698 lines
16 KiB
C
698 lines
16 KiB
C
/*-
|
|
* Copyright (C) 1996 Wolfgang Solfrank.
|
|
* Copyright (C) 1996 TooLs GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by TooLs GmbH.
|
|
* 4. The name of TooLs GmbH may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/disk.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/endian.h>
|
|
|
|
#include <net/ethernet.h>
|
|
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <dev/ofw/ofw_pci.h>
|
|
#include <dev/ofw/ofw_bus.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_page.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/platform.h>
|
|
#include <machine/ofw_machdep.h>
|
|
#include <machine/trap.h>
|
|
|
|
static void *fdt;
|
|
int ofw_real_mode;
|
|
|
|
#ifdef AIM
|
|
extern register_t ofmsr[5];
|
|
extern void *openfirmware_entry;
|
|
char save_trap_init[0x2f00]; /* EXC_LAST */
|
|
char save_trap_of[0x2f00]; /* EXC_LAST */
|
|
|
|
int ofwcall(void *);
|
|
static int openfirmware(void *args);
|
|
|
|
__inline void
|
|
ofw_save_trap_vec(char *save_trap_vec)
|
|
{
|
|
if (!ofw_real_mode)
|
|
return;
|
|
|
|
bcopy((void *)EXC_RST, save_trap_vec, EXC_LAST - EXC_RST);
|
|
}
|
|
|
|
static __inline void
|
|
ofw_restore_trap_vec(char *restore_trap_vec)
|
|
{
|
|
if (!ofw_real_mode)
|
|
return;
|
|
|
|
bcopy(restore_trap_vec, (void *)EXC_RST, EXC_LAST - EXC_RST);
|
|
__syncicache(EXC_RSVD, EXC_LAST - EXC_RSVD);
|
|
}
|
|
|
|
/*
|
|
* Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback.
|
|
*/
|
|
register_t ofw_sprg0_save;
|
|
|
|
static __inline void
|
|
ofw_sprg_prepare(void)
|
|
{
|
|
if (ofw_real_mode)
|
|
return;
|
|
|
|
/*
|
|
* Assume that interrupt are disabled at this point, or
|
|
* SPRG1-3 could be trashed
|
|
*/
|
|
__asm __volatile("mfsprg0 %0\n\t"
|
|
"mtsprg0 %1\n\t"
|
|
"mtsprg1 %2\n\t"
|
|
"mtsprg2 %3\n\t"
|
|
"mtsprg3 %4\n\t"
|
|
: "=&r"(ofw_sprg0_save)
|
|
: "r"(ofmsr[1]),
|
|
"r"(ofmsr[2]),
|
|
"r"(ofmsr[3]),
|
|
"r"(ofmsr[4]));
|
|
}
|
|
|
|
static __inline void
|
|
ofw_sprg_restore(void)
|
|
{
|
|
if (ofw_real_mode)
|
|
return;
|
|
|
|
/*
|
|
* Note that SPRG1-3 contents are irrelevant. They are scratch
|
|
* registers used in the early portion of trap handling when
|
|
* interrupts are disabled.
|
|
*
|
|
* PCPU data cannot be used until this routine is called !
|
|
*/
|
|
__asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save));
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output)
|
|
{
|
|
cell_t address_cells, size_cells;
|
|
cell_t OFmem[4 * PHYS_AVAIL_SZ];
|
|
int sz, i, j;
|
|
phandle_t phandle;
|
|
|
|
sz = 0;
|
|
|
|
/*
|
|
* Get #address-cells from root node, defaulting to 1 if it cannot
|
|
* be found.
|
|
*/
|
|
phandle = OF_finddevice("/");
|
|
if (OF_getprop(phandle, "#address-cells", &address_cells,
|
|
sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
|
|
address_cells = 1;
|
|
if (OF_getprop(phandle, "#size-cells", &size_cells,
|
|
sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
|
|
size_cells = 1;
|
|
|
|
/*
|
|
* Get memory.
|
|
*/
|
|
if (node == -1 || (sz = OF_getprop(node, prop,
|
|
OFmem, sizeof(OFmem))) <= 0)
|
|
panic("Physical memory map not found");
|
|
|
|
i = 0;
|
|
j = 0;
|
|
while (i < sz/sizeof(cell_t)) {
|
|
#ifndef __powerpc64__
|
|
/* On 32-bit PPC, ignore regions starting above 4 GB */
|
|
if (address_cells > 1 && OFmem[i] > 0) {
|
|
i += address_cells + size_cells;
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
output[j].mr_start = OFmem[i++];
|
|
if (address_cells == 2) {
|
|
#ifdef __powerpc64__
|
|
output[j].mr_start <<= 32;
|
|
#endif
|
|
output[j].mr_start += OFmem[i++];
|
|
}
|
|
|
|
output[j].mr_size = OFmem[i++];
|
|
if (size_cells == 2) {
|
|
#ifdef __powerpc64__
|
|
output[j].mr_size <<= 32;
|
|
#endif
|
|
output[j].mr_size += OFmem[i++];
|
|
}
|
|
|
|
#ifndef __powerpc64__
|
|
/*
|
|
* Check for memory regions extending above 32-bit
|
|
* memory space, and restrict them to stay there.
