freebsd-skq/sys/i386/isa/isa.c
dg 5717a39a7a New interrupt code from Bruce Evans. In additional to Bruce's attached
list of changes, I've made the following additional changes:

1) i386/include/ipl.h renamed to spl.h as the name conflicts with the
   file of the same name in i386/isa/ipl.h.
2) changed all use of *mask (i.e. netmask, biomask, ttymask, etc) to
   *_imask (net_imask, etc).
3) changed vestige of splnet use in if_is to splimp.
4) got rid of "impmask" completely (Bruce had gotten rid of netmask),
   and are now using net_imask instead.
5) dozens of minor cruft to glue in Bruce's changes.

   These require changes I made to config(8) as well, and thus it must
be rebuilt.

-DG

from Bruce Evans:

sio:
	o No diff is supplied.  Remove the define of setsofttty().  I hope
	  that is enough.

*.s:
	o i386/isa/debug.h no longer exists.  The event counters became too
	  much trouble to maintain.  All function call entry and exception
	  entry counters can be recovered by using profiling kernel (the new
	  profiling supports all entry points; however, it is too slow to
	  leave enabled all the time; it also).  Only BDBTRAP() from debug.h
	  is now used.  That is moved to exception.s.  It might be worth
	  preserving SHOW_BITS() and calling it from _mcount() (if enabled).
	o T_ASTFLT is now only set just before calling trap().
	o All exception handlers set SWI_AST_MASK in cpl as soon as possible
	  after entry and arrange for _doreti to restore it atomically with
	  exiting.  It is not possible to set it atomically with entering
	  the kernel, so it must be checked against the user mode bits in
	  the trap frame before committing to using it.  There is no place
	  to store the old value of cpl for syscalls or traps, so there are
	  some complications restoring it.

Profiling stuff (mostly in *.s):
	o Changes to kern/subr_mcount.c, gcc and gprof are not supplied yet.
	o All interesting labels `foo' are renamed `_foo' and all
	  uninteresting labels `_bar' are renamed `bar'.  A small change
	  to gprof allows ignoring labels not starting with underscores.
	o MCOUNT_LABEL() is to provide names for counters for times spent
	  in exception handlers.
	o FAKE_MCOUNT() is a version of MCOUNT() suitable for exception
	  handlers.  Its arg is the pc where the exception occurred.  The
	  new mcount() pretends that this was a call from that pc to a
	  suitable MCOUNT_LABEL().
	o MEXITCOUNT is to turn off any timer started by MCOUNT().

/usr/src/sys/i386/i386/exception.s:
	o The non-BDB BPTTRAP() macros were doing a sti even when interrupts
	  were disabled when the trap occurred.  The sti (fixed) sti is
	  actually a no-op unless you have my changes to machdep.c that make
	  the debugger trap gates interrupt gates, but fixing that would
	  make the ifdefs messier.  ddb seems to be unharmed by both
	  interrupts always disabled and always enabled (I had the branch in
	  the fix back to front for some time :-().
	o There is no known pushal bug.
	o tf_err can be left as garbage for syscalls.

/usr/src/sys/i386/i386/locore.s:
	o Fix and update BDE_DEBUGGER support.
	o ENTRY(btext) before initialization was dangerous.
	o Warm boot shot was longer than intended.

/usr/src/sys/i386/i386/machdep.c:
	o DON'T APPLY ALL OF THIS DIFF.  It's what I'm using, but may require
	  other changes.
	  Use the following:
		o Remove aston() and setsoftclock().
	  Maybe use the following:
		o No netisr.h.
		o Spelling fix.
		o Delay to read the Rebooting message.
		o Fix for vm system unmapping a reduced area of memory
		  after bounds_check_with_label() reduces the size of
		  a physical i/o for a partition boundary.  A similar
		  fix is required in kern_physio.c.
		o Correct use of __CONCAT.  It never worked here for non-
		  ANSI cpp's.  Is it time to drop support for non-ANSI?
		o gdt_segs init.  0xffffffffUL is bogus because ssd_limit
		  is not 32 bits.  The replacement may have the same
		  value :-), but is more natural.
		o physmem was one page too low.  Confusing variable names.
	  Don't use the following:
		o Better numbers of buffers.  Each 8K page requires up to
		  16 buffer headers.  On my system, this results in 5576
		  buffers containing [up to] 2854912 bytes of memory.
		  The usual allocation of about 384 buffers only holds
		  192K of disk if you use it on an fs with a block size
		  of 512.
		o gdt changes for bdb.
		o *TGT -> *IDT changes for bdb.
		o #ifdefed changes for bdb.

