freebsd-skq/sys/dev/sfxge/sfxge_tx.c
2012-12-04 09:32:43 +00:00

1492 lines
35 KiB
C

/*-
* Copyright (c) 2010-2011 Solarflare Communications, Inc.
* All rights reserved.
*
* This software was developed in part by Philip Paeps under contract for
* Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/mbuf.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include "common/efx.h"
#include "sfxge.h"
#include "sfxge_tx.h"
/* Set the block level to ensure there is space to generate a
* large number of descriptors for TSO. With minimum MSS and
* maximum mbuf length we might need more than a ring-ful of
* descriptors, but this should not happen in practice except
* due to deliberate attack. In that case we will truncate
* the output at a packet boundary. Allow for a reasonable
* minimum MSS of 512.
*/
#define SFXGE_TSO_MAX_DESC ((65535 / 512) * 2 + SFXGE_TX_MAPPING_MAX_SEG - 1)
#define SFXGE_TXQ_BLOCK_LEVEL (SFXGE_NDESCS - SFXGE_TSO_MAX_DESC)
/* Forward declarations. */
static inline void sfxge_tx_qdpl_service(struct sfxge_txq *txq);
static void sfxge_tx_qlist_post(struct sfxge_txq *txq);
static void sfxge_tx_qunblock(struct sfxge_txq *txq);
static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
const bus_dma_segment_t *dma_seg, int n_dma_seg);
void
sfxge_tx_qcomplete(struct sfxge_txq *txq)
{
struct sfxge_softc *sc;
struct sfxge_evq *evq;
unsigned int completed;
sc = txq->sc;
evq = sc->evq[txq->evq_index];
mtx_assert(&evq->lock, MA_OWNED);
completed = txq->completed;
while (completed != txq->pending) {
struct sfxge_tx_mapping *stmp;
unsigned int id;
id = completed++ & (SFXGE_NDESCS - 1);
stmp = &txq->stmp[id];
if (stmp->flags & TX_BUF_UNMAP) {
bus_dmamap_unload(txq->packet_dma_tag, stmp->map);
if (stmp->flags & TX_BUF_MBUF) {
struct mbuf *m = stmp->u.mbuf;
do
m = m_free(m);
while (m != NULL);
} else {
free(stmp->u.heap_buf, M_SFXGE);
}
stmp->flags = 0;
}
}
txq->completed = completed;
/* Check whether we need to unblock the queue. */
mb();
if (txq->blocked) {
unsigned int level;
level = txq->added - txq->completed;
if (level <= SFXGE_TXQ_UNBLOCK_LEVEL)
sfxge_tx_qunblock(txq);
}
}
#ifdef SFXGE_HAVE_MQ
/*
* Reorder the put list and append it to the get list.
*/
static void
sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq)
{
struct sfxge_tx_dpl *stdp;
struct mbuf *mbuf, *get_next, **get_tailp;
volatile uintptr_t *putp;
uintptr_t put;
unsigned int count;
mtx_assert(&txq->lock, MA_OWNED);
stdp = &txq->dpl;
/* Acquire the put list. */
putp = &stdp->std_put;
put = atomic_readandclear_ptr(putp);
mbuf = (void *)put;
if (mbuf == NULL)
return;
/* Reverse the put list. */
get_tailp = &mbuf->m_nextpkt;
get_next = NULL;
count = 0;
do {
struct mbuf *put_next;
put_next = mbuf->m_nextpkt;
mbuf->m_nextpkt = get_next;
get_next = mbuf;
mbuf = put_next;
count++;
} while (mbuf != NULL);
/* Append the reversed put list to the get list. */
KASSERT(*get_tailp == NULL, ("*get_tailp != NULL"));
*stdp->std_getp = get_next;
stdp->std_getp = get_tailp;
stdp->std_count += count;
}
#endif /* SFXGE_HAVE_MQ */
static void
sfxge_tx_qreap(struct sfxge_txq *txq)
{
mtx_assert(SFXGE_TXQ_LOCK(txq), MA_OWNED);
txq->reaped = txq->completed;
}
static void
sfxge_tx_qlist_post(struct sfxge_txq *txq)
{
unsigned int old_added;
unsigned int level;
int rc;
mtx_assert(SFXGE_TXQ_LOCK(txq), MA_OWNED);
KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0"));
KASSERT(txq->n_pend_desc <= SFXGE_TSO_MAX_DESC,
("txq->n_pend_desc too large"));
KASSERT(!txq->blocked, ("txq->blocked"));
old_added = txq->added;
/* Post the fragment list. */
rc = efx_tx_qpost(txq->common, txq->pend_desc, txq->n_pend_desc,
txq->reaped, &txq->added);
KASSERT(rc == 0, ("efx_tx_qpost() failed"));
/* If efx_tx_qpost() had to refragment, our information about
* buffers to free may be associated with the wrong
* descriptors.
