freebsd-skq/contrib/llvm/lib/Support/CrashRecoveryContext.cpp
dim 9cedb8bb69 MFC 261991:
Upgrade our copy of llvm/clang to 3.4 release.  This version supports
all of the features in the current working draft of the upcoming C++
standard, provisionally named C++1y.

The code generator's performance is greatly increased, and the loop
auto-vectorizer is now enabled at -Os and -O2 in addition to -O3.  The
PowerPC backend has made several major improvements to code generation
quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ
backends have all seen major feature work.

Release notes for llvm and clang can be found here:
<http://llvm.org/releases/3.4/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html>

MFC 262121 (by emaste):

Update lldb for clang/llvm 3.4 import

This commit largely restores the lldb source to the upstream r196259
snapshot with the addition of threaded inferior support and a few bug
fixes.

Specific upstream lldb revisions restored include:
   SVN      git
  181387  779e6ac
  181703  7bef4e2
  182099  b31044e
  182650  f2dcf35
  182683  0d91b80
  183862  15c1774
  183929  99447a6
  184177  0b2934b
  184948  4dc3761
  184954  007e7bc
  186990  eebd175

Sponsored by:	DARPA, AFRL

MFC 262186 (by emaste):

Fix mismerge in r262121

A break statement was lost in the merge.  The error had no functional
impact, but restore it to reduce the diff against upstream.

MFC 262303:

Pull in r197521 from upstream clang trunk (by rdivacky):

  Use the integrated assembler by default on FreeBSD/ppc and ppc64.

Requested by:	jhibbits

MFC 262611:

Pull in r196874 from upstream llvm trunk:

  Fix a crash that occurs when PWD is invalid.

  MCJIT needs to be able to run in hostile environments, even when PWD
  is invalid. There's no need to crash MCJIT in this case.

  The obvious fix is to simply leave MCContext's CompilationDir empty
  when PWD can't be determined. This way, MCJIT clients,
  and other clients that link with LLVM don't need a valid working directory.

  If we do want to guarantee valid CompilationDir, that should be done
  only for clients of getCompilationDir(). This is as simple as checking
  for an empty string.

  The only current use of getCompilationDir is EmitGenDwarfInfo, which
  won't conceivably run with an invalid working dir. However, in the
  purely hypothetically and untestable case that this happens, the
  AT_comp_dir will be omitted from the compilation_unit DIE.

This should help fix assertions occurring with ports-mgmt/tinderbox,
when it is using jails, and sometimes invalidates clang's current
working directory.

Reported by:	decke

MFC 262809:

Pull in r203007 from upstream clang trunk:

  Don't produce an alias between destructors with different calling conventions.

  Fixes pr19007.

(Please note that is an LLVM PR identifier, not a FreeBSD one.)

This should fix Firefox and/or libxul crashes (due to problems with
regparm/stdcall calling conventions) on i386.

Reported by:	multiple users on freebsd-current
PR:		bin/187103

MFC 263048:

Repair recognition of "CC" as an alias for the C++ compiler, since it
was silently broken by upstream for a Windows-specific use-case.

Apparently some versions of CMake still rely on this archaic feature...

Reported by:	rakuco

MFC 263049:

Garbage collect the old way of adding the libstdc++ include directories
in clang's InitHeaderSearch.cpp.  This has been superseded by David
Chisnall's commit in r255321.

Moreover, if libc++ is used, the libstdc++ include directories should
not be in the search path at all.  These directories are now only used
if you pass -stdlib=libstdc++.
2014-03-21 17:53:59 +00:00