/usr/src/sys/i386/i386/microtime.s:
	o Use the correct asm macros.  I think asm.h was copied from Mach
	  just for microtime and isn't used now.  It certainly doesn't
	  belong in <sys>.  Various macros are also duplicated in
	  sys/i386/boot.h and libc/i386/*.h.
	o Don't switch to and from the IRR; it is guaranteed to be selected
	  (default after ICU init and explicitly selected in isa.c too, and
	  never changed until the old microtime clobbered it).

/usr/src/sys/i386/i386/support.s:
	o Non-essential changes (none related to spls or profiling).
	o Removed slow loads of %gs again.  The LDT support may require
	  not relying on %gs, but loading it is not the way to fix it!
	  Some places (copyin ...) forgot to load it.  Loading it clobbers
	  the user %gs.  trap() still loads it after certain types of
	  faults so that fuword() etc can rely on it without loading it
	  explicitly.  Exception handlers don't restore it.  If we want
	  to preserve the user %gs, then the fastest method is to not
	  touch it except for context switches.  Comparing with
	  VM_MAXUSER_ADDRESS and branching takes only 2 or 4 cycles on
	  a 486, while loading %gs takes 9 cycles and using it takes
	  another.
	o Fixed a signed branch to unsigned.

/usr/src/sys/i386/i386/swtch.s:
	o Move spl0() outside of idle loop.
	o Remove cli/sti from idle loop.  sw1 does a cli, and in the
	  unlikely event of an interrupt occurring and whichqs becoming
	  zero, sw1 will just jump back to _idle.
	o There's no spl0() function in asm any more, so use splz().
	o swtch() doesn't need to be superaligned, at least with the
	  new mcounting.
	o Fixed a signed branch to unsigned.
	o Removed astoff().

/usr/src/sys/i386/i386/trap.c:
	o The decentralized extern decls were inconsistent, of course.
	o Fixed typo MATH_EMULTATE in comments. */
	o Removed unused variables.
	o Old netmask is now impmask; print it instead.  Perhaps we
	  should print some of the new masks.
	o BTW, trap() should not print anything for normal debugger
	  traps.

/usr/src/sys/i386/include/asmacros.h:
	o DON'T APPLY ALL OF THIS DIFF.  Just use some of the null macros
	  as necessary.

/usr/src/sys/i386/include/cpu.h:
	o CLKF_BASEPRI() changes since cpl == SWI_AST_MASK is now normal
	  while the kernel is running.
	o Don't use var++ to set boolean variables.  It fails after a mere
	  4G times :-) and is slower than storing a constant on [3-4]86s.

/usr/src/sys/i386/include/cpufunc.h:
	o DON'T APPLY ALL OF THIS DIFF.  You need mainly the include of
	  <machine/ipl.h>.  Unfortunately, <machine/ipl.h> is needed by
	  almost everything for the inlines.

/usr/src/sys/i386/include/ipl.h:
	o New file.  Defines spl inlines and SWI macros and declares most
	  variables related to hard and soft interrupt masks.

/usr/src/sys/i386/isa/icu.h:
	o Moved definitions to <machine/ipl.h>

/usr/src/sys/i386/isa/icu.s:
	o Software interrupts (SWIs) and delayed hardware interrupts (HWIs)
	  are now handled uniformally, and dispatching them from splx() is
	  more like dispatching them from _doreti.  The dispatcher is
	  essentially *(handler[ffs(ipending & ~cpl)]().
	o More care (not quite enough) is taken to avoid unbounded nesting
	  of interrupts.
	o The interface to softclock() is changed so that a trap frame is
	  not required.
	o Fast interrupt handlers are now handled more uniformally.
	  Configuration is still too early (new handlers would require
	  bits in <machine/ipl.h> and functions to vector.s).
	o splnnn() and splx() are no longer here; they are inline functions
	  (could be macros for other compilers).  splz() is the nontrivial
	  part of the old splx().

/usr/src/sys/i386/isa/ipl.h
	o New file.  Supposed to have only bus-dependent stuff.  Perhaps
	  the h/w masks should be declared here.

