freebsd-skq/sys/net80211/ieee80211.c
sam c48f416515 MFC: half- and quarter-rate channel support
900MHz channel support
     support for respecifying the channel set after attach
     default rate sets
2007-01-28 04:07:54 +00:00

1131 lines
31 KiB
C

/*-
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11 generic handler
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/ethernet.h>
#include <net80211/ieee80211_var.h>
#include <net/bpf.h>
const char *ieee80211_phymode_name[] = {
"auto", /* IEEE80211_MODE_AUTO */
"11a", /* IEEE80211_MODE_11A */
"11b", /* IEEE80211_MODE_11B */
"11g", /* IEEE80211_MODE_11G */
"FH", /* IEEE80211_MODE_FH */
"turboA", /* IEEE80211_MODE_TURBO_A */
"turboG", /* IEEE80211_MODE_TURBO_G */
};
/*
* Default supported rates for 802.11 operation (in IEEE .5Mb units).
*/
#define B(r) ((r) | IEEE80211_RATE_BASIC)
static const struct ieee80211_rateset ieee80211_rateset_11a =
{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
static const struct ieee80211_rateset ieee80211_rateset_half =
{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
static const struct ieee80211_rateset ieee80211_rateset_quarter =
{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
static const struct ieee80211_rateset ieee80211_rateset_11b =
{ 4, { B(2), B(4), B(11), B(22) } };
/* NB: OFDM rates are handled specially based on mode */
static const struct ieee80211_rateset ieee80211_rateset_11g =
{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
#undef B
/* list of all instances */
SLIST_HEAD(ieee80211_list, ieee80211com);
static struct ieee80211_list ieee80211_list =
SLIST_HEAD_INITIALIZER(ieee80211_list);
static u_int8_t ieee80211_vapmap[32]; /* enough for 256 */
static struct mtx ieee80211_vap_mtx;
MTX_SYSINIT(ieee80211, &ieee80211_vap_mtx, "net80211 instances", MTX_DEF);
static void
ieee80211_add_vap(struct ieee80211com *ic)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
int i;
u_int8_t b;
mtx_lock(&ieee80211_vap_mtx);
ic->ic_vap = 0;
for (i = 0; i < N(ieee80211_vapmap) && ieee80211_vapmap[i] == 0xff; i++)
ic->ic_vap += NBBY;
if (i == N(ieee80211_vapmap))
panic("vap table full");
for (b = ieee80211_vapmap[i]; b & 1; b >>= 1)
ic->ic_vap++;
setbit(ieee80211_vapmap, ic->ic_vap);
SLIST_INSERT_HEAD(&ieee80211_list, ic, ic_next);
mtx_unlock(&ieee80211_vap_mtx);
#undef N
}
static void
ieee80211_remove_vap(struct ieee80211com *ic)
{
mtx_lock(&ieee80211_vap_mtx);
SLIST_REMOVE(&ieee80211_list, ic, ieee80211com, ic_next);
KASSERT(ic->ic_vap < sizeof(ieee80211_vapmap)*NBBY,
("invalid vap id %d", ic->ic_vap));
KASSERT(isset(ieee80211_vapmap, ic->ic_vap),
("vap id %d not allocated", ic->ic_vap));
clrbit(ieee80211_vapmap, ic->ic_vap);
mtx_unlock(&ieee80211_vap_mtx);
}
/*
* Default reset method for use with the ioctl support. This
* method is invoked after any state change in the 802.11
* layer that should be propagated to the hardware but not
* require re-initialization of the 802.11 state machine (e.g
* rescanning for an ap). We always return ENETRESET which
* should cause the driver to re-initialize the device. Drivers
* can override this method to implement more optimized support.
*/
static int
ieee80211_default_reset(struct ifnet *ifp)
{
return ENETRESET;
}
/*
* Fill in 802.11 available channel set, mark
* all available channels as active, and pick
* a default channel if not already specified.
