freebsd-skq/sys/dev/ice/ice_osdep.h
Eric Joyner d08b8680e1 ice(4): Update to version 0.28.1-k
This updates the driver to align with the version included in
the "Intel Ethernet Adapter Complete Driver Pack", version 25.6.

There are no major functional changes; this mostly contains
bug fixes and changes to prepare for new features. This version
of the driver uses the previously committed ice_ddp package
1.3.19.0.

Signed-off-by: Eric Joyner <erj@FreeBSD.org>

Tested by:	jeffrey.e.pieper@intel.com
Sponsored by:	Intel Corporation
Differential Revision:	https://reviews.freebsd.org/D28640
2021-03-05 17:33:39 -08:00

522 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright (c) 2021, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*$FreeBSD$*/
/**
* @file ice_osdep.h
* @brief OS compatibility layer
*
* Contains various definitions and functions which are part of an OS
* compatibility layer for sharing code with other operating systems.
*/
#ifndef _ICE_OSDEP_H_
#define _ICE_OSDEP_H_
#include <sys/endian.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/bus_dma.h>
#include <netinet/in.h>
#include <sys/counter.h>
#include <sys/sbuf.h>
#include "ice_alloc.h"
#define ICE_INTEL_VENDOR_ID 0x8086
#define ICE_STR_BUF_LEN 32
struct ice_hw;
device_t ice_hw_to_dev(struct ice_hw *hw);
/* configure hw->debug_mask to enable debug prints */
void ice_debug(struct ice_hw *hw, uint64_t mask, char *fmt, ...) __printflike(3, 4);
void ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize,
uint32_t groupsize, uint8_t *buf, size_t len);
#define ice_info(_hw, _fmt, args...) \
device_printf(ice_hw_to_dev(_hw), (_fmt), ##args)
#define ice_warn(_hw, _fmt, args...) \
device_printf(ice_hw_to_dev(_hw), (_fmt), ##args)
#define DIVIDE_AND_ROUND_UP howmany
#define ROUND_UP roundup
uint32_t rd32(struct ice_hw *hw, uint32_t reg);
uint64_t rd64(struct ice_hw *hw, uint32_t reg);
void wr32(struct ice_hw *hw, uint32_t reg, uint32_t val);
void wr64(struct ice_hw *hw, uint32_t reg, uint64_t val);
#define ice_flush(_hw) rd32((_hw), GLGEN_STAT)
MALLOC_DECLARE(M_ICE_OSDEP);
/**
* ice_calloc - Allocate an array of elementes
* @hw: the hardware private structure
* @count: number of elements to allocate
* @size: the size of each element
*
* Allocate memory for an array of items equal to size. Note that the OS
* compatibility layer assumes all allocation functions will provide zero'd
* memory.
*/
static inline void *
ice_calloc(struct ice_hw __unused *hw, size_t count, size_t size)
{
return malloc(count * size, M_ICE_OSDEP, M_ZERO | M_NOWAIT);
}
/**
* ice_malloc - Allocate memory of a specified size
* @hw: the hardware private structure
* @size: the size to allocate
*
* Allocates memory of the specified size. Note that the OS compatibility
* layer assumes that all allocations will provide zero'd memory.
*/
static inline void *
ice_malloc(struct ice_hw __unused *hw, size_t size)
{
return malloc(size, M_ICE_OSDEP, M_ZERO | M_NOWAIT);
}
/**
* ice_memdup - Allocate a copy of some other memory
* @hw: private hardware structure
* @src: the source to copy from
* @size: allocation size
* @dir: the direction of copying
*
* Allocate memory of the specified size, and copy bytes from the src to fill
* it. We don't need to zero this memory as we immediately initialize it by
* copying from the src pointer.
