freebsd-skq/sys/arm/s3c2xx0/s3c24x0_clk.c
Warner Losh 30e980f2d1 Add support for the Samsung S3C2xx0 family of ARM SoCs written by
Andrew Turner.  The kernel supports the LN2410SBC evaluation board,
and likely others.  These parts (or similar ones) are in some open
hardware designs for phones.

Submitted by:	Andrew Turner
2010-03-20 03:39:35 +00:00

288 lines
7.2 KiB
C

/* $NetBSD: s3c24x0_clk.c,v 1.6 2005/12/24 20:06:52 perry Exp $ */
/*
* Copyright (c) 2003 Genetec corporation. All rights reserved.
* Written by Hiroyuki Bessho for Genetec corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of Genetec corporation may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORP. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORP.
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/time.h>
#include <sys/bus.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/timetc.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/frame.h>
#include <machine/resource.h>
#include <machine/intr.h>
#include <arm/s3c2xx0/s3c24x0reg.h>
#include <arm/s3c2xx0/s3c24x0var.h>
struct s3c24x0_timer_softc {
device_t dev;
} timer_softc;
static unsigned s3c24x0_timer_get_timecount(struct timecounter *tc);
static struct timecounter s3c24x0_timer_timecounter = {
s3c24x0_timer_get_timecount, /* get_timecount */
NULL, /* no poll_pps */
~0u, /* counter_mask */
3686400, /* frequency */
"s3c24x0 timer", /* name */
1000 /* quality */
};
static int
s3c24x0_timer_probe(device_t dev)
{
device_set_desc(dev, "s3c24x0 timer");
return (0);
}
static int
s3c24x0_timer_attach(device_t dev)
{
timer_softc.dev = dev;
/* We need to do this here for devices that expect DELAY to work */
return (0);
}
static device_method_t s3c24x0_timer_methods[] = {
DEVMETHOD(device_probe, s3c24x0_timer_probe),
DEVMETHOD(device_attach, s3c24x0_timer_attach),
{0, 0},
};
static driver_t s3c24x0_timer_driver = {
"timer",
s3c24x0_timer_methods,
sizeof(struct s3c24x0_timer_softc),
};
static devclass_t s3c24x0_timer_devclass;
DRIVER_MODULE(s3c24x0timer, s3c24x0, s3c24x0_timer_driver,
s3c24x0_timer_devclass, 0, 0);
#define TIMER_FREQUENCY(pclk) ((pclk)/16) /* divider=1/16 */
static unsigned int timer4_reload_value;
static unsigned int timer4_prescaler;
static unsigned int timer4_mseccount;
static volatile uint32_t s3c24x0_base;
#define usec_to_counter(t) \
((timer4_mseccount*(t))/1000)
#define counter_to_usec(c,pclk) \
(((c)*timer4_prescaler*1000)/(TIMER_FREQUENCY(pclk)/1000))
static inline int
read_timer(struct s3c24x0_softc *sc)
{
int count;
do {
count = bus_space_read_2(sc->sc_sx.sc_iot, sc->sc_timer_ioh,
TIMER_TCNTO(4));
} while ( __predict_false(count > timer4_reload_value) );
return count;
}
static unsigned
s3c24x0_timer_get_timecount(struct timecounter *tc)
{
struct s3c24x0_softc *sc = (struct s3c24x0_softc *)s3c2xx0_softc;
int value;
value = bus_space_read_2(sc->sc_sx.sc_iot, sc->sc_timer_ioh,
TIMER_TCNTO(4));
return (s3c24x0_base - value);
}
static int
clock_intr(void *arg)
{
struct trapframe *fp = arg;