*/
static void
ieee80211_chan_init(struct ieee80211com *ic)
{
#define DEFAULTRATES(m, def) do { \
if ((ic->ic_modecaps & (1<<m)) && ic->ic_sup_rates[m].rs_nrates == 0) \
ic->ic_sup_rates[m] = def; \
} while (0)
struct ifnet *ifp = ic->ic_ifp;
struct ieee80211_channel *c;
int i;
memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
ic->ic_modecaps = 1<<IEEE80211_MODE_AUTO;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
if (c->ic_flags) {
/*
* Verify driver passed us valid data.
*/
if (i != ieee80211_chan2ieee(ic, c)) {
if_printf(ifp, "bad channel ignored; "
"freq %u flags %x number %u\n",
c->ic_freq, c->ic_flags, i);
c->ic_flags = 0; /* NB: remove */
continue;
}
setbit(ic->ic_chan_avail, i);
/*
* Identify mode capabilities.
*/
if (IEEE80211_IS_CHAN_A(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11A;
if (IEEE80211_IS_CHAN_B(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11B;
if (IEEE80211_IS_CHAN_ANYG(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11G;
if (IEEE80211_IS_CHAN_FHSS(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_FH;
if (IEEE80211_IS_CHAN_T(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_TURBO_A;
if (IEEE80211_IS_CHAN_108G(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_TURBO_G;
if (ic->ic_curchan == NULL) {
/* arbitrarily pick the first channel */
ic->ic_curchan = &ic->ic_channels[i];
}
}
}
/* fillin well-known rate sets if driver has not specified */
DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b);
DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g);
DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a);
DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a);
DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g);
/*
* Set auto mode to reset active channel state and any desired channel.
*/
(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
#undef DEFAULTRATES
}
void
ieee80211_ifattach(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
ether_ifattach(ifp, ic->ic_myaddr);
bpfattach2(ifp, DLT_IEEE802_11,
sizeof(struct ieee80211_frame_addr4), &ic->ic_rawbpf);
ieee80211_crypto_attach(ic);
ic->ic_des_chan = IEEE80211_CHAN_ANYC;
/*
* Fill in 802.11 available channel set, mark all
* available channels as active, and pick a default
* channel if not already specified.
*/
ieee80211_chan_init(ic);
#if 0
/*
* Enable WME by default if we're capable.
*/
if (ic->ic_caps & IEEE80211_C_WME)
ic->ic_flags |= IEEE80211_F_WME;
#endif
if (ic->ic_caps & IEEE80211_C_BURST)
ic->ic_flags |= IEEE80211_F_BURST;
ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
ic->ic_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
ic->ic_dtim_period = IEEE80211_DTIM_DEFAULT;
IEEE80211_BEACON_LOCK_INIT(ic, "beacon");
ic->ic_lintval = ic->ic_bintval;
ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
ieee80211_node_attach(ic);
ieee80211_proto_attach(ic);
ieee80211_add_vap(ic);
ieee80211_sysctl_attach(ic); /* NB: requires ic_vap */
/*
* Install a default reset method for the ioctl support.
* The driver is expected to fill this in before calling us.
*/
if (ic->ic_reset == NULL)
ic->ic_reset = ieee80211_default_reset;
}
void
ieee80211_ifdetach(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
ieee80211_remove_vap(ic);
ieee80211_sysctl_detach(ic);
/* NB: must be called before ieee80211_node_detach */
ieee80211_proto_detach(ic);
ieee80211_crypto_detach(ic);
ieee80211_node_detach(ic);
ifmedia_removeall(&ic->ic_media);
IEEE80211_BEACON_LOCK_DESTROY(ic);
bpfdetach(ifp);
ether_ifdetach(ifp);
}
static __inline int
mapgsm(u_int freq, u_int flags)
{
freq *= 10;
if (flags & IEEE80211_CHAN_QUARTER)
freq += 5;
else if (flags & IEEE80211_CHAN_HALF)
freq += 10;
else
freq += 20;
/* NB: there is no 907/20 wide but leave room */
return (freq - 906*10) / 5;
}
static __inline int
mappsb(u_int freq, u_int flags)
{
return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
}
/*
* Convert MHz frequency to IEEE channel number.
