2000-10-15 14:19:01 +00:00

2065 lines
53 KiB
C

/*
* Low level routines for the Advanced Systems Inc. SCSI controllers chips
*
* Copyright (c) 1996-1997, 1999-2000 Justin Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Ported from:
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
*
* Copyright (c) 1995-1996 Advanced System Products, Inc.
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that redistributions of source
* code retain the above copyright notice and this comment without
* modification.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/scsi_da.h>
#include <cam/scsi/scsi_cd.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <dev/advansys/advansys.h>
#include <dev/advansys/advmcode.h>
struct adv_quirk_entry {
struct scsi_inquiry_pattern inq_pat;
u_int8_t quirks;
#define ADV_QUIRK_FIX_ASYN_XFER_ALWAYS 0x01
#define ADV_QUIRK_FIX_ASYN_XFER 0x02
};
static struct adv_quirk_entry adv_quirk_table[] =
{
{
{ T_CDROM, SIP_MEDIA_REMOVABLE, "HP", "*", "*" },
ADV_QUIRK_FIX_ASYN_XFER_ALWAYS|ADV_QUIRK_FIX_ASYN_XFER
},
{
{ T_CDROM, SIP_MEDIA_REMOVABLE, "NEC", "CD-ROM DRIVE", "*" },
0
},
{
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE,
"TANDBERG", " TDC 36", "*"
},
0
},
{
{ T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "WANGTEK", "*", "*" },
0
},
{
{
T_PROCESSOR, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
"*", "*", "*"
},
0
},
{
{
T_SCANNER, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
"*", "*", "*"
},
0
},
{
/* Default quirk entry */
{
T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
/*vendor*/"*", /*product*/"*", /*revision*/"*"
},
ADV_QUIRK_FIX_ASYN_XFER,
}
};
/*
* Allowable periods in ns
*/
static u_int8_t adv_sdtr_period_tbl[] =
{
25,
30,
35,
40,
50,
60,
70,
85
};
static u_int8_t adv_sdtr_period_tbl_ultra[] =
{
12,
19,
25,
32,
38,
44,
50,
57,
63,
69,
75,
82,
88,
94,
100,
107
};
struct ext_msg {
u_int8_t msg_type;
u_int8_t msg_len;
u_int8_t msg_req;
union {
struct {
u_int8_t sdtr_xfer_period;
u_int8_t sdtr_req_ack_offset;
} sdtr;
struct {
u_int8_t wdtr_width;
} wdtr;
struct {
u_int8_t mdp[4];
} mdp;
} u_ext_msg;
u_int8_t res;
};
#define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
#define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
#define wdtr_width u_ext_msg.wdtr.wdtr_width
#define mdp_b3 u_ext_msg.mdp_b3
#define mdp_b2 u_ext_msg.mdp_b2
#define mdp_b1 u_ext_msg.mdp_b1
#define mdp_b0 u_ext_msg.mdp_b0
/*
* Some of the early PCI adapters have problems with
* async transfers. Instead use an offset of 1.
*/
#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
/* LRAM routines */
static void adv_read_lram_16_multi(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t *buffer, int count);
static void adv_write_lram_16_multi(struct adv_softc *adv,
u_int16_t s_addr, u_int16_t *buffer,
int count);
static void adv_mset_lram_16(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t set_value, int count);
static u_int32_t adv_msum_lram_16(struct adv_softc *adv, u_int16_t s_addr,
int count);
static int adv_write_and_verify_lram_16(struct adv_softc *adv,
u_int16_t addr, u_int16_t value);
static u_int32_t adv_read_lram_32(struct adv_softc *adv, u_int16_t addr);
static void adv_write_lram_32(struct adv_softc *adv, u_int16_t addr,
u_int32_t value);
static void adv_write_lram_32_multi(struct adv_softc *adv,
u_int16_t s_addr, u_int32_t *buffer,
int count);
/* EEPROM routines */
static u_int16_t adv_read_eeprom_16(struct adv_softc *adv, u_int8_t addr);
static u_int16_t adv_write_eeprom_16(struct adv_softc *adv, u_int8_t addr,
u_int16_t value);
static int adv_write_eeprom_cmd_reg(struct adv_softc *adv,
u_int8_t cmd_reg);
static int adv_set_eeprom_config_once(struct adv_softc *adv,
struct adv_eeprom_config *eeconfig);
/* Initialization */
static u_int32_t adv_load_microcode(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t *mcode_buf, u_int16_t mcode_size);
static void adv_reinit_lram(struct adv_softc *adv);
static void adv_init_lram(struct adv_softc *adv);
static int adv_init_microcode_var(struct adv_softc *adv);
static void adv_init_qlink_var(struct adv_softc *adv);
/* Interrupts */
static void adv_disable_interrupt(struct adv_softc *adv);
static void adv_enable_interrupt(struct adv_softc *adv);
static void adv_toggle_irq_act(struct adv_softc *adv);
/* Chip Control */
static int adv_host_req_chip_halt(struct adv_softc *adv);
static void adv_set_chip_ih(struct adv_softc *adv, u_int16_t ins_code);
#if UNUSED
static u_int8_t adv_get_chip_scsi_ctrl(struct adv_softc *adv);
#endif
/* Queue handling and execution */
static __inline int
adv_sgcount_to_qcount(int sgcount);
static __inline int
adv_sgcount_to_qcount(int sgcount)
{
int n_sg_list_qs;
n_sg_list_qs = ((sgcount - 1) / ADV_SG_LIST_PER_Q);
if (((sgcount - 1) % ADV_SG_LIST_PER_Q) != 0)
n_sg_list_qs++;
return (n_sg_list_qs + 1);
}
static void adv_get_q_info(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t *inbuf, int words);
static u_int adv_get_num_free_queues(struct adv_softc *adv, u_int8_t n_qs);
static u_int8_t adv_alloc_free_queues(struct adv_softc *adv,
u_int8_t free_q_head, u_int8_t n_free_q);
static u_int8_t adv_alloc_free_queue(struct adv_softc *adv,
u_int8_t free_q_head);
static int adv_send_scsi_queue(struct adv_softc *adv,
struct adv_scsi_q *scsiq,
u_int8_t n_q_required);
static void adv_put_ready_sg_list_queue(struct adv_softc *adv,
struct adv_scsi_q *scsiq,
u_int q_no);
static void adv_put_ready_queue(struct adv_softc *adv,
struct adv_scsi_q *scsiq, u_int q_no);
static void adv_put_scsiq(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t *buffer, int words);
/* Messages */
static void adv_handle_extmsg_in(struct adv_softc *adv,
u_int16_t halt_q_addr, u_int8_t q_cntl,
target_bit_vector target_id,
int tid);
static void adv_msgout_sdtr(struct adv_softc *adv, u_int8_t sdtr_period,
u_int8_t sdtr_offset);
static void adv_set_sdtr_reg_at_id(struct adv_softc *adv, int id,
u_int8_t sdtr_data);
/* Exported functions first */
void
advasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
{
struct adv_softc *adv;
adv = (struct adv_softc *)callback_arg;
switch (code) {
case AC_FOUND_DEVICE:
{
struct ccb_getdev *cgd;
target_bit_vector target_mask;
int num_entries;
caddr_t match;
struct adv_quirk_entry *entry;
struct adv_target_transinfo* tinfo;
cgd = (struct ccb_getdev *)arg;
target_mask = ADV_TID_TO_TARGET_MASK(cgd->ccb_h.target_id);
num_entries = sizeof(adv_quirk_table)/sizeof(*adv_quirk_table);
match = cam_quirkmatch((caddr_t)&cgd->inq_data,
(caddr_t)adv_quirk_table,
num_entries, sizeof(*adv_quirk_table),
scsi_inquiry_match);
if (match == NULL)
panic("advasync: device didn't match wildcard entry!!");
entry = (struct adv_quirk_entry *)match;
if (adv->bug_fix_control & ADV_BUG_FIX_ASYN_USE_SYN) {
if ((entry->quirks & ADV_QUIRK_FIX_ASYN_XFER_ALWAYS)!=0)
adv->fix_asyn_xfer_always |= target_mask;
else
adv->fix_asyn_xfer_always &= ~target_mask;
/*
* We start out life with all bits set and clear them
* after we've determined that the fix isn't necessary.
