2017-03-23 22:06:06 +00:00

2253 lines
49 KiB
C

/*
* ntpdate - set the time of day by polling one or more NTP servers
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef HAVE_NETINFO
#include <netinfo/ni.h>
#endif
#include "ntp_machine.h"
#include "ntp_fp.h"
#include "ntp.h"
#include "ntp_io.h"
#include "timevalops.h"
#include "ntpdate.h"
#include "ntp_string.h"
#include "ntp_syslog.h"
#include "ntp_select.h"
#include "ntp_stdlib.h"
#include <ssl_applink.c>
#include "isc/net.h"
#include "isc/result.h"
#include "isc/sockaddr.h"
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#include <stdio.h>
#include <signal.h>
#include <ctype.h>
#ifdef HAVE_POLL_H
# include <poll.h>
#endif
#ifdef HAVE_SYS_SIGNAL_H
# include <sys/signal.h>
#endif
#ifdef HAVE_SYS_IOCTL_H
# include <sys/ioctl.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
# include <sys/resource.h>
#endif
#include <arpa/inet.h>
#ifdef SYS_VXWORKS
# include "ioLib.h"
# include "sockLib.h"
# include "timers.h"
/* select wants a zero structure ... */
struct timeval timeout = {0,0};
#elif defined(SYS_WINNT)
/*
* Windows does not abort a select select call if SIGALRM goes off
* so a 200 ms timeout is needed (TIMER_HZ is 5).
*/
struct sock_timeval timeout = {0,1000000/TIMER_HZ};
#else
struct timeval timeout = {60,0};
#endif
#ifdef HAVE_NETINFO
#include <netinfo/ni.h>
#endif
#include "recvbuff.h"
#ifdef SYS_WINNT
#define TARGET_RESOLUTION 1 /* Try for 1-millisecond accuracy
on Windows NT timers. */
#pragma comment(lib, "winmm")
isc_boolean_t ntp_port_inuse(int af, u_short port);
UINT wTimerRes;
#endif /* SYS_WINNT */
/*
* Scheduling priority we run at
*/
#ifndef SYS_VXWORKS
# define NTPDATE_PRIO (-12)
#else
# define NTPDATE_PRIO (100)
#endif
#ifdef HAVE_TIMER_CREATE
/* POSIX TIMERS - vxWorks doesn't have itimer - casey */
static timer_t ntpdate_timerid;
#endif
/*
* Compatibility stuff for Version 2
*/
#define NTP_MAXSKW 0x28f /* 0.01 sec in fp format */
#define NTP_MINDIST 0x51f /* 0.02 sec in fp format */
#define PEER_MAXDISP (64*FP_SECOND) /* maximum dispersion (fp 64) */
#define NTP_INFIN 15 /* max stratum, infinity a la Bellman-Ford */
#define NTP_MAXWGT (8*FP_SECOND) /* maximum select weight 8 seconds */
#define NTP_MAXLIST 5 /* maximum select list size */
#define PEER_SHIFT 8 /* 8 suitable for crystal time base */
/*
* for get_systime()
*/
s_char sys_precision; /* local clock precision (log2 s) */
/*
* File descriptor masks etc. for call to select
*/
int ai_fam_templ;
int nbsock; /* the number of sockets used */
SOCKET fd[MAX_AF];
int fd_family[MAX_AF]; /* to remember the socket family */
#ifdef HAVE_POLL_H
struct pollfd fdmask[MAX_AF];
#else
fd_set fdmask;
SOCKET maxfd;
#endif
int polltest = 0;
/*
* Initializing flag. All async routines watch this and only do their
* thing when it is clear.
*/
int initializing = 1;
/*
* Alarm flag. Set when an alarm occurs
*/
volatile int alarm_flag = 0;
/*
* Simple query flag.
*/
int simple_query = 0;
/*
* Unprivileged port flag.
*/
int unpriv_port = 0;
/*
* Program name.
*/
char const *progname;
/*
* Systemwide parameters and flags
*/
int sys_samples = DEFSAMPLES; /* number of samples/server */
u_long sys_timeout = DEFTIMEOUT; /* timeout time, in TIMER_HZ units */
struct server *sys_servers; /* the server list */
int sys_numservers = 0; /* number of servers to poll */
int sys_authenticate = 0; /* true when authenticating */
u_int32 sys_authkey = 0; /* set to authentication key in use */
u_long sys_authdelay = 0; /* authentication delay */
int sys_version = NTP_VERSION; /* version to poll with */
/*
* The current internal time
*/
u_long current_time = 0;
/*
* Counter for keeping track of completed servers
*/
int complete_servers = 0;
/*
* File of encryption keys
*/
#ifndef KEYFILE
# ifndef SYS_WINNT
#define KEYFILE "/etc/ntp.keys"
# else
#define KEYFILE "%windir%\\ntp.keys"
# endif /* SYS_WINNT */
#endif /* KEYFILE */
#ifndef SYS_WINNT
const char *key_file = KEYFILE;
#else
char key_file_storage[MAX_PATH+1], *key_file ;
#endif /* SYS_WINNT */
/*
* Miscellaneous flags
*/
int verbose = 0;
int always_step = 0;
int never_step = 0;
int ntpdatemain (int, char **);
static void transmit (struct server *);
static void receive (struct recvbuf *);
static void server_data (struct server *, s_fp, l_fp *, u_fp);
static void clock_filter (struct server *);
static struct server *clock_select (void);
static int clock_adjust (void);
static void addserver (char *);
static struct server *findserver (sockaddr_u *);
void timer (void);
static void init_alarm (void);
#ifndef SYS_WINNT
static RETSIGTYPE alarming (int);
#endif /* SYS_WINNT */
static void init_io (void);
static void sendpkt (sockaddr_u *, struct pkt *, int);
void input_handler (void);
static int l_adj_systime (l_fp *);
static int l_step_systime (l_fp *);
static void printserver (struct server *, FILE *);
#ifdef SYS_WINNT
int on = 1;
WORD wVersionRequested;
WSADATA wsaData;
#endif /* SYS_WINNT */
#ifdef NO_MAIN_ALLOWED
CALL(ntpdate,"ntpdate",ntpdatemain);
void clear_globals()
{
/*
* Debugging flag
*/
debug = 0;
ntp_optind = 0;
/*
* Initializing flag. All async routines watch this and only do their
* thing when it is clear.
*/
initializing = 1;
/*
* Alarm flag. Set when an alarm occurs
*/
alarm_flag = 0;
/*
* Simple query flag.
*/
simple_query = 0;
/*
* Unprivileged port flag.
*/
unpriv_port = 0;
/*
* Systemwide parameters and flags
*/
sys_numservers = 0; /* number of servers to poll */
sys_authenticate = 0; /* true when authenticating */
sys_authkey = 0; /* set to authentication key in use */
sys_authdelay = 0; /* authentication delay */
sys_version = NTP_VERSION; /* version to poll with */
/*
* The current internal time
*/
current_time = 0;
/*
* Counter for keeping track of completed servers
*/
complete_servers = 0;
verbose = 0;
always_step = 0;
never_step = 0;
}
#endif
#ifdef HAVE_NETINFO
static ni_namelist *getnetinfoservers (void);
#endif
/*
* Main program. Initialize us and loop waiting for I/O and/or
* timer expiries.