*/
KASSERT(txq->added - old_added == txq->n_pend_desc,
("efx_tx_qpost() refragmented descriptors"));
level = txq->added - txq->reaped;
KASSERT(level <= SFXGE_NDESCS, ("overfilled TX queue"));
/* Clear the fragment list. */
txq->n_pend_desc = 0;
/* Have we reached the block level? */
if (level < SFXGE_TXQ_BLOCK_LEVEL)
return;
/* Reap, and check again */
sfxge_tx_qreap(txq);
level = txq->added - txq->reaped;
if (level < SFXGE_TXQ_BLOCK_LEVEL)
return;
txq->blocked = 1;
/*
* Avoid a race with completion interrupt handling that could leave
* the queue blocked.
*/
mb();
sfxge_tx_qreap(txq);
level = txq->added - txq->reaped;
if (level < SFXGE_TXQ_BLOCK_LEVEL) {
mb();
txq->blocked = 0;
}
}
static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf)
{
bus_dmamap_t *used_map;
bus_dmamap_t map;
bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG];
unsigned int id;
struct sfxge_tx_mapping *stmp;
efx_buffer_t *desc;
int n_dma_seg;
int rc;
int i;
KASSERT(!txq->blocked, ("txq->blocked"));
if (mbuf->m_pkthdr.csum_flags & CSUM_TSO)
prefetch_read_many(mbuf->m_data);
if (txq->init_state != SFXGE_TXQ_STARTED) {
rc = EINTR;
goto reject;
}
/* Load the packet for DMA. */
id = txq->added & (SFXGE_NDESCS - 1);
stmp = &txq->stmp[id];
rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map,
mbuf, dma_seg, &n_dma_seg, 0);
if (rc == EFBIG) {
/* Try again. */
struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT,
SFXGE_TX_MAPPING_MAX_SEG);
if (new_mbuf == NULL)
goto reject;
++txq->collapses;
mbuf = new_mbuf;
rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag,
stmp->map, mbuf,
dma_seg, &n_dma_seg, 0);
}
if (rc != 0)
goto reject;
/* Make the packet visible to the hardware. */
bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE);
used_map = &stmp->map;
if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg);
if (rc < 0)
goto reject_mapped;
stmp = &txq->stmp[rc];
} else {
/* Add the mapping to the fragment list, and set flags
* for the buffer.
*/
i = 0;
for (;;) {
desc = &txq->pend_desc[i];
desc->eb_addr = dma_seg[i].ds_addr;
desc->eb_size = dma_seg[i].ds_len;
if (i == n_dma_seg - 1) {
desc->eb_eop = 1;
break;
}
desc->eb_eop = 0;
i++;
stmp->flags = 0;
if (__predict_false(stmp ==
&txq->stmp[SFXGE_NDESCS - 1]))
stmp = &txq->stmp[0];
else
stmp++;
}
txq->n_pend_desc = n_dma_seg;
}
/*
* If the mapping required more than one descriptor
* then we need to associate the DMA map with the last
* descriptor, not the first.
*/
if (used_map != &stmp->map) {
map = stmp->map;
stmp->map = *used_map;
*used_map = map;
}
stmp->u.mbuf = mbuf;
stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF;
/* Post the fragment list. */
sfxge_tx_qlist_post(txq);
return 0;
reject_mapped:
bus_dmamap_unload(txq->packet_dma_tag, *used_map);
reject:
/* Drop the packet on the floor. */
m_freem(mbuf);
++txq->drops;
return rc;
}
#ifdef SFXGE_HAVE_MQ
/*
* Drain the deferred packet list into the transmit queue.
*/
static void
sfxge_tx_qdpl_drain(struct sfxge_txq *txq)
{
struct sfxge_softc *sc;
struct sfxge_tx_dpl *stdp;
struct mbuf *mbuf, *next;
unsigned int count;
unsigned int pushed;
int rc;
mtx_assert(&txq->lock, MA_OWNED);
sc = txq->sc;
stdp = &txq->dpl;
pushed = txq->added;
prefetch_read_many(sc->enp);
prefetch_read_many(txq->common);
mbuf = stdp->std_get;
count = stdp->std_count;
while (count != 0) {
KASSERT(mbuf != NULL, ("mbuf == NULL"));
next = mbuf->m_nextpkt;
mbuf->m_nextpkt = NULL;
ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */
if (next != NULL)
prefetch_read_many(next);
rc = sfxge_tx_queue_mbuf(txq, mbuf);
--count;
mbuf = next;
if (rc != 0)
continue;
if (txq->blocked)
break;
/* Push the fragments to the hardware in batches. */
if (txq->added - pushed >= SFXGE_TX_BATCH) {
efx_tx_qpush(txq->common, txq->added);
pushed = txq->added;
}
}
if (count == 0) {
KASSERT(mbuf == NULL, ("mbuf != NULL"));
stdp->std_get = NULL;
stdp->std_count = 0;
stdp->std_getp = &stdp->std_get;
} else {
stdp->std_get = mbuf;
stdp->std_count = count;
}
if (txq->added != pushed)
efx_tx_qpush(txq->common, txq->added);
KASSERT(txq->blocked || stdp->std_count == 0,
("queue unblocked but count is non-zero"));
}
#define SFXGE_TX_QDPL_PENDING(_txq) \
((_txq)->dpl.std_put != 0)
/*
* Service the deferred packet list.