*/
static inline void *
ice_memdup(struct ice_hw __unused *hw, const void *src, size_t size,
enum ice_memcpy_type __unused dir)
{
void *dst = malloc(size, M_ICE_OSDEP, M_NOWAIT);
if (dst != NULL)
memcpy(dst, src, size);
return dst;
}
/**
* ice_free - Free previously allocated memory
* @hw: the hardware private structure
* @mem: pointer to the memory to free
*
* Free memory that was previously allocated by ice_calloc, ice_malloc, or
* ice_memdup.
*/
static inline void
ice_free(struct ice_hw __unused *hw, void *mem)
{
free(mem, M_ICE_OSDEP);
}
/* These are macros in order to drop the unused direction enumeration constant */
#define ice_memset(addr, c, len, unused) memset((addr), (c), (len))
#define ice_memcpy(dst, src, len, unused) memcpy((dst), (src), (len))
void ice_usec_delay(uint32_t time, bool sleep);
void ice_msec_delay(uint32_t time, bool sleep);
void ice_msec_pause(uint32_t time);
void ice_msec_spin(uint32_t time);
#define UNREFERENCED_PARAMETER(_p) _p = _p
#define UNREFERENCED_1PARAMETER(_p) do { \
UNREFERENCED_PARAMETER(_p); \
} while (0)
#define UNREFERENCED_2PARAMETER(_p, _q) do { \
UNREFERENCED_PARAMETER(_p); \
UNREFERENCED_PARAMETER(_q); \
} while (0)
#define UNREFERENCED_3PARAMETER(_p, _q, _r) do { \
UNREFERENCED_PARAMETER(_p); \
UNREFERENCED_PARAMETER(_q); \
UNREFERENCED_PARAMETER(_r); \
} while (0)
#define UNREFERENCED_4PARAMETER(_p, _q, _r, _s) do { \
UNREFERENCED_PARAMETER(_p); \
UNREFERENCED_PARAMETER(_q); \
UNREFERENCED_PARAMETER(_r); \
UNREFERENCED_PARAMETER(_s); \
} while (0)
#define UNREFERENCED_5PARAMETER(_p, _q, _r, _s, _t) do { \
UNREFERENCED_PARAMETER(_p); \
UNREFERENCED_PARAMETER(_q); \
UNREFERENCED_PARAMETER(_r); \
UNREFERENCED_PARAMETER(_s); \
UNREFERENCED_PARAMETER(_t); \
} while (0)
#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#define MAKEMASK(_m, _s) ((_m) << (_s))
#define LIST_HEAD_TYPE ice_list_head
#define LIST_ENTRY_TYPE ice_list_node
/**
* @struct ice_list_node
* @brief simplified linked list node API
*
* Represents a node in a linked list, which can be embedded into a structure
* to allow that structure to be inserted into a linked list. Access to the
* contained structure is done via __containerof
*/
struct ice_list_node {
LIST_ENTRY(ice_list_node) entries;
};
/**
* @struct ice_list_head
* @brief simplified linked list head API
*
* Represents the head of a linked list. The linked list should consist of
* a series of ice_list_node structures embedded into another structure
* accessed using __containerof. This way, the ice_list_head doesn't need to
* know the type of the structure it contains.
*/
LIST_HEAD(ice_list_head, ice_list_node);
#define INIT_LIST_HEAD LIST_INIT
/* LIST_EMPTY doesn't need to be changed */
#define LIST_ADD(entry, head) LIST_INSERT_HEAD(head, entry, entries)
#define LIST_ADD_AFTER(entry, elem) LIST_INSERT_AFTER(elem, entry, entries)
#define LIST_DEL(entry) LIST_REMOVE(entry, entries)
#define _osdep_LIST_ENTRY(ptr, type, member) \
__containerof(ptr, type, member)
#define LIST_FIRST_ENTRY(head, type, member) \
_osdep_LIST_ENTRY(LIST_FIRST(head), type, member)
#define LIST_NEXT_ENTRY(ptr, unused, member) \
_osdep_LIST_ENTRY(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member)
#define LIST_REPLACE_INIT(old_head, new_head) do { \
__typeof(new_head) _new_head = (new_head); \
LIST_INIT(_new_head); \
LIST_SWAP(old_head, _new_head, ice_list_node, entries); \
} while (0)
#define LIST_ENTRY_SAFE(_ptr, _type, _member) \
({ __typeof(_ptr) ____ptr = (_ptr); \
____ptr ? _osdep_LIST_ENTRY(____ptr, _type, _member) : NULL; \
})
/**
* ice_get_list_tail - Return the pointer to the last node in the list
* @head: the pointer to the head of the list
*
* A helper function for implementing LIST_ADD_TAIL and LIST_LAST_ENTRY.