*/
#ifndef NO_MAIN_ALLOWED
int
main(
int argc,
char *argv[]
)
{
return ntpdatemain (argc, argv);
}
#endif /* NO_MAIN_ALLOWED */
int
ntpdatemain (
int argc,
char *argv[]
)
{
int was_alarmed;
int tot_recvbufs;
struct recvbuf *rbuf;
l_fp tmp;
int errflg;
int c;
int nfound;
#ifdef HAVE_NETINFO
ni_namelist *netinfoservers;
#endif
#ifdef SYS_WINNT
key_file = key_file_storage;
if (!ExpandEnvironmentStrings(KEYFILE, key_file, MAX_PATH))
msyslog(LOG_ERR, "ExpandEnvironmentStrings(KEYFILE) failed: %m");
ssl_applink();
#endif /* SYS_WINNT */
#ifdef NO_MAIN_ALLOWED
clear_globals();
#endif
init_lib(); /* sets up ipv4_works, ipv6_works */
/* Check to see if we have IPv6. Otherwise default to IPv4 */
if (!ipv6_works)
ai_fam_templ = AF_INET;
errflg = 0;
progname = argv[0];
syslogit = 0;
/*
* Decode argument list
*/
while ((c = ntp_getopt(argc, argv, "46a:bBde:k:o:p:qst:uv")) != EOF)
switch (c)
{
case '4':
ai_fam_templ = AF_INET;
break;
case '6':
ai_fam_templ = AF_INET6;
break;
case 'a':
c = atoi(ntp_optarg);
sys_authenticate = 1;
sys_authkey = c;
break;
case 'b':
always_step++;
never_step = 0;
break;
case 'B':
never_step++;
always_step = 0;
break;
case 'd':
++debug;
break;
case 'e':
if (!atolfp(ntp_optarg, &tmp)
|| tmp.l_ui != 0) {
(void) fprintf(stderr,
"%s: encryption delay %s is unlikely\n",
progname, ntp_optarg);
errflg++;
} else {
sys_authdelay = tmp.l_uf;
}
break;
case 'k':
key_file = ntp_optarg;
break;
case 'o':
sys_version = atoi(ntp_optarg);
break;
case 'p':
c = atoi(ntp_optarg);
if (c <= 0 || c > NTP_SHIFT) {
(void) fprintf(stderr,
"%s: number of samples (%d) is invalid\n",
progname, c);
errflg++;
} else {
sys_samples = c;
}
break;
case 'q':
simple_query = 1;
break;
case 's':
syslogit = 1;
break;
case 't':
if (!atolfp(ntp_optarg, &tmp)) {
(void) fprintf(stderr,
"%s: timeout %s is undecodeable\n",
progname, ntp_optarg);
errflg++;
} else {
sys_timeout = ((LFPTOFP(&tmp) * TIMER_HZ)
+ 0x8000) >> 16;
sys_timeout = max(sys_timeout, MINTIMEOUT);
}
break;
case 'v':
verbose = 1;
break;
case 'u':
unpriv_port = 1;
break;
case '?':
++errflg;
break;
default:
break;
}
if (errflg) {
(void) fprintf(stderr,
"usage: %s [-46bBdqsuv] [-a key#] [-e delay] [-k file] [-p samples] [-o version#] [-t timeo] server ...\n",
progname);
exit(2);
}
if (debug || simple_query) {
#ifdef HAVE_SETVBUF
static char buf[BUFSIZ];
setvbuf(stdout, buf, _IOLBF, BUFSIZ);
#else
setlinebuf(stdout);
#endif
}
/*
* Logging. Open the syslog if we have to
*/
if (syslogit) {
#if !defined (SYS_WINNT) && !defined (SYS_VXWORKS) && !defined SYS_CYGWIN32
# ifndef LOG_DAEMON
openlog("ntpdate", LOG_PID);
# else
# ifndef LOG_NTP
# define LOG_NTP LOG_DAEMON
# endif
openlog("ntpdate", LOG_PID | LOG_NDELAY, LOG_NTP);
if (debug)
setlogmask(LOG_UPTO(LOG_DEBUG));
else
setlogmask(LOG_UPTO(LOG_INFO));
# endif /* LOG_DAEMON */
#endif /* SYS_WINNT */
}
if (debug || verbose)
msyslog(LOG_NOTICE, "%s", Version);
/*
* Add servers we are going to be polling
*/
#ifdef HAVE_NETINFO
netinfoservers = getnetinfoservers();
#endif
for ( ; ntp_optind < argc; ntp_optind++)
addserver(argv[ntp_optind]);
#ifdef HAVE_NETINFO
if (netinfoservers) {
if ( netinfoservers->ni_namelist_len &&
*netinfoservers->ni_namelist_val ) {
u_int servercount = 0;
while (servercount < netinfoservers->ni_namelist_len) {
if (debug) msyslog(LOG_DEBUG,
"Adding time server %s from NetInfo configuration.",
netinfoservers->ni_namelist_val[servercount]);
addserver(netinfoservers->ni_namelist_val[servercount++]);
}
}
ni_namelist_free(netinfoservers);
free(netinfoservers);
}
#endif
if (sys_numservers == 0) {
msyslog(LOG_ERR, "no servers can be used, exiting");
exit(1);
}
/*
* Initialize the time of day routines and the I/O subsystem
*/
if (sys_authenticate) {
init_auth();
if (!authreadkeys(key_file)) {
msyslog(LOG_ERR, "no key file <%s>, exiting", key_file);
exit(1);
}
authtrust(sys_authkey, 1);
if (!authistrusted(sys_authkey)) {
msyslog(LOG_ERR, "authentication key %lu unknown",
(unsigned long) sys_authkey);
exit(1);
}
}
init_io();
init_alarm();
/*
* Set the priority.
*/
#ifdef SYS_VXWORKS
taskPrioritySet( taskIdSelf(), NTPDATE_PRIO);
#endif
#if defined(HAVE_ATT_NICE)
nice (NTPDATE_PRIO);
#endif
#if defined(HAVE_BSD_NICE)
(void) setpriority(PRIO_PROCESS, 0, NTPDATE_PRIO);
#endif
initializing = 0;
was_alarmed = 0;
while (complete_servers < sys_numservers) {
#ifdef HAVE_POLL_H
struct pollfd* rdfdes;
rdfdes = fdmask;
#else
fd_set rdfdes;
rdfdes = fdmask;
#endif
if (alarm_flag) { /* alarmed? */
was_alarmed = 1;
alarm_flag = 0;
}
tot_recvbufs = full_recvbuffs(); /* get received buffers */
if (!was_alarmed && tot_recvbufs == 0) {
/*
* Nothing to do. Wait for something.
*/
#ifdef HAVE_POLL_H
nfound = poll(rdfdes, (unsigned int)nbsock, timeout.tv_sec * 1000);
#else
nfound = select(maxfd, &rdfdes, NULL, NULL,
&timeout);
#endif
if (nfound > 0)
input_handler();
else if (nfound == SOCKET_ERROR)
{
#ifndef SYS_WINNT
if (errno != EINTR)
#else
if (WSAGetLastError() != WSAEINTR)
#endif
msyslog(LOG_ERR,
#ifdef HAVE_POLL_H
"poll() error: %m"
#else
"select() error: %m"
#endif
);
} else if (errno != 0) {
#ifndef SYS_VXWORKS
msyslog(LOG_DEBUG,
#ifdef HAVE_POLL_H
"poll(): nfound = %d, error: %m",
#else
"select(): nfound = %d, error: %m",
#endif
nfound);
#endif
}
if (alarm_flag) { /* alarmed? */
was_alarmed = 1;
alarm_flag = 0;
}
tot_recvbufs = full_recvbuffs(); /* get received buffers */
}
/*
* Out here, signals are unblocked. Call receive
* procedure for each incoming packet.
