rip = false;
VCPU_CTR3(svm_sc->vm, vcpu, "VMEXIT=0x%lx"
" EXITINFO1: 0x%lx EXITINFO2:0x%lx\n",
ctrl->exitcode, info1, info2);
VCPU_CTR3(svm_sc->vm, vcpu, "SVM:RIP: 0x%lx nRIP:0x%lx"
" Inst decoder len:%d\n", state->rip,
ctrl->nrip, ctrl->inst_decode_size);
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
break;
}
vmexit->rip = state->rip;
if (update_rip) {
if (ctrl->nrip == 0) {
VCPU_CTR1(svm_sc->vm, vcpu, "SVM_ERR:nRIP is not set "
"for RIP0x%lx.\n", state->rip);
vmexit->exitcode = VM_EXITCODE_VMX;
} else
vmexit->rip = ctrl->nrip;
}
/* If vcpu execution is continued, update RIP. */
if (loop) {
state->rip = vmexit->rip;
}
if (state->rip == 0) {
VCPU_CTR0(svm_sc->vm, vcpu, "SVM_ERR:RIP is NULL\n");
vmexit->exitcode = VM_EXITCODE_VMX;
}
return (loop);
}
/*
* Inject NMI to virtual cpu.
*/
static int
svm_inject_nmi(struct svm_softc *svm_sc, int vcpu)
{
struct vmcb_ctrl *ctrl;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
/* Can't inject another NMI if last one is pending.*/
if (!vm_nmi_pending(svm_sc->vm, vcpu))
return (0);
/* Inject NMI, vector number is not used.*/
vmcb_eventinject(ctrl, VMCB_EVENTINJ_TYPE_NMI, IDT_NMI, 0, false);
/* Acknowledge the request is accepted.*/
vm_nmi_clear(svm_sc->vm, vcpu);
VCPU_CTR0(svm_sc->vm, vcpu, "SVM:Injected NMI.\n");
return (1);
}
static void
svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
{
struct vmcb_ctrl *ctrl;
uint64_t intinfo;
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
return;
KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
"valid: %#lx", __func__, intinfo));
vmcb_eventinject(ctrl, VMCB_EXITINTINFO_TYPE(intinfo),
VMCB_EXITINTINFO_VECTOR(intinfo),
VMCB_EXITINTINFO_EC(intinfo),
VMCB_EXITINTINFO_EC_VALID(intinfo));
vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
}
/*
* Inject event to virtual cpu.
*/
static void
svm_inj_interrupts(struct svm_softc *svm_sc, int vcpu, struct vlapic *vlapic)
{
struct vmcb_ctrl *ctrl;
struct vmcb_state *state;
int extint_pending;
int vector;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
state = svm_get_vmcb_state(svm_sc, vcpu);
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
svm_inj_intinfo(svm_sc, vcpu);
/* Can't inject multiple events at once. */
if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
VCPU_CTR1(svm_sc->vm, vcpu,
"SVM:Last event(0x%lx) is pending.\n", ctrl->eventinj);
return ;
}
/* Wait for guest to come out of interrupt shadow. */
if (ctrl->intr_shadow) {
VCPU_CTR0(svm_sc->vm, vcpu, "SVM:Guest in interrupt shadow.\n");
return;
}
/* NMI event has priority over interrupts.*/
if (svm_inject_nmi(svm_sc, vcpu)) {
return;
}
extint_pending = vm_extint_pending(svm_sc->vm, vcpu);
if (!extint_pending) {
/* Ask the local apic for a vector to inject */
if (!vlapic_pending_intr(vlapic, &vector))
return;
} else {
/* Ask the legacy pic for a vector to inject */
vatpic_pending_intr(svm_sc->vm, &vector);
}
if (vector < 32 || vector > 255) {
VCPU_CTR1(svm_sc->vm, vcpu, "SVM_ERR:Event injection"
"invalid vector=%d.\n", vector);
ERR("SVM_ERR:Event injection invalid vector=%d.\n", vector);
return;
}
if ((state->rflags & PSL_I) == 0) {
VCPU_CTR0(svm_sc->vm, vcpu, "SVM:Interrupt is disabled\n");
return;
}
vmcb_eventinject(ctrl, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
if (!extint_pending) {
/* Update the Local APIC ISR */
vlapic_intr_accepted(vlapic, vector);
} else {
vm_extint_clear(svm_sc->vm, vcpu);
vatpic_intr_accepted(svm_sc->vm, vector);
/*
* XXX need to recheck exting_pending ala VT-x
*/
}
VCPU_CTR1(svm_sc->vm, vcpu, "SVM:event injected,vector=%d.\n", vector);
}
static __inline void
restore_host_tss(void)
{
struct system_segment_descriptor *tss_sd;
/*
* The TSS descriptor was in use prior to launching the guest so it
* has been marked busy.
