freebsd-skq/sys/dev/drm2/drm_irq.c
Konstantin Belousov e27f871969 Add the code for new Intel GPU driver, which supports GEM, KMS and
works with new generations of GPUs (IronLake, SandyBridge and
supposedly IvyBridge).

The driver is not connected to the build yet.

Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
2012-05-22 11:07:44 +00:00

1254 lines
37 KiB
C

/*-
* Copyright 2003 Eric Anholt
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* ERIC ANHOLT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <anholt@FreeBSD.org>
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/** @file drm_irq.c
* Support code for handling setup/teardown of interrupt handlers and
* handing interrupt handlers off to the drivers.
*/
#include <dev/drm2/drmP.h>
#include <dev/drm2/drm.h>
MALLOC_DEFINE(DRM_MEM_VBLANK, "drm_vblank", "DRM VBLANK Handling Data");
/* Access macro for slots in vblank timestamp ringbuffer. */
#define vblanktimestamp(dev, crtc, count) ( \
(dev)->_vblank_time[(crtc) * DRM_VBLANKTIME_RBSIZE + \
((count) % DRM_VBLANKTIME_RBSIZE)])
/* Retry timestamp calculation up to 3 times to satisfy
* drm_timestamp_precision before giving up.
*/
#define DRM_TIMESTAMP_MAXRETRIES 3
/* Threshold in nanoseconds for detection of redundant
* vblank irq in drm_handle_vblank(). 1 msec should be ok.
*/
#define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
int drm_irq_by_busid(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_irq_busid *irq = data;
if ((irq->busnum >> 8) != dev->pci_domain ||
(irq->busnum & 0xff) != dev->pci_bus ||
irq->devnum != dev->pci_slot ||
irq->funcnum != dev->pci_func)
return EINVAL;
irq->irq = dev->irq;
DRM_DEBUG("%d:%d:%d => IRQ %d\n",
irq->busnum, irq->devnum, irq->funcnum, irq->irq);
return 0;
}
static void
drm_irq_handler_wrap(void *arg)
{
struct drm_device *dev = arg;
mtx_lock(&dev->irq_lock);
dev->driver->irq_handler(arg);
mtx_unlock(&dev->irq_lock);
}
int
drm_irq_install(struct drm_device *dev)
{
int retcode;
if (dev->irq == 0 || dev->dev_private == NULL)
return (EINVAL);
DRM_DEBUG("irq=%d\n", dev->irq);
DRM_LOCK(dev);
if (dev->irq_enabled) {
DRM_UNLOCK(dev);
return EBUSY;
}
dev->irq_enabled = 1;
dev->context_flag = 0;
/* Before installing handler */
if (dev->driver->irq_preinstall)
dev->driver->irq_preinstall(dev);
DRM_UNLOCK(dev);
/* Install handler */
retcode = bus_setup_intr(dev->device, dev->irqr,
INTR_TYPE_TTY | INTR_MPSAFE, NULL,
(dev->driver->driver_features & DRIVER_LOCKLESS_IRQ) != 0 ?
drm_irq_handler_wrap : dev->driver->irq_handler,
dev, &dev->irqh);
if (retcode != 0)
goto err;
/* After installing handler */
DRM_LOCK(dev);
if (dev->driver->irq_postinstall)
dev->driver->irq_postinstall(dev);
DRM_UNLOCK(dev);
return (0);
err:
device_printf(dev->device, "Error setting interrupt: %d\n", retcode);
dev->irq_enabled = 0;
return (retcode);
}
int drm_irq_uninstall(struct drm_device *dev)
{
int i;
if (!dev->irq_enabled)
return EINVAL;
dev->irq_enabled = 0;
/*
* Wake up any waiters so they don't hang.
*/
if (dev->num_crtcs) {
mtx_lock(&dev->vbl_lock);
for (i = 0; i < dev->num_crtcs; i++) {
wakeup(&dev->_vblank_count[i]);
dev->vblank_enabled[i] = 0;
dev->last_vblank[i] =
dev->driver->get_vblank_counter(dev, i);
}
mtx_unlock(&dev->vbl_lock);
}
DRM_DEBUG("irq=%d\n", dev->irq);
if (dev->driver->irq_uninstall)
dev->driver->irq_uninstall(dev);
DRM_UNLOCK(dev);
bus_teardown_intr(dev->device, dev->irqr, dev->irqh);
DRM_LOCK(dev);
return 0;
}
int drm_control(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
struct drm_control *ctl = data;
int err;
switch (ctl->func) {
case DRM_INST_HANDLER:
/* Handle drivers whose DRM used to require IRQ setup but the
* no longer does.