*/
rbuf = get_full_recv_buffer();
while (rbuf != NULL)
{
receive(rbuf);
freerecvbuf(rbuf);
rbuf = get_full_recv_buffer();
}
/*
* Call timer to process any timeouts
*/
if (was_alarmed) {
timer();
was_alarmed = 0;
}
/*
* Go around again
*/
}
/*
* When we get here we've completed the polling of all servers.
* Adjust the clock, then exit.
*/
#ifdef SYS_WINNT
WSACleanup();
#endif
#ifdef SYS_VXWORKS
close (fd);
timer_delete(ntpdate_timerid);
#endif
return clock_adjust();
}
/*
* transmit - transmit a packet to the given server, or mark it completed.
* This is called by the timeout routine and by the receive
* procedure.
*/
static void
transmit(
register struct server *server
)
{
struct pkt xpkt;
if (debug)
printf("transmit(%s)\n", stoa(&server->srcadr));
if (server->filter_nextpt < server->xmtcnt) {
l_fp ts;
/*
* Last message to this server timed out. Shift
* zeros into the filter.
*/
L_CLR(&ts);
server_data(server, 0, &ts, 0);
}
if ((int)server->filter_nextpt >= sys_samples) {
/*
* Got all the data we need. Mark this guy
* completed and return.
*/
server->event_time = 0;
complete_servers++;
return;
}
/*
* If we're here, send another message to the server. Fill in
* the packet and let 'er rip.
*/
xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC,
sys_version, MODE_CLIENT);
xpkt.stratum = STRATUM_TO_PKT(STRATUM_UNSPEC);
xpkt.ppoll = NTP_MINPOLL;
xpkt.precision = NTPDATE_PRECISION;
xpkt.rootdelay = htonl(NTPDATE_DISTANCE);
xpkt.rootdisp = htonl(NTPDATE_DISP);
xpkt.refid = htonl(NTPDATE_REFID);
L_CLR(&xpkt.reftime);
L_CLR(&xpkt.org);
L_CLR(&xpkt.rec);
/*
* Determine whether to authenticate or not. If so,
* fill in the extended part of the packet and do it.
* If not, just timestamp it and send it away.
*/
if (sys_authenticate) {
size_t len;
xpkt.exten[0] = htonl(sys_authkey);
get_systime(&server->xmt);
L_ADDUF(&server->xmt, sys_authdelay);
HTONL_FP(&server->xmt, &xpkt.xmt);
len = authencrypt(sys_authkey, (u_int32 *)&xpkt, LEN_PKT_NOMAC);
sendpkt(&server->srcadr, &xpkt, (int)(LEN_PKT_NOMAC + len));
if (debug > 1)
printf("transmit auth to %s\n",
stoa(&server->srcadr));
} else {
get_systime(&(server->xmt));
HTONL_FP(&server->xmt, &xpkt.xmt);
sendpkt(&server->srcadr, &xpkt, LEN_PKT_NOMAC);
if (debug > 1)
printf("transmit to %s\n", stoa(&server->srcadr));
}
/*
* Update the server timeout and transmit count
*/
server->event_time = current_time + sys_timeout;
server->xmtcnt++;
}
/*
* receive - receive and process an incoming frame
*/
static void
receive(
struct recvbuf *rbufp
)
{
register struct pkt *rpkt;
register struct server *server;
register s_fp di;
l_fp t10, t23, tmp;
l_fp org;
l_fp rec;
l_fp ci;
int has_mac;
int is_authentic;
if (debug)
printf("receive(%s)\n", stoa(&rbufp->recv_srcadr));
/*
* Check to see if the packet basically looks like something
* intended for us.
*/
if (rbufp->recv_length == LEN_PKT_NOMAC)
has_mac = 0;
else if (rbufp->recv_length >= (int)LEN_PKT_NOMAC)
has_mac = 1;
else {
if (debug)
printf("receive: packet length %d\n",
rbufp->recv_length);
return; /* funny length packet */
}
rpkt = &(rbufp->recv_pkt);
if (PKT_VERSION(rpkt->li_vn_mode) < NTP_OLDVERSION ||
PKT_VERSION(rpkt->li_vn_mode) > NTP_VERSION) {
return;
}
if ((PKT_MODE(rpkt->li_vn_mode) != MODE_SERVER
&& PKT_MODE(rpkt->li_vn_mode) != MODE_PASSIVE)
|| rpkt->stratum >= STRATUM_UNSPEC) {
if (debug)
printf("receive: mode %d stratum %d\n",
PKT_MODE(rpkt->li_vn_mode), rpkt->stratum);
return;
}
/*
* So far, so good. See if this is from a server we know.
*/
server = findserver(&(rbufp->recv_srcadr));
if (server == NULL) {
if (debug)
printf("receive: server not found\n");
return;
}
/*
* Decode the org timestamp and make sure we're getting a response
* to our last request.
*/
NTOHL_FP(&rpkt->org, &org);
if (!L_ISEQU(&org, &server->xmt)) {
if (debug)
printf("receive: pkt.org and peer.xmt differ\n");
return;
}
/*
* Check out the authenticity if we're doing that.
*/
if (!sys_authenticate)
is_authentic = 1;
else {
is_authentic = 0;
if (debug > 3)
printf("receive: rpkt keyid=%ld sys_authkey=%ld decrypt=%ld\n",
(long int)ntohl(rpkt->exten[0]), (long int)sys_authkey,
(long int)authdecrypt(sys_authkey, (u_int32 *)rpkt,
LEN_PKT_NOMAC, (size_t)(rbufp->recv_length - LEN_PKT_NOMAC)));
if (has_mac && ntohl(rpkt->exten[0]) == sys_authkey &&
authdecrypt(sys_authkey, (u_int32 *)rpkt, LEN_PKT_NOMAC,
(size_t)(rbufp->recv_length - LEN_PKT_NOMAC)))
is_authentic = 1;
if (debug)
printf("receive: authentication %s\n",
is_authentic ? "passed" : "failed");
}
server->trust <<= 1;
if (!is_authentic)
server->trust |= 1;
/*
* Check for a KoD (rate limiting) response, cease and decist.
*/
if (LEAP_NOTINSYNC == PKT_LEAP(rpkt->li_vn_mode) &&
STRATUM_PKT_UNSPEC == rpkt->stratum &&
!memcmp("RATE", &rpkt->refid, 4)) {
msyslog(LOG_ERR, "%s rate limit response from server.",
stoa(&rbufp->recv_srcadr));
server->event_time = 0;
complete_servers++;
return;
}
/*
* Looks good. Record info from the packet.
*/
server->leap = PKT_LEAP(rpkt->li_vn_mode);
server->stratum = PKT_TO_STRATUM(rpkt->stratum);
server->precision = rpkt->precision;
server->rootdelay = ntohl(rpkt->rootdelay);
server->rootdisp = ntohl(rpkt->rootdisp);
server->refid = rpkt->refid;
NTOHL_FP(&rpkt->reftime, &server->reftime);
NTOHL_FP(&rpkt->rec, &rec);
NTOHL_FP(&rpkt->xmt, &server->org);
/*
* Make sure the server is at least somewhat sane. If not, try
* again.
*/
if (L_ISZERO(&rec) || !L_ISHIS(&server->org, &rec)) {
server->event_time = current_time + sys_timeout;
return;
}
/*
* Calculate the round trip delay (di) and the clock offset (ci).