atomic_add_32(&s3c24x0_base, timer4_reload_value);
hardclock(TRAPF_USERMODE(fp), TRAPF_PC(fp));
return (FILTER_HANDLED);
}
void
cpu_initclocks(void)
{
struct s3c24x0_softc *sc = (struct s3c24x0_softc *)s3c2xx0_softc;
long tc;
struct resource *irq;
int rid = 0;
void *ihl;
int err, prescaler;
int pclk = s3c2xx0_softc->sc_pclk;
bus_space_tag_t iot = sc->sc_sx.sc_iot;
bus_space_handle_t ioh = sc->sc_timer_ioh;
uint32_t reg;
device_t dev = timer_softc.dev;
/* We have already been initialized */
if (timer4_reload_value != 0)
return;
#define time_constant(hz) (TIMER_FREQUENCY(pclk) /(hz)/ prescaler)
#define calc_time_constant(hz) \
do { \
prescaler = 1; \
do { \
++prescaler; \
tc = time_constant(hz); \
} while( tc > 65536 ); \
} while(0)
/* Use the channels 4 and 3 for hardclock and statclock, respectively */
/* stop all timers */
bus_space_write_4(iot, ioh, TIMER_TCON, 0);
/* calc suitable prescaler value */
calc_time_constant(hz);
timer4_prescaler = prescaler;
timer4_reload_value = TIMER_FREQUENCY(pclk) / hz / prescaler;
timer4_mseccount = TIMER_FREQUENCY(pclk)/timer4_prescaler/1000 ;
bus_space_write_4(iot, ioh, TIMER_TCNTB(4),
((prescaler - 1) << 16) | (timer4_reload_value - 1));
printf("clock: hz=%d PCLK=%d prescaler=%d tc=%ld\n",
hz, pclk, prescaler, tc);
irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, S3C24X0_INT_TIMER4,
S3C24X0_INT_TIMER4, 1, RF_ACTIVE);
if (!irq)
panic("Unable to allocate the clock irq handler.\n");
err = bus_setup_intr(dev, irq, INTR_TYPE_CLK | INTR_FAST,
clock_intr, NULL, NULL, &ihl);
if (err != 0)
panic("Unable to setup the clock irq handler.\n");
/* set prescaler1 */
reg = bus_space_read_4(iot, ioh, TIMER_TCFG0);
bus_space_write_4(iot, ioh, TIMER_TCFG0,
(reg & ~0xff00) | ((prescaler-1) << 8));
/* divider 1/16 for ch #4 */
reg = bus_space_read_4(iot, ioh, TIMER_TCFG1);
bus_space_write_4(iot, ioh, TIMER_TCFG1,
(reg & ~(TCFG1_MUX_MASK(4))) |
(TCFG1_MUX_DIV16 << TCFG1_MUX_SHIFT(4)) );
/* start timers */
reg = bus_space_read_4(iot, ioh, TIMER_TCON);
reg &= ~(TCON_MASK(4));
/* load the time constant */
bus_space_write_4(iot, ioh, TIMER_TCON, reg | TCON_MANUALUPDATE(4));
/* set auto reload and start */
bus_space_write_4(iot, ioh, TIMER_TCON, reg |
TCON_AUTORELOAD(4) | TCON_START(4) );
s3c24x0_timer_timecounter.tc_frequency = TIMER_FREQUENCY(pclk) /
timer4_prescaler;
tc_init(&s3c24x0_timer_timecounter);
}
/*
* DELAY:
*
* Delay for at least N microseconds.
*/
void
DELAY(int n)
{
struct s3c24x0_softc *sc = (struct s3c24x0_softc *) s3c2xx0_softc;
int v0, v1, delta;
u_int ucnt;
if (timer4_reload_value == 0) {
/* not initialized yet */
while ( n-- > 0 ){
int m;
for (m = 0; m < 100; ++m )
;
}
return;
}
/* read down counter */
v0 = read_timer(sc);
ucnt = usec_to_counter(n);
while( ucnt > 0 ) {
v1 = read_timer(sc);
delta = v0 - v1;
if ( delta < 0 )
delta += timer4_reload_value;
if((u_int)delta < ucnt){
ucnt -= (u_int)delta;
v0 = v1;
}
else {
ucnt = 0;
}
}
}
void
cpu_startprofclock(void)
{
}
void
cpu_stopprofclock(void)
{
}