86ee7095b9
a page boundary, since we've already allocated all our contiguous kva space up front. This eliminates some memory wastage, and allows us to actually reach the # of objects were specified in the zinit() call. Reviewed by: peter, dillon
580 lines
15 KiB
C
580 lines
15 KiB
C
/*
|
|
* Copyright (c) 1997, 1998 John S. Dyson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice immediately at the beginning of the file, without modification,
|
|
* this list of conditions, and the following disclaimer.
|
|
* 2. Absolutely no warranty of function or purpose is made by the author
|
|
* John S. Dyson.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_zone.h>
|
|
|
|
static MALLOC_DEFINE(M_ZONE, "ZONE", "Zone header");
|
|
|
|
#define ZENTRY_FREE (void*)0x12342378
|
|
|
|
#define ZONE_ROUNDING 32
|
|
|
|
/*
|
|
* This file comprises a very simple zone allocator. This is used
|
|
* in lieu of the malloc allocator, where needed or more optimal.
|
|
*
|
|
* Note that the initial implementation of this had coloring, and
|
|
* absolutely no improvement (actually perf degradation) occurred.
|
|
*
|
|
* Note also that the zones are type stable. The only restriction is
|
|
* that the first two longwords of a data structure can be changed
|
|
* between allocations. Any data that must be stable between allocations
|
|
* must reside in areas after the first two longwords.
|
|
*
|
|
* zinitna, zinit, zbootinit are the initialization routines.
|
|
* zalloc, zfree, are the allocation/free routines.
|
|
*/
|
|
|
|
/*
|
|
* Subsystem lock. Never grab it while holding a zone lock.
|
|
*/
|
|
static struct mtx zone_mtx;
|
|
|
|
/*
|
|
* Singly-linked list of zones, for book-keeping purposes
|
|
*/
|
|
static SLIST_HEAD(vm_zone_list, vm_zone) zlist;
|
|
|
|
/*
|
|
* Statistics
|
|
*/
|
|
static int zone_kmem_pages; /* Number of interrupt-safe pages allocated */
|
|
static int zone_kern_pages; /* Number of KVA pages allocated */
|
|
static int zone_kmem_kvaspace; /* Number of non-intsafe pages allocated */
|
|
|
|
/*
|
|
* Subsystem initialization, called from vm_mem_init()
|
|
*/
|
|
void
|
|
vm_zone_init(void)
|
|
{
|
|
mtx_init(&zone_mtx, "zone subsystem", MTX_DEF);
|
|
SLIST_INIT(&zlist);
|
|
}
|
|
|
|
void
|
|
vm_zone_init2(void)
|
|
{
|
|
/*
|
|
* LATER: traverse zlist looking for partially initialized
|
|
* LATER: zones and finish initializing them.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Create a zone, but don't allocate the zone structure. If the
|
|
* zone had been previously created by the zone boot code, initialize
|
|
* various parts of the zone code.
|
|
*
|
|
* If waits are not allowed during allocation (e.g. during interrupt
|
|
* code), a-priori allocate the kernel virtual space, and allocate
|
|
* only pages when needed.
|
|
*
|
|
* Arguments:
|
|
* z pointer to zone structure.
|
|
* obj pointer to VM object (opt).
|
|
* name name of zone.
|
|
* size size of zone entries.
|
|
* nentries number of zone entries allocated (only ZONE_INTERRUPT.)
|
|
* flags ZONE_INTERRUPT -- items can be allocated at interrupt time.
|
|
* zalloc number of pages allocated when memory is needed.
|
|
*
|
|
* Note that when using ZONE_INTERRUPT, the size of the zone is limited
|
|
* by the nentries argument. The size of the memory allocatable is
|
|
* unlimited if ZONE_INTERRUPT is not set.
|
|
*
|
|
*/
|
|
int
|
|
zinitna(vm_zone_t z, vm_object_t obj, char *name, int size,
|
|
int nentries, int flags, int zalloc)
|
|
{
|
|
int totsize, oldzflags;
|
|
|
|
GIANT_REQUIRED;
|
|
|
|
oldzflags = z->zflags;
|
|
if ((z->zflags & ZONE_BOOT) == 0) {
|
|
z->zsize = (size + ZONE_ROUNDING - 1) & ~(ZONE_ROUNDING - 1);
|
|
z->zfreecnt = 0;
|
|
z->ztotal = 0;
|
|
z->zmax = 0;
|
|
z->zname = name;
|
|
z->znalloc = 0;
|
|
z->zitems = NULL;
|
|
}
|
|
|
|
z->zflags |= flags;
|
|
|
|
/*
|
|
* If we cannot wait, allocate KVA space up front, and we will fill
|
|
* in pages as needed.