|
|
*/
|
|
if (((uint64_t)output[j].mr_start +
|
|
(uint64_t)output[j].mr_size) >
|
|
BUS_SPACE_MAXADDR_32BIT) {
|
|
output[j].mr_size = BUS_SPACE_MAXADDR_32BIT -
|
|
output[j].mr_start;
|
|
}
|
|
#endif
|
|
|
|
j++;
|
|
}
|
|
sz = j*sizeof(output[0]);
|
|
|
|
return (sz);
|
|
}
|
|
|
|
static int
|
|
excise_fdt_reserved(struct mem_region *avail, int asz)
|
|
{
|
|
struct {
|
|
uint64_t address;
|
|
uint64_t size;
|
|
} fdtmap[16];
|
|
ssize_t fdtmapsize;
|
|
phandle_t chosen;
|
|
int i, j, k;
|
|
|
|
chosen = OF_finddevice("/chosen");
|
|
fdtmapsize = OF_getprop(chosen, "fdtmemreserv", fdtmap, sizeof(fdtmap));
|
|
|
|
for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) {
|
|
fdtmap[j].address = be64toh(fdtmap[j].address);
|
|
fdtmap[j].size = be64toh(fdtmap[j].size);
|
|
}
|
|
|
|
for (i = 0; i < asz; i++) {
|
|
for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) {
|
|
/*
|
|
* Case 1: Exclusion region encloses complete
|
|
* available entry. Drop it and move on.
|
|
*/
|
|
if (fdtmap[j].address <= avail[i].mr_start &&
|
|
fdtmap[j].address + fdtmap[j].size >=
|
|
avail[i].mr_start + avail[i].mr_size) {
|
|
for (k = i+1; k < asz; k++)
|
|
avail[k-1] = avail[k];
|
|
asz--;
|
|
i--; /* Repeat some entries */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Case 2: Exclusion region starts in available entry.
|
|
* Trim it to where the entry begins and append
|
|
* a new available entry with the region after
|
|
* the excluded region, if any.
|
|
*/
|
|
if (fdtmap[j].address >= avail[i].mr_start &&
|
|
fdtmap[j].address < avail[i].mr_start +
|
|
avail[i].mr_size) {
|
|
if (fdtmap[j].address + fdtmap[j].size <
|
|
avail[i].mr_start + avail[i].mr_size) {
|
|
avail[asz].mr_start =
|
|
fdtmap[j].address + fdtmap[j].size;
|
|
avail[asz].mr_size = avail[i].mr_start +
|
|
avail[i].mr_size -
|
|
avail[asz].mr_start;
|
|
asz++;
|
|
}
|
|
|
|
avail[i].mr_size = fdtmap[j].address -
|
|
avail[i].mr_start;
|
|
}
|
|
|
|
/*
|
|
* Case 3: Exclusion region ends in available entry.
|
|
* Move start point to where the exclusion zone ends.
|
|
* The case of a contained exclusion zone has already
|
|
* been caught in case 2.
|
|
*/
|
|
if (fdtmap[j].address + fdtmap[j].size >=
|
|
avail[i].mr_start && fdtmap[j].address +
|
|
fdtmap[j].size < avail[i].mr_start +
|
|
avail[i].mr_size) {
|
|
avail[i].mr_size += avail[i].mr_start;
|
|
avail[i].mr_start =
|
|
fdtmap[j].address + fdtmap[j].size;
|
|
avail[i].mr_size -= avail[i].mr_start;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (asz);
|
|
}
|
|
|
|
/*
|
|
* This is called during powerpc_init, before the system is really initialized.
|
|
* It shall provide the total and the available regions of RAM.
|
|
* The available regions need not take the kernel into account.
|
|
*/
|
|
void
|
|
ofw_mem_regions(struct mem_region *memp, int *memsz,
|
|
struct mem_region *availp, int *availsz)
|
|
{
|
|
phandle_t phandle;
|
|
int asz, msz;
|
|
int res;
|
|
char name[31];
|
|
|
|
asz = msz = 0;
|
|
|
|
/*
|
|
* Get memory from all the /memory nodes.
