freebsd-skq/contrib/ntp/lib/isc/entropy.c
cy 8560674afd MFV ntp 4.2.8p1 (r258945, r275970, r276091, r276092, r276093, r278284)
Thanks to roberto for providing pointers to wedge this into HEAD.

Approved by:	roberto
2015-03-30 13:30:15 +00:00

1278 lines
29 KiB
C

/*
* Copyright (C) 2004-2007, 2009, 2010 Internet Systems Consortium, Inc. ("ISC")
* Copyright (C) 2000-2003 Internet Software Consortium.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/* $Id: entropy.c,v 1.22 2010/08/10 23:48:19 tbox Exp $ */
/*! \file
* \brief
* This is the system independent part of the entropy module. It is
* compiled via inclusion from the relevant OS source file, ie,
* \link unix/entropy.c unix/entropy.c \endlink or win32/entropy.c.
*
* \author Much of this code is modeled after the NetBSD /dev/random implementation,
* written by Michael Graff <explorer@netbsd.org>.
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <isc/buffer.h>
#include <isc/entropy.h>
#include <isc/keyboard.h>
#include <isc/list.h>
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/msgs.h>
#include <isc/mutex.h>
#include <isc/platform.h>
#include <isc/region.h>
#include <isc/sha1.h>
#include <isc/string.h>
#include <isc/time.h>
#include <isc/util.h>
#define ENTROPY_MAGIC ISC_MAGIC('E', 'n', 't', 'e')
#define SOURCE_MAGIC ISC_MAGIC('E', 'n', 't', 's')
#define VALID_ENTROPY(e) ISC_MAGIC_VALID(e, ENTROPY_MAGIC)
#define VALID_SOURCE(s) ISC_MAGIC_VALID(s, SOURCE_MAGIC)
/***
*** "constants." Do not change these unless you _really_ know what
*** you are doing.
***/
/*%
* Size of entropy pool in 32-bit words. This _MUST_ be a power of 2.
*/
#define RND_POOLWORDS 128
/*% Pool in bytes. */
#define RND_POOLBYTES (RND_POOLWORDS * 4)
/*% Pool in bits. */
#define RND_POOLBITS (RND_POOLWORDS * 32)
/*%
* Number of bytes returned per hash. This must be true:
* threshold * 2 <= digest_size_in_bytes
*/
#define RND_ENTROPY_THRESHOLD 10
#define THRESHOLD_BITS (RND_ENTROPY_THRESHOLD * 8)
/*%
* Size of the input event queue in samples.
*/
#define RND_EVENTQSIZE 32
/*%
* The number of times we'll "reseed" for pseudorandom seeds. This is an
* extremely weak pseudorandom seed. If the caller is using lots of
* pseudorandom data and they cannot provide a stronger random source,
* there is little we can do other than hope they're smart enough to
* call _adddata() with something better than we can come up with.
*/
#define RND_INITIALIZE 128
/*% Entropy Pool */
typedef struct {
isc_uint32_t cursor; /*%< current add point in the pool */
isc_uint32_t entropy; /*%< current entropy estimate in bits */
isc_uint32_t pseudo; /*%< bits extracted in pseudorandom */
isc_uint32_t rotate; /*%< how many bits to rotate by */
isc_uint32_t pool[RND_POOLWORDS]; /*%< random pool data */
} isc_entropypool_t;
struct isc_entropy {
unsigned int magic;
isc_mem_t *mctx;
isc_mutex_t lock;
unsigned int refcnt;
isc_uint32_t initialized;
isc_uint32_t initcount;
isc_entropypool_t pool;
unsigned int nsources;
isc_entropysource_t *nextsource;
ISC_LIST(isc_entropysource_t) sources;
};
/*% Sample Queue */
typedef struct {
isc_uint32_t last_time; /*%< last time recorded */
isc_uint32_t last_delta; /*%< last delta value */
isc_uint32_t last_delta2; /*%< last delta2 value */
isc_uint32_t nsamples; /*%< number of samples filled in */
isc_uint32_t *samples; /*%< the samples */
isc_uint32_t *extra; /*%< extra samples added in */
} sample_queue_t;