* We use the equations (reordered from those in the spec):
*
* d = (t2 - t3) - (t1 - t0)
* c = ((t2 - t3) + (t1 - t0)) / 2
*/
t10 = server->org; /* pkt.xmt == t1 */
L_SUB(&t10, &rbufp->recv_time); /* recv_time == t0*/
t23 = rec; /* pkt.rec == t2 */
L_SUB(&t23, &org); /* pkt->org == t3 */
/* now have (t2 - t3) and (t0 - t1). Calculate (ci) and (di) */
/*
* Calculate (ci) = ((t1 - t0) / 2) + ((t2 - t3) / 2)
* For large offsets this may prevent an overflow on '+'
*/
ci = t10;
L_RSHIFT(&ci);
tmp = t23;
L_RSHIFT(&tmp);
L_ADD(&ci, &tmp);
/*
* Calculate di in t23 in full precision, then truncate
* to an s_fp.
*/
L_SUB(&t23, &t10);
di = LFPTOFP(&t23);
if (debug > 3)
printf("offset: %s, delay %s\n", lfptoa(&ci, 6), fptoa(di, 5));
di += (FP_SECOND >> (-(int)NTPDATE_PRECISION))
+ (FP_SECOND >> (-(int)server->precision)) + NTP_MAXSKW;
if (di <= 0) { /* value still too raunchy to use? */
L_CLR(&ci);
di = 0;
} else {
di = max(di, NTP_MINDIST);
}
/*
* Shift this data in, then schedule another transmit.
*/
server_data(server, (s_fp) di, &ci, 0);
if ((int)server->filter_nextpt >= sys_samples) {
/*
* Got all the data we need. Mark this guy
* completed and return.
*/
server->event_time = 0;
complete_servers++;
return;
}
server->event_time = current_time + sys_timeout;
}
/*
* server_data - add a sample to the server's filter registers
*/
static void
server_data(
register struct server *server,
s_fp d,
l_fp *c,
u_fp e
)
{
u_short i;
i = server->filter_nextpt;
if (i < NTP_SHIFT) {
server->filter_delay[i] = d;
server->filter_offset[i] = *c;
server->filter_soffset[i] = LFPTOFP(c);
server->filter_error[i] = e;
server->filter_nextpt = (u_short)(i + 1);
}
}
/*
* clock_filter - determine a server's delay, dispersion and offset
*/
static void
clock_filter(
register struct server *server
)
{
register int i, j;
int ord[NTP_SHIFT];
INSIST((0 < sys_samples) && (sys_samples <= NTP_SHIFT));
/*
* Sort indices into increasing delay order
*/
for (i = 0; i < sys_samples; i++)
ord[i] = i;
for (i = 0; i < (sys_samples-1); i++) {
for (j = i+1; j < sys_samples; j++) {
if (server->filter_delay[ord[j]] == 0)
continue;
if (server->filter_delay[ord[i]] == 0
|| (server->filter_delay[ord[i]]
> server->filter_delay[ord[j]])) {
register int tmp;
tmp = ord[i];
ord[i] = ord[j];
ord[j] = tmp;
}
}
}
/*
* Now compute the dispersion, and assign values to delay and
* offset. If there are no samples in the register, delay and
* offset go to zero and dispersion is set to the maximum.
*/
if (server->filter_delay[ord[0]] == 0) {
server->delay = 0;
L_CLR(&server->offset);
server->soffset = 0;
server->dispersion = PEER_MAXDISP;
} else {
register s_fp d;
server->delay = server->filter_delay[ord[0]];
server->offset = server->filter_offset[ord[0]];
server->soffset = LFPTOFP(&server->offset);
server->dispersion = 0;
for (i = 1; i < sys_samples; i++) {
if (server->filter_delay[ord[i]] == 0)
d = PEER_MAXDISP;
else {
d = server->filter_soffset[ord[i]]
- server->filter_soffset[ord[0]];
if (d < 0)
d = -d;
if (d > PEER_MAXDISP)
d = PEER_MAXDISP;
}
/*
* XXX This *knows* PEER_FILTER is 1/2
*/
server->dispersion += (u_fp)(d) >> i;
}
}
/*
* We're done
*/
}
/*
* clock_select - select the pick-of-the-litter clock from the samples
* we've got.
*/
static struct server *
clock_select(void)
{
struct server *server;
u_int nlist;
s_fp d;
u_int count;
u_int i;
u_int j;
u_int k;
int n;
s_fp local_threshold;
struct server *server_list[NTP_MAXCLOCK];
u_fp server_badness[NTP_MAXCLOCK];
struct server *sys_server;
/*
* This first chunk of code is supposed to go through all
* servers we know about to find the NTP_MAXLIST servers which
* are most likely to succeed. We run through the list
* doing the sanity checks and trying to insert anyone who
* looks okay. We are at all times aware that we should
* only keep samples from the top two strata and we only need
* NTP_MAXLIST of them.
*/
nlist = 0; /* none yet */
for (server = sys_servers; server != NULL; server = server->next_server) {
if (server->delay == 0) {
if (debug)
printf("%s: Server dropped: no data\n", ntoa(&server->srcadr));
continue; /* no data */
}
if (server->stratum > NTP_INFIN) {
if (debug)
printf("%s: Server dropped: strata too high\n", ntoa(&server->srcadr));
continue; /* stratum no good */
}
if (server->delay > NTP_MAXWGT) {
if (debug)
printf("%s: Server dropped: server too far away\n",
ntoa(&server->srcadr));
continue; /* too far away */
}
if (server->leap == LEAP_NOTINSYNC) {
if (debug)
printf("%s: Server dropped: Leap not in sync\n", ntoa(&server->srcadr));
continue; /* he's in trouble */
}
if (!L_ISHIS(&server->org, &server->reftime)) {
if (debug)
printf("%s: Server dropped: server is very broken\n",
ntoa(&server->srcadr));
continue; /* very broken host */
}
if ((server->org.l_ui - server->reftime.l_ui)
>= NTP_MAXAGE) {
if (debug)
printf("%s: Server dropped: Server has gone too long without sync\n",
ntoa(&server->srcadr));
continue; /* too long without sync */
}
if (server->trust != 0) {
if (debug)
printf("%s: Server dropped: Server is untrusted\n",
ntoa(&server->srcadr));
continue;
}
/*
* This one seems sane. Find where he belongs
* on the list.
*/
d = server->dispersion + server->dispersion;
for (i = 0; i < nlist; i++)
if (server->stratum <= server_list[i]->stratum)
break;
for ( ; i < nlist; i++) {
if (server->stratum < server_list[i]->stratum)
break;
if (d < (s_fp) server_badness[i])
break;
}
/*
* If i points past the end of the list, this
* guy is a loser, else stick him in.
*/
if (i >= NTP_MAXLIST)
continue;
for (j = nlist; j > i; j--)
if (j < NTP_MAXLIST) {
server_list[j] = server_list[j-1];
server_badness[j]
= server_badness[j-1];
}
server_list[i] = server;
server_badness[i] = d;
if (nlist < NTP_MAXLIST)
nlist++;
}
/*
* Got the five-or-less best. Cut the list where the number of
* strata exceeds two.
*/
count = 0;
for (i = 1; i < nlist; i++)
if (server_list[i]->stratum > server_list[i-1]->stratum) {
count++;
if (2 == count) {
nlist = i;
break;
}
}
/*
* Whew! What we should have by now is 0 to 5 candidates for
* the job of syncing us. If we have none, we're out of luck.
* If we have one, he's a winner. If we have more, do falseticker
* detection.
*/
if (0 == nlist)
sys_server = NULL;
else if (1 == nlist) {
sys_server = server_list[0];
} else {
/*
* Re-sort by stratum, bdelay estimate quality and
* server.delay.
