freebsd-skq/contrib/bc/dc/numeric.c
2000-01-16 10:01:07 +00:00

596 lines
13 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* interface dc to the bc numeric routines
*
* Copyright (C) 1994, 1997, 1998 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to: The Free Software Foundation,
* Inc.; 675 Mass Ave. Cambridge, MA 02139, USA.
*/
/* This should be the only module that knows the internals of type dc_num */
/* In this particular implementation we just slather out some glue and
* make use of bc's numeric routines.
*/
#include "config.h"
#include <stdio.h>
#include <ctype.h>
#ifdef HAVE_LIMITS_H
# include <limits.h>
#else
# define UCHAR_MAX ((unsigned char)~0)
#endif
#include "bcdefs.h"
#include "proto.h"
#include "global.h"
#include "dc.h"
#include "dc-proto.h"
#ifdef __GNUC__
# define ATTRIB(x) __attribute__(x)
#else
# define ATTRIB(x)
#endif
/* there is no POSIX standard for dc, so we'll take the GNU definitions */
int std_only = FALSE;
/* convert an opaque dc_num into a real bc_num */
#define CastNum(x) ((bc_num)(x))
/* add two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_add DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale ATTRIB((unused)) DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
bc_add(CastNum(a), CastNum(b), (bc_num *)result, 0);
return DC_SUCCESS;
}
/* subtract two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_sub DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale ATTRIB((unused)) DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
bc_sub(CastNum(a), CastNum(b), (bc_num *)result, 0);
return DC_SUCCESS;
}
/* multiply two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_mul DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
bc_multiply(CastNum(a), CastNum(b), (bc_num *)result, kscale);
return DC_SUCCESS;
}
/* divide two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_div DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
if (bc_divide(CastNum(a), CastNum(b), (bc_num *)result, kscale)){
fprintf(stderr, "%s: divide by zero\n", progname);
return DC_DOMAIN_ERROR;
}
return DC_SUCCESS;
}
/* divide two dc_nums, place quotient into *quotient and remainder
* into *remainder;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_divrem DC_DECLARG((a, b, kscale, quotient, remainder))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *quotient DC_DECLSEP
dc_num *remainder DC_DECLEND
{
init_num((bc_num *)quotient);
init_num((bc_num *)remainder);
if (bc_divmod(CastNum(a), CastNum(b),
(bc_num *)quotient, (bc_num *)remainder, kscale)){
fprintf(stderr, "%s: divide by zero\n", progname);
return DC_DOMAIN_ERROR;
}
return DC_SUCCESS;
}
/* place the reminder of dividing a by b into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_rem DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
if (bc_modulo(CastNum(a), CastNum(b), (bc_num *)result, kscale)){
fprintf(stderr, "%s: remainder by zero\n", progname);
return DC_DOMAIN_ERROR;
}
return DC_SUCCESS;
}
int
dc_modexp DC_DECLARG((base, expo, mod, kscale, result))
dc_num base DC_DECLSEP
dc_num expo DC_DECLSEP
dc_num mod DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
if (bc_raisemod(CastNum(base), CastNum(expo), CastNum(mod),
(bc_num *)result, kscale)){
if (is_zero(CastNum(mod)))
fprintf(stderr, "%s: remainder by zero\n", progname);
return DC_DOMAIN_ERROR;
}
return DC_SUCCESS;
}
/* place the result of exponentiationg a by b into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_exp DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
init_num((bc_num *)result);
bc_raise(CastNum(a), CastNum(b), (bc_num *)result, kscale);
return DC_SUCCESS;
}
/* take the square root of the value, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_sqrt DC_DECLARG((value, kscale, result))
dc_num value DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
bc_num tmp;
tmp = copy_num(CastNum(value));
if (!bc_sqrt(&tmp, kscale)){
fprintf(stderr, "%s: square root of negative number\n", progname);
free_num(&tmp);
return DC_DOMAIN_ERROR;
}
*((bc_num *)result) = tmp;
return DC_SUCCESS;
}
/* compare dc_nums a and b;
* return a negative value if a < b;
* return a positive value if a > b;
* return zero value if a == b
*/
int
dc_compare DC_DECLARG((a, b))
dc_num a DC_DECLSEP
dc_num b DC_DECLEND
{
return bc_compare(CastNum(a), CastNum(b));
}
/* attempt to convert a dc_num to its corresponding int value
* If discard_p is DC_TOSS then deallocate the value after use.
