522 lines
19 KiB
C++
522 lines
19 KiB
C++
//===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the Sanitizer Allocator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef SANITIZER_ALLOCATOR_H
|
|
#error This file must be included inside sanitizer_allocator.h
|
|
#endif
|
|
|
|
template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
|
|
|
|
// SizeClassAllocator64 -- allocator for 64-bit address space.
|
|
// The template parameter Params is a class containing the actual parameters.
|
|
//
|
|
// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
|
|
// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
|
|
// Otherwise SpaceBeg=kSpaceBeg (fixed address).
|
|
// kSpaceSize is a power of two.
|
|
// At the beginning the entire space is mprotect-ed, then small parts of it
|
|
// are mapped on demand.
|
|
//
|
|
// Region: a part of Space dedicated to a single size class.
|
|
// There are kNumClasses Regions of equal size.
|
|
//
|
|
// UserChunk: a piece of memory returned to user.
|
|
// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
|
|
|
|
// FreeArray is an array free-d chunks (stored as 4-byte offsets)
|
|
//
|
|
// A Region looks like this:
|
|
// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
|
|
|
|
struct SizeClassAllocator64FlagMasks { // Bit masks.
|
|
enum {
|
|
kRandomShuffleChunks = 1,
|
|
};
|
|
};
|
|
|
|
template <class Params>
|
|
class SizeClassAllocator64 {
|
|
public:
|
|
static const uptr kSpaceBeg = Params::kSpaceBeg;
|
|
static const uptr kSpaceSize = Params::kSpaceSize;
|
|
static const uptr kMetadataSize = Params::kMetadataSize;
|
|
typedef typename Params::SizeClassMap SizeClassMap;
|
|
typedef typename Params::MapUnmapCallback MapUnmapCallback;
|
|
|
|
static const bool kRandomShuffleChunks =
|
|
Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
|
|
|
|
typedef SizeClassAllocator64<Params> ThisT;
|
|
typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
|
|
|
|
// When we know the size class (the region base) we can represent a pointer
|
|
// as a 4-byte integer (offset from the region start shifted right by 4).
|
|
typedef u32 CompactPtrT;
|
|
static const uptr kCompactPtrScale = 4;
|
|
CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) {
|
|
return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
|
|
}
|
|
uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) {
|
|
return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
|
|
}
|
|
|
|
void Init(s32 release_to_os_interval_ms) {
|
|
uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
|
|
if (kUsingConstantSpaceBeg) {
|
|
CHECK_EQ(kSpaceBeg, reinterpret_cast<uptr>(
|
|
MmapFixedNoAccess(kSpaceBeg, TotalSpaceSize)));
|
|
} else {
|
|
NonConstSpaceBeg =
|
|
reinterpret_cast<uptr>(MmapNoAccess(TotalSpaceSize));
|
|
CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
|
|
}
|
|
SetReleaseToOSIntervalMs(release_to_os_interval_ms);
|
|
MapWithCallback(SpaceEnd(), AdditionalSize());
|
|
}
|
|
|
|
s32 ReleaseToOSIntervalMs() const {
|
|
return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
|
|
}
|
|
|
|
void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
|
|
atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
|
|
memory_order_relaxed);
|
|
}
|
|
|
|
void MapWithCallback(uptr beg, uptr size) {
|
|
CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
|
|
MapUnmapCallback().OnMap(beg, size);
|
|
}
|
|
|
|
void UnmapWithCallback(uptr beg, uptr size) {
|
|
MapUnmapCallback().OnUnmap(beg, size);
|
|
UnmapOrDie(reinterpret_cast<void *>(beg), size);
|
|
}
|
|
|
|
static bool CanAllocate(uptr size, uptr alignment) {
|
|
return size <= SizeClassMap::kMaxSize &&