|
|
*/
|
|
if (z->zflags & ZONE_INTERRUPT) {
|
|
totsize = round_page(z->zsize * nentries);
|
|
atomic_add_int(&zone_kmem_kvaspace, totsize);
|
|
z->zkva = kmem_alloc_pageable(kernel_map, totsize);
|
|
if (z->zkva == 0)
|
|
return 0;
|
|
|
|
z->zpagemax = totsize / PAGE_SIZE;
|
|
if (obj == NULL) {
|
|
z->zobj = vm_object_allocate(OBJT_DEFAULT, z->zpagemax);
|
|
} else {
|
|
z->zobj = obj;
|
|
_vm_object_allocate(OBJT_DEFAULT, z->zpagemax, obj);
|
|
}
|
|
z->zallocflag = VM_ALLOC_INTERRUPT;
|
|
z->zmax += nentries;
|
|
} else {
|
|
z->zallocflag = VM_ALLOC_SYSTEM;
|
|
z->zmax = 0;
|
|
}
|
|
|
|
|
|
if (z->zsize > PAGE_SIZE)
|
|
z->zfreemin = 1;
|
|
else
|
|
z->zfreemin = PAGE_SIZE / z->zsize;
|
|
|
|
z->zpagecount = 0;
|
|
if (zalloc)
|
|
z->zalloc = zalloc;
|
|
else
|
|
z->zalloc = 1;
|
|
|
|
/* our zone is good and ready, add it to the list */
|
|
if ((z->zflags & ZONE_BOOT) == 0) {
|
|
mtx_init(&(z)->zmtx, "zone", MTX_DEF);
|
|
mtx_lock(&zone_mtx);
|
|
SLIST_INSERT_HEAD(&zlist, z, zent);
|
|
mtx_unlock(&zone_mtx);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Subroutine same as zinitna, except zone data structure is allocated
|
|
* automatically by malloc. This routine should normally be used, except
|
|
* in certain tricky startup conditions in the VM system -- then
|
|
* zbootinit and zinitna can be used. Zinit is the standard zone
|
|
* initialization call.
|
|
*/
|
|
vm_zone_t
|
|
zinit(char *name, int size, int nentries, int flags, int zalloc)
|
|
{
|
|
vm_zone_t z;
|
|
|
|
z = (vm_zone_t) malloc(sizeof (struct vm_zone), M_ZONE, M_NOWAIT | M_ZERO);
|
|
if (z == NULL)
|
|
return NULL;
|
|
|
|
if (zinitna(z, NULL, name, size, nentries, flags, zalloc) == 0) {
|
|
free(z, M_ZONE);
|
|
return NULL;
|
|
}
|
|
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* Initialize a zone before the system is fully up.
|
|
*
|
|
* We can't rely on being able to allocate items dynamically, so we
|
|
* kickstart the zone with a number of static items provided by the
|
|
* caller.
|
|
*
|
|
* This routine should only be called before full VM startup.
|
|
*/
|
|
void
|
|
zbootinit(vm_zone_t z, char *name, int size, void *item, int nitems)
|
|
{
|
|
int i;
|
|
|
|
z->zname = name;
|
|
z->zsize = size;
|
|
z->zpagemax = 0;
|
|
z->zobj = NULL;
|
|
z->zflags = ZONE_BOOT;
|
|
z->zfreemin = 0;
|
|
z->zallocflag = 0;
|
|
z->zpagecount = 0;
|
|
z->zalloc = 0;
|
|
z->znalloc = 0;
|
|
mtx_init(&(z)->zmtx, "zone", MTX_DEF);
|
|
|
|
bzero(item, nitems * z->zsize);
|
|
z->zitems = NULL;
|
|
for (i = 0; i < nitems; i++) {
|
|
((void **) item)[0] = z->zitems;
|
|
#ifdef INVARIANTS
|
|
((void **) item)[1] = ZENTRY_FREE;
|
|
#endif
|
|
z->zitems = item;
|
|
(char *) item += z->zsize;
|
|
}
|
|
z->zfreecnt = nitems;
|
|
z->zmax = nitems;
|
|
z->ztotal = nitems;
|
|
|
|
mtx_lock(&zone_mtx);
|
|
SLIST_INSERT_HEAD(&zlist, z, zent);
|
|
mtx_unlock(&zone_mtx);
|
|
}
|
|
|
|
/*
|
|
* Destroy a zone, freeing the allocated memory.