*/
int
dc_num2int DC_DECLARG((value, discard_p))
dc_num value DC_DECLSEP
dc_discard discard_p DC_DECLEND
{
long result;
result = num2long(CastNum(value));
if (discard_p == DC_TOSS)
dc_free_num(&value);
return (int)result;
}
/* convert a C integer value into a dc_num */
/* For convenience of the caller, package the dc_num
* into a dc_data result.
*/
dc_data
dc_int2data DC_DECLARG((value))
int value DC_DECLEND
{
dc_data result;
init_num((bc_num *)&result.v.number);
int2num((bc_num *)&result.v.number, value);
result.dc_type = DC_NUMBER;
return result;
}
/* get a dc_num from some input stream;
* input is a function which knows how to read the desired input stream
* ibase is the input base (2<=ibase<=DC_IBASE_MAX)
* *readahead will be set to the readahead character consumed while
* looking for the end-of-number
*/
/* For convenience of the caller, package the dc_num
* into a dc_data result.
*/
dc_data
dc_getnum DC_DECLARG((input, ibase, readahead))
int (*input) DC_PROTO((void)) DC_DECLSEP
int ibase DC_DECLSEP
int *readahead DC_DECLEND
{
bc_num base;
bc_num result;
bc_num build;
bc_num tmp;
bc_num divisor;
dc_data full_result;
int negative = 0;
int digit;
int decimal;
int c;
init_num(&tmp);
init_num(&build);
init_num(&base);
result = copy_num(_zero_);
int2num(&base, ibase);
c = (*input)();
while (isspace(c))
c = (*input)();
if (c == '_' || c == '-'){
negative = c;
c = (*input)();
}else if (c == '+'){
c = (*input)();
}
while (isspace(c))
c = (*input)();
for (;;){
if (isdigit(c))
digit = c - '0';
else if ('A' <= c && c <= 'F')
digit = 10 + c - 'A';
else
break;
c = (*input)();
int2num(&tmp, digit);
bc_multiply(result, base, &result, 0);
bc_add(result, tmp, &result, 0);
}
if (c == '.'){
free_num(&build);
free_num(&tmp);
divisor = copy_num(_one_);
build = copy_num(_zero_);
decimal = 0;
for (;;){
c = (*input)();
if (isdigit(c))
digit = c - '0';
else if ('A' <= c && c <= 'F')
digit = 10 + c - 'A';
else
break;
int2num(&tmp, digit);
bc_multiply(build, base, &build, 0);
bc_add(build, tmp, &build, 0);
bc_multiply(divisor, base, &divisor, 0);
++decimal;
}
bc_divide(build, divisor, &build, decimal);
bc_add(result, build, &result, 0);
}
/* Final work. */
if (negative)
bc_sub(_zero_, result, &result, 0);
free_num(&tmp);
free_num(&build);
free_num(&base);
if (readahead)
*readahead = c;
full_result.v.number = (dc_num)result;
full_result.dc_type = DC_NUMBER;
return full_result;
}
/* return the "length" of the number */
int
dc_numlen DC_DECLARG((value))
dc_num value DC_DECLEND
{
bc_num num = CastNum(value);
/* is this right??? */
return num->n_len + num->n_scale;
}
/* return the scale factor of the passed dc_num
* If discard_p is DC_TOSS then deallocate the value after use.