/usr/src/sys/i386/isa/isa.c:
	o DON'T APPLY ALL OF THIS DIFF.  You need only things involving
	  *mask and *MASK and comments about them.  netmask is now a pure
	  software mask.  It works like the softclock mask.

/usr/src/sys/i386/isa/vector.s:
	o Reorganize AUTO_EOI* macros.
	o Option FAST_INTR_HANDLER_USERS_ES for people who don't trust
	  fastintr handlers.
	o fastintr handlers need to metamorphose into ordinary interrupt
	  handlers if their SWI bit has become set.  Previously, sio had
	  unintended latency for handling output completions and input
	  of SLIP framing characters because this was not done.

/usr/src/sys/net/netisr.h:
	o The machine-dependent stuff is now imported from <machine/ipl.h>.

/usr/src/sys/sys/systm.h
	o DON'T APPLY ALL OF THIS DIFF.  You need mainly the different
	  splx() prototype.  The spl*() prototypes are duplicated as
	  inlines in <machine/ipl.h> but they need to be duplicated here
	  in case there are no inlines.  I sent systm.h and cpufunc.h
	  to Garrett.  We agree that spl0 should be replaced by splnone
	  and not the other way around like I've done.

/usr/src/sys/kern/kern_clock.c
	o splsoftclock() now lowers cpl so the direct call to softclock()
	  works as intended.
	o softclock() interface changed to avoid passing the whole frame
	  (some machines may need another change for profile_tick()).
	o profiling renamed _profiling to avoid ANSI namespace pollution.
	  (I had to improve the mcount() interface and may as well fix it.)
	  The GUPROF variant doesn't actually reference profiling here,
	  but the 'U' in GUPROF should mean to select the microtimer
	  mcount() and not change the interface.
1994-04-02 07:00:53 +00:00