typedef struct {
sample_queue_t samplequeue;
} isc_entropysamplesource_t;
typedef struct {
isc_boolean_t start_called;
isc_entropystart_t startfunc;
isc_entropyget_t getfunc;
isc_entropystop_t stopfunc;
void *arg;
sample_queue_t samplequeue;
} isc_cbsource_t;
typedef struct {
FILESOURCE_HANDLE_TYPE handle;
} isc_entropyfilesource_t;
struct isc_entropysource {
unsigned int magic;
unsigned int type;
isc_entropy_t *ent;
isc_uint32_t total; /*%< entropy from this source */
ISC_LINK(isc_entropysource_t) link;
char name[32];
isc_boolean_t bad;
isc_boolean_t warn_keyboard;
isc_keyboard_t kbd;
union {
isc_entropysamplesource_t sample;
isc_entropyfilesource_t file;
isc_cbsource_t callback;
isc_entropyusocketsource_t usocket;
} sources;
};
#define ENTROPY_SOURCETYPE_SAMPLE 1 /*%< Type is a sample source */
#define ENTROPY_SOURCETYPE_FILE 2 /*%< Type is a file source */
#define ENTROPY_SOURCETYPE_CALLBACK 3 /*%< Type is a callback source */
#define ENTROPY_SOURCETYPE_USOCKET 4 /*%< Type is a Unix socket source */
/*@{*/
/*%
* The random pool "taps"
*/
#define TAP1 99
#define TAP2 59
#define TAP3 31
#define TAP4 9
#define TAP5 7
/*@}*/
/*@{*/
/*%
* Declarations for function provided by the system dependent sources that
* include this file.
*/
static void
fillpool(isc_entropy_t *, unsigned int, isc_boolean_t);
static int
wait_for_sources(isc_entropy_t *);
static void
destroyfilesource(isc_entropyfilesource_t *source);
static void
destroyusocketsource(isc_entropyusocketsource_t *source);
/*@}*/
static void
samplequeue_release(isc_entropy_t *ent, sample_queue_t *sq) {
REQUIRE(sq->samples != NULL);
REQUIRE(sq->extra != NULL);
isc_mem_put(ent->mctx, sq->samples, RND_EVENTQSIZE * 4);
isc_mem_put(ent->mctx, sq->extra, RND_EVENTQSIZE * 4);
sq->samples = NULL;
sq->extra = NULL;
}
static isc_result_t
samplesource_allocate(isc_entropy_t *ent, sample_queue_t *sq) {
sq->samples = isc_mem_get(ent->mctx, RND_EVENTQSIZE * 4);
if (sq->samples == NULL)
return (ISC_R_NOMEMORY);
sq->extra = isc_mem_get(ent->mctx, RND_EVENTQSIZE * 4);
if (sq->extra == NULL) {
isc_mem_put(ent->mctx, sq->samples, RND_EVENTQSIZE * 4);
sq->samples = NULL;
return (ISC_R_NOMEMORY);
}
sq->nsamples = 0;
return (ISC_R_SUCCESS);
}
/*%
* Add in entropy, even when the value we're adding in could be
* very large.
*/
static inline void
add_entropy(isc_entropy_t *ent, isc_uint32_t entropy) {
/* clamp input. Yes, this must be done. */
entropy = ISC_MIN(entropy, RND_POOLBITS);
/* Add in the entropy we already have. */
entropy += ent->pool.entropy;
/* Clamp. */
ent->pool.entropy = ISC_MIN(entropy, RND_POOLBITS);
}
/*%
* Decrement the amount of entropy the pool has.
*/
static inline void
subtract_entropy(isc_entropy_t *ent, isc_uint32_t entropy) {
entropy = ISC_MIN(entropy, ent->pool.entropy);
ent->pool.entropy -= entropy;
}
/*!
* Add in entropy, even when the value we're adding in could be
* very large.
*/
static inline void
add_pseudo(isc_entropy_t *ent, isc_uint32_t pseudo) {
/* clamp input. Yes, this must be done. */
pseudo = ISC_MIN(pseudo, RND_POOLBITS * 8);
/* Add in the pseudo we already have. */
pseudo += ent->pool.pseudo;
/* Clamp. */
ent->pool.pseudo = ISC_MIN(pseudo, RND_POOLBITS * 8);
}
/*!
* Decrement the amount of pseudo the pool has.
*/
static inline void
subtract_pseudo(isc_entropy_t *ent, isc_uint32_t pseudo) {
pseudo = ISC_MIN(pseudo, ent->pool.pseudo);
ent->pool.pseudo -= pseudo;
}
/*!