* It may well be that we've already cleared a target
* before the full inquiry session completes, so don't
* gratuitously set a target bit even if it has this
* quirk. But, if the quirk exonerates a device, clear
* the bit now.
*/
if ((entry->quirks & ADV_QUIRK_FIX_ASYN_XFER) == 0)
adv->fix_asyn_xfer &= ~target_mask;
}
/*
* Reset our sync settings now that we've determined
* what quirks are in effect for the device.
*/
tinfo = &adv->tinfo[cgd->ccb_h.target_id];
adv_set_syncrate(adv, cgd->ccb_h.path,
cgd->ccb_h.target_id,
tinfo->current.period,
tinfo->current.offset,
ADV_TRANS_CUR);
break;
}
case AC_LOST_DEVICE:
{
u_int target_mask;
if (adv->bug_fix_control & ADV_BUG_FIX_ASYN_USE_SYN) {
target_mask = 0x01 << xpt_path_target_id(path);
adv->fix_asyn_xfer |= target_mask;
}
/*
* Revert to async transfers
* for the next device.
*/
adv_set_syncrate(adv, /*path*/NULL,
xpt_path_target_id(path),
/*period*/0,
/*offset*/0,
ADV_TRANS_GOAL|ADV_TRANS_CUR);
}
default:
break;
}
}
void
adv_set_bank(struct adv_softc *adv, u_int8_t bank)
{
u_int8_t control;
/*
* Start out with the bank reset to 0
*/
control = ADV_INB(adv, ADV_CHIP_CTRL)
& (~(ADV_CC_SINGLE_STEP | ADV_CC_TEST
| ADV_CC_DIAG | ADV_CC_SCSI_RESET
| ADV_CC_CHIP_RESET | ADV_CC_BANK_ONE));
if (bank == 1) {
control |= ADV_CC_BANK_ONE;
} else if (bank == 2) {
control |= ADV_CC_DIAG | ADV_CC_BANK_ONE;
}
ADV_OUTB(adv, ADV_CHIP_CTRL, control);
}
u_int8_t
adv_read_lram_8(struct adv_softc *adv, u_int16_t addr)
{
u_int8_t byte_data;
u_int16_t word_data;
/*
* LRAM is accessed on 16bit boundaries.
*/
ADV_OUTW(adv, ADV_LRAM_ADDR, addr & 0xFFFE);
word_data = ADV_INW(adv, ADV_LRAM_DATA);
if (addr & 1) {
#if BYTE_ORDER == BIG_ENDIAN
byte_data = (u_int8_t)(word_data & 0xFF);
#else
byte_data = (u_int8_t)((word_data >> 8) & 0xFF);
#endif
} else {
#if BYTE_ORDER == BIG_ENDIAN
byte_data = (u_int8_t)((word_data >> 8) & 0xFF);
#else
byte_data = (u_int8_t)(word_data & 0xFF);
#endif
}
return (byte_data);
}
void
adv_write_lram_8(struct adv_softc *adv, u_int16_t addr, u_int8_t value)
{
u_int16_t word_data;
word_data = adv_read_lram_16(adv, addr & 0xFFFE);
if (addr & 1) {
word_data &= 0x00FF;
word_data |= (((u_int8_t)value << 8) & 0xFF00);
} else {
word_data &= 0xFF00;
word_data |= ((u_int8_t)value & 0x00FF);
}
adv_write_lram_16(adv, addr & 0xFFFE, word_data);
}
u_int16_t
adv_read_lram_16(struct adv_softc *adv, u_int16_t addr)
{
ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
return (ADV_INW(adv, ADV_LRAM_DATA));
}
void
adv_write_lram_16(struct adv_softc *adv, u_int16_t addr, u_int16_t value)
{
ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
ADV_OUTW(adv, ADV_LRAM_DATA, value);
}
/*
* Determine if there is a board at "iobase" by looking
* for the AdvanSys signatures. Return 1 if a board is
* found, 0 otherwise.
*/
int
adv_find_signature(bus_space_tag_t tag, bus_space_handle_t bsh)
{
u_int16_t signature;
if (bus_space_read_1(tag, bsh, ADV_SIGNATURE_BYTE) == ADV_1000_ID1B) {
signature = bus_space_read_2(tag, bsh, ADV_SIGNATURE_WORD);
if ((signature == ADV_1000_ID0W)
|| (signature == ADV_1000_ID0W_FIX))
return (1);
}
return (0);
}
void
adv_lib_init(struct adv_softc *adv)
{
if ((adv->type & ADV_ULTRA) != 0) {
adv->sdtr_period_tbl = adv_sdtr_period_tbl_ultra;
adv->sdtr_period_tbl_size = sizeof(adv_sdtr_period_tbl_ultra);
} else {
adv->sdtr_period_tbl = adv_sdtr_period_tbl;
adv->sdtr_period_tbl_size = sizeof(adv_sdtr_period_tbl);
}
}
u_int16_t
adv_get_eeprom_config(struct adv_softc *adv, struct
adv_eeprom_config *eeprom_config)
{
u_int16_t sum;
u_int16_t *wbuf;
u_int8_t cfg_beg;
u_int8_t cfg_end;
u_int8_t s_addr;
wbuf = (u_int16_t *)eeprom_config;
sum = 0;
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
*wbuf = adv_read_eeprom_16(adv, s_addr);
sum += *wbuf;
}
if (adv->type & ADV_VL) {
cfg_beg = ADV_EEPROM_CFG_BEG_VL;
cfg_end = ADV_EEPROM_MAX_ADDR_VL;
} else {
cfg_beg = ADV_EEPROM_CFG_BEG;
cfg_end = ADV_EEPROM_MAX_ADDR;
}
for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
*wbuf = adv_read_eeprom_16(adv, s_addr);
sum += *wbuf;
#if ADV_DEBUG_EEPROM
printf("Addr 0x%x: 0x%04x\n", s_addr, *wbuf);
#endif
}
*wbuf = adv_read_eeprom_16(adv, s_addr);
return (sum);
}
int
adv_set_eeprom_config(struct adv_softc *adv,
struct adv_eeprom_config *eeprom_config)
{
int retry;
retry = 0;
while (1) {
if (adv_set_eeprom_config_once(adv, eeprom_config) == 0) {
break;
}
if (++retry > ADV_EEPROM_MAX_RETRY) {
break;
}
}
return (retry > ADV_EEPROM_MAX_RETRY);
}
int
adv_reset_chip(struct adv_softc *adv, int reset_bus)
{
adv_stop_chip(adv);
ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_CHIP_RESET | ADV_CC_HALT
| (reset_bus ? ADV_CC_SCSI_RESET : 0));
DELAY(60);
adv_set_chip_ih(adv, ADV_INS_RFLAG_WTM);
adv_set_chip_ih(adv, ADV_INS_HALT);
if (reset_bus)
ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_CHIP_RESET | ADV_CC_HALT);
ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_HALT);
if (reset_bus)
DELAY(200 * 1000);
ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_CLR_SCSI_RESET_INT);
ADV_OUTW(adv, ADV_CHIP_STATUS, 0);
return (adv_is_chip_halted(adv));
}
int
adv_test_external_lram(struct adv_softc* adv)
{
u_int16_t q_addr;
u_int16_t saved_value;
int success;
success = 0;
q_addr = ADV_QNO_TO_QADDR(241);
saved_value = adv_read_lram_16(adv, q_addr);
if (adv_write_and_verify_lram_16(adv, q_addr, 0x55AA) == 0) {
success = 1;
adv_write_lram_16(adv, q_addr, saved_value);
}
return (success);
}
int
adv_init_lram_and_mcode(struct adv_softc *adv)
{
u_int32_t retval;
adv_disable_interrupt(adv);
adv_init_lram(adv);
retval = adv_load_microcode(adv, 0, (u_int16_t *)adv_mcode,
adv_mcode_size);
if (retval != adv_mcode_chksum) {
printf("adv%d: Microcode download failed checksum!\n",
adv->unit);
return (1);
}
if (adv_init_microcode_var(adv) != 0)
return (1);
adv_enable_interrupt(adv);