*/
if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ))
return 0;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
if (dev->if_version < DRM_IF_VERSION(1, 2) &&
ctl->irq != dev->irq)
return EINVAL;
return drm_irq_install(dev);
case DRM_UNINST_HANDLER:
if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ))
return 0;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
DRM_LOCK(dev);
err = drm_irq_uninstall(dev);
DRM_UNLOCK(dev);
return err;
default:
return EINVAL;
}
}
#define NSEC_PER_USEC 1000L
#define NSEC_PER_SEC 1000000000L
int64_t
timeval_to_ns(const struct timeval *tv)
{
return ((int64_t)tv->tv_sec * NSEC_PER_SEC) +
tv->tv_usec * NSEC_PER_USEC;
}
struct timeval
ns_to_timeval(const int64_t nsec)
{
struct timeval tv;
uint32_t rem;
if (nsec == 0) {
tv.tv_sec = 0;
tv.tv_usec = 0;
return (tv);
}
tv.tv_sec = nsec / NSEC_PER_SEC;
rem = nsec % NSEC_PER_SEC;
if (rem < 0) {
tv.tv_sec--;
rem += NSEC_PER_SEC;
}
tv.tv_usec = rem / 1000;
return (tv);
}
/*
* Clear vblank timestamp buffer for a crtc.
*/
static void clear_vblank_timestamps(struct drm_device *dev, int crtc)
{
memset(&dev->_vblank_time[crtc * DRM_VBLANKTIME_RBSIZE], 0,
DRM_VBLANKTIME_RBSIZE * sizeof(struct timeval));
}
static int64_t
abs64(int64_t x)
{
return (x < 0 ? -x : x);
}
/*
* Disable vblank irq's on crtc, make sure that last vblank count
* of hardware and corresponding consistent software vblank counter
* are preserved, even if there are any spurious vblank irq's after
* disable.
*/
static void vblank_disable_and_save(struct drm_device *dev, int crtc)
{
u32 vblcount;
int64_t diff_ns;
int vblrc;
struct timeval tvblank;
/* Prevent vblank irq processing while disabling vblank irqs,
* so no updates of timestamps or count can happen after we've
* disabled. Needed to prevent races in case of delayed irq's.
*/
mtx_lock(&dev->vblank_time_lock);
dev->driver->disable_vblank(dev, crtc);
dev->vblank_enabled[crtc] = 0;
/* No further vblank irq's will be processed after
* this point. Get current hardware vblank count and
* vblank timestamp, repeat until they are consistent.
*
* FIXME: There is still a race condition here and in
* drm_update_vblank_count() which can cause off-by-one
* reinitialization of software vblank counter. If gpu
* vblank counter doesn't increment exactly at the leading
* edge of a vblank interval, then we can lose 1 count if
* we happen to execute between start of vblank and the
* delayed gpu counter increment.
*/
do {
dev->last_vblank[crtc] = dev->driver->get_vblank_counter(dev, crtc);
vblrc = drm_get_last_vbltimestamp(dev, crtc, &tvblank, 0);
} while (dev->last_vblank[crtc] != dev->driver->get_vblank_counter(dev, crtc));
/* Compute time difference to stored timestamp of last vblank
* as updated by last invocation of drm_handle_vblank() in vblank irq.
*/
vblcount = atomic_read(&dev->_vblank_count[crtc]);
diff_ns = timeval_to_ns(&tvblank) -
timeval_to_ns(&vblanktimestamp(dev, crtc, vblcount));
/* If there is at least 1 msec difference between the last stored
* timestamp and tvblank, then we are currently executing our
* disable inside a new vblank interval, the tvblank timestamp
* corresponds to this new vblank interval and the irq handler
* for this vblank didn't run yet and won't run due to our disable.
* Therefore we need to do the job of drm_handle_vblank() and
* increment the vblank counter by one to account for this vblank.
*
* Skip this step if there isn't any high precision timestamp
* available. In that case we can't account for this and just
* hope for the best.
*/
if ((vblrc > 0) && (abs64(diff_ns) > 1000000)) {
atomic_inc(&dev->_vblank_count[crtc]);
}
/* Invalidate all timestamps while vblank irq's are off. */
clear_vblank_timestamps(dev, crtc);
mtx_unlock(&dev->vblank_time_lock);
}
static void vblank_disable_fn(void * arg)
{
struct drm_device *dev = (struct drm_device *)arg;
int i;
if (!dev->vblank_disable_allowed)
return;
for (i = 0; i < dev->num_crtcs; i++) {
mtx_lock(&dev->vbl_lock);
if (atomic_read(&dev->vblank_refcount[i]) == 0 &&
dev->vblank_enabled[i]) {
DRM_DEBUG("disabling vblank on crtc %d\n", i);
vblank_disable_and_save(dev, i);
}
mtx_unlock(&dev->vbl_lock);
}
}
void drm_vblank_cleanup(struct drm_device *dev)
{
/* Bail if the driver didn't call drm_vblank_init() */
if (dev->num_crtcs == 0)
return;
callout_stop(&dev->vblank_disable_callout);
vblank_disable_fn(dev);
free(dev->_vblank_count, DRM_MEM_VBLANK);
free(dev->vblank_refcount, DRM_MEM_VBLANK);
free(dev->vblank_enabled, DRM_MEM_VBLANK);
free(dev->last_vblank, DRM_MEM_VBLANK);
free(dev->last_vblank_wait, DRM_MEM_VBLANK);