* Add one word to the pool, rotating the input as needed.
*/
static inline void
entropypool_add_word(isc_entropypool_t *rp, isc_uint32_t val) {
/*
* Steal some values out of the pool, and xor them into the
* word we were given.
*
* Mix the new value into the pool using xor. This will
* prevent the actual values from being known to the caller
* since the previous values are assumed to be unknown as well.
*/
val ^= rp->pool[(rp->cursor + TAP1) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP2) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP3) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP4) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP5) & (RND_POOLWORDS - 1)];
if (rp->rotate == 0)
rp->pool[rp->cursor++] ^= val;
else
rp->pool[rp->cursor++] ^=
((val << rp->rotate) | (val >> (32 - rp->rotate)));
/*
* If we have looped around the pool, increment the rotate
* variable so the next value will get xored in rotated to
* a different position.
* Increment by a value that is relatively prime to the word size
* to try to spread the bits throughout the pool quickly when the
* pool is empty.
*/
if (rp->cursor == RND_POOLWORDS) {
rp->cursor = 0;
rp->rotate = (rp->rotate + 7) & 31;
}
}
/*!
* Add a buffer's worth of data to the pool.
*
* Requires that the lock is held on the entropy pool.
*/
static void
entropypool_adddata(isc_entropy_t *ent, void *p, unsigned int len,
isc_uint32_t entropy)
{
isc_uint32_t val;
unsigned long addr;
isc_uint8_t *buf;
addr = (unsigned long)p;
buf = p;
if ((addr & 0x03U) != 0U) {
val = 0;
switch (len) {
case 3:
val = *buf++;
len--;
case 2:
val = val << 8 | *buf++;
len--;
case 1:
val = val << 8 | *buf++;
len--;
}
entropypool_add_word(&ent->pool, val);
}
for (; len > 3; len -= 4) {
val = *((isc_uint32_t *)buf);
entropypool_add_word(&ent->pool, val);
buf += 4;
}
if (len != 0) {
val = 0;
switch (len) {
case 3:
val = *buf++;
case 2:
val = val << 8 | *buf++;
case 1:
val = val << 8 | *buf++;
}
entropypool_add_word(&ent->pool, val);
}
add_entropy(ent, entropy);
subtract_pseudo(ent, entropy);
}
static inline void
reseed(isc_entropy_t *ent) {
isc_time_t t;
pid_t pid;
if (ent->initcount == 0) {
pid = getpid();
entropypool_adddata(ent, &pid, sizeof(pid), 0);
pid = getppid();
entropypool_adddata(ent, &pid, sizeof(pid), 0);
}
/*!
* After we've reseeded 100 times, only add new timing info every
* 50 requests. This will keep us from using lots and lots of
* CPU just to return bad pseudorandom data anyway.
*/
if (ent->initcount > 100)
if ((ent->initcount % 50) != 0)
return;
TIME_NOW(&t);
entropypool_adddata(ent, &t, sizeof(t), 0);
ent->initcount++;
}
static inline unsigned int
estimate_entropy(sample_queue_t *sq, isc_uint32_t t) {
isc_int32_t delta;
isc_int32_t delta2;
isc_int32_t delta3;
/*!
* If the time counter has overflowed, calculate the real difference.
* If it has not, it is simpler.
*/
if (t < sq->last_time)
delta = UINT_MAX - sq->last_time + t;
else
delta = sq->last_time - t;
if (delta < 0)
delta = -delta;
/*
* Calculate the second and third order differentials
*/
delta2 = sq->last_delta - delta;
if (delta2 < 0)
delta2 = -delta2;
delta3 = sq->last_delta2 - delta2;
if (delta3 < 0)
delta3 = -delta3;
sq->last_time = t;
sq->last_delta = delta;
sq->last_delta2 = delta2;
/*
* If any delta is 0, we got no entropy. If all are non-zero, we
* might have something.
*/
if (delta == 0 || delta2 == 0 || delta3 == 0)
return 0;
/*
* We could find the smallest delta and claim we got log2(delta)
* bits, but for now return that we found 1 bit.
*/
return 1;
}
static unsigned int
crunchsamples(isc_entropy_t *ent, sample_queue_t *sq) {
unsigned int ns;
unsigned int added;
if (sq->nsamples < 6)
return (0);
added = 0;
sq->last_time = sq->samples[0];
sq->last_delta = 0;
sq->last_delta2 = 0;
/*
* Prime the values by adding in the first 4 samples in. This
* should completely initialize the delta calculations.