return (0);
}
u_int8_t
adv_get_chip_irq(struct adv_softc *adv)
{
u_int16_t cfg_lsw;
u_int8_t chip_irq;
cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
if ((adv->type & ADV_VL) != 0) {
chip_irq = (u_int8_t)(((cfg_lsw >> 2) & 0x07));
if ((chip_irq == 0) ||
(chip_irq == 4) ||
(chip_irq == 7)) {
return (0);
}
return (chip_irq + (ADV_MIN_IRQ_NO - 1));
}
chip_irq = (u_int8_t)(((cfg_lsw >> 2) & 0x03));
if (chip_irq == 3)
chip_irq += 2;
return (chip_irq + ADV_MIN_IRQ_NO);
}
u_int8_t
adv_set_chip_irq(struct adv_softc *adv, u_int8_t irq_no)
{
u_int16_t cfg_lsw;
if ((adv->type & ADV_VL) != 0) {
if (irq_no != 0) {
if ((irq_no < ADV_MIN_IRQ_NO)
|| (irq_no > ADV_MAX_IRQ_NO)) {
irq_no = 0;
} else {
irq_no -= ADV_MIN_IRQ_NO - 1;
}
}
cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFE3;
cfg_lsw |= 0x0010;
ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
adv_toggle_irq_act(adv);
cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFE0;
cfg_lsw |= (irq_no & 0x07) << 2;
ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
adv_toggle_irq_act(adv);
} else if ((adv->type & ADV_ISA) != 0) {
if (irq_no == 15)
irq_no -= 2;
irq_no -= ADV_MIN_IRQ_NO;
cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFF3;
cfg_lsw |= (irq_no & 0x03) << 2;
ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
}
return (adv_get_chip_irq(adv));
}
void
adv_set_chip_scsiid(struct adv_softc *adv, int new_id)
{
u_int16_t cfg_lsw;
cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
if (ADV_CONFIG_SCSIID(cfg_lsw) == new_id)
return;
cfg_lsw &= ~ADV_CFG_LSW_SCSIID;
cfg_lsw |= (new_id & ADV_MAX_TID) << ADV_CFG_LSW_SCSIID_SHIFT;
ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
}
int
adv_execute_scsi_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
u_int32_t datalen)
{
struct adv_target_transinfo* tinfo;
u_int32_t *p_data_addr;
u_int32_t *p_data_bcount;
int disable_syn_offset_one_fix;
int retval;
u_int n_q_required;
u_int32_t addr;
u_int8_t sg_entry_cnt;
u_int8_t target_ix;
u_int8_t sg_entry_cnt_minus_one;
u_int8_t tid_no;
scsiq->q1.q_no = 0;
retval = 1; /* Default to error case */
target_ix = scsiq->q2.target_ix;
tid_no = ADV_TIX_TO_TID(target_ix);
tinfo = &adv->tinfo[tid_no];
if (scsiq->cdbptr[0] == REQUEST_SENSE) {
/* Renegotiate if appropriate. */
adv_set_syncrate(adv, /*struct cam_path */NULL,
tid_no, /*period*/0, /*offset*/0,
ADV_TRANS_CUR);
if (tinfo->current.period != tinfo->goal.period) {
adv_msgout_sdtr(adv, tinfo->goal.period,
tinfo->goal.offset);
scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
}
}
if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
sg_entry_cnt = scsiq->sg_head->entry_cnt;
sg_entry_cnt_minus_one = sg_entry_cnt - 1;
#ifdef DIAGNOSTIC
if (sg_entry_cnt <= 1)
panic("adv_execute_scsi_queue: Queue "
"with QC_SG_HEAD set but %d segs.", sg_entry_cnt);
if (sg_entry_cnt > ADV_MAX_SG_LIST)
panic("adv_execute_scsi_queue: "
"Queue with too many segs.");
if ((adv->type & (ADV_ISA | ADV_VL | ADV_EISA)) != 0) {
int i;
for (i = 0; i < sg_entry_cnt_minus_one; i++) {
addr = scsiq->sg_head->sg_list[i].addr +
scsiq->sg_head->sg_list[i].bytes;
if ((addr & 0x0003) != 0)
panic("adv_execute_scsi_queue: SG "
"with odd address or byte count");
}
}
#endif
p_data_addr =
&scsiq->sg_head->sg_list[sg_entry_cnt_minus_one].addr;
p_data_bcount =
&scsiq->sg_head->sg_list[sg_entry_cnt_minus_one].bytes;
n_q_required = adv_sgcount_to_qcount(sg_entry_cnt);
scsiq->sg_head->queue_cnt = n_q_required - 1;
} else {
p_data_addr = &scsiq->q1.data_addr;
p_data_bcount = &scsiq->q1.data_cnt;
n_q_required = 1;
}
disable_syn_offset_one_fix = FALSE;
if ((adv->fix_asyn_xfer & scsiq->q1.target_id) != 0
&& (adv->fix_asyn_xfer_always & scsiq->q1.target_id) == 0) {
if (datalen != 0) {
if (datalen < 512) {
disable_syn_offset_one_fix = TRUE;
} else {
if (scsiq->cdbptr[0] == INQUIRY
|| scsiq->cdbptr[0] == REQUEST_SENSE
|| scsiq->cdbptr[0] == READ_CAPACITY
|| scsiq->cdbptr[0] == MODE_SELECT_6
|| scsiq->cdbptr[0] == MODE_SENSE_6
|| scsiq->cdbptr[0] == MODE_SENSE_10
|| scsiq->cdbptr[0] == MODE_SELECT_10
|| scsiq->cdbptr[0] == READ_TOC) {
disable_syn_offset_one_fix = TRUE;
}
}
}
}
if (disable_syn_offset_one_fix) {
scsiq->q2.tag_code &=
~(MSG_SIMPLE_Q_TAG|MSG_HEAD_OF_Q_TAG|MSG_ORDERED_Q_TAG);
scsiq->q2.tag_code |= (ADV_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
| ADV_TAG_FLAG_DISABLE_DISCONNECT);
}
if ((adv->bug_fix_control & ADV_BUG_FIX_IF_NOT_DWB) != 0
&& (scsiq->cdbptr[0] == READ_10 || scsiq->cdbptr[0] == READ_6)) {
u_int8_t extra_bytes;
addr = *p_data_addr + *p_data_bcount;
extra_bytes = addr & 0x0003;
if (extra_bytes != 0
&& ((scsiq->q1.cntl & QC_SG_HEAD) != 0
|| (scsiq->q1.data_cnt & 0x01FF) == 0)) {
scsiq->q2.tag_code |= ADV_TAG_FLAG_EXTRA_BYTES;
scsiq->q1.extra_bytes = extra_bytes;
*p_data_bcount -= extra_bytes;
}
}
if ((adv_get_num_free_queues(adv, n_q_required) >= n_q_required)
|| ((scsiq->q1.cntl & QC_URGENT) != 0))
retval = adv_send_scsi_queue(adv, scsiq, n_q_required);
return (retval);
}
u_int8_t
adv_copy_lram_doneq(struct adv_softc *adv, u_int16_t q_addr,
struct adv_q_done_info *scsiq, u_int32_t max_dma_count)
{
u_int16_t val;
u_int8_t sg_queue_cnt;
adv_get_q_info(adv, q_addr + ADV_SCSIQ_DONE_INFO_BEG,
(u_int16_t *)scsiq,
(sizeof(scsiq->d2) + sizeof(scsiq->d3)) / 2);
#if BYTE_ORDER == BIG_ENDIAN
adv_adj_endian_qdone_info(scsiq);
#endif
val = adv_read_lram_16(adv, q_addr + ADV_SCSIQ_B_STATUS);
scsiq->q_status = val & 0xFF;
scsiq->q_no = (val >> 8) & 0XFF;
val = adv_read_lram_16(adv, q_addr + ADV_SCSIQ_B_CNTL);
scsiq->cntl = val & 0xFF;
sg_queue_cnt = (val >> 8) & 0xFF;
val = adv_read_lram_16(adv,q_addr + ADV_SCSIQ_B_SENSE_LEN);
scsiq->sense_len = val & 0xFF;
scsiq->extra_bytes = (val >> 8) & 0xFF;
/*
* Due to a bug in accessing LRAM on the 940UA, the residual
* is split into separate high and low 16bit quantities.