free(dev->vblank_inmodeset, DRM_MEM_VBLANK);
free(dev->_vblank_time, DRM_MEM_VBLANK);
dev->num_crtcs = 0;
}
int drm_vblank_init(struct drm_device *dev, int num_crtcs)
{
int i;
callout_init(&dev->vblank_disable_callout, CALLOUT_MPSAFE);
#if 0
mtx_init(&dev->vbl_lock, "drmvbl", NULL, MTX_DEF);
#endif
mtx_init(&dev->vblank_time_lock, "drmvtl", NULL, MTX_DEF);
dev->num_crtcs = num_crtcs;
dev->_vblank_count = malloc(sizeof(atomic_t) * num_crtcs,
DRM_MEM_VBLANK, M_WAITOK);
dev->vblank_refcount = malloc(sizeof(atomic_t) * num_crtcs,
DRM_MEM_VBLANK, M_WAITOK);
dev->vblank_enabled = malloc(num_crtcs * sizeof(int),
DRM_MEM_VBLANK, M_WAITOK | M_ZERO);
dev->last_vblank = malloc(num_crtcs * sizeof(u32),
DRM_MEM_VBLANK, M_WAITOK | M_ZERO);
dev->last_vblank_wait = malloc(num_crtcs * sizeof(u32),
DRM_MEM_VBLANK, M_WAITOK | M_ZERO);
dev->vblank_inmodeset = malloc(num_crtcs * sizeof(int),
DRM_MEM_VBLANK, M_WAITOK | M_ZERO);
dev->_vblank_time = malloc(num_crtcs * DRM_VBLANKTIME_RBSIZE *
sizeof(struct timeval), DRM_MEM_VBLANK, M_WAITOK | M_ZERO);
DRM_INFO("Supports vblank timestamp caching Rev 1 (10.10.2010).\n");
/* Driver specific high-precision vblank timestamping supported? */
if (dev->driver->get_vblank_timestamp)
DRM_INFO("Driver supports precise vblank timestamp query.\n");
else
DRM_INFO("No driver support for vblank timestamp query.\n");
/* Zero per-crtc vblank stuff */
for (i = 0; i < num_crtcs; i++) {
atomic_set(&dev->_vblank_count[i], 0);
atomic_set(&dev->vblank_refcount[i], 0);
}
dev->vblank_disable_allowed = 0;
return 0;
}
void
drm_calc_timestamping_constants(struct drm_crtc *crtc)
{
int64_t linedur_ns = 0, pixeldur_ns = 0, framedur_ns = 0;
uint64_t dotclock;
/* Dot clock in Hz: */
dotclock = (uint64_t) crtc->hwmode.clock * 1000;
/* Fields of interlaced scanout modes are only halve a frame duration.
* Double the dotclock to get halve the frame-/line-/pixelduration.
*/
if (crtc->hwmode.flags & DRM_MODE_FLAG_INTERLACE)
dotclock *= 2;
/* Valid dotclock? */
if (dotclock > 0) {
/* Convert scanline length in pixels and video dot clock to
* line duration, frame duration and pixel duration in
* nanoseconds:
*/
pixeldur_ns = (int64_t)1000000000 / dotclock;
linedur_ns = ((uint64_t)crtc->hwmode.crtc_htotal *
1000000000) / dotclock;
framedur_ns = (int64_t)crtc->hwmode.crtc_vtotal * linedur_ns;
} else
DRM_ERROR("crtc %d: Can't calculate constants, dotclock = 0!\n",
crtc->base.id);
crtc->pixeldur_ns = pixeldur_ns;
crtc->linedur_ns = linedur_ns;
crtc->framedur_ns = framedur_ns;
DRM_DEBUG("crtc %d: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
crtc->base.id, crtc->hwmode.crtc_htotal,
crtc->hwmode.crtc_vtotal, crtc->hwmode.crtc_vdisplay);
DRM_DEBUG("crtc %d: clock %d kHz framedur %d linedur %d, pixeldur %d\n",
crtc->base.id, (int) dotclock/1000, (int) framedur_ns,
(int) linedur_ns, (int) pixeldur_ns);
}
/**
* drm_calc_vbltimestamp_from_scanoutpos - helper routine for kms
* drivers. Implements calculation of exact vblank timestamps from
* given drm_display_mode timings and current video scanout position
* of a crtc. This can be called from within get_vblank_timestamp()
* implementation of a kms driver to implement the actual timestamping.
*
* Should return timestamps conforming to the OML_sync_control OpenML
* extension specification. The timestamp corresponds to the end of
* the vblank interval, aka start of scanout of topmost-leftmost display
* pixel in the following video frame.
*
* Requires support for optional dev->driver->get_scanout_position()
* in kms driver, plus a bit of setup code to provide a drm_display_mode
* that corresponds to the true scanout timing.
*
* The current implementation only handles standard video modes. It
* returns as no operation if a doublescan or interlaced video mode is
* active. Higher level code is expected to handle this.
*
* @dev: DRM device.
* @crtc: Which crtc's vblank timestamp to retrieve.
* @max_error: Desired maximum allowable error in timestamps (nanosecs).
* On return contains true maximum error of timestamp.
* @vblank_time: Pointer to struct timeval which should receive the timestamp.
* @flags: Flags to pass to driver:
* 0 = Default.
* DRM_CALLED_FROM_VBLIRQ = If function is called from vbl irq handler.
* @refcrtc: drm_crtc* of crtc which defines scanout timing.
*
* Returns negative value on error, failure or if not supported in current
* video mode:
*
* -EINVAL - Invalid crtc.
* -EAGAIN - Temporary unavailable, e.g., called before initial modeset.
* -ENOTSUPP - Function not supported in current display mode.