*/
int
ieee80211_mhz2ieee(u_int freq, u_int flags)
{
if (flags & IEEE80211_CHAN_GSM)
return mapgsm(freq, flags);
if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
if (freq == 2484)
return 14;
if (freq < 2484)
return ((int) freq - 2407) / 5;
else
return 15 + ((freq - 2512) / 20);
} else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */
if (freq <= 5000) {
if (flags &(IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER))
return mappsb(freq, flags);
return (freq - 4000) / 5;
} else
return (freq - 5000) / 5;
} else { /* either, guess */
if (freq == 2484)
return 14;
if (freq < 2484) {
if (907 <= freq && freq <= 922)
return mapgsm(freq, flags);
return ((int) freq - 2407) / 5;
}
if (freq < 5000) {
if (flags &(IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER))
return mappsb(freq, flags);
else if (freq > 4900)
return (freq - 4000) / 5;
else
return 15 + ((freq - 2512) / 20);
}
return (freq - 5000) / 5;
}
}
/*
* Convert channel to IEEE channel number.
*/
int
ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
{
if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX])
return c - ic->ic_channels;
else if (c == IEEE80211_CHAN_ANYC)
return IEEE80211_CHAN_ANY;
else if (c != NULL) {
if_printf(ic->ic_ifp, "invalid channel freq %u flags %x\n",
c->ic_freq, c->ic_flags);
return 0; /* XXX */
} else {
if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
return 0; /* XXX */
}
}
/*
* Convert IEEE channel number to MHz frequency.
*/
u_int
ieee80211_ieee2mhz(u_int chan, u_int flags)
{
if (flags & IEEE80211_CHAN_GSM)
return 907 + 5 * (chan / 10);
if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
if (chan == 14)
return 2484;
if (chan < 14)
return 2407 + chan*5;
else
return 2512 + ((chan-15)*20);
} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
chan -= 37;
return 4940 + chan*5 + (chan % 5 ? 2 : 0);
}
return 5000 + (chan*5);
} else { /* either, guess */
/* XXX can't distinguish PSB+GSM channels */
if (chan == 14)
return 2484;
if (chan < 14) /* 0-13 */
return 2407 + chan*5;
if (chan < 27) /* 15-26 */
return 2512 + ((chan-15)*20);
return 5000 + (chan*5);
}
}
/*
* Setup the media data structures according to the channel and
* rate tables. This must be called by the driver after
* ieee80211_attach and before most anything else.
*/
void
ieee80211_media_init(struct ieee80211com *ic,
ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
{
#define ADD(_ic, _s, _o) \
ifmedia_add(&(_ic)->ic_media, \
IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
struct ifnet *ifp = ic->ic_ifp;
struct ifmediareq imr;
int i, j, mode, rate, maxrate, mword, mopt, r;
struct ieee80211_rateset *rs;
struct ieee80211_rateset allrates;
/* NB: this works because the structure is initialized to zero */
if (LIST_EMPTY(&ic->ic_media.ifm_list)) {
/*
* Do late attach work that must wait for any subclass
* (i.e. driver) work such as overriding methods.
*/
ieee80211_node_lateattach(ic);
} else {
/*
* We are re-initializing the channel list; clear
* the existing media state as the media routines
* don't suppress duplicates.
*/
ifmedia_removeall(&ic->ic_media);
ieee80211_chan_init(ic);
}
/*
* Fill in media characteristics.