*/
scsiq->remain_bytes =
adv_read_lram_16(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_CNT);
scsiq->remain_bytes |=
adv_read_lram_16(adv, q_addr + ADV_SCSIQ_W_ALT_DC1) << 16;
/*
* XXX Is this just a safeguard or will the counter really
* have bogus upper bits?
*/
scsiq->remain_bytes &= max_dma_count;
return (sg_queue_cnt);
}
int
adv_start_chip(struct adv_softc *adv)
{
ADV_OUTB(adv, ADV_CHIP_CTRL, 0);
if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) != 0)
return (0);
return (1);
}
int
adv_stop_execution(struct adv_softc *adv)
{
int count;
count = 0;
if (adv_read_lram_8(adv, ADV_STOP_CODE_B) == 0) {
adv_write_lram_8(adv, ADV_STOP_CODE_B,
ADV_STOP_REQ_RISC_STOP);
do {
if (adv_read_lram_8(adv, ADV_STOP_CODE_B) &
ADV_STOP_ACK_RISC_STOP) {
return (1);
}
DELAY(1000);
} while (count++ < 20);
}
return (0);
}
int
adv_is_chip_halted(struct adv_softc *adv)
{
if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) != 0) {
if ((ADV_INB(adv, ADV_CHIP_CTRL) & ADV_CC_HALT) != 0) {
return (1);
}
}
return (0);
}
/*
* XXX The numeric constants and the loops in this routine
* need to be documented.
*/
void
adv_ack_interrupt(struct adv_softc *adv)
{
u_int8_t host_flag;
u_int8_t risc_flag;
int loop;
loop = 0;
do {
risc_flag = adv_read_lram_8(adv, ADVV_RISC_FLAG_B);
if (loop++ > 0x7FFF) {
break;
}
} while ((risc_flag & ADV_RISC_FLAG_GEN_INT) != 0);
host_flag = adv_read_lram_8(adv, ADVV_HOST_FLAG_B);
adv_write_lram_8(adv, ADVV_HOST_FLAG_B,
host_flag | ADV_HOST_FLAG_ACK_INT);
ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_INT_ACK);
loop = 0;
while (ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_INT_PENDING) {
ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_INT_ACK);
if (loop++ > 3) {
break;
}
}
adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag);
}
/*
* Handle all conditions that may halt the chip waiting
* for us to intervene.
*/
void
adv_isr_chip_halted(struct adv_softc *adv)
{
u_int16_t int_halt_code;
u_int16_t halt_q_addr;
target_bit_vector target_mask;
target_bit_vector scsi_busy;
u_int8_t halt_qp;
u_int8_t target_ix;
u_int8_t q_cntl;
u_int8_t tid_no;
int_halt_code = adv_read_lram_16(adv, ADVV_HALTCODE_W);
halt_qp = adv_read_lram_8(adv, ADVV_CURCDB_B);
halt_q_addr = ADV_QNO_TO_QADDR(halt_qp);
target_ix = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_TARGET_IX);
q_cntl = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL);
tid_no = ADV_TIX_TO_TID(target_ix);
target_mask = ADV_TID_TO_TARGET_MASK(tid_no);
if (int_halt_code == ADV_HALT_DISABLE_ASYN_USE_SYN_FIX) {
/*
* Temporarily disable the async fix by removing
* this target from the list of affected targets,
* setting our async rate, and then putting us
* back into the mask.
*/
adv->fix_asyn_xfer &= ~target_mask;
adv_set_syncrate(adv, /*struct cam_path */NULL,
tid_no, /*period*/0, /*offset*/0,
ADV_TRANS_ACTIVE);
adv->fix_asyn_xfer |= target_mask;
} else if (int_halt_code == ADV_HALT_ENABLE_ASYN_USE_SYN_FIX) {
adv_set_syncrate(adv, /*struct cam_path */NULL,
tid_no, /*period*/0, /*offset*/0,
ADV_TRANS_ACTIVE);
} else if (int_halt_code == ADV_HALT_EXTMSG_IN) {
adv_handle_extmsg_in(adv, halt_q_addr, q_cntl,
target_mask, tid_no);
} else if (int_halt_code == ADV_HALT_CHK_CONDITION) {
struct adv_target_transinfo* tinfo;
union ccb *ccb;
u_int32_t cinfo_index;
u_int8_t tag_code;
u_int8_t q_status;
tinfo = &adv->tinfo[tid_no];
q_cntl |= QC_REQ_SENSE;
/* Renegotiate if appropriate. */
adv_set_syncrate(adv, /*struct cam_path */NULL,
tid_no, /*period*/0, /*offset*/0,
ADV_TRANS_CUR);
if (tinfo->current.period != tinfo->goal.period) {
adv_msgout_sdtr(adv, tinfo->goal.period,
tinfo->goal.offset);
q_cntl |= QC_MSG_OUT;
}
adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
/* Don't tag request sense commands */
tag_code = adv_read_lram_8(adv,
halt_q_addr + ADV_SCSIQ_B_TAG_CODE);
tag_code &=
~(MSG_SIMPLE_Q_TAG|MSG_HEAD_OF_Q_TAG|MSG_ORDERED_Q_TAG);
if ((adv->fix_asyn_xfer & target_mask) != 0
&& (adv->fix_asyn_xfer_always & target_mask) == 0) {
tag_code |= (ADV_TAG_FLAG_DISABLE_DISCONNECT
| ADV_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
}
adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_TAG_CODE,
tag_code);
q_status = adv_read_lram_8(adv,
halt_q_addr + ADV_SCSIQ_B_STATUS);
q_status |= (QS_READY | QS_BUSY);
adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_STATUS,
q_status);
/*
* Freeze the devq until we can handle the sense condition.
*/
cinfo_index =
adv_read_lram_32(adv, halt_q_addr + ADV_SCSIQ_D_CINFO_IDX);
ccb = adv->ccb_infos[cinfo_index].ccb;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
adv_abort_ccb(adv, tid_no, ADV_TIX_TO_LUN(target_ix),
/*ccb*/NULL, CAM_REQUEUE_REQ,
/*queued_only*/TRUE);
scsi_busy = adv_read_lram_8(adv, ADVV_SCSIBUSY_B);
scsi_busy &= ~target_mask;
adv_write_lram_8(adv, ADVV_SCSIBUSY_B, scsi_busy);
/*
* Ensure we have enough time to actually
* retrieve the sense.