* -EIO - Failed, e.g., due to failed scanout position query.
*
* Returns or'ed positive status flags on success:
*
* DRM_VBLANKTIME_SCANOUTPOS_METHOD - Signal this method used for timestamping.
* DRM_VBLANKTIME_INVBL - Timestamp taken while scanout was in vblank interval.
*
*/
int
drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev, int crtc,
int *max_error, struct timeval *vblank_time, unsigned flags,
struct drm_crtc *refcrtc)
{
struct timeval stime, raw_time;
struct drm_display_mode *mode;
int vbl_status, vtotal, vdisplay;
int vpos, hpos, i;
int64_t framedur_ns, linedur_ns, pixeldur_ns, delta_ns, duration_ns;
bool invbl;
if (crtc < 0 || crtc >= dev->num_crtcs) {
DRM_ERROR("Invalid crtc %d\n", crtc);
return -EINVAL;
}
/* Scanout position query not supported? Should not happen. */
if (!dev->driver->get_scanout_position) {
DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
return -EIO;
}
mode = &refcrtc->hwmode;
vtotal = mode->crtc_vtotal;
vdisplay = mode->crtc_vdisplay;
/* Durations of frames, lines, pixels in nanoseconds. */
framedur_ns = refcrtc->framedur_ns;
linedur_ns = refcrtc->linedur_ns;
pixeldur_ns = refcrtc->pixeldur_ns;
/* If mode timing undefined, just return as no-op:
* Happens during initial modesetting of a crtc.
*/
if (vtotal <= 0 || vdisplay <= 0 || framedur_ns == 0) {
DRM_DEBUG("crtc %d: Noop due to uninitialized mode.\n", crtc);
return -EAGAIN;
}
/* Get current scanout position with system timestamp.
* Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
* if single query takes longer than max_error nanoseconds.
*
* This guarantees a tight bound on maximum error if
* code gets preempted or delayed for some reason.
*/
for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
/* Disable preemption to make it very likely to
* succeed in the first iteration.
*/
critical_enter();
/* Get system timestamp before query. */
getmicrouptime(&stime);
/* Get vertical and horizontal scanout pos. vpos, hpos. */
vbl_status = dev->driver->get_scanout_position(dev, crtc, &vpos, &hpos);
/* Get system timestamp after query. */
getmicrouptime(&raw_time);
critical_exit();
/* Return as no-op if scanout query unsupported or failed. */
if (!(vbl_status & DRM_SCANOUTPOS_VALID)) {
DRM_DEBUG("crtc %d : scanoutpos query failed [%d].\n",
crtc, vbl_status);
return -EIO;
}
duration_ns = timeval_to_ns(&raw_time) - timeval_to_ns(&stime);
/* Accept result with < max_error nsecs timing uncertainty. */
if (duration_ns <= (int64_t) *max_error)
break;
}
/* Noisy system timing? */
if (i == DRM_TIMESTAMP_MAXRETRIES) {
DRM_DEBUG("crtc %d: Noisy timestamp %d us > %d us [%d reps].\n",
crtc, (int) duration_ns/1000, *max_error/1000, i);
}
/* Return upper bound of timestamp precision error. */
*max_error = (int) duration_ns;
/* Check if in vblank area:
* vpos is >=0 in video scanout area, but negative
* within vblank area, counting down the number of lines until
* start of scanout.
*/
invbl = vbl_status & DRM_SCANOUTPOS_INVBL;
/* Convert scanout position into elapsed time at raw_time query
* since start of scanout at first display scanline. delta_ns
* can be negative if start of scanout hasn't happened yet.
*/
delta_ns = (int64_t)vpos * linedur_ns + (int64_t)hpos * pixeldur_ns;
/* Is vpos outside nominal vblank area, but less than
* 1/100 of a frame height away from start of vblank?
* If so, assume this isn't a massively delayed vblank
* interrupt, but a vblank interrupt that fired a few
* microseconds before true start of vblank. Compensate
* by adding a full frame duration to the final timestamp.
* Happens, e.g., on ATI R500, R600.
*
* We only do this if DRM_CALLED_FROM_VBLIRQ.
*/
if ((flags & DRM_CALLED_FROM_VBLIRQ) && !invbl &&
((vdisplay - vpos) < vtotal / 100)) {
delta_ns = delta_ns - framedur_ns;
/* Signal this correction as "applied". */
vbl_status |= 0x8;
}
/* Subtract time delta from raw timestamp to get final
* vblank_time timestamp for end of vblank.
*/
*vblank_time = ns_to_timeval(timeval_to_ns(&raw_time) - delta_ns);
DRM_DEBUG("crtc %d : v %d p(%d,%d)@ %jd.%jd -> %jd.%jd [e %d us, %d rep]\n",
crtc, (int)vbl_status, hpos, vpos, (uintmax_t)raw_time.tv_sec,
(uintmax_t)raw_time.tv_usec, (uintmax_t)vblank_time->tv_sec,
(uintmax_t)vblank_time->tv_usec, (int)duration_ns/1000, i);
vbl_status = DRM_VBLANKTIME_SCANOUTPOS_METHOD;
if (invbl)
vbl_status |= DRM_VBLANKTIME_INVBL;
return vbl_status;
}
/**
* drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
* vblank interval.