|
|
alignment <= SizeClassMap::kMaxSize;
|
|
}
|
|
|
|
NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
|
|
const CompactPtrT *chunks, uptr n_chunks) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
uptr region_beg = GetRegionBeginBySizeClass(class_id);
|
|
CompactPtrT *free_array = GetFreeArray(region_beg);
|
|
|
|
BlockingMutexLock l(®ion->mutex);
|
|
uptr old_num_chunks = region->num_freed_chunks;
|
|
uptr new_num_freed_chunks = old_num_chunks + n_chunks;
|
|
EnsureFreeArraySpace(region, region_beg, new_num_freed_chunks);
|
|
for (uptr i = 0; i < n_chunks; i++)
|
|
free_array[old_num_chunks + i] = chunks[i];
|
|
region->num_freed_chunks = new_num_freed_chunks;
|
|
region->n_freed += n_chunks;
|
|
|
|
MaybeReleaseToOS(class_id);
|
|
}
|
|
|
|
NOINLINE void GetFromAllocator(AllocatorStats *stat, uptr class_id,
|
|
CompactPtrT *chunks, uptr n_chunks) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
uptr region_beg = GetRegionBeginBySizeClass(class_id);
|
|
CompactPtrT *free_array = GetFreeArray(region_beg);
|
|
|
|
BlockingMutexLock l(®ion->mutex);
|
|
if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
|
|
PopulateFreeArray(stat, class_id, region,
|
|
n_chunks - region->num_freed_chunks);
|
|
CHECK_GE(region->num_freed_chunks, n_chunks);
|
|
}
|
|
region->num_freed_chunks -= n_chunks;
|
|
uptr base_idx = region->num_freed_chunks;
|
|
for (uptr i = 0; i < n_chunks; i++)
|
|
chunks[i] = free_array[base_idx + i];
|
|
region->n_allocated += n_chunks;
|
|
}
|
|
|
|
|
|
bool PointerIsMine(const void *p) {
|
|
uptr P = reinterpret_cast<uptr>(p);
|
|
if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
|
|
return P / kSpaceSize == kSpaceBeg / kSpaceSize;
|
|
return P >= SpaceBeg() && P < SpaceEnd();
|
|
}
|
|
|
|
uptr GetRegionBegin(const void *p) {
|
|
if (kUsingConstantSpaceBeg)
|
|
return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
|
|
uptr space_beg = SpaceBeg();
|
|
return ((reinterpret_cast<uptr>(p) - space_beg) & ~(kRegionSize - 1)) +
|
|
space_beg;
|
|
}
|
|
|
|
uptr GetRegionBeginBySizeClass(uptr class_id) {
|
|
return SpaceBeg() + kRegionSize * class_id;
|
|
}
|
|
|
|
uptr GetSizeClass(const void *p) {
|
|
if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
|
|
return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
|
|
return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
|
|
kNumClassesRounded;
|
|
}
|
|
|
|
void *GetBlockBegin(const void *p) {
|
|
uptr class_id = GetSizeClass(p);
|
|
uptr size = ClassIdToSize(class_id);
|
|
if (!size) return nullptr;
|
|
uptr chunk_idx = GetChunkIdx((uptr)p, size);
|
|
uptr reg_beg = GetRegionBegin(p);
|
|
uptr beg = chunk_idx * size;
|
|
uptr next_beg = beg + size;
|
|
if (class_id >= kNumClasses) return nullptr;
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
if (region->mapped_user >= next_beg)
|
|
return reinterpret_cast<void*>(reg_beg + beg);
|
|
return nullptr;
|
|
}
|
|
|
|
uptr GetActuallyAllocatedSize(void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
return ClassIdToSize(GetSizeClass(p));
|
|
}
|
|
|
|
uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
|
|
|
|
void *GetMetaData(const void *p) {
|
|
uptr class_id = GetSizeClass(p);
|
|
uptr size = ClassIdToSize(class_id);
|
|
uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
|
|
uptr region_beg = GetRegionBeginBySizeClass(class_id);
|
|
return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
|
|
(1 + chunk_idx) * kMetadataSize);
|
|
}
|
|
|
|
uptr TotalMemoryUsed() {
|
|
uptr res = 0;
|
|
for (uptr i = 0; i < kNumClasses; i++)
|
|
res += GetRegionInfo(i)->allocated_user;
|
|
return res;
|
|
}
|
|
|
|
// Test-only.