*/
int
dc_tell_scale DC_DECLARG((value, discard_p))
dc_num value DC_DECLSEP
dc_discard discard_p DC_DECLEND
{
int kscale;
kscale = CastNum(value)->n_scale;
if (discard_p == DC_TOSS)
dc_free_num(&value);
return kscale;
}
/* initialize the math subsystem */
void
dc_math_init DC_DECLVOID()
{
init_numbers();
}
/* print out a dc_num in output base obase to stdout;
* if newline_p is DC_WITHNL, terminate output with a '\n';
* if discard_p is DC_TOSS then deallocate the value after use
*/
void
dc_out_num DC_DECLARG((value, obase, newline_p, discard_p))
dc_num value DC_DECLSEP
int obase DC_DECLSEP
dc_newline newline_p DC_DECLSEP
dc_discard discard_p DC_DECLEND
{
out_num(CastNum(value), obase, out_char);
if (newline_p == DC_WITHNL)
out_char('\n');
if (discard_p == DC_TOSS)
dc_free_num(&value);
}
/* dump out the absolute value of the integer part of a
* dc_num as a byte stream, without any line wrapping;
* if discard_p is DC_TOSS then deallocate the value after use
*/
void
dc_dump_num DC_DECLARG((value, discard_p))
dc_num dcvalue DC_DECLSEP
dc_discard discard_p DC_DECLEND
{
struct digit_stack { int digit; struct digit_stack *link;};
struct digit_stack *top_of_stack = NULL;
struct digit_stack *cur;
struct digit_stack *next;
bc_num value;
bc_num obase;
bc_num digit;
init_num(&value);
init_num(&obase);
init_num(&digit);
/* we only handle the integer portion: */
bc_divide(CastNum(dcvalue), _one_, &value, 0);
/* we only handle the absolute value: */
value->n_sign = PLUS;
/* we're done with the dcvalue parameter: */
if (discard_p == DC_TOSS)
dc_free_num(&dcvalue);
int2num(&obase, 1+UCHAR_MAX);
do {
(void) bc_divmod(value, obase, &value, &digit, 0);
cur = dc_malloc(sizeof *cur);
cur->digit = (int)num2long(digit);
cur->link = top_of_stack;
top_of_stack = cur;
} while (!is_zero(value));
for (cur=top_of_stack; cur; cur=next) {
putchar(cur->digit);
next = cur->link;
free(cur);
}
free_num(&digit);
free_num(&obase);
free_num(&value);
}
/* deallocate an instance of a dc_num */
void
dc_free_num DC_DECLARG((value))
dc_num *value DC_DECLEND
{
free_num((bc_num *)value);
}
/* return a duplicate of the number in the passed value */
/* The mismatched data types forces the caller to deal with
* bad dc_type'd dc_data values, and makes it more convenient
* for the caller to not have to do the grunge work of setting
* up a dc_type result.
*/
dc_data
dc_dup_num DC_DECLARG((value))
dc_num value DC_DECLEND
{
dc_data result;
++CastNum(value)->n_refs;
result.v.number = value;
result.dc_type = DC_NUMBER;
return result;
}
/*---------------------------------------------------------------------------\
| The rest of this file consists of stubs for bc routines called by numeric.c|
| so as to minimize the amount of bc code needed to build dc. |
| The bulk of the code was just lifted straight out of the bc source. |
\---------------------------------------------------------------------------*/
#ifdef HAVE_STDLIB_H
# include <stdlib.h>
#endif
#ifdef HAVE_STDARG_H
# include <stdarg.h>
#else
# include <varargs.h>
#endif
int out_col = 0;
/* Output routines: Write a character CH to the standard output.
It keeps track of the number of characters output and may
break the output with a "\<cr>". */
void
out_char (ch)
char ch;
{
if (ch == '\n')
{
out_col = 0;
putchar ('\n');
}
else
{
out_col++;
if (out_col == 70)
{
putchar ('\\');
putchar ('\n');
out_col = 1;
}
putchar (ch);
}
}
/* Malloc could not get enough memory. */
void
out_of_memory()
{
dc_memfail();
}
/* Runtime error will print a message and stop the machine. */
#ifdef HAVE_STDARG_H
#ifdef __STDC__
void
rt_error (char *mesg, ...)
#else
void
rt_error (mesg)
char *mesg;
#endif
#else
void
rt_error (mesg, va_alist)
char *mesg;
#endif
{
va_list args;
char error_mesg [255];
#ifdef HAVE_STDARG_H
va_start (args, mesg);
#else
va_start (args);
#endif
vsprintf (error_mesg, mesg, args);
va_end (args);
fprintf (stderr, "Runtime error: %s\n", error_mesg);
}
/* A runtime warning tells of some action taken by the processor that
may change the program execution but was not enough of a problem
to stop the execution. */
#ifdef HAVE_STDARG_H
#ifdef __STDC__
void
rt_warn (char *mesg, ...)
#else
void
rt_warn (mesg)
char *mesg;
#endif
#else
void
rt_warn (mesg, va_alist)
char *mesg;
#endif
{
va_list args;
char error_mesg [255];
#ifdef HAVE_STDARG_H
va_start (args, mesg);
#else
va_start (args);
#endif
vsprintf (error_mesg, mesg, args);
va_end (args);
fprintf (stderr, "Runtime warning: %s\n", error_mesg);
}