|
|
* This does not do any locking for the zone; make sure it is not used
|
|
* any more before calling. All zalloc()'ated memory in the zone must have
|
|
* been zfree()'d.
|
|
* zdestroy() may not be used with zbootinit()'ed zones.
|
|
*/
|
|
void
|
|
zdestroy(vm_zone_t z)
|
|
{
|
|
int i, nitems, nbytes;
|
|
void *item, *min, **itp;
|
|
vm_map_t map;
|
|
vm_map_entry_t entry;
|
|
vm_object_t obj;
|
|
vm_pindex_t pindex;
|
|
vm_prot_t prot;
|
|
boolean_t wired;
|
|
|
|
GIANT_REQUIRED;
|
|
KASSERT(z != NULL, ("invalid zone"));
|
|
/*
|
|
* This is needed, or the algorithm used for non-interrupt zones will
|
|
* blow up badly.
|
|
*/
|
|
KASSERT(z->ztotal == z->zfreecnt,
|
|
("zdestroy() used with an active zone"));
|
|
KASSERT((z->zflags & ZONE_BOOT) == 0,
|
|
("zdestroy() used with a zbootinit()'ed zone"));
|
|
|
|
if (z->zflags & ZONE_INTERRUPT) {
|
|
kmem_free(kernel_map, z->zkva, z->zpagemax * PAGE_SIZE);
|
|
vm_object_deallocate(z->zobj);
|
|
atomic_subtract_int(&zone_kmem_kvaspace,
|
|
z->zpagemax * PAGE_SIZE);
|
|
atomic_subtract_int(&zone_kmem_pages,
|
|
z->zpagecount);
|
|
cnt.v_wire_count -= z->zpagecount;
|
|
} else {
|
|
/*
|
|
* This is evil h0h0 magic:
|
|
* The items may be in z->zitems in a random oder; we have to
|
|
* free the start of an allocated area, but do not want to save
|
|
* extra information. Additionally, we may not access items that
|
|
* were in a freed area.
|
|
* This is achieved in the following way: the smallest address
|
|
* is selected, and, after removing all items that are in a
|
|
* range of z->zalloc * PAGE_SIZE (one allocation unit) from
|
|
* it, kmem_free is called on it (since it is the smallest one,
|
|
* it must be the start of an area). This is repeated until all
|
|
* items are gone.
|
|
*/
|
|
nbytes = z->zalloc * PAGE_SIZE;
|
|
nitems = nbytes / z->zsize;
|
|
while (z->zitems != NULL) {
|
|
/* Find minimal element. */
|
|
item = min = z->zitems;
|
|
while (item != NULL) {
|
|
if (item < min)
|
|
min = item;
|
|
item = ((void **)item)[0];
|
|
}
|
|
/* Free. */
|
|
itp = &z->zitems;
|
|
i = 0;
|
|
while (*itp != NULL && i < nitems) {
|
|
if ((char *)*itp >= (char *)min &&
|
|
(char *)*itp < (char *)min + nbytes) {
|
|
*itp = ((void **)*itp)[0];
|
|
i++;
|
|
} else
|
|
itp = &((void **)*itp)[0];
|
|
}
|
|
KASSERT(i == nitems, ("zdestroy(): corrupt zone"));
|
|
/*
|
|
* We can allocate from kmem_map (kmem_malloc) or
|
|
* kernel_map (kmem_alloc).
|
|
* kmem_map is a submap of kernel_map, so we can use
|
|
* vm_map_lookup to retrieve the map we need to use.
|
|
*/
|
|
map = kernel_map;
|
|
if (vm_map_lookup(&map, (vm_offset_t)min, VM_PROT_NONE,
|
|
&entry, &obj, &pindex, &prot, &wired) !=
|
|
KERN_SUCCESS)
|
|
panic("zalloc mapping lost");
|
|
/* Need to unlock. */
|
|
vm_map_lookup_done(map, entry);
|
|
if (map == kmem_map) {
|
|
atomic_subtract_int(&zone_kmem_pages,
|
|
z->zalloc);
|
|
} else if (map == kernel_map) {
|
|
atomic_subtract_int(&zone_kern_pages,
|
|
z->zalloc);
|
|
} else
|
|
panic("zdestroy(): bad map");
|
|
kmem_free(map, (vm_offset_t)min, nbytes);
|
|
}
|
|
}
|
|
|
|
mtx_lock(&zone_mtx);
|
|
SLIST_REMOVE(&zlist, z, vm_zone, zent);
|
|
mtx_unlock(&zone_mtx);
|
|
mtx_destroy(&z->zmtx);
|
|
free(z, M_ZONE);
|
|
}
|
|
|
|
/*
|
|
* Grow the specified zone to accomodate more items.