|
|
*/
|
|
for (phandle = OF_child(OF_peer(0)); phandle != 0;
|
|
phandle = OF_peer(phandle)) {
|
|
if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
|
|
continue;
|
|
if (strncmp(name, "memory", sizeof(name)) != 0 &&
|
|
strncmp(name, "memory@", strlen("memory@")) != 0)
|
|
continue;
|
|
|
|
res = parse_ofw_memory(phandle, "reg", &memp[msz]);
|
|
msz += res/sizeof(struct mem_region);
|
|
if (OF_getproplen(phandle, "available") >= 0)
|
|
res = parse_ofw_memory(phandle, "available",
|
|
&availp[asz]);
|
|
else
|
|
res = parse_ofw_memory(phandle, "reg", &availp[asz]);
|
|
asz += res/sizeof(struct mem_region);
|
|
}
|
|
|
|
phandle = OF_finddevice("/chosen");
|
|
if (OF_hasprop(phandle, "fdtmemreserv"))
|
|
asz = excise_fdt_reserved(availp, asz);
|
|
|
|
*memsz = msz;
|
|
*availsz = asz;
|
|
}
|
|
|
|
void
|
|
OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *))
|
|
{
|
|
#ifdef AIM
|
|
ofmsr[0] = mfmsr();
|
|
#ifdef __powerpc64__
|
|
ofmsr[0] &= ~PSL_SF;
|
|
#endif
|
|
__asm __volatile("mfsprg0 %0" : "=&r"(ofmsr[1]));
|
|
__asm __volatile("mfsprg1 %0" : "=&r"(ofmsr[2]));
|
|
__asm __volatile("mfsprg2 %0" : "=&r"(ofmsr[3]));
|
|
__asm __volatile("mfsprg3 %0" : "=&r"(ofmsr[4]));
|
|
openfirmware_entry = openfirm;
|
|
|
|
if (ofmsr[0] & PSL_DR)
|
|
ofw_real_mode = 0;
|
|
else
|
|
ofw_real_mode = 1;
|
|
|
|
ofw_save_trap_vec(save_trap_init);
|
|
#else
|
|
ofw_real_mode = 1;
|
|
#endif
|
|
|
|
fdt = fdt_ptr;
|
|
|
|
#ifdef FDT_DTB_STATIC
|
|
/* Check for a statically included blob */
|
|
if (fdt == NULL)
|
|
fdt = &fdt_static_dtb;
|
|
#endif
|
|
}
|
|
|
|
boolean_t
|
|
OF_bootstrap()
|
|
{
|
|
boolean_t status = FALSE;
|
|
|
|
#ifdef AIM
|
|
if (openfirmware_entry != NULL) {
|
|
if (ofw_real_mode) {
|
|
status = OF_install(OFW_STD_REAL, 0);
|
|
} else {
|
|
#ifdef __powerpc64__
|
|
status = OF_install(OFW_STD_32BIT, 0);
|
|
#else
|
|
status = OF_install(OFW_STD_DIRECT, 0);
|
|
#endif
|
|
}
|
|
|
|
if (status != TRUE)
|
|
return status;
|
|
|
|
OF_init(openfirmware);
|
|
} else
|
|
#endif
|
|
if (fdt != NULL) {
|
|
status = OF_install(OFW_FDT, 0);
|
|
|
|
if (status != TRUE)
|
|
return status;
|
|
|
|
OF_init(fdt);
|
|
OF_interpret("perform-fixup", 0);
|
|
}
|
|
|
|
return (status);
|
|
}
|
|
|
|
#ifdef AIM
|
|
void
|
|
ofw_quiesce(void)
|
|
{
|
|
struct {
|
|
cell_t name;
|
|
cell_t nargs;
|
|
cell_t nreturns;
|
|
} args;
|
|
|
|
KASSERT(!pmap_bootstrapped, ("Cannot call ofw_quiesce after VM is up"));
|
|
|
|
args.name = (cell_t)(uintptr_t)"quiesce";
|
|
args.nargs = 0;
|
|
args.nreturns = 0;
|
|
openfirmware(&args);
|
|
}
|
|
|
|
static int
|
|
openfirmware_core(void *args)
|
|
{
|
|
int result;
|
|
register_t oldmsr;
|
|
|
|
if (openfirmware_entry == NULL)
|
|
return (-1);
|
|
|
|
/*
|
|
* Turn off exceptions - we really don't want to end up
|
|
* anywhere unexpected with PCPU set to something strange
|
|
* or the stack pointer wrong.