*
* @dev: DRM device
* @crtc: which crtc's vblank timestamp to retrieve
* @tvblank: Pointer to target struct timeval which should receive the timestamp
* @flags: Flags to pass to driver:
* 0 = Default.
* DRM_CALLED_FROM_VBLIRQ = If function is called from vbl irq handler.
*
* Fetches the system timestamp corresponding to the time of the most recent
* vblank interval on specified crtc. May call into kms-driver to
* compute the timestamp with a high-precision GPU specific method.
*
* Returns zero if timestamp originates from uncorrected do_gettimeofday()
* call, i.e., it isn't very precisely locked to the true vblank.
*
* Returns non-zero if timestamp is considered to be very precise.
*/
u32 drm_get_last_vbltimestamp(struct drm_device *dev, int crtc,
struct timeval *tvblank, unsigned flags)
{
int ret = 0;
/* Define requested maximum error on timestamps (nanoseconds). */
int max_error = (int) drm_timestamp_precision * 1000;
/* Query driver if possible and precision timestamping enabled. */
if (dev->driver->get_vblank_timestamp && (max_error > 0)) {
ret = dev->driver->get_vblank_timestamp(dev, crtc, &max_error,
tvblank, flags);
if (ret > 0)
return (u32) ret;
}
/* GPU high precision timestamp query unsupported or failed.
* Return gettimeofday timestamp as best estimate.
*/
microtime(tvblank);
return 0;
}
/**
* drm_vblank_count - retrieve "cooked" vblank counter value
* @dev: DRM device
* @crtc: which counter to retrieve
*
* Fetches the "cooked" vblank count value that represents the number of
* vblank events since the system was booted, including lost events due to
* modesetting activity.
*/
u32 drm_vblank_count(struct drm_device *dev, int crtc)
{
return atomic_read(&dev->_vblank_count[crtc]);
}
/**
* drm_vblank_count_and_time - retrieve "cooked" vblank counter value
* and the system timestamp corresponding to that vblank counter value.
*
* @dev: DRM device
* @crtc: which counter to retrieve
* @vblanktime: Pointer to struct timeval to receive the vblank timestamp.
*
* Fetches the "cooked" vblank count value that represents the number of
* vblank events since the system was booted, including lost events due to
* modesetting activity. Returns corresponding system timestamp of the time
* of the vblank interval that corresponds to the current value vblank counter
* value.
*/
u32 drm_vblank_count_and_time(struct drm_device *dev, int crtc,
struct timeval *vblanktime)
{
u32 cur_vblank;
/* Read timestamp from slot of _vblank_time ringbuffer
* that corresponds to current vblank count. Retry if
* count has incremented during readout. This works like
* a seqlock.
*/
do {
cur_vblank = atomic_read(&dev->_vblank_count[crtc]);
*vblanktime = vblanktimestamp(dev, crtc, cur_vblank);
rmb();
} while (cur_vblank != atomic_read(&dev->_vblank_count[crtc]));
return cur_vblank;
}
/**
* drm_update_vblank_count - update the master vblank counter
* @dev: DRM device
* @crtc: counter to update
*
* Call back into the driver to update the appropriate vblank counter
* (specified by @crtc). Deal with wraparound, if it occurred, and
* update the last read value so we can deal with wraparound on the next
* call if necessary.
*
* Only necessary when going from off->on, to account for frames we
* didn't get an interrupt for.
*
* Note: caller must hold dev->vbl_lock since this reads & writes
* device vblank fields.
*/
static void drm_update_vblank_count(struct drm_device *dev, int crtc)
{
u32 cur_vblank, diff, tslot, rc;
struct timeval t_vblank;
/*
* Interrupts were disabled prior to this call, so deal with counter
* wrap if needed.
* NOTE! It's possible we lost a full dev->max_vblank_count events
* here if the register is small or we had vblank interrupts off for
* a long time.
*
* We repeat the hardware vblank counter & timestamp query until
* we get consistent results. This to prevent races between gpu
* updating its hardware counter while we are retrieving the
* corresponding vblank timestamp.
*/
do {
cur_vblank = dev->driver->get_vblank_counter(dev, crtc);
rc = drm_get_last_vbltimestamp(dev, crtc, &t_vblank, 0);
} while (cur_vblank != dev->driver->get_vblank_counter(dev, crtc));
/* Deal with counter wrap */
diff = cur_vblank - dev->last_vblank[crtc];
if (cur_vblank < dev->last_vblank[crtc]) {
diff += dev->max_vblank_count;
DRM_DEBUG("last_vblank[%d]=0x%x, cur_vblank=0x%x => diff=0x%x\n",
crtc, dev->last_vblank[crtc], cur_vblank, diff);
}
DRM_DEBUG("enabling vblank interrupts on crtc %d, missed %d\n",
crtc, diff);
/* Reinitialize corresponding vblank timestamp if high-precision query
* available. Skip this step if query unsupported or failed. Will
* reinitialize delayed at next vblank interrupt in that case.
*/
if (rc) {
tslot = atomic_read(&dev->_vblank_count[crtc]) + diff;
vblanktimestamp(dev, crtc, tslot) = t_vblank;
}
atomic_add(diff, &dev->_vblank_count[crtc]);
}
/**
* drm_vblank_get - get a reference count on vblank events
* @dev: DRM device
* @crtc: which CRTC to own
*
* Acquire a reference count on vblank events to avoid having them disabled
* while in use.