*
* 'ltr' requires the descriptor to be marked available so change the
* type to "64-bit available TSS".
*/
tss_sd = PCPU_GET(tss);
tss_sd->sd_type = SDT_SYSTSS;
ltr(GSEL(GPROC0_SEL, SEL_KPL));
}
static void
check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
{
struct svm_vcpu *vcpustate;
struct vmcb_ctrl *ctrl;
long eptgen;
bool alloc_asid;
KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
"active on cpu %u", __func__, thiscpu));
vcpustate = svm_get_vcpu(sc, vcpuid);
ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
/*
* The TLB entries associated with the vcpu's ASID are not valid
* if either of the following conditions is true:
*
* 1. The vcpu's ASID generation is different than the host cpu's
* ASID generation. This happens when the vcpu migrates to a new
* host cpu. It can also happen when the number of vcpus executing
* on a host cpu is greater than the number of ASIDs available.
*
* 2. The pmap generation number is different than the value cached in
* the 'vcpustate'. This happens when the host invalidates pages
* belonging to the guest.
*
* asidgen eptgen Action
* mismatch mismatch
* 0 0 (a)
* 0 1 (b1) or (b2)
* 1 0 (c)
* 1 1 (d)
*
* (a) There is no mismatch in eptgen or ASID generation and therefore
* no further action is needed.
*
* (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
* retained and the TLB entries associated with this ASID
* are flushed by VMRUN.
*
* (b2) If the cpu does not support FlushByAsid then a new ASID is
* allocated.
*
* (c) A new ASID is allocated.
*
* (d) A new ASID is allocated.
*/
alloc_asid = false;
eptgen = pmap->pm_eptgen;
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
if (vcpustate->asid.gen != asid[thiscpu].gen) {
alloc_asid = true; /* (c) and (d) */
} else if (vcpustate->eptgen != eptgen) {
if (flush_by_asid())
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */
else
alloc_asid = true; /* (b2) */
} else {
/*
* This is the common case (a).
*/
KASSERT(!alloc_asid, ("ASID allocation not necessary"));
KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
}
if (alloc_asid) {
if (++asid[thiscpu].num >= nasid) {
asid[thiscpu].num = 1;
if (++asid[thiscpu].gen == 0)
asid[thiscpu].gen = 1;
/*
* If this cpu does not support "flush-by-asid"
* then flush the entire TLB on a generation
* bump. Subsequent ASID allocation in this
* generation can be done without a TLB flush.
*/
if (!flush_by_asid())
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
}
vcpustate->asid.gen = asid[thiscpu].gen;
vcpustate->asid.num = asid[thiscpu].num;
ctrl->asid = vcpustate->asid.num;
vcpu_set_dirty(vcpustate, VMCB_CACHE_ASID);
/*
* If this cpu supports "flush-by-asid" then the TLB
* was not flushed after the generation bump. The TLB
* is flushed selectively after every new ASID allocation.
*/
if (flush_by_asid())
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
}
vcpustate->eptgen = eptgen;
KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
KASSERT(ctrl->asid == vcpustate->asid.num,
("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
}
/*
* Start vcpu with specified RIP.
*/
static int
svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
void *rend_cookie, void *suspended_cookie)
{
struct svm_regctx *hctx, *gctx;
struct svm_softc *svm_sc;
struct svm_vcpu *vcpustate;
struct vmcb_state *state;
struct vmcb_ctrl *ctrl;
struct vm_exit *vmexit;
struct vlapic *vlapic;
struct vm *vm;
uint64_t vmcb_pa;
u_int thiscpu;
bool loop; /* Continue vcpu execution loop. */
loop = true;
svm_sc = arg;
vm = svm_sc->vm;
vcpustate = svm_get_vcpu(svm_sc, vcpu);
state = svm_get_vmcb_state(svm_sc, vcpu);
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
vmexit = vm_exitinfo(vm, vcpu);
vlapic = vm_lapic(vm, vcpu);
/*
* Stash 'curcpu' on the stack as 'thiscpu'.