*/
for (i = 0; i < nlist-1; i++)
for (j = i+1; j < nlist; j++) {
if (server_list[i]->stratum <
server_list[j]->stratum)
/* already sorted by stratum */
break;
if (server_list[i]->delay <
server_list[j]->delay)
continue;
server = server_list[i];
server_list[i] = server_list[j];
server_list[j] = server;
}
/*
* Calculate the fixed part of the dispersion limit
*/
local_threshold = (FP_SECOND >> (-(int)NTPDATE_PRECISION))
+ NTP_MAXSKW;
/*
* Now drop samples until we're down to one.
*/
while (nlist > 1) {
for (k = 0; k < nlist; k++) {
server_badness[k] = 0;
for (j = 0; j < nlist; j++) {
if (j == k) /* with self? */
continue;
d = server_list[j]->soffset -
server_list[k]->soffset;
if (d < 0) /* abs value */
d = -d;
/*
* XXX This code *knows* that
* NTP_SELECT is 3/4
*/
for (i = 0; i < j; i++)
d = (d>>1) + (d>>2);
server_badness[k] += d;
}
}
/*
* We now have an array of nlist badness
* coefficients. Find the badest. Find
* the minimum precision while we're at
* it.
*/
i = 0;
n = server_list[0]->precision;;
for (j = 1; j < nlist; j++) {
if (server_badness[j] >= server_badness[i])
i = j;
if (n > server_list[j]->precision)
n = server_list[j]->precision;
}
/*
* i is the index of the server with the worst
* dispersion. If his dispersion is less than
* the threshold, stop now, else delete him and
* continue around again.
*/
if ( (s_fp) server_badness[i] < (local_threshold
+ (FP_SECOND >> (-n))))
break;
for (j = i + 1; j < nlist; j++)
server_list[j-1] = server_list[j];
nlist--;
}
/*
* What remains is a list of less than 5 servers. Take
* the best.
*/
sys_server = server_list[0];
}
/*
* That's it. Return our server.
*/
return sys_server;
}
/*
* clock_adjust - process what we've received, and adjust the time
* if we got anything decent.
*/
static int
clock_adjust(void)
{
register struct server *sp, *server;
int dostep;
for (sp = sys_servers; sp != NULL; sp = sp->next_server)
clock_filter(sp);
server = clock_select();
if (debug || simple_query) {
for (sp = sys_servers; sp != NULL; sp = sp->next_server)
printserver(sp, stdout);
}
if (server == 0) {
msyslog(LOG_ERR,
"no server suitable for synchronization found");
return(1);
}
if (always_step) {
dostep = 1;
} else if (never_step) {
dostep = 0;
} else {
/* [Bug 3023] get absolute difference, avoiding signed
* integer overflow like hell.
*/
u_fp absoffset;
if (server->soffset < 0)
absoffset = 1u + (u_fp)(-(server->soffset + 1));
else
absoffset = (u_fp)server->soffset;
dostep = (absoffset >= NTPDATE_THRESHOLD);
}
if (dostep) {
if (simple_query || debug || l_step_systime(&server->offset)){
msyslog(LOG_NOTICE, "step time server %s offset %s sec",
stoa(&server->srcadr),
lfptoa(&server->offset, 6));
}
} else {
#ifndef SYS_WINNT
if (simple_query || l_adj_systime(&server->offset)) {
msyslog(LOG_NOTICE, "adjust time server %s offset %s sec",
stoa(&server->srcadr),
lfptoa(&server->offset, 6));
}
#else
/* The NT SetSystemTimeAdjustment() call achieves slewing by
* changing the clock frequency. This means that we cannot specify
* it to slew the clock by a definite amount and then stop like
* the Unix adjtime() routine. We can technically adjust the clock
* frequency, have ntpdate sleep for a while, and then wake
* up and reset the clock frequency, but this might cause some
* grief if the user attempts to run ntpd immediately after
* ntpdate and the socket is in use.
*/
printf("\nThe -b option is required by ntpdate on Windows NT platforms\n");
exit(1);
#endif /* SYS_WINNT */
}
return(0);
}
/*
* is_unreachable - check to see if we have a route to given destination
* (non-blocking).
*/
static int
is_reachable (sockaddr_u *dst)
{
SOCKET sockfd;
sockfd = socket(AF(dst), SOCK_DGRAM, 0);
if (sockfd == -1) {
return 0;
}
if (connect(sockfd, &dst->sa, SOCKLEN(dst))) {
closesocket(sockfd);
return 0;
}
closesocket(sockfd);
return 1;
}
/* XXX ELIMINATE: merge BIG slew into adj_systime in lib/systime.c */
/*
* addserver - determine a server's address and allocate a new structure
* for it.
*/
static void
addserver(
char *serv
)
{
register struct server *server;
/* Address infos structure to store result of getaddrinfo */
struct addrinfo *addrResult, *ptr;
/* Address infos structure to store hints for getaddrinfo */
struct addrinfo hints;
/* Error variable for getaddrinfo */
int error;
/* Service name */
char service[5];
sockaddr_u addr;
strlcpy(service, "ntp", sizeof(service));
/* Get host address. Looking for UDP datagram connection. */
ZERO(hints);
hints.ai_family = ai_fam_templ;
hints.ai_socktype = SOCK_DGRAM;
#ifdef DEBUG
if (debug)
printf("Looking for host %s and service %s\n", serv, service);
#endif
error = getaddrinfo(serv, service, &hints, &addrResult);
if (error != 0) {
/* Conduct more refined error analysis */
if (error == EAI_FAIL || error == EAI_AGAIN){
/* Name server is unusable. Exit after failing on the
first server, in order to shorten the timeout caused
by waiting for resolution of several servers */
fprintf(stderr, "Exiting, name server cannot be used: %s (%d)",
gai_strerror(error), error);
msyslog(LOG_ERR, "name server cannot be used: %s (%d)",
gai_strerror(error), error);
exit(1);
}
fprintf(stderr, "Error resolving %s: %s (%d)\n", serv,
gai_strerror(error), error);
msyslog(LOG_ERR, "Can't find host %s: %s (%d)", serv,
gai_strerror(error), error);
return;
}
#ifdef DEBUG
if (debug) {
ZERO(addr);
INSIST(addrResult->ai_addrlen <= sizeof(addr));
memcpy(&addr, addrResult->ai_addr, addrResult->ai_addrlen);
fprintf(stderr, "host found : %s\n", stohost(&addr));
}
#endif
/* We must get all returned server in case the first one fails */
for (ptr = addrResult; ptr != NULL; ptr = ptr->ai_next) {
ZERO(addr);
INSIST(ptr->ai_addrlen <= sizeof(addr));
memcpy(&addr, ptr->ai_addr, ptr->ai_addrlen);
if (is_reachable(&addr)) {
server = emalloc_zero(sizeof(*server));
memcpy(&server->srcadr, ptr->ai_addr, ptr->ai_addrlen);
server->event_time = ++sys_numservers;
if (sys_servers == NULL)
sys_servers = server;
else {
struct server *sp;
for (sp = sys_servers; sp->next_server != NULL;
sp = sp->next_server)
/* empty */;
sp->next_server = server;
}
}
}
freeaddrinfo(addrResult);
}
/*
* findserver - find a server in the list given its address
* ***(For now it isn't totally AF-Independant, to check later..)