|
|
*/
|
|
oldmsr = intr_disable();
|
|
|
|
ofw_sprg_prepare();
|
|
|
|
/* Save trap vectors */
|
|
ofw_save_trap_vec(save_trap_of);
|
|
|
|
/* Restore initially saved trap vectors */
|
|
ofw_restore_trap_vec(save_trap_init);
|
|
|
|
#if defined(AIM) && !defined(__powerpc64__)
|
|
/*
|
|
* Clear battable[] translations
|
|
*/
|
|
if (!(cpu_features & PPC_FEATURE_64))
|
|
__asm __volatile("mtdbatu 2, %0\n"
|
|
"mtdbatu 3, %0" : : "r" (0));
|
|
isync();
|
|
#endif
|
|
|
|
result = ofwcall(args);
|
|
|
|
/* Restore trap vecotrs */
|
|
ofw_restore_trap_vec(save_trap_of);
|
|
|
|
ofw_sprg_restore();
|
|
|
|
intr_restore(oldmsr);
|
|
|
|
return (result);
|
|
}
|
|
|
|
#ifdef SMP
|
|
struct ofw_rv_args {
|
|
void *args;
|
|
int retval;
|
|
volatile int in_progress;
|
|
};
|
|
|
|
static void
|
|
ofw_rendezvous_dispatch(void *xargs)
|
|
{
|
|
struct ofw_rv_args *rv_args = xargs;
|
|
|
|
/* NOTE: Interrupts are disabled here */
|
|
|
|
if (PCPU_GET(cpuid) == 0) {
|
|
/*
|
|
* Execute all OF calls on CPU 0
|
|
*/
|
|
rv_args->retval = openfirmware_core(rv_args->args);
|
|
rv_args->in_progress = 0;
|
|
} else {
|
|
/*
|
|
* Spin with interrupts off on other CPUs while OF has
|
|
* control of the machine.
|
|
*/
|
|
while (rv_args->in_progress)
|
|
cpu_spinwait();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
openfirmware(void *args)
|
|
{
|
|
int result;
|
|
#ifdef SMP
|
|
struct ofw_rv_args rv_args;
|
|
#endif
|
|
|
|
if (openfirmware_entry == NULL)
|
|
return (-1);
|
|
|
|
#ifdef SMP
|
|
rv_args.args = args;
|
|
rv_args.in_progress = 1;
|
|
smp_rendezvous(smp_no_rendevous_barrier, ofw_rendezvous_dispatch,
|
|
smp_no_rendevous_barrier, &rv_args);
|
|
result = rv_args.retval;
|
|
#else
|
|
result = openfirmware_core(args);
|
|
#endif
|
|
|
|
return (result);
|
|
}
|
|
|
|
void
|
|
OF_reboot()
|
|
{
|
|
struct {
|
|
cell_t name;
|
|
cell_t nargs;
|
|
cell_t nreturns;
|
|
cell_t arg;
|
|
} args;
|
|
|
|
args.name = (cell_t)(uintptr_t)"interpret";
|
|
args.nargs = 1;
|
|
args.nreturns = 0;
|
|
args.arg = (cell_t)(uintptr_t)"reset-all";
|
|
openfirmware_core(&args); /* Don't do rendezvous! */
|
|
|
|
for (;;); /* just in case */
|
|
}
|
|
|
|
#endif /* AIM */
|
|
|
|
void
|
|
OF_getetheraddr(device_t dev, u_char *addr)
|
|
{
|
|
phandle_t node;
|
|
|
|
node = ofw_bus_get_node(dev);
|
|
OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN);
|
|
}
|
|
|
|
/*
|
|
* Return a bus handle and bus tag that corresponds to the register
|
|
* numbered regno for the device referenced by the package handle
|
|
* dev. This function is intended to be used by console drivers in
|
|
* early boot only. It works by mapping the address of the device's
|
|
* register in the address space of its parent and recursively walk
|
|
* the device tree upward this way.