*
* RETURNS
* Zero on success, nonzero on failure.
*/
int drm_vblank_get(struct drm_device *dev, int crtc)
{
int ret = 0;
mtx_lock(&dev->vbl_lock);
/* Going from 0->1 means we have to enable interrupts again */
if (atomic_fetchadd_int(&dev->vblank_refcount[crtc], 1) == 0) {
mtx_lock(&dev->vblank_time_lock);
if (!dev->vblank_enabled[crtc]) {
/* Enable vblank irqs under vblank_time_lock protection.
* All vblank count & timestamp updates are held off
* until we are done reinitializing master counter and
* timestamps. Filtercode in drm_handle_vblank() will
* prevent double-accounting of same vblank interval.
*/
ret = -dev->driver->enable_vblank(dev, crtc);
DRM_DEBUG("enabling vblank on crtc %d, ret: %d\n",
crtc, ret);
if (ret)
atomic_dec(&dev->vblank_refcount[crtc]);
else {
dev->vblank_enabled[crtc] = 1;
drm_update_vblank_count(dev, crtc);
}
}
mtx_unlock(&dev->vblank_time_lock);
} else {
if (!dev->vblank_enabled[crtc]) {
atomic_dec(&dev->vblank_refcount[crtc]);
ret = EINVAL;
}
}
mtx_unlock(&dev->vbl_lock);
return ret;
}
/**
* drm_vblank_put - give up ownership of vblank events
* @dev: DRM device
* @crtc: which counter to give up
*
* Release ownership of a given vblank counter, turning off interrupts
* if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
*/
void drm_vblank_put(struct drm_device *dev, int crtc)
{
KASSERT(atomic_read(&dev->vblank_refcount[crtc]) != 0,
("Too many drm_vblank_put for crtc %d", crtc));
/* Last user schedules interrupt disable */
if (atomic_fetchadd_int(&dev->vblank_refcount[crtc], -1) == 1 &&
(drm_vblank_offdelay > 0))
callout_reset(&dev->vblank_disable_callout,
(drm_vblank_offdelay * DRM_HZ) / 1000,
vblank_disable_fn, dev);
}
void drm_vblank_off(struct drm_device *dev, int crtc)
{
struct drm_pending_vblank_event *e, *t;
struct timeval now;
unsigned int seq;
mtx_lock(&dev->vbl_lock);
vblank_disable_and_save(dev, crtc);
mtx_lock(&dev->event_lock);
wakeup(&dev->_vblank_count[crtc]);
/* Send any queued vblank events, lest the natives grow disquiet */
seq = drm_vblank_count_and_time(dev, crtc, &now);
list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
if (e->pipe != crtc)
continue;
DRM_DEBUG("Sending premature vblank event on disable: \
wanted %d, current %d\n",
e->event.sequence, seq);
e->event.sequence = seq;
e->event.tv_sec = now.tv_sec;
e->event.tv_usec = now.tv_usec;
drm_vblank_put(dev, e->pipe);
list_move_tail(&e->base.link, &e->base.file_priv->event_list);
drm_event_wakeup(&e->base);
CTR3(KTR_DRM, "vblank_event_delivered %d %d %d",
e->base.pid, e->pipe, e->event.sequence);
}
mtx_unlock(&dev->event_lock);
mtx_unlock(&dev->vbl_lock);
}
/**
* drm_vblank_pre_modeset - account for vblanks across mode sets
* @dev: DRM device
* @crtc: CRTC in question
* @post: post or pre mode set?
*
* Account for vblank events across mode setting events, which will likely
* reset the hardware frame counter.
*/
void drm_vblank_pre_modeset(struct drm_device *dev, int crtc)
{
/* vblank is not initialized (IRQ not installed ?) */
if (!dev->num_crtcs)
return;
/*
* To avoid all the problems that might happen if interrupts
* were enabled/disabled around or between these calls, we just
* have the kernel take a reference on the CRTC (just once though
* to avoid corrupting the count if multiple, mismatch calls occur),
* so that interrupts remain enabled in the interim.
*/
if (!dev->vblank_inmodeset[crtc]) {
dev->vblank_inmodeset[crtc] = 0x1;
if (drm_vblank_get(dev, crtc) == 0)
dev->vblank_inmodeset[crtc] |= 0x2;
}
}
void drm_vblank_post_modeset(struct drm_device *dev, int crtc)
{
if (dev->vblank_inmodeset[crtc]) {
mtx_lock(&dev->vbl_lock);
dev->vblank_disable_allowed = 1;
mtx_unlock(&dev->vbl_lock);
if (dev->vblank_inmodeset[crtc] & 0x2)
drm_vblank_put(dev, crtc);
dev->vblank_inmodeset[crtc] = 0;
}
}
/**
* drm_modeset_ctl - handle vblank event counter changes across mode switch
* @DRM_IOCTL_ARGS: standard ioctl arguments
*
* Applications should call the %_DRM_PRE_MODESET and %_DRM_POST_MODESET
* ioctls around modesetting so that any lost vblank events are accounted for.