*
* The per-cpu data area is not accessible until MSR_GSBASE is restored
* after the #VMEXIT. Since VMRUN is executed inside a critical section
* 'curcpu' and 'thiscpu' are guaranteed to identical.
*/
thiscpu = curcpu;
gctx = svm_get_guest_regctx(svm_sc, vcpu);
hctx = &host_ctx[thiscpu];
vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
if (vcpustate->lastcpu != thiscpu) {
/*
* Force new ASID allocation by invalidating the generation.
*/
vcpustate->asid.gen = 0;
/*
* Invalidate the VMCB state cache by marking all fields dirty.
*/
vcpu_set_dirty(vcpustate, 0xffffffff);
/*
* XXX
* Setting 'vcpustate->lastcpu' here is bit premature because
* we may return from this function without actually executing
* the VMRUN instruction. This could happen if a rendezvous
* or an AST is pending on the first time through the loop.
*
* This works for now but any new side-effects of vcpu
* migration should take this case into account.
*/
vcpustate->lastcpu = thiscpu;
vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
}
VCPU_CTR3(vm, vcpu, "SVM:Enter vmrun RIP:0x%lx"
" inst len=%d/%d\n",
rip, vmexit->inst_length,
vmexit->u.inst_emul.vie.num_valid);
/* Update Guest RIP */
state->rip = rip;
do {
vmexit->inst_length = 0;
/*
* Disable global interrupts to guarantee atomicity during
* loading of guest state. This includes not only the state
* loaded by the "vmrun" instruction but also software state
* maintained by the hypervisor: suspended and rendezvous
* state, NPT generation number, vlapic interrupts etc.
*/
disable_gintr();
if (vcpu_suspended(suspended_cookie)) {
enable_gintr();
vm_exit_suspended(vm, vcpu, state->rip);
break;
}
if (vcpu_rendezvous_pending(rend_cookie)) {
enable_gintr();
vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
vmm_stat_incr(vm, vcpu, VMEXIT_RENDEZVOUS, 1);
VCPU_CTR1(vm, vcpu,
"SVM: VCPU rendezvous, RIP:0x%lx\n",
state->rip);
vmexit->rip = state->rip;
break;
}
/* We are asked to give the cpu by scheduler. */
if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
enable_gintr();
vmexit->exitcode = VM_EXITCODE_BOGUS;
vmm_stat_incr(vm, vcpu, VMEXIT_ASTPENDING, 1);
VCPU_CTR1(vm, vcpu,
"SVM: ASTPENDING, RIP:0x%lx\n", state->rip);
vmexit->rip = state->rip;
break;
}
svm_inj_interrupts(svm_sc, vcpu, vlapic);
/* Activate the nested pmap on 'thiscpu' */
CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active);
/*
* Check the pmap generation and the ASID generation to
* ensure that the vcpu does not use stale TLB mappings.
*/
check_asid(svm_sc, vcpu, pmap, thiscpu);
ctrl->vmcb_clean = VMCB_CACHE_DEFAULT & ~vcpustate->dirty;
vcpustate->dirty = 0;
/* Launch Virtual Machine. */
svm_launch(vmcb_pa, gctx, hctx);
CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active);
/*
* Restore MSR_GSBASE to point to the pcpu data area.
*
* Note that accesses done via PCPU_GET/PCPU_SET will work
* only after MSR_GSBASE is restored.
*
* Also note that we don't bother restoring MSR_KGSBASE
* since it is not used in the kernel and will be restored
* when the VMRUN ioctl returns to userspace.
*/
wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]);
KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch",
thiscpu, curcpu));
/*
* The host GDTR and IDTR is saved by VMRUN and restored
* automatically on #VMEXIT. However, the host TSS needs
* to be restored explicitly.
*/
restore_host_tss();
/* #VMEXIT disables interrupts so re-enable them here. */
enable_gintr();
/* Handle #VMEXIT and if required return to user space. */
loop = svm_vmexit(svm_sc, vcpu, vmexit);
vcpustate->loop++;
vmm_stat_incr(vm, vcpu, VMEXIT_COUNT, 1);
} while (loop);
return (0);
}
/*
* Cleanup for virtual machine.
*/
static void
svm_vmcleanup(void *arg)
{
struct svm_softc *svm_sc;
svm_sc = arg;
VCPU_CTR0(svm_sc->vm, 0, "SVM:cleanup\n");
free(svm_sc, M_SVM);
}
/*
* Return pointer to hypervisor saved register state.