830 lines
22 KiB
C

/*-
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)isa.c 7.2 (Berkeley) 5/13/91
* $Id: isa.c,v 1.14 1994/01/22 21:52:04 rgrimes Exp $
*/
/*
* code to manage AT bus
*
* 92/08/18 Frank P. MacLachlan (fpm@crash.cts.com):
* Fixed uninitialized variable problem and added code to deal
* with DMA page boundaries in isa_dmarangecheck(). Fixed word
* mode DMA count compution and reorganized DMA setup code in
* isa_dmastart()
*/
#include "param.h"
#include "systm.h" /* isn't it a joy */
#include "kernel.h" /* to have three of these */
#include "conf.h"
#include "file.h"
#include "buf.h"
#include "uio.h"
#include "syslog.h"
#include "malloc.h"
#include "rlist.h"
#include "machine/segments.h"
#include "vm/vm.h"
#include "i386/isa/isa_device.h"
#include "i386/isa/isa.h"
#include "i386/isa/icu.h"
#include "i386/isa/ic/i8237.h"
#include "i386/isa/ic/i8042.h"
/*
** Register definitions for DMA controller 1 (channels 0..3):
*/
#define DMA1_CHN(c) (IO_DMA1 + 1*(2*(c))) /* addr reg for channel c */
#define DMA1_SMSK (IO_DMA1 + 1*10) /* single mask register */
#define DMA1_MODE (IO_DMA1 + 1*11) /* mode register */
#define DMA1_FFC (IO_DMA1 + 1*12) /* clear first/last FF */
/*
** Register definitions for DMA controller 2 (channels 4..7):
*/
#define DMA2_CHN(c) (IO_DMA2 + 2*(2*(c))) /* addr reg for channel c */
#define DMA2_SMSK (IO_DMA2 + 2*10) /* single mask register */
#define DMA2_MODE (IO_DMA2 + 2*11) /* mode register */
#define DMA2_FFC (IO_DMA2 + 2*12) /* clear first/last FF */
void config_isadev __P((struct isa_device *, u_int *));
/*
* print a conflict message
*/
void
conflict(dvp, tmpdvp, item, reason, format)
struct isa_device *dvp, *tmpdvp;
int item;
char *reason;
char *format;
{
printf("%s%d not probed due to %s conflict with %s%d at ",
dvp->id_driver->name, dvp->id_unit, reason,
tmpdvp->id_driver->name, tmpdvp->id_unit);
printf(format, item);
printf("\n");
}
/*
* Check to see if things are alread in use, like IRQ's, I/O addresses
* and Memory addresses.
*/
int
haveseen(dvp, tmpdvp)
struct isa_device *dvp, *tmpdvp;
{
int status = 0;
/*
* Only check against devices that have already been found
*/
if (tmpdvp->id_alive) {
/*
* Check for I/O address conflict. We can only check the
* starting address of the device against the range of the
* device that has already been probed since we do not
* know how many I/O addresses this device uses.
*/
if (tmpdvp->id_alive != -1) {
if ((dvp->id_iobase >= tmpdvp->id_iobase) &&
(dvp->id_iobase <=
(tmpdvp->id_iobase + tmpdvp->id_alive - 1))) {
conflict(dvp, tmpdvp, dvp->id_iobase,
"I/O address", "0x%x");
status = 1;
}
}
/*
* Check for Memory address conflict. We can check for
* range overlap, but it will not catch all cases since the
* driver may adjust the msize paramater during probe, for
* now we just check that the starting address does not
* fall within any allocated region.
* XXX could add a second check after the probe for overlap,
* since at that time we would know the full range.
* XXX KERNBASE is a hack, we should have vaddr in the table!
*/
if(tmpdvp->id_maddr) {
if((KERNBASE + dvp->id_maddr >= tmpdvp->id_maddr) &&
(KERNBASE + dvp->id_maddr <=
(tmpdvp->id_maddr + tmpdvp->id_msize - 1))) {
conflict(dvp, tmpdvp, dvp->id_maddr, "maddr",
"0x%x");
status = 1;
}
}
#ifndef COM_MULTIPORT
/*
* Check for IRQ conflicts.
*/
if(tmpdvp->id_irq) {
if (tmpdvp->id_irq == dvp->id_irq) {
conflict(dvp, tmpdvp, ffs(dvp->id_irq) - 1,
"irq", "%d");
status = 1;
}
}
#endif
/*
* Check for DRQ conflicts.
*/
if(tmpdvp->id_drq != -1) {
if (tmpdvp->id_drq == dvp->id_drq) {
conflict(dvp, tmpdvp, dvp->id_drq,
"drq", "%d");
status = 1;
}
}
}
return (status);
}
/*
* Search through all the isa_devtab_* tables looking for anything that