|
|
void TestOnlyUnmap() {
|
|
UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize());
|
|
}
|
|
|
|
static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
|
|
uptr stats_size) {
|
|
for (uptr class_id = 0; class_id < stats_size; class_id++)
|
|
if (stats[class_id] == start)
|
|
stats[class_id] = rss;
|
|
}
|
|
|
|
void PrintStats(uptr class_id, uptr rss) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
if (region->mapped_user == 0) return;
|
|
uptr in_use = region->n_allocated - region->n_freed;
|
|
uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
|
|
Printf(
|
|
" %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
|
|
"num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd\n",
|
|
class_id, ClassIdToSize(class_id), region->mapped_user >> 10,
|
|
region->n_allocated, region->n_freed, in_use,
|
|
region->num_freed_chunks, avail_chunks, rss >> 10,
|
|
region->rtoi.num_releases);
|
|
}
|
|
|
|
void PrintStats() {
|
|
uptr total_mapped = 0;
|
|
uptr n_allocated = 0;
|
|
uptr n_freed = 0;
|
|
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
total_mapped += region->mapped_user;
|
|
n_allocated += region->n_allocated;
|
|
n_freed += region->n_freed;
|
|
}
|
|
Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
|
|
"remains %zd\n",
|
|
total_mapped >> 20, n_allocated, n_allocated - n_freed);
|
|
uptr rss_stats[kNumClasses];
|
|
for (uptr class_id = 0; class_id < kNumClasses; class_id++)
|
|
rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
|
|
GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
|
|
for (uptr class_id = 1; class_id < kNumClasses; class_id++)
|
|
PrintStats(class_id, rss_stats[class_id]);
|
|
}
|
|
|
|
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
|
|
// introspection API.
|
|
void ForceLock() {
|
|
for (uptr i = 0; i < kNumClasses; i++) {
|
|
GetRegionInfo(i)->mutex.Lock();
|
|
}
|
|
}
|
|
|
|
void ForceUnlock() {
|
|
for (int i = (int)kNumClasses - 1; i >= 0; i--) {
|
|
GetRegionInfo(i)->mutex.Unlock();
|
|
}
|
|
}
|
|
|
|
// Iterate over all existing chunks.
|
|
// The allocator must be locked when calling this function.
|
|
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
|
|
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
uptr chunk_size = ClassIdToSize(class_id);
|
|
uptr region_beg = SpaceBeg() + class_id * kRegionSize;
|
|
for (uptr chunk = region_beg;
|
|
chunk < region_beg + region->allocated_user;
|
|
chunk += chunk_size) {
|
|
// Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
|
|
callback(chunk, arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uptr ClassIdToSize(uptr class_id) {
|
|
return SizeClassMap::Size(class_id);
|
|
}
|
|
|
|
static uptr AdditionalSize() {
|
|
return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
|
|
GetPageSizeCached());
|
|
}
|
|
|
|
typedef SizeClassMap SizeClassMapT;
|
|
static const uptr kNumClasses = SizeClassMap::kNumClasses;
|
|
static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
|
|
|
|
private:
|
|
static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
|
|
// FreeArray is the array of free-d chunks (stored as 4-byte offsets).
|
|
// In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
|
|
// elements, but in reality this will not happen. For simplicity we
|
|
// dedicate 1/8 of the region's virtual space to FreeArray.
|
|
static const uptr kFreeArraySize = kRegionSize / 8;
|
|
|
|
static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
|
|
uptr NonConstSpaceBeg;
|
|
uptr SpaceBeg() const {
|
|
return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
|
|
}
|
|
uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; }
|
|
// kRegionSize must be >= 2^32.
|
|
COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
|
|
// kRegionSize must be <= 2^36, see CompactPtrT.
|
|
COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
|
|
// Call mmap for user memory with at least this size.
|
|
static const uptr kUserMapSize = 1 << 16;
|
|
// Call mmap for metadata memory with at least this size.
|
|
static const uptr kMetaMapSize = 1 << 16;
|
|
// Call mmap for free array memory with at least this size.
|
|
static const uptr kFreeArrayMapSize = 1 << 16;
|
|
|
|
atomic_sint32_t release_to_os_interval_ms_;
|
|
|
|
struct ReleaseToOsInfo {
|
|
uptr n_freed_at_last_release;
|
|
uptr num_releases;
|
|
u64 last_release_at_ns;
|
|
};
|
|
|
|
struct RegionInfo {
|
|
BlockingMutex mutex;
|
|
uptr num_freed_chunks; // Number of elements in the freearray.
|
|
uptr mapped_free_array; // Bytes mapped for freearray.
|
|
uptr allocated_user; // Bytes allocated for user memory.