*
* Generally the counter will reset across mode sets. If interrupts are
* enabled around this call, we don't have to do anything since the counter
* will have already been incremented.
*/
int drm_modeset_ctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_modeset_ctl *modeset = data;
int ret = 0;
unsigned int crtc;
/* If drm_vblank_init() hasn't been called yet, just no-op */
if (!dev->num_crtcs)
goto out;
crtc = modeset->crtc;
if (crtc >= dev->num_crtcs) {
ret = -EINVAL;
goto out;
}
switch (modeset->cmd) {
case _DRM_PRE_MODESET:
drm_vblank_pre_modeset(dev, crtc);
break;
case _DRM_POST_MODESET:
drm_vblank_post_modeset(dev, crtc);
break;
default:
ret = -EINVAL;
break;
}
out:
return ret;
}
static void
drm_vblank_event_destroy(struct drm_pending_event *e)
{
free(e, DRM_MEM_VBLANK);
}
static int drm_queue_vblank_event(struct drm_device *dev, int pipe,
union drm_wait_vblank *vblwait,
struct drm_file *file_priv)
{
struct drm_pending_vblank_event *e;
struct timeval now;
unsigned int seq;
int ret;
e = malloc(sizeof *e, DRM_MEM_VBLANK, M_WAITOK | M_ZERO);
e->pipe = pipe;
e->base.pid = curproc->p_pid;
e->event.base.type = DRM_EVENT_VBLANK;
e->event.base.length = sizeof e->event;
e->event.user_data = vblwait->request.signal;
e->base.event = &e->event.base;
e->base.file_priv = file_priv;
e->base.destroy = drm_vblank_event_destroy;
mtx_lock(&dev->event_lock);
if (file_priv->event_space < sizeof e->event) {
ret = EBUSY;
goto err_unlock;
}
file_priv->event_space -= sizeof e->event;
seq = drm_vblank_count_and_time(dev, pipe, &now);
if ((vblwait->request.type & _DRM_VBLANK_NEXTONMISS) &&
(seq - vblwait->request.sequence) <= (1 << 23)) {
vblwait->request.sequence = seq + 1;
vblwait->reply.sequence = vblwait->request.sequence;
}
DRM_DEBUG("event on vblank count %d, current %d, crtc %d\n",
vblwait->request.sequence, seq, pipe);
CTR4(KTR_DRM, "vblank_event_queued %d %d rt %x %d", curproc->p_pid, pipe,
vblwait->request.type, vblwait->request.sequence);
e->event.sequence = vblwait->request.sequence;
if ((seq - vblwait->request.sequence) <= (1 << 23)) {
e->event.sequence = seq;
e->event.tv_sec = now.tv_sec;
e->event.tv_usec = now.tv_usec;
drm_vblank_put(dev, pipe);
list_add_tail(&e->base.link, &e->base.file_priv->event_list);
drm_event_wakeup(&e->base);
vblwait->reply.sequence = seq;
CTR3(KTR_DRM, "vblank_event_wakeup p1 %d %d %d", curproc->p_pid,
pipe, vblwait->request.sequence);
} else {
/* drm_handle_vblank_events will call drm_vblank_put */
list_add_tail(&e->base.link, &dev->vblank_event_list);
vblwait->reply.sequence = vblwait->request.sequence;
}
mtx_unlock(&dev->event_lock);
return 0;
err_unlock:
mtx_unlock(&dev->event_lock);
free(e, DRM_MEM_VBLANK);
drm_vblank_put(dev, pipe);
return ret;
}
/**
* Wait for VBLANK.
*
* \param inode device inode.
* \param file_priv DRM file private.
* \param cmd command.
* \param data user argument, pointing to a drm_wait_vblank structure.
* \return zero on success or a negative number on failure.
*
* This function enables the vblank interrupt on the pipe requested, then
* sleeps waiting for the requested sequence number to occur, and drops
* the vblank interrupt refcount afterwards. (vblank irq disable follows that
* after a timeout with no further vblank waits scheduled).
*/
int drm_wait_vblank(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
union drm_wait_vblank *vblwait = data;
int ret = 0;
unsigned int flags, seq, crtc, high_crtc;
if (/*(!drm_dev_to_irq(dev)) || */(!dev->irq_enabled))
return (EINVAL);
if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
return (EINVAL);
if (vblwait->request.type &
~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
_DRM_VBLANK_HIGH_CRTC_MASK)) {
DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n",
vblwait->request.type,
(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
_DRM_VBLANK_HIGH_CRTC_MASK));
return (EINVAL);
}
flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
high_crtc = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
if (high_crtc)
crtc = high_crtc >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
else
crtc = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
if (crtc >= dev->num_crtcs)
return (EINVAL);
ret = drm_vblank_get(dev, crtc);
if (ret) {
DRM_DEBUG("failed to acquire vblank counter, %d\n", ret);
return (ret);
}
seq = drm_vblank_count(dev, crtc);
switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
case _DRM_VBLANK_RELATIVE:
vblwait->request.sequence += seq;
vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
case _DRM_VBLANK_ABSOLUTE:
break;
default:
ret = (EINVAL);
goto done;
}
if (flags & _DRM_VBLANK_EVENT) {
/* must hold on to the vblank ref until the event fires
* drm_vblank_put will be called asynchronously
*/
return drm_queue_vblank_event(dev, crtc, vblwait, file_priv);
}
if ((flags & _DRM_VBLANK_NEXTONMISS) &&
(seq - vblwait->request.sequence) <= (1<<23)) {
vblwait->request.sequence = seq + 1;
}
dev->last_vblank_wait[crtc] = vblwait->request.sequence;
mtx_lock(&dev->vblank_time_lock);
while (((drm_vblank_count(dev, crtc) - vblwait->request.sequence) >
(1 << 23)) && dev->irq_enabled) {
/*
* The wakeups from the drm_irq_uninstall() and
* drm_vblank_off() may be lost there since vbl_lock
* is not held. Then, the timeout will wake us; the 3
* seconds delay should not be a problem for
* application when crtc is disabled or irq
* uninstalled anyway.