*/
untimeout(adv_timeout, (caddr_t)ccb, ccb->ccb_h.timeout_ch);
ccb->ccb_h.timeout_ch =
timeout(adv_timeout, (caddr_t)ccb, 5 * hz);
} else if (int_halt_code == ADV_HALT_SDTR_REJECTED) {
struct ext_msg out_msg;
adv_read_lram_16_multi(adv, ADVV_MSGOUT_BEG,
(u_int16_t *) &out_msg,
sizeof(out_msg)/2);
if ((out_msg.msg_type == MSG_EXTENDED)
&& (out_msg.msg_len == MSG_EXT_SDTR_LEN)
&& (out_msg.msg_req == MSG_EXT_SDTR)) {
/* Revert to Async */
adv_set_syncrate(adv, /*struct cam_path */NULL,
tid_no, /*period*/0, /*offset*/0,
ADV_TRANS_GOAL|ADV_TRANS_ACTIVE);
}
q_cntl &= ~QC_MSG_OUT;
adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
} else if (int_halt_code == ADV_HALT_SS_QUEUE_FULL) {
u_int8_t scsi_status;
union ccb *ccb;
u_int32_t cinfo_index;
scsi_status = adv_read_lram_8(adv, halt_q_addr
+ ADV_SCSIQ_SCSI_STATUS);
cinfo_index =
adv_read_lram_32(adv, halt_q_addr + ADV_SCSIQ_D_CINFO_IDX);
ccb = adv->ccb_infos[cinfo_index].ccb;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status |= CAM_DEV_QFRZN|CAM_SCSI_STATUS_ERROR;
ccb->csio.scsi_status = SCSI_STATUS_QUEUE_FULL;
adv_abort_ccb(adv, tid_no, ADV_TIX_TO_LUN(target_ix),
/*ccb*/NULL, CAM_REQUEUE_REQ,
/*queued_only*/TRUE);
scsi_busy = adv_read_lram_8(adv, ADVV_SCSIBUSY_B);
scsi_busy &= ~target_mask;
adv_write_lram_8(adv, ADVV_SCSIBUSY_B, scsi_busy);
} else {
printf("Unhandled Halt Code %x\n", int_halt_code);
}
adv_write_lram_16(adv, ADVV_HALTCODE_W, 0);
}
void
adv_sdtr_to_period_offset(struct adv_softc *adv,
u_int8_t sync_data, u_int8_t *period,
u_int8_t *offset, int tid)
{
if (adv->fix_asyn_xfer & ADV_TID_TO_TARGET_MASK(tid)
&& (sync_data == ASYN_SDTR_DATA_FIX_PCI_REV_AB)) {
*period = *offset = 0;
} else {
*period = adv->sdtr_period_tbl[((sync_data >> 4) & 0xF)];
*offset = sync_data & 0xF;
}
}
void
adv_set_syncrate(struct adv_softc *adv, struct cam_path *path,
u_int tid, u_int period, u_int offset, u_int type)
{
struct adv_target_transinfo* tinfo;
u_int old_period;
u_int old_offset;
u_int8_t sdtr_data;
tinfo = &adv->tinfo[tid];
/* Filter our input */
sdtr_data = adv_period_offset_to_sdtr(adv, &period,
&offset, tid);
old_period = tinfo->current.period;
old_offset = tinfo->current.offset;
if ((type & ADV_TRANS_CUR) != 0
&& ((old_period != period || old_offset != offset)
|| period == 0 || offset == 0) /*Changes in asyn fix settings*/) {
int s;
int halted;
s = splcam();
halted = adv_is_chip_halted(adv);
if (halted == 0)
/* Must halt the chip first */
adv_host_req_chip_halt(adv);
/* Update current hardware settings */
adv_set_sdtr_reg_at_id(adv, tid, sdtr_data);
/*
* If a target can run in sync mode, we don't need
* to check it for sync problems.
*/
if (offset != 0)
adv->fix_asyn_xfer &= ~ADV_TID_TO_TARGET_MASK(tid);
if (halted == 0)
/* Start the chip again */
adv_start_chip(adv);
splx(s);
tinfo->current.period = period;
tinfo->current.offset = offset;
if (path != NULL) {
/*
* Tell the SCSI layer about the
* new transfer parameters.
*/
struct ccb_trans_settings neg;
neg.sync_period = period;
neg.sync_offset = offset;
neg.valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID;
xpt_setup_ccb(&neg.ccb_h, path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, path, &neg);
}
}
if ((type & ADV_TRANS_GOAL) != 0) {
tinfo->goal.period = period;
tinfo->goal.offset = offset;
}
if ((type & ADV_TRANS_USER) != 0) {
tinfo->user.period = period;
tinfo->user.offset = offset;
}
}
u_int8_t
adv_period_offset_to_sdtr(struct adv_softc *adv, u_int *period,
u_int *offset, int tid)
{
u_int i;
u_int dummy_offset;
u_int dummy_period;
if (offset == NULL) {
dummy_offset = 0;
offset = &dummy_offset;
}
if (period == NULL) {
dummy_period = 0;
period = &dummy_period;
}
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
*offset = MIN(ADV_SYN_MAX_OFFSET, *offset);
if (*period != 0 && *offset != 0) {
for (i = 0; i < adv->sdtr_period_tbl_size; i++) {
if (*period <= adv->sdtr_period_tbl[i]) {
/*
* When responding to a target that requests
* sync, the requested rate may fall between
* two rates that we can output, but still be
* a rate that we can receive. Because of this,
* we want to respond to the target with
* the same rate that it sent to us even
* if the period we use to send data to it
* is lower. Only lower the response period
* if we must.
*/
if (i == 0 /* Our maximum rate */)
*period = adv->sdtr_period_tbl[0];
return ((i << 4) | *offset);
}
}
}
/* Must go async */
*period = 0;
*offset = 0;
if (adv->fix_asyn_xfer & ADV_TID_TO_TARGET_MASK(tid))
return (ASYN_SDTR_DATA_FIX_PCI_REV_AB);
return (0);
}
/* Internal Routines */
static void
adv_read_lram_16_multi(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t *buffer, int count)
{
ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
ADV_INSW(adv, ADV_LRAM_DATA, buffer, count);
}
static void
adv_write_lram_16_multi(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t *buffer, int count)
{
ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
ADV_OUTSW(adv, ADV_LRAM_DATA, buffer, count);
}
static void
adv_mset_lram_16(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t set_value, int count)
{
ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
bus_space_set_multi_2(adv->tag, adv->bsh, ADV_LRAM_DATA,
set_value, count);
}
static u_int32_t
adv_msum_lram_16(struct adv_softc *adv, u_int16_t s_addr, int count)
{
u_int32_t sum;
int i;
sum = 0;
ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
for (i = 0; i < count; i++)
sum += ADV_INW(adv, ADV_LRAM_DATA);
return (sum);
}
static int
adv_write_and_verify_lram_16(struct adv_softc *adv, u_int16_t addr,
u_int16_t value)
{
int retval;
retval = 0;
ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
ADV_OUTW(adv, ADV_LRAM_DATA, value);
DELAY(10000);
ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
if (value != ADV_INW(adv, ADV_LRAM_DATA))
retval = 1;
return (retval);
}
static u_int32_t
adv_read_lram_32(struct adv_softc *adv, u_int16_t addr)
{
u_int16_t val_low, val_high;
ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
#if BYTE_ORDER == BIG_ENDIAN
val_high = ADV_INW(adv, ADV_LRAM_DATA);
val_low = ADV_INW(adv, ADV_LRAM_DATA);
#else
val_low = ADV_INW(adv, ADV_LRAM_DATA);
val_high = ADV_INW(adv, ADV_LRAM_DATA);
#endif
return (((u_int32_t)val_high << 16) | (u_int32_t)val_low);
}
static void
adv_write_lram_32(struct adv_softc *adv, u_int16_t addr, u_int32_t value)
{
ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
#if BYTE_ORDER == BIG_ENDIAN
ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)((value >> 16) & 0xFFFF));
ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)(value & 0xFFFF));
#else
ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)(value & 0xFFFF));
ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)((value >> 16) & 0xFFFF));
#endif
}
static void
adv_write_lram_32_multi(struct adv_softc *adv, u_int16_t s_addr,
u_int32_t *buffer, int count)
{
ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
ADV_OUTSW(adv, ADV_LRAM_DATA, (u_int16_t *)buffer, count * 2);
}
static u_int16_t
adv_read_eeprom_16(struct adv_softc *adv, u_int8_t addr)
{
u_int16_t read_wval;
u_int8_t cmd_reg;
adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_DISABLE);
DELAY(1000);
cmd_reg = addr | ADV_EEPROM_CMD_READ;
adv_write_eeprom_cmd_reg(adv, cmd_reg);
DELAY(1000);
read_wval = ADV_INW(adv, ADV_EEPROM_DATA);
DELAY(1000);
return (read_wval);
}
static u_int16_t
adv_write_eeprom_16(struct adv_softc *adv, u_int8_t addr, u_int16_t value)