* conflicts with the current device.
*/
int
haveseen_isadev(dvp)
struct isa_device *dvp;
{
struct isa_device *tmpdvp;
int status = 0;
for (tmpdvp = isa_devtab_tty; tmpdvp->id_driver; tmpdvp++) {
status |= haveseen(dvp, tmpdvp);
}
for (tmpdvp = isa_devtab_bio; tmpdvp->id_driver; tmpdvp++) {
status |= haveseen(dvp, tmpdvp);
}
for (tmpdvp = isa_devtab_net; tmpdvp->id_driver; tmpdvp++) {
status |= haveseen(dvp, tmpdvp);
}
for (tmpdvp = isa_devtab_null; tmpdvp->id_driver; tmpdvp++) {
status |= haveseen(dvp, tmpdvp);
}
return(status);
}
/*
* Configure all ISA devices
*/
void
isa_configure() {
struct isa_device *dvp;
enable_intr();
splhigh();
INTREN(IRQ_SLAVE);
printf("Probing for devices on the ISA bus:\n");
for (dvp = isa_devtab_tty; dvp->id_driver; dvp++) {
if (!haveseen_isadev(dvp))
config_isadev(dvp,&tty_imask);
}
for (dvp = isa_devtab_bio; dvp->id_driver; dvp++) {
if (!haveseen_isadev(dvp))
config_isadev(dvp,&bio_imask);
}
for (dvp = isa_devtab_net; dvp->id_driver; dvp++) {
if (!haveseen_isadev(dvp))
config_isadev(dvp,&net_imask);
}
for (dvp = isa_devtab_null; dvp->id_driver; dvp++) {
if (!haveseen_isadev(dvp))
config_isadev(dvp,(u_int *) NULL);
}
bio_imask |= SWI_CLOCK_MASK;
net_imask |= SWI_NET_MASK;
tty_imask |= SWI_TTY_MASK;
/*
* XXX we should really add the tty device to net_imask when the line is
* switched to SLIPDISC, and then remove it when it is switched away from
* SLIPDISC. No need to block out ALL ttys during a splimp when only one
* of them is running slip.
*
* XXX actually, blocking all ttys during a splimp doesn't matter so much
* with sio because the serial interrupt layer doesn't use tty_imask. Only
* non-serial ttys suffer. It's more stupid that ALL 'net's are blocked
* during spltty.
*/
#include "sl.h"
#if NSL > 0
net_imask |= tty_imask;
tty_imask = net_imask;
#endif
/* bio_imask |= tty_imask ; can some tty devices use buffers? */
#ifdef DIAGNOSTIC
printf("bio_imask %x tty_imask %x net_imask %x\n",
bio_imask, tty_imask, net_imask);
#endif
splnone();
}
/*
* Configure an ISA device.
*/
void
config_isadev(isdp, mp)
struct isa_device *isdp;
u_int *mp;
{
struct isa_driver *dp = isdp->id_driver;
if (isdp->id_maddr) {
extern u_int atdevbase;
isdp->id_maddr -= 0xa0000; /* XXX should be a define */
isdp->id_maddr += atdevbase;
}
isdp->id_alive = (*dp->probe)(isdp);
if (isdp->id_alive) {
/*
* Only print the I/O address range if id_alive != -1
* Right now this is a temporary fix just for the new
* NPX code so that if it finds a 486 that can use trap
* 16 it will not report I/O addresses.
* Rod Grimes 04/26/94
*/
printf("%s%d", dp->name, isdp->id_unit);
if (isdp->id_alive != -1) {
printf(" at 0x%x", isdp->id_iobase);
if ((isdp->id_iobase + isdp->id_alive - 1) !=
isdp->id_iobase) {
printf("-0x%x",
isdp->id_iobase +
isdp->id_alive - 1);
}
}
if(isdp->id_irq)
printf(" irq %d", ffs(isdp->id_irq) - 1);
if (isdp->id_drq != -1)
printf(" drq %d", isdp->id_drq);
if (isdp->id_maddr)
printf(" maddr 0x%x", kvtop(isdp->id_maddr));
if (isdp->id_msize)
printf(" msize %d", isdp->id_msize);
if (isdp->id_flags)
printf(" flags 0x%x", isdp->id_flags);
if (isdp->id_iobase) {
if (isdp->id_iobase < 0x100) {
printf(" on motherboard\n");
} else {
if (isdp->id_iobase >= 0x1000) {
printf (" on eisa\n");
} else {
printf (" on isa\n");
}
}
}
(*dp->attach)(isdp);
if(isdp->id_irq) {
int intrno;
intrno = ffs(isdp->id_irq)-1;
setidt(ICU_OFFSET+intrno, isdp->id_intr,
SDT_SYS386IGT, SEL_KPL);
if(mp) {
INTRMASK(*mp,isdp->id_irq);
}
INTREN(isdp->id_irq);
}
} else {
printf("%s%d not found", dp->name, isdp->id_unit);
if (isdp->id_iobase) {
printf(" at 0x%x", isdp->id_iobase);
}
printf("\n");
}
}
#define IDTVEC(name) __CONCAT(X,name)
/* default interrupt vector table entries */