*/
static struct server *
findserver(
sockaddr_u *addr
)
{
struct server *server;
struct server *mc_server;
mc_server = NULL;
if (SRCPORT(addr) != NTP_PORT)
return 0;
for (server = sys_servers; server != NULL;
server = server->next_server) {
if (SOCK_EQ(addr, &server->srcadr))
return server;
if (AF(addr) == AF(&server->srcadr)) {
if (IS_MCAST(&server->srcadr))
mc_server = server;
}
}
if (mc_server != NULL) {
struct server *sp;
if (mc_server->event_time != 0) {
mc_server->event_time = 0;
complete_servers++;
}
server = emalloc_zero(sizeof(*server));
server->srcadr = *addr;
server->event_time = ++sys_numservers;
for (sp = sys_servers; sp->next_server != NULL;
sp = sp->next_server)
/* empty */;
sp->next_server = server;
transmit(server);
}
return NULL;
}
/*
* timer - process a timer interrupt
*/
void
timer(void)
{
struct server *server;
/*
* Bump the current idea of the time
*/
current_time++;
/*
* Search through the server list looking for guys
* who's event timers have expired. Give these to
* the transmit routine.
*/
for (server = sys_servers; server != NULL;
server = server->next_server) {
if (server->event_time != 0
&& server->event_time <= current_time)
transmit(server);
}
}
/*
* The code duplication in the following subroutine sucks, but
* we need to appease ansi2knr.
*/
#ifndef SYS_WINNT
/*
* alarming - record the occurance of an alarm interrupt
*/
static RETSIGTYPE
alarming(
int sig
)
{
alarm_flag++;
}
#else /* SYS_WINNT follows */
void CALLBACK
alarming(UINT uTimerID, UINT uMsg, DWORD dwUser, DWORD dw1, DWORD dw2)
{
UNUSED_ARG(uTimerID); UNUSED_ARG(uMsg); UNUSED_ARG(dwUser);
UNUSED_ARG(dw1); UNUSED_ARG(dw2);
alarm_flag++;
}
static void
callTimeEndPeriod(void)
{
timeEndPeriod( wTimerRes );
wTimerRes = 0;
}
#endif /* SYS_WINNT */
/*
* init_alarm - set up the timer interrupt
*/
static void
init_alarm(void)
{
#ifndef SYS_WINNT
# ifdef HAVE_TIMER_CREATE
struct itimerspec its;
# else
struct itimerval itv;
# endif
#else /* SYS_WINNT follows */
TIMECAPS tc;
UINT wTimerID;
HANDLE hToken;
TOKEN_PRIVILEGES tkp;
DWORD dwUser = 0;
#endif /* SYS_WINNT */
alarm_flag = 0;
#ifndef SYS_WINNT
# ifdef HAVE_TIMER_CREATE
alarm_flag = 0;
/* this code was put in as setitimer() is non existant this us the
* POSIX "equivalents" setup - casey
*/
/* ntpdate_timerid is global - so we can kill timer later */
if (timer_create (CLOCK_REALTIME, NULL, &ntpdate_timerid) ==
# ifdef SYS_VXWORKS
ERROR
# else
-1
# endif
)
{
fprintf (stderr, "init_alarm(): timer_create (...) FAILED\n");
return;
}
/* TIMER_HZ = (5)
* Set up the alarm interrupt. The first comes 1/(2*TIMER_HZ)
* seconds from now and they continue on every 1/TIMER_HZ seconds.
*/
signal_no_reset(SIGALRM, alarming);
its.it_interval.tv_sec = 0;
its.it_value.tv_sec = 0;
its.it_interval.tv_nsec = 1000000000/TIMER_HZ;
its.it_value.tv_nsec = 1000000000/(TIMER_HZ<<1);
timer_settime(ntpdate_timerid, 0 /* !TIMER_ABSTIME */, &its, NULL);
# else /* !HAVE_TIMER_CREATE follows */
/*
* Set up the alarm interrupt. The first comes 1/(2*TIMER_HZ)
* seconds from now and they continue on every 1/TIMER_HZ seconds.
*/
signal_no_reset(SIGALRM, alarming);
itv.it_interval.tv_sec = 0;
itv.it_value.tv_sec = 0;
itv.it_interval.tv_usec = 1000000/TIMER_HZ;
itv.it_value.tv_usec = 1000000/(TIMER_HZ<<1);
setitimer(ITIMER_REAL, &itv, NULL);
# endif /* !HAVE_TIMER_CREATE */
#else /* SYS_WINNT follows */
_tzset();
/*
* Get privileges needed for fiddling with the clock
*/
/* get the current process token handle */
if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken)) {
msyslog(LOG_ERR, "OpenProcessToken failed: %m");
exit(1);
}
/* get the LUID for system-time privilege. */
LookupPrivilegeValue(NULL, SE_SYSTEMTIME_NAME, &tkp.Privileges[0].Luid);
tkp.PrivilegeCount = 1; /* one privilege to set */
tkp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
/* get set-time privilege for this process. */
AdjustTokenPrivileges(hToken, FALSE, &tkp, 0,(PTOKEN_PRIVILEGES) NULL, 0);
/* cannot test return value of AdjustTokenPrivileges. */
if (GetLastError() != ERROR_SUCCESS)
msyslog(LOG_ERR, "AdjustTokenPrivileges failed: %m");
/*
* Set up timer interrupts for every 2**EVENT_TIMEOUT seconds
* Under Win/NT, expiry of timer interval leads to invocation
* of a callback function (on a different thread) rather than
* generating an alarm signal
*/
/* determine max and min resolution supported */
if(timeGetDevCaps(&tc, sizeof(TIMECAPS)) != TIMERR_NOERROR) {
msyslog(LOG_ERR, "timeGetDevCaps failed: %m");
exit(1);
}
wTimerRes = min(max(tc.wPeriodMin, TARGET_RESOLUTION), tc.wPeriodMax);
/* establish the minimum timer resolution that we'll use */
timeBeginPeriod(wTimerRes);
atexit(callTimeEndPeriod);
/* start the timer event */
wTimerID = timeSetEvent(
(UINT) (1000/TIMER_HZ), /* Delay */
wTimerRes, /* Resolution */
(LPTIMECALLBACK) alarming, /* Callback function */
(DWORD) dwUser, /* User data */
TIME_PERIODIC); /* Event type (periodic) */
if (wTimerID == 0) {
msyslog(LOG_ERR, "timeSetEvent failed: %m");
exit(1);
}
#endif /* SYS_WINNT */
}
/*
* We do asynchronous input using the SIGIO facility. A number of
* recvbuf buffers are preallocated for input. In the signal
* handler we poll to see if the socket is ready and read the
* packets from it into the recvbuf's along with a time stamp and
* an indication of the source host and the interface it was received
* through. This allows us to get as accurate receive time stamps
* as possible independent of other processing going on.
*
* We allocate a number of recvbufs equal to the number of servers
* plus 2. This should be plenty.