*/
ifmedia_init(&ic->ic_media, 0, media_change, media_stat);
maxrate = 0;
memset(&allrates, 0, sizeof(allrates));
for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_MAX; mode++) {
static const u_int mopts[] = {
IFM_AUTO,
IFM_IEEE80211_11A,
IFM_IEEE80211_11B,
IFM_IEEE80211_11G,
IFM_IEEE80211_FH,
IFM_IEEE80211_11A | IFM_IEEE80211_TURBO,
IFM_IEEE80211_11G | IFM_IEEE80211_TURBO,
};
if ((ic->ic_modecaps & (1<<mode)) == 0)
continue;
mopt = mopts[mode];
ADD(ic, IFM_AUTO, mopt); /* e.g. 11a auto */
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP);
if (ic->ic_caps & IEEE80211_C_AHDEMO)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR);
if (mode == IEEE80211_MODE_AUTO)
continue;
rs = &ic->ic_sup_rates[mode];
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i];
mword = ieee80211_rate2media(ic, rate, mode);
if (mword == 0)
continue;
ADD(ic, mword, mopt);
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP);
if (ic->ic_caps & IEEE80211_C_AHDEMO)
ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR);
/*
* Add rate to the collection of all rates.
*/
r = rate & IEEE80211_RATE_VAL;
for (j = 0; j < allrates.rs_nrates; j++)
if (allrates.rs_rates[j] == r)
break;
if (j == allrates.rs_nrates) {
/* unique, add to the set */
allrates.rs_rates[j] = r;
allrates.rs_nrates++;
}
rate = (rate & IEEE80211_RATE_VAL) / 2;
if (rate > maxrate)
maxrate = rate;
}
}
for (i = 0; i < allrates.rs_nrates; i++) {
mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
IEEE80211_MODE_AUTO);
if (mword == 0)
continue;
mword = IFM_SUBTYPE(mword); /* remove media options */
ADD(ic, mword, 0);
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, mword, IFM_IEEE80211_ADHOC);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, mword, IFM_IEEE80211_HOSTAP);
if (ic->ic_caps & IEEE80211_C_AHDEMO)
ADD(ic, mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, mword, IFM_IEEE80211_MONITOR);
}
ieee80211_media_status(ifp, &imr);
ifmedia_set(&ic->ic_media, imr.ifm_active);
if (maxrate)
ifp->if_baudrate = IF_Mbps(maxrate);
#undef ADD
}
const struct ieee80211_rateset *
ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
{
enum ieee80211_phymode mode = ieee80211_chan2mode(ic, c);
if (IEEE80211_IS_CHAN_HALF(c))
return &ieee80211_rateset_half;
if (IEEE80211_IS_CHAN_QUARTER(c))
return &ieee80211_rateset_quarter;
return &ic->ic_sup_rates[mode];
}
void
ieee80211_announce(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
int i, mode, rate, mword;
struct ieee80211_rateset *rs;
for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) {
if ((ic->ic_modecaps & (1<<mode)) == 0)
continue;
if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
rs = &ic->ic_sup_rates[mode];
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i];
mword = ieee80211_rate2media(ic, rate, mode);
if (mword == 0)
continue;
printf("%s%d%sMbps", (i != 0 ? " " : ""),
(rate & IEEE80211_RATE_VAL) / 2,
((rate & 0x1) != 0 ? ".5" : ""));
}
printf("\n");
}
}
static int
findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, int rate)
{
#define IEEERATE(_ic,_m,_i) \
((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL)
int i, nrates = ic->ic_sup_rates[mode].rs_nrates;
for (i = 0; i < nrates; i++)
if (IEEERATE(ic, mode, i) == rate)
return i;
return -1;
#undef IEEERATE
}
/*
* Find an instance by it's mac address.
*/
struct ieee80211com *
ieee80211_find_vap(const u_int8_t mac[IEEE80211_ADDR_LEN])
{
struct ieee80211com *ic;
/* XXX lock */
SLIST_FOREACH(ic, &ieee80211_list, ic_next)
if (IEEE80211_ADDR_EQ(mac, ic->ic_myaddr))
return ic;
return NULL;
}
static struct ieee80211com *
ieee80211_find_instance(struct ifnet *ifp)
{
struct ieee80211com *ic;
/* XXX lock */
/* XXX not right for multiple instances but works for now */
SLIST_FOREACH(ic, &ieee80211_list, ic_next)
if (ic->ic_ifp == ifp)
return ic;
return NULL;
}
/*
* Handle a media change request.