*
* NOTE: drops the txq mutex!
*/
static inline void
sfxge_tx_qdpl_service(struct sfxge_txq *txq)
{
mtx_assert(&txq->lock, MA_OWNED);
do {
if (SFXGE_TX_QDPL_PENDING(txq))
sfxge_tx_qdpl_swizzle(txq);
if (!txq->blocked)
sfxge_tx_qdpl_drain(txq);
mtx_unlock(&txq->lock);
} while (SFXGE_TX_QDPL_PENDING(txq) &&
mtx_trylock(&txq->lock));
}
/*
* Put a packet on the deferred packet list.
*
* If we are called with the txq lock held, we put the packet on the "get
* list", otherwise we atomically push it on the "put list". The swizzle
* function takes care of ordering.
*
* The length of the put list is bounded by SFXGE_TX_MAX_DEFFERED. We
* overload the csum_data field in the mbuf to keep track of this length
* because there is no cheap alternative to avoid races.
*/
static inline int
sfxge_tx_qdpl_put(struct sfxge_txq *txq, struct mbuf *mbuf, int locked)
{
struct sfxge_tx_dpl *stdp;
stdp = &txq->dpl;
KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
if (locked) {
mtx_assert(&txq->lock, MA_OWNED);
sfxge_tx_qdpl_swizzle(txq);
*(stdp->std_getp) = mbuf;
stdp->std_getp = &mbuf->m_nextpkt;
stdp->std_count++;
} else {
volatile uintptr_t *putp;
uintptr_t old;
uintptr_t new;
unsigned old_len;
putp = &stdp->std_put;
new = (uintptr_t)mbuf;
do {
old = *putp;
if (old) {
struct mbuf *mp = (struct mbuf *)old;
old_len = mp->m_pkthdr.csum_data;
} else
old_len = 0;
if (old_len >= SFXGE_TX_MAX_DEFERRED)
return ENOBUFS;
mbuf->m_pkthdr.csum_data = old_len + 1;
mbuf->m_nextpkt = (void *)old;
} while (atomic_cmpset_ptr(putp, old, new) == 0);
}
return (0);
}
/*
* Called from if_transmit - will try to grab the txq lock and enqueue to the
* put list if it succeeds, otherwise will push onto the defer list.
*/
int
sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m)
{
int locked;
int rc;
/*
* Try to grab the txq lock. If we are able to get the lock,
* the packet will be appended to the "get list" of the deferred
* packet list. Otherwise, it will be pushed on the "put list".
*/
locked = mtx_trylock(&txq->lock);
/*
* Can only fail if we weren't able to get the lock.
*/
if (sfxge_tx_qdpl_put(txq, m, locked) != 0) {
KASSERT(!locked,
("sfxge_tx_qdpl_put() failed locked"));
rc = ENOBUFS;
goto fail;
}
/*
* Try to grab the lock again.
*
* If we are able to get the lock, we need to process the deferred
* packet list. If we are not able to get the lock, another thread
* is processing the list.
*/
if (!locked)
locked = mtx_trylock(&txq->lock);
if (locked) {
/* Try to service the list. */
sfxge_tx_qdpl_service(txq);
/* Lock has been dropped. */
}
return (0);
fail:
return (rc);
}
static void
sfxge_tx_qdpl_flush(struct sfxge_txq *txq)
{
struct sfxge_tx_dpl *stdp = &txq->dpl;
struct mbuf *mbuf, *next;
mtx_lock(&txq->lock);
sfxge_tx_qdpl_swizzle(txq);
for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) {
next = mbuf->m_nextpkt;
m_freem(mbuf);
}
stdp->std_get = NULL;
stdp->std_count = 0;
stdp->std_getp = &stdp->std_get;
mtx_unlock(&txq->lock);
}
void
sfxge_if_qflush(struct ifnet *ifp)
{
struct sfxge_softc *sc;
int i;
sc = ifp->if_softc;
for (i = 0; i < SFXGE_TX_SCALE(sc); i++)
sfxge_tx_qdpl_flush(sc->txq[i]);
}
/*
* TX start -- called by the stack.