*/
for (ns = 0; ns < 4; ns++)
(void)estimate_entropy(sq, sq->samples[ns]);
for (ns = 4; ns < sq->nsamples; ns++)
added += estimate_entropy(sq, sq->samples[ns]);
entropypool_adddata(ent, sq->samples, sq->nsamples * 4, added);
entropypool_adddata(ent, sq->extra, sq->nsamples * 4, 0);
/*
* Move the last 4 samples into the first 4 positions, and start
* adding new samples from that point.
*/
for (ns = 0; ns < 4; ns++) {
sq->samples[ns] = sq->samples[sq->nsamples - 4 + ns];
sq->extra[ns] = sq->extra[sq->nsamples - 4 + ns];
}
sq->nsamples = 4;
return (added);
}
static unsigned int
get_from_callback(isc_entropysource_t *source, unsigned int desired,
isc_boolean_t blocking)
{
isc_entropy_t *ent = source->ent;
isc_cbsource_t *cbs = &source->sources.callback;
unsigned int added;
unsigned int got;
isc_result_t result;
if (desired == 0)
return (0);
if (source->bad)
return (0);
if (!cbs->start_called && cbs->startfunc != NULL) {
result = cbs->startfunc(source, cbs->arg, blocking);
if (result != ISC_R_SUCCESS)
return (0);
cbs->start_called = ISC_TRUE;
}
added = 0;
result = ISC_R_SUCCESS;
while (desired > 0 && result == ISC_R_SUCCESS) {
result = cbs->getfunc(source, cbs->arg, blocking);
if (result == ISC_R_QUEUEFULL) {
got = crunchsamples(ent, &cbs->samplequeue);
added += got;
desired -= ISC_MIN(got, desired);
result = ISC_R_SUCCESS;
} else if (result != ISC_R_SUCCESS &&
result != ISC_R_NOTBLOCKING)
source->bad = ISC_TRUE;
}
return (added);
}
/*
* Extract some number of bytes from the random pool, decreasing the
* estimate of randomness as each byte is extracted.
*
* Do this by stiring the pool and returning a part of hash as randomness.
* Note that no secrets are given away here since parts of the hash are
* xored together before returned.
*
* Honor the request from the caller to only return good data, any data,
* etc.
*/
isc_result_t
isc_entropy_getdata(isc_entropy_t *ent, void *data, unsigned int length,
unsigned int *returned, unsigned int flags)
{
unsigned int i;
isc_sha1_t hash;
unsigned char digest[ISC_SHA1_DIGESTLENGTH];
isc_uint32_t remain, deltae, count, total;
isc_uint8_t *buf;
isc_boolean_t goodonly, partial, blocking;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(data != NULL);
REQUIRE(length > 0);
goodonly = ISC_TF((flags & ISC_ENTROPY_GOODONLY) != 0);
partial = ISC_TF((flags & ISC_ENTROPY_PARTIAL) != 0);
blocking = ISC_TF((flags & ISC_ENTROPY_BLOCKING) != 0);
REQUIRE(!partial || returned != NULL);
LOCK(&ent->lock);
remain = length;
buf = data;
total = 0;
while (remain != 0) {
count = ISC_MIN(remain, RND_ENTROPY_THRESHOLD);
/*
* If we are extracting good data only, make certain we
* have enough data in our pool for this pass. If we don't,
* get some, and fail if we can't, and partial returns
* are not ok.
*/
if (goodonly) {
unsigned int fillcount;
fillcount = ISC_MAX(remain * 8, count * 8);
/*
* If, however, we have at least THRESHOLD_BITS
* of entropy in the pool, don't block here. It is
* better to drain the pool once in a while and
* then refill it than it is to constantly keep the
* pool full.
*/
if (ent->pool.entropy >= THRESHOLD_BITS)
fillpool(ent, fillcount, ISC_FALSE);
else
fillpool(ent, fillcount, blocking);
/*
* Verify that we got enough entropy to do one
* extraction. If we didn't, bail.
*/
if (ent->pool.entropy < THRESHOLD_BITS) {
if (!partial)
goto zeroize;
else
goto partial_output;
}
} else {
/*
* If we've extracted half our pool size in bits
* since the last refresh, try to refresh here.