{
u_int16_t read_value;
read_value = adv_read_eeprom_16(adv, addr);
if (read_value != value) {
adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_ENABLE);
DELAY(1000);
ADV_OUTW(adv, ADV_EEPROM_DATA, value);
DELAY(1000);
adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE | addr);
DELAY(20 * 1000);
adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_DISABLE);
DELAY(1000);
read_value = adv_read_eeprom_16(adv, addr);
}
return (read_value);
}
static int
adv_write_eeprom_cmd_reg(struct adv_softc *adv, u_int8_t cmd_reg)
{
u_int8_t read_back;
int retry;
retry = 0;
while (1) {
ADV_OUTB(adv, ADV_EEPROM_CMD, cmd_reg);
DELAY(1000);
read_back = ADV_INB(adv, ADV_EEPROM_CMD);
if (read_back == cmd_reg) {
return (1);
}
if (retry++ > ADV_EEPROM_MAX_RETRY) {
return (0);
}
}
}
static int
adv_set_eeprom_config_once(struct adv_softc *adv,
struct adv_eeprom_config *eeprom_config)
{
int n_error;
u_int16_t *wbuf;
u_int16_t sum;
u_int8_t s_addr;
u_int8_t cfg_beg;
u_int8_t cfg_end;
wbuf = (u_int16_t *)eeprom_config;
n_error = 0;
sum = 0;
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
sum += *wbuf;
if (*wbuf != adv_write_eeprom_16(adv, s_addr, *wbuf)) {
n_error++;
}
}
if (adv->type & ADV_VL) {
cfg_beg = ADV_EEPROM_CFG_BEG_VL;
cfg_end = ADV_EEPROM_MAX_ADDR_VL;
} else {
cfg_beg = ADV_EEPROM_CFG_BEG;
cfg_end = ADV_EEPROM_MAX_ADDR;
}
for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
sum += *wbuf;
if (*wbuf != adv_write_eeprom_16(adv, s_addr, *wbuf)) {
n_error++;
}
}
*wbuf = sum;
if (sum != adv_write_eeprom_16(adv, s_addr, sum)) {
n_error++;
}
wbuf = (u_int16_t *)eeprom_config;
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
if (*wbuf != adv_read_eeprom_16(adv, s_addr)) {
n_error++;
}
}
for (s_addr = cfg_beg; s_addr <= cfg_end; s_addr++, wbuf++) {
if (*wbuf != adv_read_eeprom_16(adv, s_addr)) {
n_error++;
}
}
return (n_error);
}
static u_int32_t
adv_load_microcode(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t *mcode_buf, u_int16_t mcode_size)
{
u_int32_t chksum;
u_int16_t mcode_lram_size;
u_int16_t mcode_chksum;
mcode_lram_size = mcode_size >> 1;
/* XXX Why zero the memory just before you write the whole thing?? */
adv_mset_lram_16(adv, s_addr, 0, mcode_lram_size);
adv_write_lram_16_multi(adv, s_addr, mcode_buf, mcode_lram_size);
chksum = adv_msum_lram_16(adv, s_addr, mcode_lram_size);
mcode_chksum = (u_int16_t)adv_msum_lram_16(adv, ADV_CODE_SEC_BEG,
((mcode_size - s_addr
- ADV_CODE_SEC_BEG) >> 1));
adv_write_lram_16(adv, ADVV_MCODE_CHKSUM_W, mcode_chksum);
adv_write_lram_16(adv, ADVV_MCODE_SIZE_W, mcode_size);
return (chksum);
}
static void
adv_reinit_lram(struct adv_softc *adv) {
adv_init_lram(adv);
adv_init_qlink_var(adv);
}
static void
adv_init_lram(struct adv_softc *adv)
{
u_int8_t i;
u_int16_t s_addr;
adv_mset_lram_16(adv, ADV_QADR_BEG, 0,
(((adv->max_openings + 2 + 1) * 64) >> 1));
i = ADV_MIN_ACTIVE_QNO;
s_addr = ADV_QADR_BEG + ADV_QBLK_SIZE;
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i + 1);
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, adv->max_openings);
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
i++;
s_addr += ADV_QBLK_SIZE;
for (; i < adv->max_openings; i++, s_addr += ADV_QBLK_SIZE) {
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i + 1);
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, i - 1);
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
}
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, ADV_QLINK_END);
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, adv->max_openings - 1);
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, adv->max_openings);
i++;
s_addr += ADV_QBLK_SIZE;
for (; i <= adv->max_openings + 3; i++, s_addr += ADV_QBLK_SIZE) {
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i);
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, i);
adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
}
}
static int
adv_init_microcode_var(struct adv_softc *adv)
{
int i;
for (i = 0; i <= ADV_MAX_TID; i++) {
/* Start out async all around */
adv_set_syncrate(adv, /*path*/NULL,
i, 0, 0,
ADV_TRANS_GOAL|ADV_TRANS_CUR);
}
adv_init_qlink_var(adv);
adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable);
adv_write_lram_8(adv, ADVV_HOSTSCSI_ID_B, 0x01 << adv->scsi_id);
adv_write_lram_32(adv, ADVV_OVERRUN_PADDR_D, adv->overrun_physbase);
adv_write_lram_32(adv, ADVV_OVERRUN_BSIZE_D, ADV_OVERRUN_BSIZE);
ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
if (ADV_INW(adv, ADV_REG_PROG_COUNTER) != ADV_MCODE_START_ADDR) {
printf("adv%d: Unable to set program counter. Aborting.\n",
adv->unit);
return (1);
}
return (0);
}
static void
adv_init_qlink_var(struct adv_softc *adv)
{
int i;
u_int16_t lram_addr;
adv_write_lram_8(adv, ADVV_NEXTRDY_B, 1);
adv_write_lram_8(adv, ADVV_DONENEXT_B, adv->max_openings);
adv_write_lram_16(adv, ADVV_FREE_Q_HEAD_W, 1);
adv_write_lram_16(adv, ADVV_DONE_Q_TAIL_W, adv->max_openings);
adv_write_lram_8(adv, ADVV_BUSY_QHEAD_B,
(u_int8_t)((int) adv->max_openings + 1));
adv_write_lram_8(adv, ADVV_DISC1_QHEAD_B,
(u_int8_t)((int) adv->max_openings + 2));
adv_write_lram_8(adv, ADVV_TOTAL_READY_Q_B, adv->max_openings);
adv_write_lram_16(adv, ADVV_ASCDVC_ERR_CODE_W, 0);
adv_write_lram_16(adv, ADVV_HALTCODE_W, 0);
adv_write_lram_8(adv, ADVV_STOP_CODE_B, 0);
adv_write_lram_8(adv, ADVV_SCSIBUSY_B, 0);
adv_write_lram_8(adv, ADVV_WTM_FLAG_B, 0);
adv_write_lram_8(adv, ADVV_Q_DONE_IN_PROGRESS_B, 0);
lram_addr = ADV_QADR_BEG;
for (i = 0; i < 32; i++, lram_addr += 2)
adv_write_lram_16(adv, lram_addr, 0);
}
static void
adv_disable_interrupt(struct adv_softc *adv)
{
u_int16_t cfg;
cfg = ADV_INW(adv, ADV_CONFIG_LSW);
ADV_OUTW(adv, ADV_CONFIG_LSW, cfg & ~ADV_CFG_LSW_HOST_INT_ON);
}
static void
adv_enable_interrupt(struct adv_softc *adv)
{
u_int16_t cfg;
cfg = ADV_INW(adv, ADV_CONFIG_LSW);
ADV_OUTW(adv, ADV_CONFIG_LSW, cfg | ADV_CFG_LSW_HOST_INT_ON);
}
static void
adv_toggle_irq_act(struct adv_softc *adv)
{
ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_IRQ_ACT);
ADV_OUTW(adv, ADV_CHIP_STATUS, 0);
}
void
adv_start_execution(struct adv_softc *adv)
{
if (adv_read_lram_8(adv, ADV_STOP_CODE_B) != 0) {
adv_write_lram_8(adv, ADV_STOP_CODE_B, 0);
}
}
int
adv_stop_chip(struct adv_softc *adv)
{
u_int8_t cc_val;
cc_val = ADV_INB(adv, ADV_CHIP_CTRL)
& (~(ADV_CC_SINGLE_STEP | ADV_CC_TEST | ADV_CC_DIAG));
ADV_OUTB(adv, ADV_CHIP_CTRL, cc_val | ADV_CC_HALT);
adv_set_chip_ih(adv, ADV_INS_HALT);
adv_set_chip_ih(adv, ADV_INS_RFLAG_WTM);
if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) == 0) {
return (0);
}
return (1);
}
static int
adv_host_req_chip_halt(struct adv_softc *adv)
{
int count;
u_int8_t saved_stop_code;
if (adv_is_chip_halted(adv))
return (1);
count = 0;
saved_stop_code = adv_read_lram_8(adv, ADVV_STOP_CODE_B);
adv_write_lram_8(adv, ADVV_STOP_CODE_B,
ADV_STOP_HOST_REQ_RISC_HALT | ADV_STOP_REQ_RISC_STOP);
while (adv_is_chip_halted(adv) == 0
&& count++ < 2000)
;
adv_write_lram_8(adv, ADVV_STOP_CODE_B, saved_stop_code);
return (count < 2000);
}
static void
adv_set_chip_ih(struct adv_softc *adv, u_int16_t ins_code)
{
adv_set_bank(adv, 1);
ADV_OUTW(adv, ADV_REG_IH, ins_code);
adv_set_bank(adv, 0);
}
#if UNUSED
static u_int8_t
adv_get_chip_scsi_ctrl(struct adv_softc *adv)
{
u_int8_t scsi_ctrl;
adv_set_bank(adv, 1);
scsi_ctrl = ADV_INB(adv, ADV_REG_SC);
adv_set_bank(adv, 0);
return (scsi_ctrl);
}
#endif
/*
* XXX Looks like more padding issues in this routine as well.