*/
int
sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct sfxge_softc *sc;
struct sfxge_txq *txq;
int rc;
sc = (struct sfxge_softc *)ifp->if_softc;
KASSERT(ifp->if_flags & IFF_UP, ("interface not up"));
if (!SFXGE_LINK_UP(sc)) {
m_freem(m);
return (0);
}
/* Pick the desired transmit queue. */
if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO)) {
int index = 0;
if (m->m_flags & M_FLOWID) {
uint32_t hash = m->m_pkthdr.flowid;
index = sc->rx_indir_table[hash % SFXGE_RX_SCALE_MAX];
}
txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index];
} else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
txq = sc->txq[SFXGE_TXQ_IP_CKSUM];
} else {
txq = sc->txq[SFXGE_TXQ_NON_CKSUM];
}
rc = sfxge_tx_packet_add(txq, m);
return (rc);
}
#else /* !SFXGE_HAVE_MQ */
static void sfxge_if_start_locked(struct ifnet *ifp)
{
struct sfxge_softc *sc = ifp->if_softc;
struct sfxge_txq *txq;
struct mbuf *mbuf;
unsigned int pushed[SFXGE_TXQ_NTYPES];
unsigned int q_index;
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
if (!sc->port.link_up)
return;
for (q_index = 0; q_index < SFXGE_TXQ_NTYPES; q_index++) {
txq = sc->txq[q_index];
pushed[q_index] = txq->added;
}
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, mbuf);
if (mbuf == NULL)
break;
ETHER_BPF_MTAP(ifp, mbuf); /* packet capture */
/* Pick the desired transmit queue. */
if (mbuf->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO))
q_index = SFXGE_TXQ_IP_TCP_UDP_CKSUM;
else if (mbuf->m_pkthdr.csum_flags & CSUM_DELAY_IP)
q_index = SFXGE_TXQ_IP_CKSUM;
else
q_index = SFXGE_TXQ_NON_CKSUM;
txq = sc->txq[q_index];
if (sfxge_tx_queue_mbuf(txq, mbuf) != 0)
continue;
if (txq->blocked) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
/* Push the fragments to the hardware in batches. */
if (txq->added - pushed[q_index] >= SFXGE_TX_BATCH) {
efx_tx_qpush(txq->common, txq->added);
pushed[q_index] = txq->added;
}
}
for (q_index = 0; q_index < SFXGE_TXQ_NTYPES; q_index++) {
txq = sc->txq[q_index];
if (txq->added != pushed[q_index])
efx_tx_qpush(txq->common, txq->added);
}
}
void sfxge_if_start(struct ifnet *ifp)
{
struct sfxge_softc *sc = ifp->if_softc;
mtx_lock(&sc->tx_lock);
sfxge_if_start_locked(ifp);
mtx_unlock(&sc->tx_lock);
}
static inline void
sfxge_tx_qdpl_service(struct sfxge_txq *txq)
{
struct sfxge_softc *sc = txq->sc;
struct ifnet *ifp = sc->ifnet;
mtx_assert(&sc->tx_lock, MA_OWNED);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sfxge_if_start_locked(ifp);
mtx_unlock(&sc->tx_lock);
}
#endif /* SFXGE_HAVE_MQ */
/*
* Software "TSO". Not quite as good as doing it in hardware, but
* still faster than segmenting in the stack.
*/
struct sfxge_tso_state {
/* Output position */
unsigned out_len; /* Remaining length in current segment */
unsigned seqnum; /* Current sequence number */
unsigned packet_space; /* Remaining space in current packet */
/* Input position */
unsigned dma_seg_i; /* Current DMA segment number */
uint64_t dma_addr; /* DMA address of current position */
unsigned in_len; /* Remaining length in current mbuf */
const struct mbuf *mbuf; /* Input mbuf (head of chain) */
u_short protocol; /* Network protocol (after VLAN decap) */
ssize_t nh_off; /* Offset of network header */
ssize_t tcph_off; /* Offset of TCP header */
unsigned header_len; /* Number of bytes of header */
int full_packet_size; /* Number of bytes to put in each outgoing
* segment */
};
static inline const struct ip *tso_iph(const struct sfxge_tso_state *tso)
{
KASSERT(tso->protocol == htons(ETHERTYPE_IP),
("tso_iph() in non-IPv4 state"));
return (const struct ip *)(tso->mbuf->m_data + tso->nh_off);
}
static inline const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso)
{
KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
("tso_ip6h() in non-IPv6 state"));
return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off);
}
static inline const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso)
{
return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off);
}
/* Size of preallocated TSO header buffers. Larger blocks must be
* allocated from the heap.
*/
#define TSOH_STD_SIZE 128
/* At most half the descriptors in the queue at any time will refer to
* a TSO header buffer, since they must always be followed by a
* payload descriptor referring to an mbuf.