typedef void inthand_t();
typedef void (*inthand_func_t)();
extern inthand_t
IDTVEC(intr0), IDTVEC(intr1), IDTVEC(intr2), IDTVEC(intr3),
IDTVEC(intr4), IDTVEC(intr5), IDTVEC(intr6), IDTVEC(intr7),
IDTVEC(intr8), IDTVEC(intr9), IDTVEC(intr10), IDTVEC(intr11),
IDTVEC(intr12), IDTVEC(intr13), IDTVEC(intr14), IDTVEC(intr15);
static inthand_func_t defvec[ICU_LEN] = {
&IDTVEC(intr0), &IDTVEC(intr1), &IDTVEC(intr2), &IDTVEC(intr3),
&IDTVEC(intr4), &IDTVEC(intr5), &IDTVEC(intr6), &IDTVEC(intr7),
&IDTVEC(intr8), &IDTVEC(intr9), &IDTVEC(intr10), &IDTVEC(intr11),
&IDTVEC(intr12), &IDTVEC(intr13), &IDTVEC(intr14), &IDTVEC(intr15) };
/*
* Fill in default interrupt table (in case of spuruious interrupt
* during configuration of kernel, setup interrupt control unit
*/
void
isa_defaultirq()
{
int i;
/* icu vectors */
for (i = 0; i < ICU_LEN; i++)
setidt(ICU_OFFSET + i, defvec[i], SDT_SYS386IGT, SEL_KPL);
/* initialize 8259's */
outb(IO_ICU1, 0x11); /* reset; program device, four bytes */
outb(IO_ICU1+1, NRSVIDT); /* starting at this vector index */
outb(IO_ICU1+1, 1<<2); /* slave on line 2 */
#ifdef AUTO_EOI_1
outb(IO_ICU1+1, 2 | 1); /* auto EOI, 8086 mode */
#else
outb(IO_ICU1+1, 1); /* 8086 mode */
#endif
outb(IO_ICU1+1, 0xff); /* leave interrupts masked */
outb(IO_ICU1, 0x0a); /* default to IRR on read */
outb(IO_ICU1, 0xc0 | (3 - 1)); /* pri order 3-7, 0-2 (com2 first) */
outb(IO_ICU2, 0x11); /* reset; program device, four bytes */
outb(IO_ICU2+1, NRSVIDT+8); /* staring at this vector index */
outb(IO_ICU2+1,2); /* my slave id is 2 */
#ifdef AUTO_EOI_2
outb(IO_ICU2+1, 2 | 1); /* auto EOI, 8086 mode */
#else
outb(IO_ICU2+1,1); /* 8086 mode */
#endif
outb(IO_ICU2+1, 0xff); /* leave interrupts masked */
outb(IO_ICU2, 0x0a); /* default to IRR on read */
}
/* region of physical memory known to be contiguous */
vm_offset_t isaphysmem;
static caddr_t dma_bounce[8]; /* XXX */
static char bounced[8]; /* XXX */
#define MAXDMASZ 512 /* XXX */
/* high byte of address is stored in this port for i-th dma channel */
static short dmapageport[8] =
{ 0x87, 0x83, 0x81, 0x82, 0x8f, 0x8b, 0x89, 0x8a };
/*
* isa_dmacascade(): program 8237 DMA controller channel to accept
* external dma control by a board.
*/
void isa_dmacascade(unsigned chan)
{
if (chan > 7)
panic("isa_dmacascade: impossible request");
/* set dma channel mode, and set dma channel mode */
if ((chan & 4) == 0) {
outb(DMA1_MODE, DMA37MD_CASCADE | chan);
outb(DMA1_SMSK, chan);
} else {
outb(DMA2_MODE, DMA37MD_CASCADE | (chan & 3));
outb(DMA2_SMSK, chan & 3);
}
}
/*
* isa_dmastart(): program 8237 DMA controller channel, avoid page alignment
* problems by using a bounce buffer.
*/
void isa_dmastart(int flags, caddr_t addr, unsigned nbytes, unsigned chan)
{ vm_offset_t phys;
int waport;
caddr_t newaddr;
if ( chan > 7
|| (chan < 4 && nbytes > (1<<16))
|| (chan >= 4 && (nbytes > (1<<17) || (u_int)addr & 1)))
panic("isa_dmastart: impossible request");
if (isa_dmarangecheck(addr, nbytes, chan)) {
if (dma_bounce[chan] == 0)
dma_bounce[chan] =
/*(caddr_t)malloc(MAXDMASZ, M_TEMP, M_WAITOK);*/
(caddr_t) isaphysmem + NBPG*chan;
bounced[chan] = 1;
newaddr = dma_bounce[chan];
*(int *) newaddr = 0; /* XXX */
/* copy bounce buffer on write */
if (!(flags & B_READ))
bcopy(addr, newaddr, nbytes);
addr = newaddr;
}
/* translate to physical */
phys = pmap_extract(pmap_kernel(), (vm_offset_t)addr);
if ((chan & 4) == 0) {
/*
* Program one of DMA channels 0..3. These are
* byte mode channels.
*/
/* set dma channel mode, and reset address ff */
if (flags & B_READ)
outb(DMA1_MODE, DMA37MD_SINGLE|DMA37MD_WRITE|chan);
else
outb(DMA1_MODE, DMA37MD_SINGLE|DMA37MD_READ|chan);
outb(DMA1_FFC, 0);
/* send start address */
waport = DMA1_CHN(chan);