357 lines
11 KiB
C++

//===--- CrashRecoveryContext.cpp - Crash Recovery ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Config/config.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/ThreadLocal.h"
#include <cstdio>
#include <setjmp.h>
using namespace llvm;
namespace {
struct CrashRecoveryContextImpl;
static ManagedStatic<sys::ThreadLocal<const CrashRecoveryContextImpl> > CurrentContext;
struct CrashRecoveryContextImpl {
CrashRecoveryContext *CRC;
std::string Backtrace;
::jmp_buf JumpBuffer;
volatile unsigned Failed : 1;
unsigned SwitchedThread : 1;
public:
CrashRecoveryContextImpl(CrashRecoveryContext *CRC) : CRC(CRC),
Failed(false),
SwitchedThread(false) {
CurrentContext->set(this);
}
~CrashRecoveryContextImpl() {
if (!SwitchedThread)
CurrentContext->erase();
}
/// \brief Called when the separate crash-recovery thread was finished, to
/// indicate that we don't need to clear the thread-local CurrentContext.
void setSwitchedThread() { SwitchedThread = true; }
void HandleCrash() {
// Eliminate the current context entry, to avoid re-entering in case the
// cleanup code crashes.
CurrentContext->erase();
assert(!Failed && "Crash recovery context already failed!");
Failed = true;
// FIXME: Stash the backtrace.
// Jump back to the RunSafely we were called under.
longjmp(JumpBuffer, 1);
}
};
}
static ManagedStatic<sys::Mutex> gCrashRecoveryContextMutex;
static bool gCrashRecoveryEnabled = false;
static ManagedStatic<sys::ThreadLocal<const CrashRecoveryContextCleanup> >
tlIsRecoveringFromCrash;
CrashRecoveryContextCleanup::~CrashRecoveryContextCleanup() {}
CrashRecoveryContext::~CrashRecoveryContext() {
// Reclaim registered resources.
CrashRecoveryContextCleanup *i = head;
tlIsRecoveringFromCrash->set(head);
while (i) {
CrashRecoveryContextCleanup *tmp = i;
i = tmp->next;
tmp->cleanupFired = true;
tmp->recoverResources();
delete tmp;
}
tlIsRecoveringFromCrash->erase();
CrashRecoveryContextImpl *CRCI = (CrashRecoveryContextImpl *) Impl;
delete CRCI;
}
bool CrashRecoveryContext::isRecoveringFromCrash() {
return tlIsRecoveringFromCrash->get() != 0;
}
CrashRecoveryContext *CrashRecoveryContext::GetCurrent() {
if (!gCrashRecoveryEnabled)
return 0;
const CrashRecoveryContextImpl *CRCI = CurrentContext->get();
if (!CRCI)
return 0;
return CRCI->CRC;
}
void CrashRecoveryContext::registerCleanup(CrashRecoveryContextCleanup *cleanup)
{
if (!cleanup)
return;
if (head)
head->prev = cleanup;
cleanup->next = head;
head = cleanup;
}
void
CrashRecoveryContext::unregisterCleanup(CrashRecoveryContextCleanup *cleanup) {
if (!cleanup)
return;
if (cleanup == head) {
head = cleanup->next;
if (head)
head->prev = 0;
}
else {
cleanup->prev->next = cleanup->next;
if (cleanup->next)
cleanup->next->prev = cleanup->prev;
}
delete cleanup;
}
#ifdef LLVM_ON_WIN32
#include "Windows/Windows.h"
// On Windows, we can make use of vectored exception handling to
// catch most crashing situations. Note that this does mean
// we will be alerted of exceptions *before* structured exception
// handling has the opportunity to catch it. But that isn't likely
// to cause problems because nowhere in the project is SEH being
// used.
//
// Vectored exception handling is built on top of SEH, and so it
// works on a per-thread basis.
//
// The vectored exception handler functionality was added in Windows
// XP, so if support for older versions of Windows is required,
// it will have to be added.
//
// If we want to support as far back as Win2k, we could use the
// SetUnhandledExceptionFilter API, but there's a risk of that
// being entirely overwritten (it's not a chain).
static LONG CALLBACK ExceptionHandler(PEXCEPTION_POINTERS ExceptionInfo)
{
// Lookup the current thread local recovery object.
const CrashRecoveryContextImpl *CRCI = CurrentContext->get();
if (!CRCI) {
// Something has gone horribly wrong, so let's just tell everyone
// to keep searching
CrashRecoveryContext::Disable();
return EXCEPTION_CONTINUE_SEARCH;
}
// TODO: We can capture the stack backtrace here and store it on the
// implementation if we so choose.
// Handle the crash
const_cast<CrashRecoveryContextImpl*>(CRCI)->HandleCrash();
// Note that we don't actually get here because HandleCrash calls
// longjmp, which means the HandleCrash function never returns.
llvm_unreachable("Handled the crash, should have longjmp'ed out of here");
}
// Because the Enable and Disable calls are static, it means that
// there may not actually be an Impl available, or even a current
// CrashRecoveryContext at all. So we make use of a thread-local
// exception table. The handles contained in here will either be
// non-NULL, valid VEH handles, or NULL.
static sys::ThreadLocal<const void> sCurrentExceptionHandle;
void CrashRecoveryContext::Enable() {
sys::ScopedLock L(*gCrashRecoveryContextMutex);
if (gCrashRecoveryEnabled)
return;
gCrashRecoveryEnabled = true;