|
|
*/
|
|
static void *
|
|
_zget(vm_zone_t z)
|
|
{
|
|
int i;
|
|
vm_page_t m;
|
|
int nitems, nbytes;
|
|
void *item;
|
|
|
|
KASSERT(z != NULL, ("invalid zone"));
|
|
|
|
if (z->zflags & ZONE_INTERRUPT) {
|
|
nbytes = z->zpagecount * PAGE_SIZE;
|
|
nbytes -= nbytes % z->zsize;
|
|
item = (char *) z->zkva + nbytes;
|
|
for (i = 0; ((i < z->zalloc) && (z->zpagecount < z->zpagemax));
|
|
i++) {
|
|
vm_offset_t zkva;
|
|
|
|
m = vm_page_alloc(z->zobj, z->zpagecount,
|
|
z->zallocflag);
|
|
if (m == NULL)
|
|
break;
|
|
|
|
zkva = z->zkva + z->zpagecount * PAGE_SIZE;
|
|
pmap_kenter(zkva, VM_PAGE_TO_PHYS(m));
|
|
bzero((caddr_t) zkva, PAGE_SIZE);
|
|
z->zpagecount++;
|
|
atomic_add_int(&zone_kmem_pages, 1);
|
|
cnt.v_wire_count++;
|
|
}
|
|
nitems = ((z->zpagecount * PAGE_SIZE) - nbytes) / z->zsize;
|
|
} else {
|
|
/* Please check zdestroy() when changing this! */
|
|
nbytes = z->zalloc * PAGE_SIZE;
|
|
|
|
/*
|
|
* Check to see if the kernel map is already locked. We could allow
|
|
* for recursive locks, but that eliminates a valuable debugging
|
|
* mechanism, and opens up the kernel map for potential corruption
|
|
* by inconsistent data structure manipulation. We could also use
|
|
* the interrupt allocation mechanism, but that has size limitations.
|
|
* Luckily, we have kmem_map that is a submap of kernel map available
|
|
* for memory allocation, and manipulation of that map doesn't affect
|
|
* the kernel map structures themselves.
|
|
*
|
|
* We can wait, so just do normal map allocation in the appropriate
|
|
* map.
|
|
*/
|
|
mtx_unlock(&z->zmtx);
|
|
if (lockstatus(&kernel_map->lock, NULL)) {
|
|
item = (void *) kmem_malloc(kmem_map, nbytes, M_WAITOK);
|
|
if (item != NULL)
|
|
atomic_add_int(&zone_kmem_pages, z->zalloc);
|
|
} else {
|
|
item = (void *) kmem_alloc(kernel_map, nbytes);
|
|
if (item != NULL)
|
|
atomic_add_int(&zone_kern_pages, z->zalloc);
|
|
}
|
|
if (item != NULL) {
|
|
bzero(item, nbytes);
|
|
} else {
|
|
nbytes = 0;
|
|
}
|
|
nitems = nbytes / z->zsize;
|
|
mtx_lock(&z->zmtx);
|
|
}
|
|
z->ztotal += nitems;
|
|
|
|
/*
|
|
* Save one for immediate allocation
|
|
*/
|
|
if (nitems != 0) {
|
|
nitems -= 1;
|
|
for (i = 0; i < nitems; i++) {
|
|
((void **) item)[0] = z->zitems;
|
|
#ifdef INVARIANTS
|
|
((void **) item)[1] = ZENTRY_FREE;
|
|
#endif
|
|
z->zitems = item;
|
|
(char *) item += z->zsize;
|
|
}
|
|
z->zfreecnt += nitems;
|
|
z->znalloc++;
|
|
} else if (z->zfreecnt > 0) {
|
|
item = z->zitems;
|
|
z->zitems = ((void **) item)[0];
|
|
#ifdef INVARIANTS
|
|
KASSERT(((void **) item)[1] == ZENTRY_FREE,
|
|
("item is not free"));
|
|
((void **) item)[1] = 0;
|
|
#endif
|
|
z->zfreecnt--;
|
|
z->znalloc++;
|
|
} else {
|
|
item = NULL;
|
|
}
|
|
|
|
mtx_assert(&z->zmtx, MA_OWNED);
|
|
return item;
|
|
}
|
|
|
|
/*
|
|
* Allocates an item from the specified zone.