*/
#define TSOH_COUNT (SFXGE_NDESCS / 2u)
#define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
#define TSOH_PAGE_COUNT ((TSOH_COUNT + TSOH_PER_PAGE - 1) / TSOH_PER_PAGE)
static int tso_init(struct sfxge_txq *txq)
{
struct sfxge_softc *sc = txq->sc;
int i, rc;
/* Allocate TSO header buffers */
txq->tsoh_buffer = malloc(TSOH_PAGE_COUNT * sizeof(txq->tsoh_buffer[0]),
M_SFXGE, M_WAITOK);
for (i = 0; i < TSOH_PAGE_COUNT; i++) {
rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]);
if (rc)
goto fail;
}
return 0;
fail:
while (i-- > 0)
sfxge_dma_free(&txq->tsoh_buffer[i]);
free(txq->tsoh_buffer, M_SFXGE);
txq->tsoh_buffer = NULL;
return rc;
}
static void tso_fini(struct sfxge_txq *txq)
{
int i;
if (txq->tsoh_buffer) {
for (i = 0; i < TSOH_PAGE_COUNT; i++)
sfxge_dma_free(&txq->tsoh_buffer[i]);
free(txq->tsoh_buffer, M_SFXGE);
}
}
static void tso_start(struct sfxge_tso_state *tso, struct mbuf *mbuf)
{
struct ether_header *eh = mtod(mbuf, struct ether_header *);
tso->mbuf = mbuf;
/* Find network protocol and header */
tso->protocol = eh->ether_type;
if (tso->protocol == htons(ETHERTYPE_VLAN)) {
struct ether_vlan_header *veh =
mtod(mbuf, struct ether_vlan_header *);
tso->protocol = veh->evl_proto;
tso->nh_off = sizeof(*veh);
} else {
tso->nh_off = sizeof(*eh);
}
/* Find TCP header */
if (tso->protocol == htons(ETHERTYPE_IP)) {
KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP,
("TSO required on non-TCP packet"));
tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl;
} else {
KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
("TSO required on non-IP packet"));
KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP,
("TSO required on non-TCP packet"));
tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr);
}
/* We assume all headers are linear in the head mbuf */
tso->header_len = tso->tcph_off + 4 * tso_tcph(tso)->th_off;
KASSERT(tso->header_len <= mbuf->m_len, ("packet headers fragmented"));
tso->full_packet_size = tso->header_len + mbuf->m_pkthdr.tso_segsz;
tso->seqnum = ntohl(tso_tcph(tso)->th_seq);
/* These flags must not be duplicated */
KASSERT(!(tso_tcph(tso)->th_flags & (TH_URG | TH_SYN | TH_RST)),
("incompatible TCP flag on TSO packet"));
tso->out_len = mbuf->m_pkthdr.len - tso->header_len;
}
/*
* tso_fill_packet_with_fragment - form descriptors for the current fragment
*
* Form descriptors for the current fragment, until we reach the end
* of fragment or end-of-packet. Return 0 on success, 1 if not enough
* space.
*/
static void tso_fill_packet_with_fragment(struct sfxge_txq *txq,
struct sfxge_tso_state *tso)
{
efx_buffer_t *desc;
int n;
if (tso->in_len == 0 || tso->packet_space == 0)
return;
KASSERT(tso->in_len > 0, ("TSO input length went negative"));
KASSERT(tso->packet_space > 0, ("TSO packet space went negative"));
n = min(tso->in_len, tso->packet_space);
tso->packet_space -= n;
tso->out_len -= n;
tso->in_len -= n;
desc = &txq->pend_desc[txq->n_pend_desc++];
desc->eb_addr = tso->dma_addr;
desc->eb_size = n;
desc->eb_eop = tso->out_len == 0 || tso->packet_space == 0;
tso->dma_addr += n;
}
/* Callback from bus_dmamap_load() for long TSO headers. */
static void tso_map_long_header(void *dma_addr_ret,
bus_dma_segment_t *segs, int nseg,
int error)
{
*(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) &&
__predict_true(nseg == 1)) ?
segs->ds_addr : 0);
}
/*
* tso_start_new_packet - generate a new header and prepare for the new packet
*
* Generate a new header and prepare for the new packet. Return 0 on
* success, or an error code if failed to alloc header.
*/
static int tso_start_new_packet(struct sfxge_txq *txq,
struct sfxge_tso_state *tso,
unsigned int id)
{
struct sfxge_tx_mapping *stmp = &txq->stmp[id];
struct tcphdr *tsoh_th;
unsigned ip_length;
caddr_t header;
uint64_t dma_addr;
bus_dmamap_t map;
efx_buffer_t *desc;
int rc;
/* Allocate a DMA-mapped header buffer. */
if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) {
unsigned int page_index = (id / 2) / TSOH_PER_PAGE;
unsigned int buf_index = (id / 2) % TSOH_PER_PAGE;
header = (txq->tsoh_buffer[page_index].esm_base +
buf_index * TSOH_STD_SIZE);
dma_addr = (txq->tsoh_buffer[page_index].esm_addr +
buf_index * TSOH_STD_SIZE);
map = txq->tsoh_buffer[page_index].esm_map;
stmp->flags = 0;
} else {
/* We cannot use bus_dmamem_alloc() as that may sleep */
header = malloc(tso->header_len, M_SFXGE, M_NOWAIT);
if (__predict_false(!header))
return ENOMEM;
rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map,
header, tso->header_len,
tso_map_long_header, &dma_addr,
BUS_DMA_NOWAIT);
if (__predict_false(dma_addr == 0)) {
if (rc == 0) {
/* Succeeded but got >1 segment */
bus_dmamap_unload(txq->packet_dma_tag,
stmp->map);
rc = EINVAL;
}
free(header, M_SFXGE);
return rc;
}
map = stmp->map;
txq->tso_long_headers++;
stmp->u.heap_buf = header;
stmp->flags = TX_BUF_UNMAP;
}
tsoh_th = (struct tcphdr *)(header + tso->tcph_off);
/* Copy and update the headers. */
memcpy(header, tso->mbuf->m_data, tso->header_len);
tsoh_th->th_seq = htonl(tso->seqnum);
tso->seqnum += tso->mbuf->m_pkthdr.tso_segsz;
if (tso->out_len > tso->mbuf->m_pkthdr.tso_segsz) {
/* This packet will not finish the TSO burst. */
ip_length = tso->full_packet_size - tso->nh_off;
tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH);
} else {
/* This packet will be the last in the TSO burst. */
ip_length = tso->header_len - tso->nh_off + tso->out_len;
}
if (tso->protocol == htons(ETHERTYPE_IP)) {
struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off);
tsoh_iph->ip_len = htons(ip_length);
/* XXX We should increment ip_id, but FreeBSD doesn't
* currently allocate extra IDs for multiple segments.