*/
if (ent->initialized < THRESHOLD_BITS)
fillpool(ent, THRESHOLD_BITS, blocking);
else
fillpool(ent, 0, ISC_FALSE);
/*
* If we've not initialized with enough good random
* data, seed with our crappy code.
*/
if (ent->initialized < THRESHOLD_BITS)
reseed(ent);
}
isc_sha1_init(&hash);
isc_sha1_update(&hash, (void *)(ent->pool.pool),
RND_POOLBYTES);
isc_sha1_final(&hash, digest);
/*
* Stir the extracted data (all of it) back into the pool.
*/
entropypool_adddata(ent, digest, ISC_SHA1_DIGESTLENGTH, 0);
for (i = 0; i < count; i++)
buf[i] = digest[i] ^ digest[i + RND_ENTROPY_THRESHOLD];
buf += count;
remain -= count;
deltae = count * 8;
deltae = ISC_MIN(deltae, ent->pool.entropy);
total += deltae;
subtract_entropy(ent, deltae);
add_pseudo(ent, count * 8);
}
partial_output:
memset(digest, 0, sizeof(digest));
if (returned != NULL)
*returned = (length - remain);
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
zeroize:
/* put the entropy we almost extracted back */
add_entropy(ent, total);
memset(data, 0, length);
memset(digest, 0, sizeof(digest));
if (returned != NULL)
*returned = 0;
UNLOCK(&ent->lock);
return (ISC_R_NOENTROPY);
}
static void
isc_entropypool_init(isc_entropypool_t *pool) {
pool->cursor = RND_POOLWORDS - 1;
pool->entropy = 0;
pool->pseudo = 0;
pool->rotate = 0;
memset(pool->pool, 0, RND_POOLBYTES);
}
static void
isc_entropypool_invalidate(isc_entropypool_t *pool) {
pool->cursor = 0;
pool->entropy = 0;
pool->pseudo = 0;
pool->rotate = 0;
memset(pool->pool, 0, RND_POOLBYTES);
}
isc_result_t
isc_entropy_create(isc_mem_t *mctx, isc_entropy_t **entp) {
isc_result_t result;
isc_entropy_t *ent;
REQUIRE(mctx != NULL);
REQUIRE(entp != NULL && *entp == NULL);
ent = isc_mem_get(mctx, sizeof(isc_entropy_t));
if (ent == NULL)
return (ISC_R_NOMEMORY);
/*
* We need a lock.
*/
result = isc_mutex_init(&ent->lock);
if (result != ISC_R_SUCCESS)
goto errout;
/*
* From here down, no failures will/can occur.
*/
ISC_LIST_INIT(ent->sources);
ent->nextsource = NULL;
ent->nsources = 0;
ent->mctx = NULL;
isc_mem_attach(mctx, &ent->mctx);
ent->refcnt = 1;
ent->initialized = 0;
ent->initcount = 0;
ent->magic = ENTROPY_MAGIC;
isc_entropypool_init(&ent->pool);
*entp = ent;
return (ISC_R_SUCCESS);
errout:
isc_mem_put(mctx, ent, sizeof(isc_entropy_t));
return (result);
}
/*!
* Requires "ent" be locked.
*/
static void
destroysource(isc_entropysource_t **sourcep) {
isc_entropysource_t *source;
isc_entropy_t *ent;
isc_cbsource_t *cbs;
source = *sourcep;
*sourcep = NULL;
ent = source->ent;
ISC_LIST_UNLINK(ent->sources, source, link);
ent->nextsource = NULL;
REQUIRE(ent->nsources > 0);
ent->nsources--;
switch (source->type) {
case ENTROPY_SOURCETYPE_FILE:
if (! source->bad)
destroyfilesource(&source->sources.file);
break;
case ENTROPY_SOURCETYPE_USOCKET:
if (! source->bad)
destroyusocketsource(&source->sources.usocket);
break;
case ENTROPY_SOURCETYPE_SAMPLE:
samplequeue_release(ent, &source->sources.sample.samplequeue);
break;
case ENTROPY_SOURCETYPE_CALLBACK:
cbs = &source->sources.callback;
if (cbs->start_called && cbs->stopfunc != NULL) {
cbs->stopfunc(source, cbs->arg);
cbs->start_called = ISC_FALSE;
}
samplequeue_release(ent, &cbs->samplequeue);
break;
}
memset(source, 0, sizeof(isc_entropysource_t));
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
}
static inline isc_boolean_t
destroy_check(isc_entropy_t *ent) {
isc_entropysource_t *source;
if (ent->refcnt > 0)
return (ISC_FALSE);
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
switch (source->type) {
case ENTROPY_SOURCETYPE_FILE:
case ENTROPY_SOURCETYPE_USOCKET:
break;
default:
return (ISC_FALSE);
}
source = ISC_LIST_NEXT(source, link);
}
return (ISC_TRUE);
}
static void
destroy(isc_entropy_t **entp) {
isc_entropy_t *ent;
isc_entropysource_t *source;
isc_mem_t *mctx;
REQUIRE(entp != NULL && *entp != NULL);
ent = *entp;
*entp = NULL;
LOCK(&ent->lock);
REQUIRE(ent->refcnt == 0);
/*
* Here, detach non-sample sources.