*/
int
ieee80211_media_change(struct ifnet *ifp)
{
struct ieee80211com *ic;
struct ifmedia_entry *ime;
enum ieee80211_opmode newopmode;
enum ieee80211_phymode newphymode;
int i, j, newrate, error = 0;
ic = ieee80211_find_instance(ifp);
if (!ic) {
if_printf(ifp, "%s: no 802.11 instance!\n", __func__);
return EINVAL;
}
ime = ic->ic_media.ifm_cur;
/*
* First, identify the phy mode.
*/
switch (IFM_MODE(ime->ifm_media)) {
case IFM_IEEE80211_11A:
newphymode = IEEE80211_MODE_11A;
break;
case IFM_IEEE80211_11B:
newphymode = IEEE80211_MODE_11B;
break;
case IFM_IEEE80211_11G:
newphymode = IEEE80211_MODE_11G;
break;
case IFM_IEEE80211_FH:
newphymode = IEEE80211_MODE_FH;
break;
case IFM_AUTO:
newphymode = IEEE80211_MODE_AUTO;
break;
default:
return EINVAL;
}
/*
* Turbo mode is an ``option''.
* XXX does not apply to AUTO
*/
if (ime->ifm_media & IFM_IEEE80211_TURBO) {
if (newphymode == IEEE80211_MODE_11A)
newphymode = IEEE80211_MODE_TURBO_A;
else if (newphymode == IEEE80211_MODE_11G)
newphymode = IEEE80211_MODE_TURBO_G;
else
return EINVAL;
}
/*
* Validate requested mode is available.
*/
if ((ic->ic_modecaps & (1<<newphymode)) == 0)
return EINVAL;
/*
* Next, the fixed/variable rate.
*/
i = -1;
if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) {
/*
* Convert media subtype to rate.
*/
newrate = ieee80211_media2rate(ime->ifm_media);
if (newrate == 0)
return EINVAL;
/*
* Check the rate table for the specified/current phy.
*/
if (newphymode == IEEE80211_MODE_AUTO) {
/*
* In autoselect mode search for the rate.
*/
for (j = IEEE80211_MODE_11A;
j < IEEE80211_MODE_MAX; j++) {
if ((ic->ic_modecaps & (1<<j)) == 0)
continue;
i = findrate(ic, j, newrate);
if (i != -1) {
/* lock mode too */
newphymode = j;
break;
}
}
} else {
i = findrate(ic, newphymode, newrate);
}
if (i == -1) /* mode/rate mismatch */
return EINVAL;
}
/* NB: defer rate setting to later */
/*
* Deduce new operating mode but don't install it just yet.
*/
if ((ime->ifm_media & (IFM_IEEE80211_ADHOC|IFM_FLAG0)) ==
(IFM_IEEE80211_ADHOC|IFM_FLAG0))
newopmode = IEEE80211_M_AHDEMO;
else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
newopmode = IEEE80211_M_HOSTAP;
else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
newopmode = IEEE80211_M_IBSS;
else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
newopmode = IEEE80211_M_MONITOR;
else
newopmode = IEEE80211_M_STA;
/*
* Autoselect doesn't make sense when operating as an AP.
* If no phy mode has been selected, pick one and lock it
* down so rate tables can be used in forming beacon frames
* and the like.
*/
if (newopmode == IEEE80211_M_HOSTAP &&
newphymode == IEEE80211_MODE_AUTO) {
for (j = IEEE80211_MODE_11A; j < IEEE80211_MODE_MAX; j++)
if (ic->ic_modecaps & (1<<j)) {
newphymode = j;
break;
}
}
/*
* Handle phy mode change.
*/
if (ic->ic_curmode != newphymode) { /* change phy mode */
error = ieee80211_setmode(ic, newphymode);
if (error != 0)
return error;
error = ENETRESET;
}
/*
* Committed to changes, install the rate setting.