outb(waport, phys);
outb(waport, phys>>8);
outb(dmapageport[chan], phys>>16);
/* send count */
outb(waport + 1, --nbytes);
outb(waport + 1, nbytes>>8);
/* unmask channel */
outb(DMA1_SMSK, chan);
} else {
/*
* Program one of DMA channels 4..7. These are
* word mode channels.
*/
/* set dma channel mode, and reset address ff */
if (flags & B_READ)
outb(DMA2_MODE, DMA37MD_SINGLE|DMA37MD_WRITE|(chan&3));
else
outb(DMA2_MODE, DMA37MD_SINGLE|DMA37MD_READ|(chan&3));
outb(DMA2_FFC, 0);
/* send start address */
waport = DMA2_CHN(chan - 4);
outb(waport, phys>>1);
outb(waport, phys>>9);
outb(dmapageport[chan], phys>>16);
/* send count */
nbytes >>= 1;
outb(waport + 2, --nbytes);
outb(waport + 2, nbytes>>8);
/* unmask channel */
outb(DMA2_SMSK, chan & 3);
}
}
void isa_dmadone(int flags, caddr_t addr, int nbytes, int chan)
{
/* copy bounce buffer on read */
/*if ((flags & (B_PHYS|B_READ)) == (B_PHYS|B_READ))*/
if (bounced[chan]) {
bcopy(dma_bounce[chan], addr, nbytes);
bounced[chan] = 0;
}
}
/*
* Check for problems with the address range of a DMA transfer
* (non-contiguous physical pages, outside of bus address space,
* crossing DMA page boundaries).
* Return true if special handling needed.
*/
int
isa_dmarangecheck(caddr_t va, unsigned length, unsigned chan) {
vm_offset_t phys, priorpage = 0, endva;
u_int dma_pgmsk = (chan & 4) ? ~(128*1024-1) : ~(64*1024-1);
endva = (vm_offset_t)round_page(va + length);
for (; va < (caddr_t) endva ; va += NBPG) {
phys = trunc_page(pmap_extract(pmap_kernel(), (vm_offset_t)va));
#define ISARAM_END RAM_END
if (phys == 0)
panic("isa_dmacheck: no physical page present");
if (phys > ISARAM_END)
return (1);
if (priorpage) {
if (priorpage + NBPG != phys)
return (1);
/* check if crossing a DMA page boundary */
if (((u_int)priorpage ^ (u_int)phys) & dma_pgmsk)
return (1);
}
priorpage = phys;
}
return (0);
}
/* head of queue waiting for physmem to become available */
struct buf isa_physmemq;
/* blocked waiting for resource to become free for exclusive use */
static isaphysmemflag;
/* if waited for and call requested when free (B_CALL) */
static void (*isaphysmemunblock)(); /* needs to be a list */
/*
* Allocate contiguous physical memory for transfer, returning
* a *virtual* address to region. May block waiting for resource.
* (assumed to be called at splbio())
*/
caddr_t
isa_allocphysmem(caddr_t va, unsigned length, void (*func)()) {
isaphysmemunblock = func;
while (isaphysmemflag & B_BUSY) {
isaphysmemflag |= B_WANTED;
tsleep((caddr_t)&isaphysmemflag, PRIBIO, "isaphys", 0);
}
isaphysmemflag |= B_BUSY;
return((caddr_t)isaphysmem);
}
/*
* Free contiguous physical memory used for transfer.
* (assumed to be called at splbio())
*/
void
isa_freephysmem(caddr_t va, unsigned length) {
isaphysmemflag &= ~B_BUSY;
if (isaphysmemflag & B_WANTED) {
isaphysmemflag &= B_WANTED;
wakeup((caddr_t)&isaphysmemflag);
if (isaphysmemunblock)
(*isaphysmemunblock)();
}
}
/*
* Handle a NMI, possibly a machine check.
* return true to panic system, false to ignore.
*/
int
isa_nmi(cd)
int cd;
{
log(LOG_CRIT, "\nNMI port 61 %x, port 70 %x\n", inb(0x61), inb(0x70));
return(0);
}
/*
* Caught a stray interrupt, notify
*/
void
isa_strayintr(d)
int d;
{
/* DON'T BOTHER FOR NOW! */
/* for some reason, we get bursts of intr #7, even if not enabled! */
/*
* Well the reason you got bursts of intr #7 is because someone
* raised an interrupt line and dropped it before the 8259 could
* prioritize it. This is documented in the intel data book. This
* means you have BAD hardware! I have changed this so that only
* the first 5 get logged, then it quits logging them, and puts
* out a special message. rgrimes 3/25/1993
*/
extern u_long intrcnt_stray;
intrcnt_stray++;
if (intrcnt_stray <= 5)