*/
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
switch(source->type) {
case ENTROPY_SOURCETYPE_FILE:
case ENTROPY_SOURCETYPE_USOCKET:
destroysource(&source);
break;
}
source = ISC_LIST_HEAD(ent->sources);
}
/*
* If there are other types of sources, we've found a bug.
*/
REQUIRE(ISC_LIST_EMPTY(ent->sources));
mctx = ent->mctx;
isc_entropypool_invalidate(&ent->pool);
UNLOCK(&ent->lock);
DESTROYLOCK(&ent->lock);
memset(ent, 0, sizeof(isc_entropy_t));
isc_mem_put(mctx, ent, sizeof(isc_entropy_t));
isc_mem_detach(&mctx);
}
void
isc_entropy_destroysource(isc_entropysource_t **sourcep) {
isc_entropysource_t *source;
isc_entropy_t *ent;
isc_boolean_t killit;
REQUIRE(sourcep != NULL);
REQUIRE(VALID_SOURCE(*sourcep));
source = *sourcep;
*sourcep = NULL;
ent = source->ent;
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
destroysource(&source);
killit = destroy_check(ent);
UNLOCK(&ent->lock);
if (killit)
destroy(&ent);
}
isc_result_t
isc_entropy_createcallbacksource(isc_entropy_t *ent,
isc_entropystart_t start,
isc_entropyget_t get,
isc_entropystop_t stop,
void *arg,
isc_entropysource_t **sourcep)
{
isc_result_t result;
isc_entropysource_t *source;
isc_cbsource_t *cbs;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(get != NULL);
REQUIRE(sourcep != NULL && *sourcep == NULL);
LOCK(&ent->lock);
source = isc_mem_get(ent->mctx, sizeof(isc_entropysource_t));
if (source == NULL) {
result = ISC_R_NOMEMORY;
goto errout;
}
source->bad = ISC_FALSE;
cbs = &source->sources.callback;
result = samplesource_allocate(ent, &cbs->samplequeue);
if (result != ISC_R_SUCCESS)
goto errout;
cbs->start_called = ISC_FALSE;
cbs->startfunc = start;
cbs->getfunc = get;
cbs->stopfunc = stop;
cbs->arg = arg;
/*
* From here down, no failures can occur.
*/
source->magic = SOURCE_MAGIC;
source->type = ENTROPY_SOURCETYPE_CALLBACK;
source->ent = ent;
source->total = 0;
memset(source->name, 0, sizeof(source->name));
ISC_LINK_INIT(source, link);
/*
* Hook it into the entropy system.
*/
ISC_LIST_APPEND(ent->sources, source, link);
ent->nsources++;
*sourcep = source;
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
errout:
if (source != NULL)
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
UNLOCK(&ent->lock);
return (result);
}
void
isc_entropy_stopcallbacksources(isc_entropy_t *ent) {
isc_entropysource_t *source;
isc_cbsource_t *cbs;
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
if (source->type == ENTROPY_SOURCETYPE_CALLBACK) {
cbs = &source->sources.callback;
if (cbs->start_called && cbs->stopfunc != NULL) {
cbs->stopfunc(source, cbs->arg);
cbs->start_called = ISC_FALSE;
}
}
source = ISC_LIST_NEXT(source, link);
}
UNLOCK(&ent->lock);
}
isc_result_t
isc_entropy_createsamplesource(isc_entropy_t *ent,
isc_entropysource_t **sourcep)
{
isc_result_t result;
isc_entropysource_t *source;
sample_queue_t *sq;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(sourcep != NULL && *sourcep == NULL);
LOCK(&ent->lock);
source = isc_mem_get(ent->mctx, sizeof(isc_entropysource_t));
if (source == NULL) {
result = ISC_R_NOMEMORY;
goto errout;
}
sq = &source->sources.sample.samplequeue;
result = samplesource_allocate(ent, sq);
if (result != ISC_R_SUCCESS)
goto errout;
/*
* From here down, no failures can occur.