* There has to be a way to turn this into an insw.
*/
static void
adv_get_q_info(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t *inbuf, int words)
{
int i;
ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
for (i = 0; i < words; i++, inbuf++) {
if (i == 5) {
continue;
}
*inbuf = ADV_INW(adv, ADV_LRAM_DATA);
}
}
static u_int
adv_get_num_free_queues(struct adv_softc *adv, u_int8_t n_qs)
{
u_int cur_used_qs;
u_int cur_free_qs;
cur_used_qs = adv->cur_active + ADV_MIN_FREE_Q;
if ((cur_used_qs + n_qs) <= adv->max_openings) {
cur_free_qs = adv->max_openings - cur_used_qs;
return (cur_free_qs);
}
adv->openings_needed = n_qs;
return (0);
}
static u_int8_t
adv_alloc_free_queues(struct adv_softc *adv, u_int8_t free_q_head,
u_int8_t n_free_q)
{
int i;
for (i = 0; i < n_free_q; i++) {
free_q_head = adv_alloc_free_queue(adv, free_q_head);
if (free_q_head == ADV_QLINK_END)
break;
}
return (free_q_head);
}
static u_int8_t
adv_alloc_free_queue(struct adv_softc *adv, u_int8_t free_q_head)
{
u_int16_t q_addr;
u_int8_t next_qp;
u_int8_t q_status;
next_qp = ADV_QLINK_END;
q_addr = ADV_QNO_TO_QADDR(free_q_head);
q_status = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_STATUS);
if ((q_status & QS_READY) == 0)
next_qp = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_FWD);
return (next_qp);
}
static int
adv_send_scsi_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
u_int8_t n_q_required)
{
u_int8_t free_q_head;
u_int8_t next_qp;
u_int8_t tid_no;
u_int8_t target_ix;
int retval;
retval = 1;
target_ix = scsiq->q2.target_ix;
tid_no = ADV_TIX_TO_TID(target_ix);
free_q_head = adv_read_lram_16(adv, ADVV_FREE_Q_HEAD_W) & 0xFF;
if ((next_qp = adv_alloc_free_queues(adv, free_q_head, n_q_required))
!= ADV_QLINK_END) {
scsiq->q1.q_no = free_q_head;
/*
* Now that we know our Q number, point our sense
* buffer pointer to a bus dma mapped area where
* we can dma the data to.
*/
scsiq->q1.sense_addr = adv->sense_physbase
+ ((free_q_head - 1) * sizeof(struct scsi_sense_data));
adv_put_ready_sg_list_queue(adv, scsiq, free_q_head);
adv_write_lram_16(adv, ADVV_FREE_Q_HEAD_W, next_qp);
adv->cur_active += n_q_required;
retval = 0;
}
return (retval);
}
static void
adv_put_ready_sg_list_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
u_int q_no)
{
u_int8_t sg_list_dwords;
u_int8_t sg_index, i;
u_int8_t sg_entry_cnt;
u_int8_t next_qp;
u_int16_t q_addr;
struct adv_sg_head *sg_head;
struct adv_sg_list_q scsi_sg_q;
sg_head = scsiq->sg_head;
if (sg_head) {
sg_entry_cnt = sg_head->entry_cnt - 1;
#ifdef DIAGNOSTIC
if (sg_entry_cnt == 0)
panic("adv_put_ready_sg_list_queue: ScsiQ with "
"a SG list but only one element");
if ((scsiq->q1.cntl & QC_SG_HEAD) == 0)
panic("adv_put_ready_sg_list_queue: ScsiQ with "
"a SG list but QC_SG_HEAD not set");
#endif
q_addr = ADV_QNO_TO_QADDR(q_no);
sg_index = 1;
scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
scsi_sg_q.sg_head_qp = q_no;
scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
for (i = 0; i < sg_head->queue_cnt; i++) {
u_int8_t segs_this_q;
if (sg_entry_cnt > ADV_SG_LIST_PER_Q)
segs_this_q = ADV_SG_LIST_PER_Q;
else {
/* This will be the last segment then */
segs_this_q = sg_entry_cnt;
scsi_sg_q.cntl |= QCSG_SG_XFER_END;
}
scsi_sg_q.seq_no = i + 1;
sg_list_dwords = segs_this_q << 1;
if (i == 0) {
scsi_sg_q.sg_list_cnt = segs_this_q;
scsi_sg_q.sg_cur_list_cnt = segs_this_q;
} else {
scsi_sg_q.sg_list_cnt = segs_this_q - 1;
scsi_sg_q.sg_cur_list_cnt = segs_this_q - 1;
}
next_qp = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_FWD);
scsi_sg_q.q_no = next_qp;
q_addr = ADV_QNO_TO_QADDR(next_qp);
adv_write_lram_16_multi(adv,
q_addr + ADV_SCSIQ_SGHD_CPY_BEG,
(u_int16_t *)&scsi_sg_q,
sizeof(scsi_sg_q) >> 1);
adv_write_lram_32_multi(adv, q_addr + ADV_SGQ_LIST_BEG,
(u_int32_t *)&sg_head->sg_list[sg_index],
sg_list_dwords);
sg_entry_cnt -= segs_this_q;
sg_index += ADV_SG_LIST_PER_Q;
}
}
adv_put_ready_queue(adv, scsiq, q_no);
}
static void
adv_put_ready_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
u_int q_no)
{
struct adv_target_transinfo* tinfo;
u_int q_addr;
u_int tid_no;
tid_no = ADV_TIX_TO_TID(scsiq->q2.target_ix);
tinfo = &adv->tinfo[tid_no];
if ((tinfo->current.period != tinfo->goal.period)
|| (tinfo->current.offset != tinfo->goal.offset)) {
adv_msgout_sdtr(adv, tinfo->goal.period, tinfo->goal.offset);
scsiq->q1.cntl |= QC_MSG_OUT;
}
q_addr = ADV_QNO_TO_QADDR(q_no);
scsiq->q1.status = QS_FREE;
adv_write_lram_16_multi(adv, q_addr + ADV_SCSIQ_CDB_BEG,
(u_int16_t *)scsiq->cdbptr,
scsiq->q2.cdb_len >> 1);
#if BYTE_ORDER == BIG_ENDIAN
adv_adj_scsiq_endian(scsiq);
#endif
adv_put_scsiq(adv, q_addr + ADV_SCSIQ_CPY_BEG,
(u_int16_t *) &scsiq->q1.cntl,
((sizeof(scsiq->q1) + sizeof(scsiq->q2)) / 2) - 1);
#if CC_WRITE_IO_COUNT
adv_write_lram_16(adv, q_addr + ADV_SCSIQ_W_REQ_COUNT,
adv->req_count);
#endif
#if CC_CLEAR_DMA_REMAIN
adv_write_lram_32(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_ADDR, 0);
adv_write_lram_32(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_CNT, 0);
#endif
adv_write_lram_16(adv, q_addr + ADV_SCSIQ_B_STATUS,
(scsiq->q1.q_no << 8) | QS_READY);
}
static void
adv_put_scsiq(struct adv_softc *adv, u_int16_t s_addr,
u_int16_t *buffer, int words)
{
int i;
/*
* XXX This routine makes *gross* assumptions
* about padding in the data structures.