* Returns the pointer to the last node in the list, or NULL of the list is
* empty.
*
* Note: due to the list implementation this is O(N), where N is the size of
* the list. An O(1) implementation requires replacing the underlying list
* datastructure with one that has a tail pointer. This is problematic,
* because using a simple TAILQ would require that the addition and deletion
* be given the head of the list.
*/
static inline struct ice_list_node *
ice_get_list_tail(struct ice_list_head *head)
{
struct ice_list_node *node = LIST_FIRST(head);
if (node == NULL)
return NULL;
while (LIST_NEXT(node, entries) != NULL)
node = LIST_NEXT(node, entries);
return node;
}
/* TODO: This is O(N). An O(1) implementation would require a different
* underlying list structure, such as a circularly linked list. */
#define LIST_ADD_TAIL(entry, head) do { \
struct ice_list_node *node = ice_get_list_tail(head); \
\
if (node == NULL) { \
LIST_ADD(entry, head); \
} else { \
LIST_INSERT_AFTER(node, entry, entries); \
} \
} while (0)
#define LIST_LAST_ENTRY(head, type, member) \
LIST_ENTRY_SAFE(ice_get_list_tail(head), type, member)
#define LIST_FIRST_ENTRY_SAFE(head, type, member) \
LIST_ENTRY_SAFE(LIST_FIRST(head), type, member)
#define LIST_NEXT_ENTRY_SAFE(ptr, member) \
LIST_ENTRY_SAFE(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member)
#define LIST_FOR_EACH_ENTRY(pos, head, unused, member) \
for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member); \
pos; \
pos = LIST_NEXT_ENTRY_SAFE(pos, member))
#define LIST_FOR_EACH_ENTRY_SAFE(pos, n, head, unused, member) \
for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member); \
pos && ({ n = LIST_NEXT_ENTRY_SAFE(pos, member); 1; }); \
pos = n)
#define STATIC static
#define NTOHS ntohs
#define NTOHL ntohl
#define HTONS htons
#define HTONL htonl
#define LE16_TO_CPU le16toh
#define LE32_TO_CPU le32toh
#define LE64_TO_CPU le64toh
#define CPU_TO_LE16 htole16
#define CPU_TO_LE32 htole32
#define CPU_TO_LE64 htole64
#define CPU_TO_BE16 htobe16
#define CPU_TO_BE32 htobe32
#define SNPRINTF snprintf
/**
* @typedef u8
* @brief compatibility typedef for uint8_t
*/
typedef uint8_t u8;
/**
* @typedef u16
* @brief compatibility typedef for uint16_t
*/
typedef uint16_t u16;
/**
* @typedef u32
* @brief compatibility typedef for uint32_t
*/
typedef uint32_t u32;
/**
* @typedef u64
* @brief compatibility typedef for uint64_t
*/
typedef uint64_t u64;
/**
* @typedef s8
* @brief compatibility typedef for int8_t
*/
typedef int8_t s8;
/**
* @typedef s16
* @brief compatibility typedef for int16_t
*/
typedef int16_t s16;
/**
* @typedef s32
* @brief compatibility typedef for int32_t
*/
typedef int32_t s32;
/**
* @typedef s64
* @brief compatibility typedef for int64_t
*/
typedef int64_t s64;
#define __le16 u16
#define __le32 u32
#define __le64 u64
#define __be16 u16
#define __be32 u32
#define __be64 u64
#define ice_hweight8(x) bitcount16((u8)x)
#define ice_hweight16(x) bitcount16(x)
#define ice_hweight32(x) bitcount32(x)
#define ice_hweight64(x) bitcount64(x)
/**
* @struct ice_dma_mem
* @brief DMA memory allocation
*
* Contains DMA allocation bits, used to simplify DMA allocations.