*/
if (ic->ic_fixed_rate != i) {
ic->ic_fixed_rate = i; /* set fixed tx rate */
error = ENETRESET;
}
/*
* Handle operating mode change.
*/
if (ic->ic_opmode != newopmode) {
ic->ic_opmode = newopmode;
switch (newopmode) {
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
case IEEE80211_M_STA:
case IEEE80211_M_MONITOR:
ic->ic_flags &= ~IEEE80211_F_IBSSON;
break;
case IEEE80211_M_IBSS:
ic->ic_flags |= IEEE80211_F_IBSSON;
break;
}
/*
* Yech, slot time may change depending on the
* operating mode so reset it to be sure everything
* is setup appropriately.
*/
ieee80211_reset_erp(ic);
ieee80211_wme_initparams(ic); /* after opmode change */
error = ENETRESET;
}
#ifdef notdef
if (error == 0)
ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media);
#endif
return error;
}
void
ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct ieee80211com *ic;
const struct ieee80211_rateset *rs;
ic = ieee80211_find_instance(ifp);
if (!ic) {
if_printf(ifp, "%s: no 802.11 instance!\n", __func__);
return;
}
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
/*
* Calculate a current rate if possible.
*/
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
/*
* A fixed rate is set, report that.
*/
rs = ieee80211_get_suprates(ic, ic->ic_curchan);
imr->ifm_active |= ieee80211_rate2media(ic,
rs->rs_rates[ic->ic_fixed_rate], ic->ic_curmode);
} else if (ic->ic_opmode == IEEE80211_M_STA) {
/*
* In station mode report the current transmit rate.
*/
rs = &ic->ic_bss->ni_rates;
imr->ifm_active |= ieee80211_rate2media(ic,
rs->rs_rates[ic->ic_bss->ni_txrate], ic->ic_curmode);
} else
imr->ifm_active |= IFM_AUTO;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_AHDEMO:
/* should not come here */
break;
case IEEE80211_M_HOSTAP:
imr->ifm_active |= IFM_IEEE80211_HOSTAP;
break;
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
}
switch (ic->ic_curmode) {
case IEEE80211_MODE_11A:
imr->ifm_active |= IFM_IEEE80211_11A;
break;
case IEEE80211_MODE_11B:
imr->ifm_active |= IFM_IEEE80211_11B;
break;
case IEEE80211_MODE_11G:
imr->ifm_active |= IFM_IEEE80211_11G;
break;
case IEEE80211_MODE_FH:
imr->ifm_active |= IFM_IEEE80211_FH;
break;
case IEEE80211_MODE_TURBO_A:
imr->ifm_active |= IFM_IEEE80211_11A
| IFM_IEEE80211_TURBO;
break;
case IEEE80211_MODE_TURBO_G:
imr->ifm_active |= IFM_IEEE80211_11G
| IFM_IEEE80211_TURBO;
break;
}
}
void
ieee80211_watchdog(struct ieee80211com *ic)
{
struct ieee80211_node_table *nt;
int need_inact_timer = 0;
if (ic->ic_state != IEEE80211_S_INIT) {
if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0)
ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
nt = &ic->ic_scan;
if (nt->nt_inact_timer) {
if (--nt->nt_inact_timer == 0)
nt->nt_timeout(nt);
need_inact_timer += nt->nt_inact_timer;
}
nt = &ic->ic_sta;
if (nt->nt_inact_timer) {
if (--nt->nt_inact_timer == 0)
nt->nt_timeout(nt);
need_inact_timer += nt->nt_inact_timer;
}
}
if (ic->ic_mgt_timer != 0 || need_inact_timer)
ic->ic_ifp->if_timer = 1;
}
/*
* Set the current phy mode and recalculate the active channel
* set based on the available channels for this mode. Also
* select a new default/current channel if the current one is
* inappropriate for this mode.