log(LOG_ERR,"ISA strayintr %x\n", d);
if (intrcnt_stray == 5)
log(LOG_CRIT,"Too many ISA strayintr not logging any more\n");
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (TIMER_FREQ / hz) at
* (1 * TIMER_FREQ) Hz.
* Note: timer had better have been programmed before this is first used!
* (The standard programming causes the timer to generate a square wave and
* the counter is decremented twice every cycle.)
*/
#define CF (1 * TIMER_FREQ)
#define TIMER_FREQ 1193182 /* XXX - should be elsewhere */
void
DELAY(n)
int n;
{
int counter_limit;
int prev_tick;
int tick;
int ticks_left;
int sec;
int usec;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*/
prev_tick = getit(0, 0);
n -= 20;
/*
* Calculate (n * (CF / 1e6)) without using floating point and without
* any avoidable overflows.
*/
sec = n / 1000000;
usec = n - sec * 1000000;
ticks_left = sec * CF
+ usec * (CF / 1000000)
+ usec * ((CF % 1000000) / 1000) / 1000
+ usec * (CF % 1000) / 1000000;
counter_limit = TIMER_FREQ / hz;
while (ticks_left > 0) {
tick = getit(0, 0);
#ifdef DELAYDEBUG
++getit_calls;
#endif
if (tick > prev_tick)
ticks_left -= prev_tick - (tick - counter_limit);
else
ticks_left -= prev_tick - tick;
prev_tick = tick;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
int
getit(unit, timer)
int unit;
int timer;
{
int high;
int low;
/*
* XXX - isa.h defines bogus timers. There's no such timer as
* IO_TIMER_2 = 0x48. There's a timer in the CMOS RAM chip but
* its interface is quite different. Neither timer is an 8252.
* We actually only call this with unit = 0 and timer = 0. It
* could be static...
*/
/*
* Protect ourself against interrupts.
* XXX - sysbeep() and sysbeepstop() need protection.
*/
disable_intr();
/*
* Latch the count for 'timer' (cc00xxxx, c = counter, x = any).
*/
outb(IO_TIMER1 + 3, timer << 6);
low = inb(IO_TIMER1 + timer);
high = inb(IO_TIMER1 + timer);
enable_intr();
return ((high << 8) | low);
}
static int beeping;
static void
sysbeepstop(f, dummy)
caddr_t f;
int dummy;
{
/* disable counter 2 */
outb(0x61, inb(0x61) & 0xFC);
if (f)
timeout(sysbeepstop, (caddr_t)0, (int)f);
else
beeping = 0;
}
void
sysbeep(int pitch, int period)
{
outb(0x61, inb(0x61) | 3); /* enable counter 2 */
/*
* XXX - move timer stuff to clock.c.
* Program counter 2:
* ccaammmb, c counter, a = access, m = mode, b = BCD
* 1011x110, 11 for aa = LSB then MSB, x11 for mmm = square wave.
*/
outb(0x43, 0xb6); /* set command for counter 2, 2 byte write */
outb(0x42, pitch);
outb(0x42, (pitch>>8));
if (!beeping) {
beeping = period;
timeout(sysbeepstop, (caddr_t)(period/2), period);
}
}
/*
* Pass command to keyboard controller (8042)
*/
unsigned
kbc_8042cmd(val)
int val;
{
while (inb(KBSTATP)&KBS_IBF);
if (val) outb(KBCMDP, val);
while (inb(KBSTATP)&KBS_IBF);
return (inb(KBDATAP));
}
/*
* find an ISA device in a given isa_devtab_* table, given
* the table to search, the expected id_driver entry, and the unit number.
*
* this function is defined in isa_device.h, and this location is debatable;
* i put it there because it's useless w/o, and directly operates on
* the other stuff in that file.
*
*/
struct isa_device *find_isadev(table, driverp, unit)
struct isa_device *table;
struct isa_driver *driverp;
int unit;
{
if (driverp == NULL) /* sanity check */
return NULL;
while ((table->id_driver != driverp) || (table->id_unit != unit)) {
if (table->id_driver == 0)
return NULL;
table++;
}
return table;
}
/*
* Return nonzero if a (masked) irq is pending for a given device.
*/
int
isa_irq_pending(dvp)
struct isa_device *dvp;
{
unsigned id_irq;
id_irq = (unsigned short) dvp->id_irq; /* XXX silly type in struct */
if (id_irq & 0xff)
return (inb(IO_ICU1) & id_irq);
return (inb(IO_ICU2) & (id_irq >> 8));
}