*/
} else {
struct ip6_hdr *tsoh_iph =
(struct ip6_hdr *)(header + tso->nh_off);
tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph));
}
/* Make the header visible to the hardware. */
bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE);
tso->packet_space = tso->mbuf->m_pkthdr.tso_segsz;
txq->tso_packets++;
/* Form a descriptor for this header. */
desc = &txq->pend_desc[txq->n_pend_desc++];
desc->eb_addr = dma_addr;
desc->eb_size = tso->header_len;
desc->eb_eop = 0;
return 0;
}
static int
sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
const bus_dma_segment_t *dma_seg, int n_dma_seg)
{
struct sfxge_tso_state tso;
unsigned int id, next_id;
tso_start(&tso, mbuf);
/* Grab the first payload fragment. */
if (dma_seg->ds_len == tso.header_len) {
--n_dma_seg;
KASSERT(n_dma_seg, ("no payload found in TSO packet"));
++dma_seg;
tso.in_len = dma_seg->ds_len;
tso.dma_addr = dma_seg->ds_addr;
} else {
tso.in_len = dma_seg->ds_len - tso.header_len;
tso.dma_addr = dma_seg->ds_addr + tso.header_len;
}
id = txq->added & (SFXGE_NDESCS - 1);
if (__predict_false(tso_start_new_packet(txq, &tso, id)))
return -1;
while (1) {
id = (id + 1) & (SFXGE_NDESCS - 1);
tso_fill_packet_with_fragment(txq, &tso);
/* Move onto the next fragment? */
if (tso.in_len == 0) {
--n_dma_seg;
if (n_dma_seg == 0)
break;
++dma_seg;
tso.in_len = dma_seg->ds_len;
tso.dma_addr = dma_seg->ds_addr;
}
/* End of packet? */
if (tso.packet_space == 0) {
/* If the queue is now full due to tiny MSS,
* or we can't create another header, discard
* the remainder of the input mbuf but do not
* roll back the work we have done.
*/
if (txq->n_pend_desc >
SFXGE_TSO_MAX_DESC - (1 + SFXGE_TX_MAPPING_MAX_SEG))
break;
next_id = (id + 1) & (SFXGE_NDESCS - 1);
if (__predict_false(tso_start_new_packet(txq, &tso,
next_id)))
break;
id = next_id;
}
}
txq->tso_bursts++;
return id;
}
static void
sfxge_tx_qunblock(struct sfxge_txq *txq)
{
struct sfxge_softc *sc;
struct sfxge_evq *evq;
sc = txq->sc;
evq = sc->evq[txq->evq_index];
mtx_assert(&evq->lock, MA_OWNED);
if (txq->init_state != SFXGE_TXQ_STARTED)
return;
mtx_lock(SFXGE_TXQ_LOCK(txq));
if (txq->blocked) {
unsigned int level;
level = txq->added - txq->completed;
if (level <= SFXGE_TXQ_UNBLOCK_LEVEL)
txq->blocked = 0;
}
sfxge_tx_qdpl_service(txq);
/* note: lock has been dropped */
}
void
sfxge_tx_qflush_done(struct sfxge_txq *txq)
{
txq->flush_state = SFXGE_FLUSH_DONE;
}
static void
sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index)
{
struct sfxge_txq *txq;
struct sfxge_evq *evq;
unsigned int count;
txq = sc->txq[index];
evq = sc->evq[txq->evq_index];
mtx_lock(SFXGE_TXQ_LOCK(txq));
KASSERT(txq->init_state == SFXGE_TXQ_STARTED,
("txq->init_state != SFXGE_TXQ_STARTED"));
txq->init_state = SFXGE_TXQ_INITIALIZED;
txq->flush_state = SFXGE_FLUSH_PENDING;
/* Flush the transmit queue. */
efx_tx_qflush(txq->common);
mtx_unlock(SFXGE_TXQ_LOCK(txq));
count = 0;
do {
/* Spin for 100ms. */
DELAY(100000);
if (txq->flush_state != SFXGE_FLUSH_PENDING)
break;
} while (++count < 20);
mtx_lock(&evq->lock);
mtx_lock(SFXGE_TXQ_LOCK(txq));
KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED,
("txq->flush_state == SFXGE_FLUSH_FAILED"));
txq->flush_state = SFXGE_FLUSH_DONE;
txq->blocked = 0;
txq->pending = txq->added;
sfxge_tx_qcomplete(txq);
KASSERT(txq->completed == txq->added,
("txq->completed != txq->added"));
sfxge_tx_qreap(txq);
KASSERT(txq->reaped == txq->completed,
("txq->reaped != txq->completed"));
txq->added = 0;
txq->pending = 0;
txq->completed = 0;
txq->reaped = 0;
/* Destroy the common code transmit queue. */
efx_tx_qdestroy(txq->common);
txq->common = NULL;
efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
EFX_TXQ_NBUFS(SFXGE_NDESCS));
mtx_unlock(&evq->lock);
mtx_unlock(SFXGE_TXQ_LOCK(txq));
}
static int
sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index)
{
struct sfxge_txq *txq;
efsys_mem_t *esmp;
uint16_t flags;
struct sfxge_evq *evq;
int rc;
txq = sc->txq[index];
esmp = &txq->mem;
evq = sc->evq[txq->evq_index];
KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
("txq->init_state != SFXGE_TXQ_INITIALIZED"));
KASSERT(evq->init_state == SFXGE_EVQ_STARTED,
("evq->init_state != SFXGE_EVQ_STARTED"));
/* Program the buffer table. */
if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp,
EFX_TXQ_NBUFS(SFXGE_NDESCS))) != 0)
return rc;
/* Determine the kind of queue we are creating. */
switch (txq->type) {
case SFXGE_TXQ_NON_CKSUM:
flags = 0;
break;
case SFXGE_TXQ_IP_CKSUM:
flags = EFX_CKSUM_IPV4;
break;
case SFXGE_TXQ_IP_TCP_UDP_CKSUM:
flags = EFX_CKSUM_IPV4 | EFX_CKSUM_TCPUDP;
break;
default:
KASSERT(0, ("Impossible TX queue"));
flags = 0;
break;
}
/* Create the common code transmit queue. */
if ((rc = efx_tx_qcreate(sc->enp, index, index, esmp,
SFXGE_NDESCS, txq->buf_base_id, flags, evq->common,
&txq->common)) != 0)
goto fail;
mtx_lock(SFXGE_TXQ_LOCK(txq));
/* Enable the transmit queue. */
efx_tx_qenable(txq->common);
txq->init_state = SFXGE_TXQ_STARTED;
mtx_unlock(SFXGE_TXQ_LOCK(txq));
return (0);
fail:
efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
EFX_TXQ_NBUFS(SFXGE_NDESCS));
return rc;
}
void
sfxge_tx_stop(struct sfxge_softc *sc)
{
const efx_nic_cfg_t *encp;
int index;
index = SFXGE_TX_SCALE(sc);
while (--index >= 0)
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_CKSUM);
encp = efx_nic_cfg_get(sc->enp);
sfxge_tx_qstop(sc, SFXGE_TXQ_NON_CKSUM);
/* Tear down the transmit module */
efx_tx_fini(sc->enp);
}
int
sfxge_tx_start(struct sfxge_softc *sc)
{
int index;
int rc;
/* Initialize the common code transmit module. */
if ((rc = efx_tx_init(sc->enp)) != 0)
return (rc);
if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_NON_CKSUM)) != 0)
goto fail;
if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_IP_CKSUM)) != 0)
goto fail2;
for (index = 0; index < SFXGE_TX_SCALE(sc); index++) {
if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM +
index)) != 0)
goto fail3;
}
return (0);
fail3:
while (--index >= 0)
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_CKSUM);
fail2:
sfxge_tx_qstop(sc, SFXGE_TXQ_NON_CKSUM);
fail:
efx_tx_fini(sc->enp);
return (rc);
}
/**
* Destroy a transmit queue.