// We can set up vectored exception handling now. We will install our
// handler as the front of the list, though there's no assurances that
// it will remain at the front (another call could install itself before
// our handler). This 1) isn't likely, and 2) shouldn't cause problems.
PVOID handle = ::AddVectoredExceptionHandler(1, ExceptionHandler);
sCurrentExceptionHandle.set(handle);
}
void CrashRecoveryContext::Disable() {
sys::ScopedLock L(*gCrashRecoveryContextMutex);
if (!gCrashRecoveryEnabled)
return;
gCrashRecoveryEnabled = false;
PVOID currentHandle = const_cast<PVOID>(sCurrentExceptionHandle.get());
if (currentHandle) {
// Now we can remove the vectored exception handler from the chain
::RemoveVectoredExceptionHandler(currentHandle);
// Reset the handle in our thread-local set.
sCurrentExceptionHandle.set(NULL);
}
}
#else
// Generic POSIX implementation.
//
// This implementation relies on synchronous signals being delivered to the
// current thread. We use a thread local object to keep track of the active
// crash recovery context, and install signal handlers to invoke HandleCrash on
// the active object.
//
// This implementation does not to attempt to chain signal handlers in any
// reliable fashion -- if we get a signal outside of a crash recovery context we
// simply disable crash recovery and raise the signal again.
#include <signal.h>
static const int Signals[] = { SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV, SIGTRAP };
static const unsigned NumSignals = sizeof(Signals) / sizeof(Signals[0]);
static struct sigaction PrevActions[NumSignals];
static void CrashRecoverySignalHandler(int Signal) {
// Lookup the current thread local recovery object.
const CrashRecoveryContextImpl *CRCI = CurrentContext->get();
if (!CRCI) {
// We didn't find a crash recovery context -- this means either we got a
// signal on a thread we didn't expect it on, the application got a signal
// outside of a crash recovery context, or something else went horribly
// wrong.
//
// Disable crash recovery and raise the signal again. The assumption here is
// that the enclosing application will terminate soon, and we won't want to
// attempt crash recovery again.
//
// This call of Disable isn't thread safe, but it doesn't actually matter.
CrashRecoveryContext::Disable();
raise(Signal);
// The signal will be thrown once the signal mask is restored.
return;
}
// Unblock the signal we received.
sigset_t SigMask;
sigemptyset(&SigMask);
sigaddset(&SigMask, Signal);
sigprocmask(SIG_UNBLOCK, &SigMask, 0);
if (CRCI)
const_cast<CrashRecoveryContextImpl*>(CRCI)->HandleCrash();
}
void CrashRecoveryContext::Enable() {
sys::ScopedLock L(*gCrashRecoveryContextMutex);
if (gCrashRecoveryEnabled)
return;
gCrashRecoveryEnabled = true;
// Setup the signal handler.
struct sigaction Handler;
Handler.sa_handler = CrashRecoverySignalHandler;
Handler.sa_flags = 0;
sigemptyset(&Handler.sa_mask);
for (unsigned i = 0; i != NumSignals; ++i) {
sigaction(Signals[i], &Handler, &PrevActions[i]);
}
}
void CrashRecoveryContext::Disable() {
sys::ScopedLock L(*gCrashRecoveryContextMutex);
if (!gCrashRecoveryEnabled)
return;
gCrashRecoveryEnabled = false;
// Restore the previous signal handlers.
for (unsigned i = 0; i != NumSignals; ++i)
sigaction(Signals[i], &PrevActions[i], 0);
}
#endif
bool CrashRecoveryContext::RunSafely(void (*Fn)(void*), void *UserData) {
// If crash recovery is disabled, do nothing.
if (gCrashRecoveryEnabled) {
assert(!Impl && "Crash recovery context already initialized!");
CrashRecoveryContextImpl *CRCI = new CrashRecoveryContextImpl(this);
Impl = CRCI;
if (setjmp(CRCI->JumpBuffer) != 0) {
return false;
}
}
Fn(UserData);
return true;
}
void CrashRecoveryContext::HandleCrash() {
CrashRecoveryContextImpl *CRCI = (CrashRecoveryContextImpl *) Impl;
assert(CRCI && "Crash recovery context never initialized!");
CRCI->HandleCrash();
}
const std::string &CrashRecoveryContext::getBacktrace() const {
CrashRecoveryContextImpl *CRC = (CrashRecoveryContextImpl *) Impl;
assert(CRC && "Crash recovery context never initialized!");
assert(CRC->Failed && "No crash was detected!");
return CRC->Backtrace;
}
//
namespace {
struct RunSafelyOnThreadInfo {
void (*UserFn)(void*);
void *UserData;
CrashRecoveryContext *CRC;
bool Result;
};
}
static void RunSafelyOnThread_Dispatch(void *UserData) {
RunSafelyOnThreadInfo *Info =
reinterpret_cast<RunSafelyOnThreadInfo*>(UserData);
Info->Result = Info->CRC->RunSafely(Info->UserFn, Info->UserData);
}
bool CrashRecoveryContext::RunSafelyOnThread(void (*Fn)(void*), void *UserData,
unsigned RequestedStackSize) {
RunSafelyOnThreadInfo Info = { Fn, UserData, this, false };
llvm_execute_on_thread(RunSafelyOnThread_Dispatch, &Info, RequestedStackSize);
if (CrashRecoveryContextImpl *CRC = (CrashRecoveryContextImpl *)Impl)
CRC->setSwitchedThread();
return Info.Result;
}