*/
ret = msleep(&dev->_vblank_count[crtc], &dev->vblank_time_lock,
PCATCH, "drmvbl", 3 * hz);
if (ret != 0)
break;
}
mtx_unlock(&dev->vblank_time_lock);
if (ret != EINTR) {
struct timeval now;
long reply_seq;
reply_seq = drm_vblank_count_and_time(dev, crtc, &now);
CTR5(KTR_DRM, "wait_vblank %d %d rt %x success %d %d",
curproc->p_pid, crtc, vblwait->request.type,
vblwait->request.sequence, reply_seq);
vblwait->reply.sequence = reply_seq;
vblwait->reply.tval_sec = now.tv_sec;
vblwait->reply.tval_usec = now.tv_usec;
} else {
CTR5(KTR_DRM, "wait_vblank %d %d rt %x error %d %d",
curproc->p_pid, crtc, vblwait->request.type, ret,
vblwait->request.sequence);
}
done:
drm_vblank_put(dev, crtc);
return ret;
}
void drm_handle_vblank_events(struct drm_device *dev, int crtc)
{
struct drm_pending_vblank_event *e, *t;
struct timeval now;
unsigned int seq;
seq = drm_vblank_count_and_time(dev, crtc, &now);
CTR2(KTR_DRM, "drm_handle_vblank_events %d %d", seq, crtc);
mtx_lock(&dev->event_lock);
list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
if (e->pipe != crtc)
continue;
if ((seq - e->event.sequence) > (1<<23))
continue;
e->event.sequence = seq;
e->event.tv_sec = now.tv_sec;
e->event.tv_usec = now.tv_usec;
drm_vblank_put(dev, e->pipe);
list_move_tail(&e->base.link, &e->base.file_priv->event_list);
drm_event_wakeup(&e->base);
CTR3(KTR_DRM, "vblank_event_wakeup p2 %d %d %d", e->base.pid,
e->pipe, e->event.sequence);
}
mtx_unlock(&dev->event_lock);
}
/**
* drm_handle_vblank - handle a vblank event
* @dev: DRM device
* @crtc: where this event occurred
*
* Drivers should call this routine in their vblank interrupt handlers to
* update the vblank counter and send any signals that may be pending.
*/
bool drm_handle_vblank(struct drm_device *dev, int crtc)
{
u32 vblcount;
int64_t diff_ns;
struct timeval tvblank;
if (!dev->num_crtcs)
return false;
/* Need timestamp lock to prevent concurrent execution with
* vblank enable/disable, as this would cause inconsistent
* or corrupted timestamps and vblank counts.
*/
mtx_lock(&dev->vblank_time_lock);
/* Vblank irq handling disabled. Nothing to do. */
if (!dev->vblank_enabled[crtc]) {
mtx_unlock(&dev->vblank_time_lock);
return false;
}
/* Fetch corresponding timestamp for this vblank interval from
* driver and store it in proper slot of timestamp ringbuffer.
*/
/* Get current timestamp and count. */
vblcount = atomic_read(&dev->_vblank_count[crtc]);
drm_get_last_vbltimestamp(dev, crtc, &tvblank, DRM_CALLED_FROM_VBLIRQ);
/* Compute time difference to timestamp of last vblank */
diff_ns = timeval_to_ns(&tvblank) -
timeval_to_ns(&vblanktimestamp(dev, crtc, vblcount));
/* Update vblank timestamp and count if at least
* DRM_REDUNDANT_VBLIRQ_THRESH_NS nanoseconds
* difference between last stored timestamp and current
* timestamp. A smaller difference means basically
* identical timestamps. Happens if this vblank has
* been already processed and this is a redundant call,
* e.g., due to spurious vblank interrupts. We need to
* ignore those for accounting.
*/
if (abs64(diff_ns) > DRM_REDUNDANT_VBLIRQ_THRESH_NS) {
/* Store new timestamp in ringbuffer. */
vblanktimestamp(dev, crtc, vblcount + 1) = tvblank;
/* Increment cooked vblank count. This also atomically commits
* the timestamp computed above.
*/
atomic_inc(&dev->_vblank_count[crtc]);
} else {
DRM_DEBUG("crtc %d: Redundant vblirq ignored. diff_ns = %d\n",
crtc, (int) diff_ns);
}
wakeup(&dev->_vblank_count[crtc]);
drm_handle_vblank_events(dev, crtc);
mtx_unlock(&dev->vblank_time_lock);
return true;
}