* Either the data structures should have explicit
* padding members added, or they should have padding
* turned off via compiler attributes depending on
* which yields better overall performance. My hunch
* would be that turning off padding would be the
* faster approach as an outsw is much faster than
* this crude loop and accessing un-aligned data
* members isn't *that* expensive. The other choice
* would be to modify the ASC script so that the
* the adv_scsiq_1 structure can be re-arranged so
* padding isn't required.
*/
ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
for (i = 0; i < words; i++, buffer++) {
if (i == 2 || i == 10) {
continue;
}
ADV_OUTW(adv, ADV_LRAM_DATA, *buffer);
}
}
static void
adv_handle_extmsg_in(struct adv_softc *adv, u_int16_t halt_q_addr,
u_int8_t q_cntl, target_bit_vector target_mask,
int tid_no)
{
struct ext_msg ext_msg;
adv_read_lram_16_multi(adv, ADVV_MSGIN_BEG, (u_int16_t *) &ext_msg,
sizeof(ext_msg) >> 1);
if ((ext_msg.msg_type == MSG_EXTENDED)
&& (ext_msg.msg_req == MSG_EXT_SDTR)
&& (ext_msg.msg_len == MSG_EXT_SDTR_LEN)) {
union ccb *ccb;
struct adv_target_transinfo* tinfo;
u_int32_t cinfo_index;
u_int period;
u_int offset;
int sdtr_accept;
u_int8_t orig_offset;
cinfo_index =
adv_read_lram_32(adv, halt_q_addr + ADV_SCSIQ_D_CINFO_IDX);
ccb = adv->ccb_infos[cinfo_index].ccb;
tinfo = &adv->tinfo[tid_no];
sdtr_accept = TRUE;
orig_offset = ext_msg.req_ack_offset;
if (ext_msg.xfer_period < tinfo->goal.period) {
sdtr_accept = FALSE;
ext_msg.xfer_period = tinfo->goal.period;
}
/* Perform range checking */
period = ext_msg.xfer_period;
offset = ext_msg.req_ack_offset;
adv_period_offset_to_sdtr(adv, &period, &offset, tid_no);
ext_msg.xfer_period = period;
ext_msg.req_ack_offset = offset;
/* Record our current sync settings */
adv_set_syncrate(adv, ccb->ccb_h.path,
tid_no, ext_msg.xfer_period,
ext_msg.req_ack_offset,
ADV_TRANS_GOAL|ADV_TRANS_ACTIVE);
/* Offset too high or large period forced async */
if (orig_offset != ext_msg.req_ack_offset)
sdtr_accept = FALSE;
if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
/* Valid response to our requested negotiation */
q_cntl &= ~QC_MSG_OUT;
} else {
/* Must Respond */
q_cntl |= QC_MSG_OUT;
adv_msgout_sdtr(adv, ext_msg.xfer_period,
ext_msg.req_ack_offset);
}
} else if (ext_msg.msg_type == MSG_EXTENDED
&& ext_msg.msg_req == MSG_EXT_WDTR
&& ext_msg.msg_len == MSG_EXT_WDTR_LEN) {
ext_msg.wdtr_width = 0;
adv_write_lram_16_multi(adv, ADVV_MSGOUT_BEG,
(u_int16_t *)&ext_msg,
sizeof(ext_msg) >> 1);
q_cntl |= QC_MSG_OUT;
} else {
ext_msg.msg_type = MSG_MESSAGE_REJECT;
adv_write_lram_16_multi(adv, ADVV_MSGOUT_BEG,
(u_int16_t *)&ext_msg,
sizeof(ext_msg) >> 1);
q_cntl |= QC_MSG_OUT;
}
adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
}
static void
adv_msgout_sdtr(struct adv_softc *adv, u_int8_t sdtr_period,
u_int8_t sdtr_offset)
{
struct ext_msg sdtr_buf;
sdtr_buf.msg_type = MSG_EXTENDED;
sdtr_buf.msg_len = MSG_EXT_SDTR_LEN;
sdtr_buf.msg_req = MSG_EXT_SDTR;
sdtr_buf.xfer_period = sdtr_period;
sdtr_offset &= ADV_SYN_MAX_OFFSET;
sdtr_buf.req_ack_offset = sdtr_offset;
adv_write_lram_16_multi(adv, ADVV_MSGOUT_BEG,
(u_int16_t *) &sdtr_buf,
sizeof(sdtr_buf) / 2);
}
int
adv_abort_ccb(struct adv_softc *adv, int target, int lun, union ccb *ccb,
u_int32_t status, int queued_only)
{
u_int16_t q_addr;
u_int8_t q_no;
struct adv_q_done_info scsiq_buf;
struct adv_q_done_info *scsiq;
u_int8_t target_ix;
int count;
scsiq = &scsiq_buf;
target_ix = ADV_TIDLUN_TO_IX(target, lun);
count = 0;
for (q_no = ADV_MIN_ACTIVE_QNO; q_no <= adv->max_openings; q_no++) {
struct adv_ccb_info *ccb_info;
q_addr = ADV_QNO_TO_QADDR(q_no);
adv_copy_lram_doneq(adv, q_addr, scsiq, adv->max_dma_count);
ccb_info = &adv->ccb_infos[scsiq->d2.ccb_index];
if (((scsiq->q_status & QS_READY) != 0)
&& ((scsiq->q_status & QS_ABORTED) == 0)
&& ((scsiq->cntl & QCSG_SG_XFER_LIST) == 0)
&& (scsiq->d2.target_ix == target_ix)
&& (queued_only == 0
|| !(scsiq->q_status & (QS_DISC1|QS_DISC2|QS_BUSY|QS_DONE)))
&& (ccb == NULL || (ccb == ccb_info->ccb))) {
union ccb *aborted_ccb;
struct adv_ccb_info *cinfo;
scsiq->q_status |= QS_ABORTED;
adv_write_lram_8(adv, q_addr + ADV_SCSIQ_B_STATUS,
scsiq->q_status);
aborted_ccb = ccb_info->ccb;
/* Don't clobber earlier error codes */
if ((aborted_ccb->ccb_h.status & CAM_STATUS_MASK)
== CAM_REQ_INPROG)
aborted_ccb->ccb_h.status |= status;
cinfo = (struct adv_ccb_info *)
aborted_ccb->ccb_h.ccb_cinfo_ptr;
cinfo->state |= ACCB_ABORT_QUEUED;
count++;
}
}
return (count);
}
int
adv_reset_bus(struct adv_softc *adv, int initiate_bus_reset)
{
int count;
int i;
union ccb *ccb;
i = 200;
while ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_SCSI_RESET_ACTIVE) != 0
&& i--)
DELAY(1000);
adv_reset_chip(adv, initiate_bus_reset);
adv_reinit_lram(adv);
for (i = 0; i <= ADV_MAX_TID; i++)
adv_set_syncrate(adv, NULL, i, /*period*/0,
/*offset*/0, ADV_TRANS_CUR);
ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
/* Tell the XPT layer that a bus reset occured */
if (adv->path != NULL)
xpt_async(AC_BUS_RESET, adv->path, NULL);
count = 0;
while ((ccb = (union ccb *)LIST_FIRST(&adv->pending_ccbs)) != NULL) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)
ccb->ccb_h.status |= CAM_SCSI_BUS_RESET;
adv_done(adv, ccb, QD_ABORTED_BY_HOST, 0, 0, 0);
count++;
}
adv_start_chip(adv);
return (count);
}
static void
adv_set_sdtr_reg_at_id(struct adv_softc *adv, int tid, u_int8_t sdtr_data)
{
int orig_id;
adv_set_bank(adv, 1);
orig_id = ffs(ADV_INB(adv, ADV_HOST_SCSIID)) - 1;
ADV_OUTB(adv, ADV_HOST_SCSIID, tid);
if (ADV_INB(adv, ADV_HOST_SCSIID) == (0x01 << tid)) {
adv_set_bank(adv, 0);
ADV_OUTB(adv, ADV_SYN_OFFSET, sdtr_data);
}
adv_set_bank(adv, 1);
ADV_OUTB(adv, ADV_HOST_SCSIID, orig_id);
adv_set_bank(adv, 0);
}