|
|
uptr allocated_meta; // Bytes allocated for metadata.
|
|
uptr mapped_user; // Bytes mapped for user memory.
|
|
uptr mapped_meta; // Bytes mapped for metadata.
|
|
u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
|
|
uptr n_allocated, n_freed; // Just stats.
|
|
ReleaseToOsInfo rtoi;
|
|
};
|
|
COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
|
|
|
|
u32 Rand(u32 *state) { // ANSI C linear congruential PRNG.
|
|
return (*state = *state * 1103515245 + 12345) >> 16;
|
|
}
|
|
|
|
u32 RandN(u32 *state, u32 n) { return Rand(state) % n; } // [0, n)
|
|
|
|
void RandomShuffle(u32 *a, u32 n, u32 *rand_state) {
|
|
if (n <= 1) return;
|
|
for (u32 i = n - 1; i > 0; i--)
|
|
Swap(a[i], a[RandN(rand_state, i + 1)]);
|
|
}
|
|
|
|
RegionInfo *GetRegionInfo(uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
RegionInfo *regions =
|
|
reinterpret_cast<RegionInfo *>(SpaceBeg() + kSpaceSize);
|
|
return ®ions[class_id];
|
|
}
|
|
|
|
uptr GetMetadataEnd(uptr region_beg) {
|
|
return region_beg + kRegionSize - kFreeArraySize;
|
|
}
|
|
|
|
uptr GetChunkIdx(uptr chunk, uptr size) {
|
|
if (!kUsingConstantSpaceBeg)
|
|
chunk -= SpaceBeg();
|
|
|
|
uptr offset = chunk % kRegionSize;
|
|
// Here we divide by a non-constant. This is costly.
|
|
// size always fits into 32-bits. If the offset fits too, use 32-bit div.
|
|
if (offset >> (SANITIZER_WORDSIZE / 2))
|
|
return offset / size;
|
|
return (u32)offset / (u32)size;
|
|
}
|
|
|
|
CompactPtrT *GetFreeArray(uptr region_beg) {
|
|
return reinterpret_cast<CompactPtrT *>(region_beg + kRegionSize -
|
|
kFreeArraySize);
|
|
}
|
|
|
|
void EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
|
|
uptr num_freed_chunks) {
|
|
uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
|
|
if (region->mapped_free_array < needed_space) {
|
|
CHECK_LE(needed_space, kFreeArraySize);
|
|
uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
|
|
uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
|
|
region->mapped_free_array;
|
|
uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
|
|
MapWithCallback(current_map_end, new_map_size);
|
|
region->mapped_free_array = new_mapped_free_array;
|
|
}
|
|
}
|
|
|
|
|
|
NOINLINE void PopulateFreeArray(AllocatorStats *stat, uptr class_id,
|
|
RegionInfo *region, uptr requested_count) {
|
|
// region->mutex is held.
|
|
uptr size = ClassIdToSize(class_id);
|
|
uptr beg_idx = region->allocated_user;
|
|
uptr end_idx = beg_idx + requested_count * size;
|
|
uptr region_beg = GetRegionBeginBySizeClass(class_id);
|
|
if (end_idx > region->mapped_user) {
|
|
if (!kUsingConstantSpaceBeg && region->mapped_user == 0)
|
|
region->rand_state = static_cast<u32>(region_beg >> 12); // From ASLR.
|
|
// Do the mmap for the user memory.
|
|
uptr map_size = kUserMapSize;
|
|
while (end_idx > region->mapped_user + map_size)
|
|
map_size += kUserMapSize;
|
|
CHECK_GE(region->mapped_user + map_size, end_idx);
|
|
MapWithCallback(region_beg + region->mapped_user, map_size);
|
|
stat->Add(AllocatorStatMapped, map_size);
|
|
region->mapped_user += map_size;
|
|
}
|
|
CompactPtrT *free_array = GetFreeArray(region_beg);
|
|
uptr total_count = (region->mapped_user - beg_idx) / size;
|
|
uptr num_freed_chunks = region->num_freed_chunks;
|
|
EnsureFreeArraySpace(region, region_beg, num_freed_chunks + total_count);
|
|
for (uptr i = 0; i < total_count; i++) {
|
|
uptr chunk = beg_idx + i * size;
|
|
free_array[num_freed_chunks + total_count - 1 - i] =
|
|
PointerToCompactPtr(0, chunk);
|
|
}
|
|
if (kRandomShuffleChunks)
|
|
RandomShuffle(&free_array[num_freed_chunks], total_count,
|
|
®ion->rand_state);
|
|
region->num_freed_chunks += total_count;
|
|
region->allocated_user += total_count * size;
|
|
CHECK_LE(region->allocated_user, region->mapped_user);
|
|
|
|
region->allocated_meta += total_count * kMetadataSize;
|
|
if (region->allocated_meta > region->mapped_meta) {
|
|
uptr map_size = kMetaMapSize;
|
|
while (region->allocated_meta > region->mapped_meta + map_size)
|
|
map_size += kMetaMapSize;
|
|
// Do the mmap for the metadata.