*/
struct ice_dma_mem {
void *va;
uint64_t pa;
size_t size;
bus_dma_tag_t tag;
bus_dmamap_t map;
bus_dma_segment_t seg;
};
void * ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, u64 size);
void ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem);
/**
* @struct ice_lock
* @brief simplified lock API
*
* Contains a simple lock implementation used to lock various resources.
*/
struct ice_lock {
struct mtx mutex;
char name[ICE_STR_BUF_LEN];
};
extern u16 ice_lock_count;
/**
* ice_init_lock - Initialize a lock for use
* @lock: the lock memory to initialize
*
* OS compatibility layer to provide a simple locking mechanism. We use
* a mutex for this purpose.
*/
static inline void
ice_init_lock(struct ice_lock *lock)
{
/*
* Make each lock unique by incrementing a counter each time this
* function is called. Use of a u16 allows 65535 possible locks before
* we'd hit a duplicate.
*/
memset(lock->name, 0, sizeof(lock->name));
snprintf(lock->name, ICE_STR_BUF_LEN, "ice_lock_%u", ice_lock_count++);
mtx_init(&lock->mutex, lock->name, NULL, MTX_DEF);
}
/**
* ice_acquire_lock - Acquire the lock
* @lock: the lock to acquire
*
* Acquires the mutex specified by the lock pointer.
*/
static inline void
ice_acquire_lock(struct ice_lock *lock)
{
mtx_lock(&lock->mutex);
}
/**
* ice_release_lock - Release the lock
* @lock: the lock to release
*
* Releases the mutex specified by the lock pointer.
*/
static inline void
ice_release_lock(struct ice_lock *lock)
{
mtx_unlock(&lock->mutex);
}
/**
* ice_destroy_lock - Destroy the lock to de-allocate it
* @lock: the lock to destroy
*
* Destroys a previously initialized lock. We only do this if the mutex was
* previously initialized.
*/
static inline void
ice_destroy_lock(struct ice_lock *lock)
{
if (mtx_initialized(&lock->mutex))
mtx_destroy(&lock->mutex);
memset(lock->name, 0, sizeof(lock->name));
}
/* Some function parameters are unused outside of MPASS/KASSERT macros. Rather
* than marking these as __unused all the time, mark them as __invariant_only,
* and define this to __unused when INVARIANTS is disabled. Otherwise, define
* it empty so that __invariant_only parameters are caught as unused by the
* INVARIANTS build.
*/
#ifndef INVARIANTS
#define __invariant_only __unused
#else
#define __invariant_only
#endif
#define __ALWAYS_UNUSED __unused
/**
* ice_ilog2 - Calculate the integer log base 2 of a 64bit value
* @n: 64bit number
*
* Calculates the integer log base 2 of a 64bit value, rounded down.
*
* @remark The integer log base 2 of zero is technically undefined, but this
* function will return 0 in that case.
*
*/
static inline int
ice_ilog2(u64 n) {
if (n == 0)
return 0;
return flsll(n) - 1;
}
/**
* ice_is_pow2 - Check if the value is a power of 2
* @n: 64bit number
*
* Check if the given value is a power of 2.
*
* @remark FreeBSD's powerof2 function treats zero as a power of 2, while this
* function does not.
*
* @returns true or false
*/
static inline bool
ice_is_pow2(u64 n) {
if (n == 0)
return false;
return powerof2(n);
}
#endif /* _ICE_OSDEP_H_ */