*/
source->magic = SOURCE_MAGIC;
source->type = ENTROPY_SOURCETYPE_SAMPLE;
source->ent = ent;
source->total = 0;
memset(source->name, 0, sizeof(source->name));
ISC_LINK_INIT(source, link);
/*
* Hook it into the entropy system.
*/
ISC_LIST_APPEND(ent->sources, source, link);
ent->nsources++;
*sourcep = source;
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
errout:
if (source != NULL)
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
UNLOCK(&ent->lock);
return (result);
}
/*!
* Add a sample, and return ISC_R_SUCCESS if the queue has become full,
* ISC_R_NOENTROPY if it has space remaining, and ISC_R_NOMORE if the
* queue was full when this function was called.
*/
static isc_result_t
addsample(sample_queue_t *sq, isc_uint32_t sample, isc_uint32_t extra) {
if (sq->nsamples >= RND_EVENTQSIZE)
return (ISC_R_NOMORE);
sq->samples[sq->nsamples] = sample;
sq->extra[sq->nsamples] = extra;
sq->nsamples++;
if (sq->nsamples >= RND_EVENTQSIZE)
return (ISC_R_QUEUEFULL);
return (ISC_R_SUCCESS);
}
isc_result_t
isc_entropy_addsample(isc_entropysource_t *source, isc_uint32_t sample,
isc_uint32_t extra)
{
isc_entropy_t *ent;
sample_queue_t *sq;
unsigned int entropy;
isc_result_t result;
REQUIRE(VALID_SOURCE(source));
ent = source->ent;
LOCK(&ent->lock);
sq = &source->sources.sample.samplequeue;
result = addsample(sq, sample, extra);
if (result == ISC_R_QUEUEFULL) {
entropy = crunchsamples(ent, sq);
add_entropy(ent, entropy);
}
UNLOCK(&ent->lock);
return (result);
}
isc_result_t
isc_entropy_addcallbacksample(isc_entropysource_t *source, isc_uint32_t sample,
isc_uint32_t extra)
{
sample_queue_t *sq;
isc_result_t result;
REQUIRE(VALID_SOURCE(source));
REQUIRE(source->type == ENTROPY_SOURCETYPE_CALLBACK);
sq = &source->sources.callback.samplequeue;
result = addsample(sq, sample, extra);
return (result);
}
void
isc_entropy_putdata(isc_entropy_t *ent, void *data, unsigned int length,
isc_uint32_t entropy)
{
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
entropypool_adddata(ent, data, length, entropy);
if (ent->initialized < THRESHOLD_BITS)
ent->initialized = THRESHOLD_BITS;
UNLOCK(&ent->lock);
}
static void
dumpstats(isc_entropy_t *ent, FILE *out) {
fprintf(out,
isc_msgcat_get(isc_msgcat, ISC_MSGSET_ENTROPY,
ISC_MSG_ENTROPYSTATS,
"Entropy pool %p: refcnt %u cursor %u,"
" rotate %u entropy %u pseudo %u nsources %u"
" nextsource %p initialized %u initcount %u\n"),
ent, ent->refcnt,
ent->pool.cursor, ent->pool.rotate,
ent->pool.entropy, ent->pool.pseudo,
ent->nsources, ent->nextsource, ent->initialized,
ent->initcount);
}
/*
* This function ignores locking. Use at your own risk.