*/
/*
* init_io - initialize I/O data and open socket
*/
static void
init_io(void)
{
struct addrinfo *res, *ressave;
struct addrinfo hints;
sockaddr_u addr;
char service[5];
int rc;
int optval = 1;
int check_ntp_port_in_use = !debug && !simple_query && !unpriv_port;
/*
* Init buffer free list and stat counters
*/
init_recvbuff(sys_numservers + 2);
/*
* Open the socket
*/
strlcpy(service, "ntp", sizeof(service));
/*
* Init hints addrinfo structure
*/
ZERO(hints);
hints.ai_family = ai_fam_templ;
hints.ai_flags = AI_PASSIVE;
hints.ai_socktype = SOCK_DGRAM;
if (getaddrinfo(NULL, service, &hints, &res) != 0) {
msyslog(LOG_ERR, "getaddrinfo() failed: %m");
exit(1);
/*NOTREACHED*/
}
#ifdef SYS_WINNT
if (check_ntp_port_in_use && ntp_port_inuse(AF_INET, NTP_PORT)){
msyslog(LOG_ERR, "the NTP socket is in use, exiting: %m");
exit(1);
}
#endif
/* Remember the address of the addrinfo structure chain */
ressave = res;
/*
* For each structure returned, open and bind socket
*/
for(nbsock = 0; (nbsock < MAX_AF) && res ; res = res->ai_next) {
/* create a datagram (UDP) socket */
fd[nbsock] = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (fd[nbsock] == SOCKET_ERROR) {
#ifndef SYS_WINNT
if (errno == EPROTONOSUPPORT || errno == EAFNOSUPPORT ||
errno == EPFNOSUPPORT)
#else
int err = WSAGetLastError();
if (err == WSAEPROTONOSUPPORT || err == WSAEAFNOSUPPORT ||
err == WSAEPFNOSUPPORT)
#endif
continue;
msyslog(LOG_ERR, "socket() failed: %m");
exit(1);
/*NOTREACHED*/
}
/* set socket to reuse address */
if (setsockopt(fd[nbsock], SOL_SOCKET, SO_REUSEADDR, (void*) &optval, sizeof(optval)) < 0) {
msyslog(LOG_ERR, "setsockopt() SO_REUSEADDR failed: %m");
exit(1);
/*NOTREACHED*/
}
#ifdef IPV6_V6ONLY
/* Restricts AF_INET6 socket to IPv6 communications (see RFC 2553bis-03) */
if (res->ai_family == AF_INET6)
if (setsockopt(fd[nbsock], IPPROTO_IPV6, IPV6_V6ONLY, (void*) &optval, sizeof(optval)) < 0) {
msyslog(LOG_ERR, "setsockopt() IPV6_V6ONLY failed: %m");
exit(1);
/*NOTREACHED*/
}
#endif
/* Remember the socket family in fd_family structure */
fd_family[nbsock] = res->ai_family;
/*
* bind the socket to the NTP port
*/
if (check_ntp_port_in_use) {
ZERO(addr);
INSIST(res->ai_addrlen <= sizeof(addr));
memcpy(&addr, res->ai_addr, res->ai_addrlen);
rc = bind(fd[nbsock], &addr.sa, SOCKLEN(&addr));
if (rc < 0) {
if (EADDRINUSE == socket_errno())
msyslog(LOG_ERR, "the NTP socket is in use, exiting");
else
msyslog(LOG_ERR, "bind() fails: %m");
exit(1);
}
}
#ifdef HAVE_POLL_H
fdmask[nbsock].fd = fd[nbsock];
fdmask[nbsock].events = POLLIN;
#else
FD_SET(fd[nbsock], &fdmask);
if (maxfd < fd[nbsock]+1) {
maxfd = fd[nbsock]+1;
}
#endif
/*
* set non-blocking,
*/
#ifndef SYS_WINNT
# ifdef SYS_VXWORKS
{
int on = TRUE;
if (ioctl(fd[nbsock],FIONBIO, &on) == ERROR) {
msyslog(LOG_ERR, "ioctl(FIONBIO) fails: %m");
exit(1);
}
}
# else /* not SYS_VXWORKS */
# if defined(O_NONBLOCK)
if (fcntl(fd[nbsock], F_SETFL, O_NONBLOCK) < 0) {
msyslog(LOG_ERR, "fcntl(FNDELAY|FASYNC) fails: %m");
exit(1);
/*NOTREACHED*/
}
# else /* not O_NONBLOCK */
# if defined(FNDELAY)
if (fcntl(fd[nbsock], F_SETFL, FNDELAY) < 0) {
msyslog(LOG_ERR, "fcntl(FNDELAY|FASYNC) fails: %m");
exit(1);
/*NOTREACHED*/
}
# else /* FNDELAY */
# include "Bletch: Need non blocking I/O"
# endif /* FNDELAY */
# endif /* not O_NONBLOCK */
# endif /* SYS_VXWORKS */
#else /* SYS_WINNT */
if (ioctlsocket(fd[nbsock], FIONBIO, (u_long *) &on) == SOCKET_ERROR) {
msyslog(LOG_ERR, "ioctlsocket(FIONBIO) fails: %m");
exit(1);
}
#endif /* SYS_WINNT */
nbsock++;
}
freeaddrinfo(ressave);
}
/*
* sendpkt - send a packet to the specified destination
*/
static void
sendpkt(
sockaddr_u *dest,
struct pkt *pkt,
int len
)
{
int i;
int cc;
SOCKET sock = INVALID_SOCKET;
#ifdef SYS_WINNT
DWORD err;
#endif /* SYS_WINNT */
/* Find a local family compatible socket to send ntp packet to ntp server */
for(i = 0; (i < MAX_AF); i++) {
if(AF(dest) == fd_family[i]) {
sock = fd[i];
break;
}
}
if (INVALID_SOCKET == sock) {
msyslog(LOG_ERR, "cannot find family compatible socket to send ntp packet");
exit(1);
/*NOTREACHED*/
}
cc = sendto(sock, (char *)pkt, len, 0, (struct sockaddr *)dest,
SOCKLEN(dest));
if (SOCKET_ERROR == cc) {
#ifndef SYS_WINNT
if (errno != EWOULDBLOCK && errno != ENOBUFS)
#else
err = WSAGetLastError();
if (err != WSAEWOULDBLOCK && err != WSAENOBUFS)
#endif /* SYS_WINNT */
msyslog(LOG_ERR, "sendto(%s): %m", stohost(dest));
}
}
/*
* input_handler - receive packets asynchronously
*/
void
input_handler(void)
{
register int n;
register struct recvbuf *rb;
struct sock_timeval tvzero;
GETSOCKNAME_SOCKLEN_TYPE fromlen;
l_fp ts;
int i;
#ifdef HAVE_POLL_H
struct pollfd fds[MAX_AF];
#else
fd_set fds;
#endif
SOCKET fdc = 0;
/*
* Do a poll to see if we have data
*/
for (;;) {
tvzero.tv_sec = tvzero.tv_usec = 0;
#ifdef HAVE_POLL_H
memcpy(fds, fdmask, sizeof(fdmask));
n = poll(fds, (unsigned int)nbsock, tvzero.tv_sec * 1000);
/*
* Determine which socket received data
*/
for(i=0; i < nbsock; i++) {
if(fds[i].revents & POLLIN) {
fdc = fd[i];
break;
}
}
#else
fds = fdmask;
n = select(maxfd, &fds, NULL, NULL, &tvzero);
/*
* Determine which socket received data
*/
for(i=0; i < nbsock; i++) {
if(FD_ISSET(fd[i], &fds)) {
fdc = fd[i];
break;
}
}
#endif
/*
* If nothing to do, just return. If an error occurred,
* complain and return. If we've got some, freeze a
* timestamp.
*/
if (n == 0)
return;
else if (n == -1) {
if (errno != EINTR)
msyslog(LOG_ERR,
#ifdef HAVE_POLL_H
"poll() error: %m"
#else
"select() error: %m"
#endif
);
return;
}
get_systime(&ts);
/*
* Get a buffer and read the frame. If we
* haven't got a buffer, or this is received
* on the wild card socket, just dump the packet.
*/
if (initializing || free_recvbuffs() == 0) {
char buf[100];
#ifndef SYS_WINNT
(void) read(fdc, buf, sizeof buf);
#else
/* NT's _read does not operate on nonblocking sockets
* either recvfrom or ReadFile() has to be used here.
* ReadFile is used in [ntpd]ntp_intres() and ntpdc,
* just to be different use recvfrom() here
*/
recvfrom(fdc, buf, sizeof(buf), 0, (struct sockaddr *)0, NULL);
#endif /* SYS_WINNT */
continue;
}
rb = get_free_recv_buffer();
fromlen = sizeof(rb->recv_srcadr);
rb->recv_length = recvfrom(fdc, (char *)&rb->recv_pkt,
sizeof(rb->recv_pkt), 0,
(struct sockaddr *)&rb->recv_srcadr, &fromlen);
if (rb->recv_length == -1) {
freerecvbuf(rb);
continue;
}
/*
* Got one. Mark how and when it got here,
* put it on the full list.