|
|
CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
|
|
MapWithCallback(GetMetadataEnd(region_beg) -
|
|
region->mapped_meta - map_size, map_size);
|
|
region->mapped_meta += map_size;
|
|
}
|
|
CHECK_LE(region->allocated_meta, region->mapped_meta);
|
|
if (region->mapped_user + region->mapped_meta >
|
|
kRegionSize - kFreeArraySize) {
|
|
Printf("%s: Out of memory. Dying. ", SanitizerToolName);
|
|
Printf("The process has exhausted %zuMB for size class %zu.\n",
|
|
kRegionSize / 1024 / 1024, size);
|
|
Die();
|
|
}
|
|
}
|
|
|
|
void MaybeReleaseChunkRange(uptr region_beg, uptr chunk_size,
|
|
CompactPtrT first, CompactPtrT last) {
|
|
uptr beg_ptr = CompactPtrToPointer(region_beg, first);
|
|
uptr end_ptr = CompactPtrToPointer(region_beg, last) + chunk_size;
|
|
ReleaseMemoryPagesToOS(beg_ptr, end_ptr);
|
|
}
|
|
|
|
// Attempts to release some RAM back to OS. The region is expected to be
|
|
// locked.
|
|
// Algorithm:
|
|
// * Sort the chunks.
|
|
// * Find ranges fully covered by free-d chunks
|
|
// * Release them to OS with madvise.
|
|
void MaybeReleaseToOS(uptr class_id) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
const uptr chunk_size = ClassIdToSize(class_id);
|
|
const uptr page_size = GetPageSizeCached();
|
|
|
|
uptr n = region->num_freed_chunks;
|
|
if (n * chunk_size < page_size)
|
|
return; // No chance to release anything.
|
|
if ((region->n_freed - region->rtoi.n_freed_at_last_release) * chunk_size <
|
|
page_size) {
|
|
return; // Nothing new to release.
|
|
}
|
|
|
|
s32 interval_ms = ReleaseToOSIntervalMs();
|
|
if (interval_ms < 0)
|
|
return;
|
|
|
|
u64 now_ns = NanoTime();
|
|
if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL > now_ns)
|
|
return; // Memory was returned recently.
|
|
region->rtoi.last_release_at_ns = now_ns;
|
|
|
|
uptr region_beg = GetRegionBeginBySizeClass(class_id);
|
|
CompactPtrT *free_array = GetFreeArray(region_beg);
|
|
SortArray(free_array, n);
|
|
|
|
const uptr scaled_chunk_size = chunk_size >> kCompactPtrScale;
|
|
const uptr kScaledGranularity = page_size >> kCompactPtrScale;
|
|
|
|
uptr range_beg = free_array[0];
|
|
uptr prev = free_array[0];
|
|
for (uptr i = 1; i < n; i++) {
|
|
uptr chunk = free_array[i];
|
|
CHECK_GT(chunk, prev);
|
|
if (chunk - prev != scaled_chunk_size) {
|
|
CHECK_GT(chunk - prev, scaled_chunk_size);
|
|
if (prev + scaled_chunk_size - range_beg >= kScaledGranularity) {
|
|
MaybeReleaseChunkRange(region_beg, chunk_size, range_beg, prev);
|
|
region->rtoi.n_freed_at_last_release = region->n_freed;
|
|
region->rtoi.num_releases++;
|
|
}
|
|
range_beg = chunk;
|
|
}
|
|
prev = chunk;
|
|
}
|
|
}
|
|
};
|
|
|
|
|