*/
void
isc_entropy_stats(isc_entropy_t *ent, FILE *out) {
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
dumpstats(ent, out);
UNLOCK(&ent->lock);
}
unsigned int
isc_entropy_status(isc_entropy_t *ent) {
unsigned int estimate;
LOCK(&ent->lock);
estimate = ent->pool.entropy;
UNLOCK(&ent->lock);
return estimate;
}
void
isc_entropy_attach(isc_entropy_t *ent, isc_entropy_t **entp) {
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(entp != NULL && *entp == NULL);
LOCK(&ent->lock);
ent->refcnt++;
*entp = ent;
UNLOCK(&ent->lock);
}
void
isc_entropy_detach(isc_entropy_t **entp) {
isc_entropy_t *ent;
isc_boolean_t killit;
REQUIRE(entp != NULL && VALID_ENTROPY(*entp));
ent = *entp;
*entp = NULL;
LOCK(&ent->lock);
REQUIRE(ent->refcnt > 0);
ent->refcnt--;
killit = destroy_check(ent);
UNLOCK(&ent->lock);
if (killit)
destroy(&ent);
}
static isc_result_t
kbdstart(isc_entropysource_t *source, void *arg, isc_boolean_t blocking) {
/*
* The intent of "first" is to provide a warning message only once
* during the run of a program that might try to gather keyboard
* entropy multiple times.
*/
static isc_boolean_t first = ISC_TRUE;
UNUSED(arg);
if (! blocking)
return (ISC_R_NOENTROPY);
if (first) {
if (source->warn_keyboard)
fprintf(stderr, "You must use the keyboard to create "
"entropy, since your system is lacking\n"
"/dev/random (or equivalent)\n\n");
first = ISC_FALSE;
}
fprintf(stderr, "start typing:\n");
return (isc_keyboard_open(&source->kbd));
}
static void
kbdstop(isc_entropysource_t *source, void *arg) {
UNUSED(arg);
if (! isc_keyboard_canceled(&source->kbd))
fprintf(stderr, "stop typing.\r\n");
(void)isc_keyboard_close(&source->kbd, 3);
}
static isc_result_t
kbdget(isc_entropysource_t *source, void *arg, isc_boolean_t blocking) {
isc_result_t result;
isc_time_t t;
isc_uint32_t sample;
isc_uint32_t extra;
unsigned char c;
UNUSED(arg);
if (!blocking)
return (ISC_R_NOTBLOCKING);
result = isc_keyboard_getchar(&source->kbd, &c);
if (result != ISC_R_SUCCESS)
return (result);
TIME_NOW(&t);
sample = isc_time_nanoseconds(&t);
extra = c;
result = isc_entropy_addcallbacksample(source, sample, extra);
if (result != ISC_R_SUCCESS) {
fprintf(stderr, "\r\n");
return (result);
}
fprintf(stderr, ".");
fflush(stderr);
return (result);
}
isc_result_t
isc_entropy_usebestsource(isc_entropy_t *ectx, isc_entropysource_t **source,
const char *randomfile, int use_keyboard)
{
isc_result_t result;
isc_result_t final_result = ISC_R_NOENTROPY;
isc_boolean_t userfile = ISC_TRUE;
REQUIRE(VALID_ENTROPY(ectx));
REQUIRE(source != NULL && *source == NULL);
REQUIRE(use_keyboard == ISC_ENTROPY_KEYBOARDYES ||
use_keyboard == ISC_ENTROPY_KEYBOARDNO ||
use_keyboard == ISC_ENTROPY_KEYBOARDMAYBE);
#ifdef PATH_RANDOMDEV
if (randomfile == NULL) {
randomfile = PATH_RANDOMDEV;
userfile = ISC_FALSE;
}
#endif
if (randomfile != NULL && use_keyboard != ISC_ENTROPY_KEYBOARDYES) {
result = isc_entropy_createfilesource(ectx, randomfile);
if (result == ISC_R_SUCCESS &&
use_keyboard == ISC_ENTROPY_KEYBOARDMAYBE)
use_keyboard = ISC_ENTROPY_KEYBOARDNO;
if (result != ISC_R_SUCCESS && userfile)
return (result);
final_result = result;
}
if (use_keyboard != ISC_ENTROPY_KEYBOARDNO) {
result = isc_entropy_createcallbacksource(ectx, kbdstart,
kbdget, kbdstop,
NULL, source);
if (result == ISC_R_SUCCESS)
(*source)->warn_keyboard =
ISC_TF(use_keyboard ==
ISC_ENTROPY_KEYBOARDMAYBE);
if (final_result != ISC_R_SUCCESS)
final_result = result;
}
/*
* final_result is ISC_R_SUCCESS if at least one source of entropy
* could be started, otherwise it is the error from the most recently
* failed operation (or ISC_R_NOENTROPY if PATH_RANDOMDEV is not
* defined and use_keyboard is ISC_ENTROPY_KEYBOARDNO).
*/
return (final_result);
}