*/
int
ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
{
#define N(a) (sizeof(a) / sizeof(a[0]))
static const u_int chanflags[] = {
0, /* IEEE80211_MODE_AUTO */
IEEE80211_CHAN_A, /* IEEE80211_MODE_11A */
IEEE80211_CHAN_B, /* IEEE80211_MODE_11B */
IEEE80211_CHAN_PUREG, /* IEEE80211_MODE_11G */
IEEE80211_CHAN_FHSS, /* IEEE80211_MODE_FH */
IEEE80211_CHAN_T, /* IEEE80211_MODE_TURBO_A */
IEEE80211_CHAN_108G, /* IEEE80211_MODE_TURBO_G */
};
struct ieee80211_channel *c;
u_int modeflags;
int i;
/* validate new mode */
if ((ic->ic_modecaps & (1<<mode)) == 0) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
"%s: mode %u not supported (caps 0x%x)\n",
__func__, mode, ic->ic_modecaps);
return EINVAL;
}
/*
* Verify at least one channel is present in the available
* channel list before committing to the new mode.
*/
KASSERT(mode < N(chanflags), ("Unexpected mode %u", mode));
modeflags = chanflags[mode];
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
if (c->ic_flags == 0)
continue;
if (mode == IEEE80211_MODE_AUTO) {
/* ignore static turbo channels for autoselect */
if (!IEEE80211_IS_CHAN_T(c))
break;
} else {
if ((c->ic_flags & modeflags) == modeflags)
break;
}
}
if (i > IEEE80211_CHAN_MAX) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
"%s: no channels found for mode %u\n", __func__, mode);
return EINVAL;
}
/*
* Calculate the active channel set.
*/
memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active));
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
if (c->ic_flags == 0)
continue;
if (mode == IEEE80211_MODE_AUTO) {
/* take anything but static turbo channels */
if (!IEEE80211_IS_CHAN_T(c))
setbit(ic->ic_chan_active, i);
} else {
if ((c->ic_flags & modeflags) == modeflags)
setbit(ic->ic_chan_active, i);
}
}
/*
* If no current/default channel is setup or the current
* channel is wrong for the mode then pick the first
* available channel from the active list. This is likely
* not the right one.
*/
if (isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_curchan))) {
ic->ic_curchan = NULL;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++)
if (isset(ic->ic_chan_active, i)) {
ic->ic_curchan = &ic->ic_channels[i];
break;
}
KASSERT(ic->ic_curchan != NULL, ("no current channel"));
}
if (ic->ic_ibss_chan == NULL ||
isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_ibss_chan)))
ic->ic_ibss_chan = ic->ic_curchan;
/*
* If the desired channel is set but no longer valid then reset it.
*/
if (ic->ic_des_chan != IEEE80211_CHAN_ANYC &&
isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_des_chan)))
ic->ic_des_chan = IEEE80211_CHAN_ANYC;
/*
* Adjust basic rates in 11b/11g supported rate set.
* Note that if operating on a hal/quarter rate channel
* this is a noop as those rates sets are different
* and used instead.
*/
if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
ieee80211_set11gbasicrates(&ic->ic_sup_rates[mode], mode);
/*
* Setup an initial rate set according to the
* current/default channel selected above. This
* will be changed when scanning but must exist
* now so driver have a consistent state of ic_ibss_chan.
*/
if (ic->ic_bss != NULL) /* NB: can be called before lateattach */
ic->ic_bss->ni_rates = ic->ic_sup_rates[mode];
ic->ic_curmode = mode;
ieee80211_reset_erp(ic); /* reset ERP state */
ieee80211_wme_initparams(ic); /* reset WME stat */
return 0;
#undef N
}
/*
* Return the phy mode for with the specified channel so the
* caller can select a rate set. This is problematic for channels
* where multiple operating modes are possible (e.g. 11g+11b).
* In those cases we defer to the current operating mode when set.
*/
enum ieee80211_phymode
ieee80211_chan2mode(struct ieee80211com *ic, const struct ieee80211_channel *chan)
{
if (IEEE80211_IS_CHAN_T(chan)) {
return IEEE80211_MODE_TURBO_A;
} else if (IEEE80211_IS_CHAN_5GHZ(chan)) {
return IEEE80211_MODE_11A;
} else if (IEEE80211_IS_CHAN_FHSS(chan))
return IEEE80211_MODE_FH;
else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) {
/*
* This assumes all 11g channels are also usable
* for 11b, which is currently true.