*/
static void
sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index)
{
struct sfxge_txq *txq;
unsigned int nmaps = SFXGE_NDESCS;
txq = sc->txq[index];
KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
("txq->init_state != SFXGE_TXQ_INITIALIZED"));
if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM)
tso_fini(txq);
/* Free the context arrays. */
free(txq->pend_desc, M_SFXGE);
while (nmaps--)
bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
free(txq->stmp, M_SFXGE);
/* Release DMA memory mapping. */
sfxge_dma_free(&txq->mem);
sc->txq[index] = NULL;
#ifdef SFXGE_HAVE_MQ
mtx_destroy(&txq->lock);
#endif
free(txq, M_SFXGE);
}
static int
sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index,
enum sfxge_txq_type type, unsigned int evq_index)
{
struct sfxge_txq *txq;
struct sfxge_evq *evq;
#ifdef SFXGE_HAVE_MQ
struct sfxge_tx_dpl *stdp;
#endif
efsys_mem_t *esmp;
unsigned int nmaps;
int rc;
txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK);
txq->sc = sc;
sc->txq[txq_index] = txq;
esmp = &txq->mem;
evq = sc->evq[evq_index];
/* Allocate and zero DMA space for the descriptor ring. */
if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(SFXGE_NDESCS), esmp)) != 0)
return (rc);
(void)memset(esmp->esm_base, 0, EFX_TXQ_SIZE(SFXGE_NDESCS));
/* Allocate buffer table entries. */
sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(SFXGE_NDESCS),
&txq->buf_base_id);
/* Create a DMA tag for packet mappings. */
if (bus_dma_tag_create(sc->parent_dma_tag, 1, 0x1000,
MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL,
NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 0x1000, 0, NULL, NULL,
&txq->packet_dma_tag) != 0) {
device_printf(sc->dev, "Couldn't allocate txq DMA tag\n");
rc = ENOMEM;
goto fail;
}
/* Allocate pending descriptor array for batching writes. */
txq->pend_desc = malloc(sizeof(efx_buffer_t) * SFXGE_NDESCS,
M_SFXGE, M_ZERO | M_WAITOK);
/* Allocate and initialise mbuf DMA mapping array. */
txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * SFXGE_NDESCS,
M_SFXGE, M_ZERO | M_WAITOK);
for (nmaps = 0; nmaps < SFXGE_NDESCS; nmaps++) {
rc = bus_dmamap_create(txq->packet_dma_tag, 0,
&txq->stmp[nmaps].map);
if (rc != 0)
goto fail2;
}
if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM &&
(rc = tso_init(txq)) != 0)
goto fail3;
#ifdef SFXGE_HAVE_MQ
/* Initialize the deferred packet list. */
stdp = &txq->dpl;
stdp->std_getp = &stdp->std_get;
mtx_init(&txq->lock, "txq", NULL, MTX_DEF);
#endif
txq->type = type;
txq->evq_index = evq_index;
txq->txq_index = txq_index;
txq->init_state = SFXGE_TXQ_INITIALIZED;
return (0);
fail3:
free(txq->pend_desc, M_SFXGE);
fail2:
while (nmaps--)
bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
free(txq->stmp, M_SFXGE);
bus_dma_tag_destroy(txq->packet_dma_tag);
fail:
sfxge_dma_free(esmp);
return (rc);
}
static const struct {
const char *name;
size_t offset;
} sfxge_tx_stats[] = {
#define SFXGE_TX_STAT(name, member) \
{ #name, offsetof(struct sfxge_txq, member) }
SFXGE_TX_STAT(tso_bursts, tso_bursts),
SFXGE_TX_STAT(tso_packets, tso_packets),
SFXGE_TX_STAT(tso_long_headers, tso_long_headers),
SFXGE_TX_STAT(tx_collapses, collapses),
SFXGE_TX_STAT(tx_drops, drops),
};
static int
sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS)
{
struct sfxge_softc *sc = arg1;
unsigned int id = arg2;
unsigned long sum;
unsigned int index;
/* Sum across all TX queues */
sum = 0;
for (index = 0;
index < SFXGE_TXQ_IP_TCP_UDP_CKSUM + SFXGE_TX_SCALE(sc);
index++)
sum += *(unsigned long *)((caddr_t)sc->txq[index] +
sfxge_tx_stats[id].offset);
return SYSCTL_OUT(req, &sum, sizeof(sum));
}
static void
sfxge_tx_stat_init(struct sfxge_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
struct sysctl_oid_list *stat_list;
unsigned int id;
stat_list = SYSCTL_CHILDREN(sc->stats_node);
for (id = 0;
id < sizeof(sfxge_tx_stats) / sizeof(sfxge_tx_stats[0]);
id++) {
SYSCTL_ADD_PROC(
ctx, stat_list,
OID_AUTO, sfxge_tx_stats[id].name,
CTLTYPE_ULONG|CTLFLAG_RD,
sc, id, sfxge_tx_stat_handler, "LU",
"");
}
}
void
sfxge_tx_fini(struct sfxge_softc *sc)
{
int index;
index = SFXGE_TX_SCALE(sc);
while (--index >= 0)
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
}
int
sfxge_tx_init(struct sfxge_softc *sc)
{
struct sfxge_intr *intr;
int index;
int rc;
intr = &sc->intr;
KASSERT(intr->state == SFXGE_INTR_INITIALIZED,
("intr->state != SFXGE_INTR_INITIALIZED"));
/* Initialize the transmit queues */
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM,
SFXGE_TXQ_NON_CKSUM, 0)) != 0)
goto fail;
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM,
SFXGE_TXQ_IP_CKSUM, 0)) != 0)
goto fail2;
for (index = 0; index < SFXGE_TX_SCALE(sc); index++) {
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index,
SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0)
goto fail3;
}
sfxge_tx_stat_init(sc);
return (0);
fail3:
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
while (--index >= 0)
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
fail2:
sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
fail:
return (rc);
}