*/
static register_t *
swctx_regptr(struct svm_regctx *regctx, int reg)
{
switch (reg) {
case VM_REG_GUEST_RBX:
return (&regctx->sctx_rbx);
case VM_REG_GUEST_RCX:
return (&regctx->sctx_rcx);
case VM_REG_GUEST_RDX:
return (&regctx->e.g.sctx_rdx);
case VM_REG_GUEST_RDI:
return (&regctx->e.g.sctx_rdi);
case VM_REG_GUEST_RSI:
return (&regctx->e.g.sctx_rsi);
case VM_REG_GUEST_RBP:
return (&regctx->sctx_rbp);
case VM_REG_GUEST_R8:
return (&regctx->sctx_r8);
case VM_REG_GUEST_R9:
return (&regctx->sctx_r9);
case VM_REG_GUEST_R10:
return (&regctx->sctx_r10);
case VM_REG_GUEST_R11:
return (&regctx->sctx_r11);
case VM_REG_GUEST_R12:
return (&regctx->sctx_r12);
case VM_REG_GUEST_R13:
return (&regctx->sctx_r13);
case VM_REG_GUEST_R14:
return (&regctx->sctx_r14);
case VM_REG_GUEST_R15:
return (&regctx->sctx_r15);
default:
ERR("Unknown register requested, reg=%d.\n", reg);
break;
}
return (NULL);
}
/*
* Interface to read guest registers.
* This can be SVM h/w saved or hypervisor saved register.
*/
static int
svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
{
struct svm_softc *svm_sc;
struct vmcb *vmcb;
register_t *reg;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
vmcb = svm_get_vmcb(svm_sc, vcpu);
if (vmcb_read(vmcb, ident, val) == 0) {
return (0);
}
reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
if (reg != NULL) {
*val = *reg;
return (0);
}
ERR("SVM_ERR:reg type %x is not saved in VMCB.\n", ident);
return (EINVAL);
}
/*
* Interface to write to guest registers.
* This can be SVM h/w saved or hypervisor saved register.
*/
static int
svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
{
struct svm_softc *svm_sc;
struct vmcb *vmcb;
register_t *reg;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
vmcb = svm_get_vmcb(svm_sc, vcpu);
if (vmcb_write(vmcb, ident, val) == 0) {
return (0);
}
reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
if (reg != NULL) {
*reg = val;
return (0);
}
/*
* XXX deal with CR3 and invalidate TLB entries tagged with the
* vcpu's ASID. This needs to be treated differently depending on
* whether 'running' is true/false.
*/
ERR("SVM_ERR:reg type %x is not saved in VMCB.\n", ident);
return (EINVAL);
}
/*
* Inteface to set various descriptors.
*/
static int
svm_setdesc(void *arg, int vcpu, int type, struct seg_desc *desc)
{
struct svm_softc *svm_sc;
struct vmcb *vmcb;
struct vmcb_segment *seg;
uint16_t attrib;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
vmcb = svm_get_vmcb(svm_sc, vcpu);
VCPU_CTR1(svm_sc->vm, vcpu, "SVM:set_desc: Type%d\n", type);
seg = vmcb_seg(vmcb, type);
if (seg == NULL) {
ERR("SVM_ERR:Unsupported segment type%d\n", type);
return (EINVAL);
}
/* Map seg_desc access to VMCB attribute format.*/
attrib = ((desc->access & 0xF000) >> 4) | (desc->access & 0xFF);
VCPU_CTR3(svm_sc->vm, vcpu, "SVM:[sel %d attribute 0x%x limit:0x%x]\n",
type, desc->access, desc->limit);
seg->attrib = attrib;
seg->base = desc->base;
seg->limit = desc->limit;
return (0);
}
/*
* Interface to get guest descriptor.
*/
static int
svm_getdesc(void *arg, int vcpu, int type, struct seg_desc *desc)
{
struct svm_softc *svm_sc;
struct vmcb_segment *seg;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
VCPU_CTR1(svm_sc->vm, vcpu, "SVM:get_desc: Type%d\n", type);
seg = vmcb_seg(svm_get_vmcb(svm_sc, vcpu), type);
if (!seg) {
ERR("SVM_ERR:Unsupported segment type%d\n", type);
return (EINVAL);
}
/* Map seg_desc access to VMCB attribute format.*/
desc->access = ((seg->attrib & 0xF00) << 4) | (seg->attrib & 0xFF);
desc->base = seg->base;
desc->limit = seg->limit;
/*
* VT-x uses bit 16 (Unusable) to indicate a segment that has been
* loaded with a NULL segment selector. The 'desc->access' field is
* interpreted in the VT-x format by the processor-independent code.