|
|
*/
|
|
static void
|
|
OF_get_addr_props(phandle_t node, uint32_t *addrp, uint32_t *sizep, int *pcip)
|
|
{
|
|
char type[64];
|
|
uint32_t addr, size;
|
|
int pci, res;
|
|
|
|
res = OF_getprop(node, "#address-cells", &addr, sizeof(addr));
|
|
if (res == -1)
|
|
addr = 2;
|
|
res = OF_getprop(node, "#size-cells", &size, sizeof(size));
|
|
if (res == -1)
|
|
size = 1;
|
|
pci = 0;
|
|
if (addr == 3 && size == 2) {
|
|
res = OF_getprop(node, "device_type", type, sizeof(type));
|
|
if (res != -1) {
|
|
type[sizeof(type) - 1] = '\0';
|
|
pci = (strcmp(type, "pci") == 0) ? 1 : 0;
|
|
}
|
|
}
|
|
if (addrp != NULL)
|
|
*addrp = addr;
|
|
if (sizep != NULL)
|
|
*sizep = size;
|
|
if (pcip != NULL)
|
|
*pcip = pci;
|
|
}
|
|
|
|
int
|
|
OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag,
|
|
bus_space_handle_t *handle)
|
|
{
|
|
uint32_t cell[32];
|
|
bus_addr_t addr, raddr, baddr;
|
|
bus_size_t size, rsize;
|
|
uint32_t c, nbridge, naddr, nsize;
|
|
phandle_t bridge, parent;
|
|
u_int spc, rspc, prefetch;
|
|
int pci, pcib, res;
|
|
|
|
/* Sanity checking. */
|
|
if (dev == 0)
|
|
return (EINVAL);
|
|
bridge = OF_parent(dev);
|
|
if (bridge == 0)
|
|
return (EINVAL);
|
|
if (regno < 0)
|
|
return (EINVAL);
|
|
if (tag == NULL || handle == NULL)
|
|
return (EINVAL);
|
|
|
|
/* Assume big-endian unless we find a PCI device */
|
|
*tag = &bs_be_tag;
|
|
|
|
/* Get the requested register. */
|
|
OF_get_addr_props(bridge, &naddr, &nsize, &pci);
|
|
if (pci)
|
|
*tag = &bs_le_tag;
|
|
res = OF_getprop(dev, (pci) ? "assigned-addresses" : "reg",
|
|
cell, sizeof(cell));
|
|
if (res == -1)
|
|
return (ENXIO);
|
|
if (res % sizeof(cell[0]))
|
|
return (ENXIO);
|
|
res /= sizeof(cell[0]);
|
|
regno *= naddr + nsize;
|
|
if (regno + naddr + nsize > res)
|
|
return (EINVAL);
|
|
spc = (pci) ? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK : ~0;
|
|
prefetch = (pci) ? cell[regno] & OFW_PCI_PHYS_HI_PREFETCHABLE : 0;
|
|
addr = 0;
|
|
for (c = 0; c < naddr; c++)
|
|
addr = ((uint64_t)addr << 32) | cell[regno++];
|
|
size = 0;
|
|
for (c = 0; c < nsize; c++)
|
|
size = ((uint64_t)size << 32) | cell[regno++];
|
|
|
|
/*
|
|
* Map the address range in the bridge's decoding window as given
|
|
* by the "ranges" property. If a node doesn't have such property
|
|
* then no mapping is done.
|
|
*/
|
|
parent = OF_parent(bridge);
|
|
while (parent != 0) {
|
|
OF_get_addr_props(parent, &nbridge, NULL, &pcib);
|
|
if (pcib)
|
|
*tag = &bs_le_tag;
|
|
res = OF_getprop(bridge, "ranges", cell, sizeof(cell));
|
|
if (res == -1)
|
|
goto next;
|
|
if (res % sizeof(cell[0]))
|
|
return (ENXIO);
|
|
res /= sizeof(cell[0]);
|
|
regno = 0;
|
|
while (regno < res) {
|
|
rspc = (pci)
|
|
? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK
|
|
: ~0;
|
|
if (rspc != spc) {
|
|
regno += naddr + nbridge + nsize;
|
|
continue;
|
|
}
|
|
raddr = 0;
|
|
for (c = 0; c < naddr; c++)
|
|
raddr = ((uint64_t)raddr << 32) | cell[regno++];
|
|
rspc = (pcib)
|
|
? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK
|
|
: ~0;
|
|
baddr = 0;
|
|
for (c = 0; c < nbridge; c++)
|
|
baddr = ((uint64_t)baddr << 32) | cell[regno++];
|
|
rsize = 0;
|
|
for (c = 0; c < nsize; c++)
|
|
rsize = ((uint64_t)rsize << 32) | cell[regno++];
|
|
if (addr < raddr || addr >= raddr + rsize)
|
|
continue;
|
|
addr = addr - raddr + baddr;
|
|
if (rspc != ~0)
|
|
spc = rspc;
|
|
}
|
|
|
|
next:
|
|
bridge = parent;
|
|
parent = OF_parent(bridge);
|
|
OF_get_addr_props(bridge, &naddr, &nsize, &pci);
|
|
}
|
|
|
|
return (bus_space_map(*tag, addr, size,
|
|
prefetch ? BUS_SPACE_MAP_PREFETCHABLE : 0, handle));
|
|
}
|
|
|