*/
rb->recv_time = ts;
add_full_recv_buffer(rb);
}
}
#if !defined SYS_WINNT && !defined SYS_CYGWIN32
/*
* adj_systime - do a big long slew of the system time
*/
static int
l_adj_systime(
l_fp *ts
)
{
struct timeval adjtv, oadjtv;
int isneg = 0;
l_fp offset;
#ifndef STEP_SLEW
l_fp overshoot;
#endif
/*
* Take the absolute value of the offset
*/
offset = *ts;
if (L_ISNEG(&offset)) {
isneg = 1;
L_NEG(&offset);
}
#ifndef STEP_SLEW
/*
* Calculate the overshoot. XXX N.B. This code *knows*
* ADJ_OVERSHOOT is 1/2.
*/
overshoot = offset;
L_RSHIFTU(&overshoot);
if (overshoot.l_ui != 0 || (overshoot.l_uf > ADJ_MAXOVERSHOOT)) {
overshoot.l_ui = 0;
overshoot.l_uf = ADJ_MAXOVERSHOOT;
}
L_ADD(&offset, &overshoot);
#endif
TSTOTV(&offset, &adjtv);
if (isneg) {
adjtv.tv_sec = -adjtv.tv_sec;
adjtv.tv_usec = -adjtv.tv_usec;
}
if (adjtv.tv_usec != 0 && !debug) {
if (adjtime(&adjtv, &oadjtv) < 0) {
msyslog(LOG_ERR, "Can't adjust the time of day: %m");
exit(1);
}
}
return 1;
}
#endif /* SYS_WINNT */
/*
* This fuction is not the same as lib/systime step_systime!!!
*/
static int
l_step_systime(
l_fp *ts
)
{
double dtemp;
#ifdef SLEWALWAYS
#ifdef STEP_SLEW
l_fp ftmp;
int isneg;
int n;
if (debug) return 1;
/*
* Take the absolute value of the offset
*/
ftmp = *ts;
if (L_ISNEG(&ftmp)) {
L_NEG(&ftmp);
isneg = 1;
} else
isneg = 0;
if (ftmp.l_ui >= 3) { /* Step it and slew - we might win */
LFPTOD(ts, dtemp);
n = step_systime(dtemp);
if (!n)
return n;
if (isneg)
ts->l_ui = ~0;
else
ts->l_ui = ~0;
}
/*
* Just add adjustment into the current offset. The update
* routine will take care of bringing the system clock into
* line.
*/
#endif
if (debug)
return 1;
#ifdef FORCE_NTPDATE_STEP
LFPTOD(ts, dtemp);
return step_systime(dtemp);
#else
l_adj_systime(ts);
return 1;
#endif
#else /* SLEWALWAYS */
if (debug)
return 1;
LFPTOD(ts, dtemp);
return step_systime(dtemp);
#endif /* SLEWALWAYS */
}
/* XXX ELIMINATE printserver similar in ntptrace.c, ntpdate.c */
/*
* printserver - print detail information for a server
*/
static void
printserver(
register struct server *pp,
FILE *fp
)
{
register int i;
char junk[5];
const char *str;
if (!debug) {
(void) fprintf(fp, "server %s, stratum %d, offset %s, delay %s\n",
stoa(&pp->srcadr), pp->stratum,
lfptoa(&pp->offset, 6), fptoa((s_fp)pp->delay, 5));
return;
}
(void) fprintf(fp, "server %s, port %d\n",
stoa(&pp->srcadr), ntohs(((struct sockaddr_in*)&(pp->srcadr))->sin_port));
(void) fprintf(fp, "stratum %d, precision %d, leap %c%c, trust %03o\n",
pp->stratum, pp->precision,
pp->leap & 0x2 ? '1' : '0',
pp->leap & 0x1 ? '1' : '0',
pp->trust);
if (pp->stratum == 1) {
junk[4] = 0;
memmove(junk, (char *)&pp->refid, 4);
str = junk;
} else {
str = stoa(&pp->srcadr);
}
(void) fprintf(fp,
"refid [%s], delay %s, dispersion %s\n",
str, fptoa((s_fp)pp->delay, 5),
ufptoa(pp->dispersion, 5));
(void) fprintf(fp, "transmitted %d, in filter %d\n",
pp->xmtcnt, pp->filter_nextpt);
(void) fprintf(fp, "reference time: %s\n",
prettydate(&pp->reftime));
(void) fprintf(fp, "originate timestamp: %s\n",
prettydate(&pp->org));
(void) fprintf(fp, "transmit timestamp: %s\n",
prettydate(&pp->xmt));
(void) fprintf(fp, "filter delay: ");
for (i = 0; i < NTP_SHIFT; i++) {
(void) fprintf(fp, " %-8.8s", fptoa(pp->filter_delay[i], 5));
if (i == (NTP_SHIFT>>1)-1)
(void) fprintf(fp, "\n ");
}
(void) fprintf(fp, "\n");
(void) fprintf(fp, "filter offset:");
for (i = 0; i < PEER_SHIFT; i++) {
(void) fprintf(fp, " %-8.8s", lfptoa(&pp->filter_offset[i], 6));
if (i == (PEER_SHIFT>>1)-1)
(void) fprintf(fp, "\n ");
}
(void) fprintf(fp, "\n");
(void) fprintf(fp, "delay %s, dispersion %s\n",
fptoa((s_fp)pp->delay, 5), ufptoa(pp->dispersion, 5));
(void) fprintf(fp, "offset %s\n\n",
lfptoa(&pp->offset, 6));
}
#ifdef HAVE_NETINFO
static ni_namelist *
getnetinfoservers(void)
{
ni_status status;
void *domain;
ni_id confdir;
ni_namelist *namelist = emalloc(sizeof(ni_namelist));
/* Find a time server in NetInfo */
if ((status = ni_open(NULL, ".", &domain)) != NI_OK) return NULL;
while (status = ni_pathsearch(domain, &confdir, NETINFO_CONFIG_DIR) == NI_NODIR) {
void *next_domain;
if (ni_open(domain, "..", &next_domain) != NI_OK) break;
ni_free(domain);
domain = next_domain;
}
if (status != NI_OK) return NULL;
NI_INIT(namelist);
if (ni_lookupprop(domain, &confdir, "server", namelist) != NI_OK) {
ni_namelist_free(namelist);
free(namelist);
return NULL;
}
return(namelist);
}
#endif
#ifdef SYS_WINNT
isc_boolean_t ntp_port_inuse(int af, u_short port)
{
/*
* Check if NTP socket is already in use on this system
* This is only for Windows Systems, as they tend not to fail on the real bind() below
*/
SOCKET checksocket;
struct sockaddr_in checkservice;
checksocket = socket(af, SOCK_DGRAM, 0);
if (checksocket == INVALID_SOCKET) {
return (ISC_TRUE);
}
checkservice.sin_family = (short) AF_INET;
checkservice.sin_addr.s_addr = INADDR_LOOPBACK;
checkservice.sin_port = htons(port);
if (bind(checksocket, (struct sockaddr *)&checkservice,
sizeof(checkservice)) == SOCKET_ERROR) {
if ( WSAGetLastError() == WSAEADDRINUSE ){
closesocket(checksocket);
return (ISC_TRUE);
}
}
closesocket(checksocket);
return (ISC_FALSE);
}
#endif