*
* SVM uses the 'P' bit to convey the same information so convert it
* into the VT-x format. For more details refer to section
* "Segment State in the VMCB" in APMv2.
*/
if (type == VM_REG_GUEST_CS && type == VM_REG_GUEST_TR)
desc->access |= 0x80; /* CS and TS always present */
if (!(desc->access & 0x80))
desc->access |= 0x10000; /* Unusable segment */
return (0);
}
static int
svm_setcap(void *arg, int vcpu, int type, int val)
{
struct svm_softc *svm_sc;
struct vmcb_ctrl *ctrl;
int ret = ENOENT;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
switch (type) {
case VM_CAP_HALT_EXIT:
if (val)
ctrl->ctrl1 |= VMCB_INTCPT_HLT;
else
ctrl->ctrl1 &= ~VMCB_INTCPT_HLT;
ret = 0;
VCPU_CTR1(svm_sc->vm, vcpu, "SVM:Set_gap:Halt exit %s.\n",
val ? "enabled": "disabled");
break;
case VM_CAP_PAUSE_EXIT:
if (val)
ctrl->ctrl1 |= VMCB_INTCPT_PAUSE;
else
ctrl->ctrl1 &= ~VMCB_INTCPT_PAUSE;
ret = 0;
VCPU_CTR1(svm_sc->vm, vcpu, "SVM:Set_gap:Pause exit %s.\n",
val ? "enabled": "disabled");
break;
case VM_CAP_MTRAP_EXIT:
if (val)
ctrl->exception |= BIT(IDT_MC);
else
ctrl->exception &= ~BIT(IDT_MC);
ret = 0;
VCPU_CTR1(svm_sc->vm, vcpu, "SVM:Set_gap:MC exit %s.\n",
val ? "enabled": "disabled");
break;
case VM_CAP_UNRESTRICTED_GUEST:
/* SVM doesn't need special capability for SMP.*/
VCPU_CTR0(svm_sc->vm, vcpu, "SVM:Set_gap:Unrestricted "
"always enabled.\n");
ret = 0;
break;
default:
break;
}
return (ret);
}
static int
svm_getcap(void *arg, int vcpu, int type, int *retval)
{
struct svm_softc *svm_sc;
struct vmcb_ctrl *ctrl;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
switch (type) {
case VM_CAP_HALT_EXIT:
*retval = (ctrl->ctrl1 & VMCB_INTCPT_HLT) ? 1 : 0;
VCPU_CTR1(svm_sc->vm, vcpu, "SVM:get_cap:Halt exit %s.\n",
*retval ? "enabled": "disabled");
break;
case VM_CAP_PAUSE_EXIT:
*retval = (ctrl->ctrl1 & VMCB_INTCPT_PAUSE) ? 1 : 0;
VCPU_CTR1(svm_sc->vm, vcpu, "SVM:get_cap:Pause exit %s.\n",
*retval ? "enabled": "disabled");
break;
case VM_CAP_MTRAP_EXIT:
*retval = (ctrl->exception & BIT(IDT_MC)) ? 1 : 0;
VCPU_CTR1(svm_sc->vm, vcpu, "SVM:get_cap:MC exit %s.\n",
*retval ? "enabled": "disabled");
break;
case VM_CAP_UNRESTRICTED_GUEST:
VCPU_CTR0(svm_sc->vm, vcpu, "SVM:get_cap:Unrestricted.\n");
*retval = 1;
break;
default:
break;
}
return (0);
}
static struct vlapic *
svm_vlapic_init(void *arg, int vcpuid)
{
struct svm_softc *svm_sc;
struct vlapic *vlapic;
svm_sc = arg;
vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
vlapic->vm = svm_sc->vm;
vlapic->vcpuid = vcpuid;
vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
vlapic_init(vlapic);
return (vlapic);
}
static void
svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
{
vlapic_cleanup(vlapic);
free(vlapic, M_SVM_VLAPIC);
}
struct vmm_ops vmm_ops_amd = {
svm_init,
svm_cleanup,
svm_restore,
svm_vminit,
svm_vmrun,
svm_vmcleanup,
svm_getreg,
svm_setreg,
svm_getdesc,
svm_setdesc,
svm_getcap,
svm_setcap,
svm_npt_alloc,
svm_npt_free,
svm_vlapic_init,
svm_vlapic_cleanup
};