0ece074de9
This version of libcompiler_rt adds support for __mulo[sdt]i4(), which computes a multiply and its overflow flag. There are also a lot of cleanup fixes to headers that don't really affect us. Updating to this revision should make it a bit easier to contribute changes back to the LLVM developers.
61 lines
2.2 KiB
C
61 lines
2.2 KiB
C
/* ===-- divdc3.c - Implement __divdc3 -------------------------------------===
|
|
*
|
|
* The LLVM Compiler Infrastructure
|
|
*
|
|
* This file is dual licensed under the MIT and the University of Illinois Open
|
|
* Source Licenses. See LICENSE.TXT for details.
|
|
*
|
|
* ===----------------------------------------------------------------------===
|
|
*
|
|
* This file implements __divdc3 for the compiler_rt library.
|
|
*
|
|
* ===----------------------------------------------------------------------===
|
|
*/
|
|
|
|
#include "int_lib.h"
|
|
#include "int_math.h"
|
|
|
|
/* Returns: the quotient of (a + ib) / (c + id) */
|
|
|
|
double _Complex
|
|
__divdc3(double __a, double __b, double __c, double __d)
|
|
{
|
|
int __ilogbw = 0;
|
|
double __logbw = crt_logb(crt_fmax(crt_fabs(__c), crt_fabs(__d)));
|
|
if (crt_isfinite(__logbw))
|
|
{
|
|
__ilogbw = (int)__logbw;
|
|
__c = crt_scalbn(__c, -__ilogbw);
|
|
__d = crt_scalbn(__d, -__ilogbw);
|
|
}
|
|
double __denom = __c * __c + __d * __d;
|
|
double _Complex z;
|
|
__real__ z = crt_scalbn((__a * __c + __b * __d) / __denom, -__ilogbw);
|
|
__imag__ z = crt_scalbn((__b * __c - __a * __d) / __denom, -__ilogbw);
|
|
if (crt_isnan(__real__ z) && crt_isnan(__imag__ z))
|
|
{
|
|
if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b)))
|
|
{
|
|
__real__ z = crt_copysign(CRT_INFINITY, __c) * __a;
|
|
__imag__ z = crt_copysign(CRT_INFINITY, __c) * __b;
|
|
}
|
|
else if ((crt_isinf(__a) || crt_isinf(__b)) &&
|
|
crt_isfinite(__c) && crt_isfinite(__d))
|
|
{
|
|
__a = crt_copysign(crt_isinf(__a) ? 1.0 : 0.0, __a);
|
|
__b = crt_copysign(crt_isinf(__b) ? 1.0 : 0.0, __b);
|
|
__real__ z = CRT_INFINITY * (__a * __c + __b * __d);
|
|
__imag__ z = CRT_INFINITY * (__b * __c - __a * __d);
|
|
}
|
|
else if (crt_isinf(__logbw) && __logbw > 0.0 &&
|
|
crt_isfinite(__a) && crt_isfinite(__b))
|
|
{
|
|
__c = crt_copysign(crt_isinf(__c) ? 1.0 : 0.0, __c);
|
|
__d = crt_copysign(crt_isinf(__d) ? 1.0 : 0.0, __d);
|
|
__real__ z = 0.0 * (__a * __c + __b * __d);
|
|
__imag__ z = 0.0 * (__b * __c - __a * __d);
|
|
}
|
|
}
|
|
return z;
|
|
}
|