*/
if (ic->ic_curmode == IEEE80211_MODE_TURBO_G)
return IEEE80211_MODE_TURBO_G;
if (ic->ic_curmode == IEEE80211_MODE_11B)
return IEEE80211_MODE_11B;
return IEEE80211_MODE_11G;
} else
return IEEE80211_MODE_11B;
}
/*
* convert IEEE80211 rate value to ifmedia subtype.
* ieee80211 rate is in unit of 0.5Mbps.
*/
int
ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
{
#define N(a) (sizeof(a) / sizeof(a[0]))
static const struct {
u_int m; /* rate + mode */
u_int r; /* if_media rate */
} rates[] = {
{ 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
{ 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
{ 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
{ 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
{ 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
{ 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
{ 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
{ 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
{ 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
{ 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
{ 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
{ 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
{ 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
{ 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
{ 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
{ 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
{ 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
{ 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
{ 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
{ 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
{ 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
{ 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
{ 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
{ 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
{ 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
{ 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
{ 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
{ 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
/* NB: OFDM72 doesn't realy exist so we don't handle it */
};
u_int mask, i;
mask = rate & IEEE80211_RATE_VAL;
switch (mode) {
case IEEE80211_MODE_11A:
case IEEE80211_MODE_TURBO_A:
mask |= IFM_IEEE80211_11A;
break;
case IEEE80211_MODE_11B:
mask |= IFM_IEEE80211_11B;
break;
case IEEE80211_MODE_FH:
mask |= IFM_IEEE80211_FH;
break;
case IEEE80211_MODE_AUTO:
/* NB: ic may be NULL for some drivers */
if (ic && ic->ic_phytype == IEEE80211_T_FH) {
mask |= IFM_IEEE80211_FH;
break;
}
/* NB: hack, 11g matches both 11b+11a rates */
/* fall thru... */
case IEEE80211_MODE_11G:
case IEEE80211_MODE_TURBO_G:
mask |= IFM_IEEE80211_11G;
break;
}
for (i = 0; i < N(rates); i++)
if (rates[i].m == mask)
return rates[i].r;
return IFM_AUTO;
#undef N
}
int
ieee80211_media2rate(int mword)
{
#define N(a) (sizeof(a) / sizeof(a[0]))
static const int ieeerates[] = {
-1, /* IFM_AUTO */
0, /* IFM_MANUAL */
0, /* IFM_NONE */
2, /* IFM_IEEE80211_FH1 */
4, /* IFM_IEEE80211_FH2 */
2, /* IFM_IEEE80211_DS1 */
4, /* IFM_IEEE80211_DS2 */
11, /* IFM_IEEE80211_DS5 */
22, /* IFM_IEEE80211_DS11 */
44, /* IFM_IEEE80211_DS22 */
12, /* IFM_IEEE80211_OFDM6 */
18, /* IFM_IEEE80211_OFDM9 */
24, /* IFM_IEEE80211_OFDM12 */
36, /* IFM_IEEE80211_OFDM18 */
48, /* IFM_IEEE80211_OFDM24 */
72, /* IFM_IEEE80211_OFDM36 */
96, /* IFM_IEEE80211_OFDM48 */
108, /* IFM_IEEE80211_OFDM54 */
144, /* IFM_IEEE80211_OFDM72 */
0, /* IFM_IEEE80211_DS354k */
0, /* IFM_IEEE80211_DS512k */
6, /* IFM_IEEE80211_OFDM3 */
9, /* IFM_IEEE80211_OFDM4 */
54, /* IFM_IEEE80211_OFDM27 */
};
return IFM_SUBTYPE(mword) < N(ieeerates) ?
ieeerates[IFM_SUBTYPE(mword)] : 0;
#undef N
}