|
|
*/
|
|
void *
|
|
zalloc(vm_zone_t z)
|
|
{
|
|
void *item;
|
|
|
|
KASSERT(z != NULL, ("invalid zone"));
|
|
mtx_lock(&z->zmtx);
|
|
|
|
if (z->zfreecnt <= z->zfreemin) {
|
|
item = _zget(z);
|
|
goto out;
|
|
}
|
|
|
|
item = z->zitems;
|
|
z->zitems = ((void **) item)[0];
|
|
#ifdef INVARIANTS
|
|
KASSERT(((void **) item)[1] == ZENTRY_FREE,
|
|
("item is not free"));
|
|
((void **) item)[1] = 0;
|
|
#endif
|
|
|
|
z->zfreecnt--;
|
|
z->znalloc++;
|
|
|
|
out:
|
|
mtx_unlock(&z->zmtx);
|
|
return item;
|
|
}
|
|
|
|
/*
|
|
* Frees an item back to the specified zone.
|
|
*/
|
|
void
|
|
zfree(vm_zone_t z, void *item)
|
|
{
|
|
KASSERT(z != NULL, ("invalid zone"));
|
|
KASSERT(item != NULL, ("invalid item"));
|
|
mtx_lock(&z->zmtx);
|
|
|
|
((void **) item)[0] = z->zitems;
|
|
#ifdef INVARIANTS
|
|
KASSERT(((void **) item)[1] != ZENTRY_FREE,
|
|
("item is already free"));
|
|
((void **) item)[1] = (void *) ZENTRY_FREE;
|
|
#endif
|
|
z->zitems = item;
|
|
z->zfreecnt++;
|
|
|
|
mtx_unlock(&z->zmtx);
|
|
}
|
|
|
|
/*
|
|
* Sysctl handler for vm.zone
|
|
*/
|
|
static int
|
|
sysctl_vm_zone(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, len, cnt;
|
|
const int linesize = 128; /* conservative */
|
|
char *tmpbuf, *offset;
|
|
vm_zone_t z;
|
|
char *p;
|
|
|
|
cnt = 0;
|
|
mtx_lock(&zone_mtx);
|
|
SLIST_FOREACH(z, &zlist, zent)
|
|
cnt++;
|
|
mtx_unlock(&zone_mtx);
|
|
MALLOC(tmpbuf, char *, (cnt == 0 ? 1 : cnt) * linesize,
|
|
M_TEMP, M_WAITOK);
|
|
len = snprintf(tmpbuf, linesize,
|
|
"\nITEM SIZE LIMIT USED FREE REQUESTS\n\n");
|
|
if (cnt == 0)
|
|
tmpbuf[len - 1] = '\0';
|
|
error = SYSCTL_OUT(req, tmpbuf, cnt == 0 ? len-1 : len);
|
|
if (error || cnt == 0)
|
|
goto out;
|
|
offset = tmpbuf;
|
|
mtx_lock(&zone_mtx);
|
|
SLIST_FOREACH(z, &zlist, zent) {
|
|
if (cnt == 0) /* list may have changed size */
|
|
break;
|
|
mtx_lock(&z->zmtx);
|
|
len = snprintf(offset, linesize,
|
|
"%-12.12s %6.6u, %8.8u, %6.6u, %6.6u, %8.8u\n",
|
|
z->zname, z->zsize, z->zmax, (z->ztotal - z->zfreecnt),
|
|
z->zfreecnt, z->znalloc);
|
|
mtx_unlock(&z->zmtx);
|
|
for (p = offset + 12; p > offset && *p == ' '; --p)
|
|
/* nothing */ ;
|
|
p[1] = ':';
|
|
cnt--;
|
|
offset += len;
|
|
}
|
|
mtx_unlock(&zone_mtx);
|
|
*offset++ = '\0';
|
|
error = SYSCTL_OUT(req, tmpbuf, offset - tmpbuf);
|
|
out:
|
|
FREE(tmpbuf, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD,
|
|
NULL, 0, sysctl_vm_zone, "A", "Zone Info");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, zone_kmem_pages, CTLFLAG_RD, &zone_kmem_pages, 0,
|
|
"Number of interrupt safe pages allocated by zone");
|
|
SYSCTL_INT(_vm, OID_AUTO, zone_kmem_kvaspace, CTLFLAG_RD, &zone_kmem_kvaspace, 0,
|
|
"KVA space allocated by zone");
|
|
SYSCTL_INT(_vm, OID_AUTO, zone_kern_pages, CTLFLAG_RD, &zone_kern_pages, 0,
|
|
"Number of non-interrupt safe pages allocated by zone");
|